i40e_txrx.c 65.1 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
S
Scott Peterson 已提交
31
#include "i40e_trace.h"
32
#include "i40e_prototype.h"
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
55 56 57 58
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
59 60 61 62 63 64 65 66 67 68 69
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
107
	netdev_tx_reset_queue(txring_txq(tx_ring));
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
129
/**
130 131
 * i40evf_get_tx_pending - how many Tx descriptors not processed
 * @tx_ring: the ring of descriptors
132
 * @in_sw: is tx_pending being checked in SW or HW
J
Jesse Brandeburg 已提交
133
 *
134 135
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
J
Jesse Brandeburg 已提交
136
 **/
137
u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
J
Jesse Brandeburg 已提交
138
{
139
	u32 head, tail;
J
Jesse Brandeburg 已提交
140

141
	head = ring->next_to_clean;
142 143 144 145 146 147 148
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
J
Jesse Brandeburg 已提交
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/**
 * i40evf_detect_recover_hung - Function to detect and recover hung_queues
 * @vsi:  pointer to vsi struct with tx queues
 *
 * VSI has netdev and netdev has TX queues. This function is to check each of
 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 **/
void i40evf_detect_recover_hung(struct i40e_vsi *vsi)
{
	struct i40e_ring *tx_ring = NULL;
	struct net_device *netdev;
	unsigned int i;
	int packets;

	if (!vsi)
		return;

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return;

	netdev = vsi->netdev;
	if (!netdev)
		return;

	if (!netif_carrier_ok(netdev))
		return;

	for (i = 0; i < vsi->back->num_active_queues; i++) {
		tx_ring = &vsi->back->tx_rings[i];
		if (tx_ring && tx_ring->desc) {
			/* If packet counter has not changed the queue is
			 * likely stalled, so force an interrupt for this
			 * queue.
			 *
			 * prev_pkt_ctr would be negative if there was no
			 * pending work.
			 */
			packets = tx_ring->stats.packets & INT_MAX;
			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
				i40evf_force_wb(vsi, tx_ring->q_vector);
				continue;
			}

			/* Memory barrier between read of packet count and call
			 * to i40evf_get_tx_pending()
			 */
			smp_rmb();
			tx_ring->tx_stats.prev_pkt_ctr =
			  i40evf_get_tx_pending(tx_ring, false) ? packets : -1;
		}
	}
}

204
#define WB_STRIDE 4
205

206 207
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
208 209 210
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
211 212 213
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
214 215
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
216 217 218 219
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
	struct i40e_tx_desc *tx_desc;
220 221
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
222 223 224 225 226 227 228 229 230 231 232 233 234

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
235
		smp_rmb();
236

S
Scott Peterson 已提交
237
		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
238 239 240
		/* if the descriptor isn't done, no work yet to do */
		if (!(eop_desc->cmd_type_offset_bsz &
		      cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
241 242 243 244 245 246 247 248 249 250
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
251
		napi_consume_skb(tx_buf->skb, napi_budget);
252 253 254 255 256 257 258 259 260 261 262 263 264

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
S
Scott Peterson 已提交
265 266
			i40e_trace(clean_tx_irq_unmap,
				   tx_ring, tx_desc, tx_buf);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

297 298
		prefetch(tx_desc);

299 300 301 302 303 304 305 306 307 308 309 310 311
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

312 313 314 315 316 317
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
318
		unsigned int j = i40evf_get_tx_pending(tx_ring, false);
319 320

		if (budget &&
321
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
322
		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
323 324 325 326
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}

327 328
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
329 330
				  total_packets, total_bytes);

331
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
332 333 334 335 336 337 338 339
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
340
		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
341 342 343 344 345 346
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

347
	return !!budget;
348 349
}

350
/**
351
 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
352
 * @vsi: the VSI we care about
353
 * @q_vector: the vector on which to enable writeback
354 355
 *
 **/
356 357
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
358
{
359
	u16 flags = q_vector->tx.ring[0].flags;
360
	u32 val;
361

362 363 364 365 366 367 368 369 370 371
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;

	if (q_vector->arm_wb_state)
		return;

	val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
	      I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */

	wr32(&vsi->back->hw,
372
	     I40E_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	q_vector->arm_wb_state = true;
}

/**
 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
		  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
		  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
		  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
		  /* allow 00 to be written to the index */;

	wr32(&vsi->back->hw,
391
	     I40E_VFINT_DYN_CTLN1(q_vector->reg_idx),
392
	     val);
393 394
}

395 396 397 398
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
399 400
 * Returns true if ITR changed, false if not
 *
401 402 403 404 405 406 407 408
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
409
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
410 411 412
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
	u32 new_itr = rc->itr;
413
	int bytes_per_usec;
414
	unsigned int usecs, estimated_usecs;
415

416 417 418
	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
		return false;

419
	if (rc->total_packets == 0 || !rc->itr)
420
		return false;
421

422
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
423
	bytes_per_usec = rc->total_bytes / usecs;
424 425 426 427 428 429 430 431 432 433 434 435

	/* The calculations in this algorithm depend on interrupts actually
	 * firing at the ITR rate. This may not happen if the packet rate is
	 * really low, or if we've been napi polling. Check to make sure
	 * that's not the case before we continue.
	 */
	estimated_usecs = jiffies_to_usecs(jiffies - rc->last_itr_update);
	if (estimated_usecs > usecs) {
		new_latency_range = I40E_LOW_LATENCY;
		goto reset_latency;
	}

436
	/* simple throttlerate management
437
	 *   0-10MB/s   lowest (50000 ints/s)
438
	 *  10-20MB/s   low    (20000 ints/s)
439
	 *  20-1249MB/s bulk   (18000 ints/s)
440 441 442 443
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
444 445
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
446
	 */
447
	switch (new_latency_range) {
448
	case I40E_LOWEST_LATENCY:
449
		if (bytes_per_usec > 10)
450 451 452
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
453
		if (bytes_per_usec > 20)
454
			new_latency_range = I40E_BULK_LATENCY;
455
		else if (bytes_per_usec <= 10)
456 457 458
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
459
	default:
460
		if (bytes_per_usec <= 20)
461
			new_latency_range = I40E_LOW_LATENCY;
462 463
		break;
	}
464

465
reset_latency:
466
	rc->latency_range = new_latency_range;
467 468 469

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
470
		new_itr = I40E_ITR_50K;
471 472 473 474 475
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
476 477
		new_itr = I40E_ITR_18K;
		break;
478 479 480 481 482 483
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
484
	rc->last_itr_update = jiffies;
485 486 487 488 489 490

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}
	return false;
491 492
}

J
Jesse Brandeburg 已提交
493
/**
494 495 496 497 498 499 500 501 502 503 504 505 506
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

507 508
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
527
	tx_ring->tx_stats.prev_pkt_ctr = -1;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

549 550 551 552 553
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

554 555
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
556 557 558 559 560
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

561 562 563 564 565 566
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
567
					      rx_ring->rx_buf_len,
568 569 570 571
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
572
				     i40e_rx_pg_size(rx_ring),
573 574
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
575

576
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
577 578 579

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
580 581 582 583 584 585 586 587
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

588
	rx_ring->next_to_alloc = 0;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

623 624
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
625 626 627 628 629
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

630
	u64_stats_init(&rx_ring->syncp);
631

632
	/* Round up to nearest 4K */
633
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
634 635 636 637 638 639 640 641 642 643
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

644
	rx_ring->next_to_alloc = 0;
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
663 664 665 666

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

667 668 669 670 671 672 673 674 675
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

676 677 678 679 680 681 682 683 684 685 686
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

687
/**
688 689 690
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
691
 *
692 693
 * Returns true if the page was successfully allocated or
 * reused.
694
 **/
695 696
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
697
{
698 699
	struct page *page = bi->page;
	dma_addr_t dma;
700

701 702 703 704 705
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
706

707
	/* alloc new page for storage */
708
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
709 710 711 712
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
713

714
	/* map page for use */
715
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
716
				 i40e_rx_pg_size(rx_ring),
717 718
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
719

720 721
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
722
	 */
723
	if (dma_mapping_error(rx_ring->dev, dma)) {
724
		__free_pages(page, i40e_rx_pg_order(rx_ring));
725 726
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
727 728
	}

729 730
	bi->dma = dma;
	bi->page = page;
731
	bi->page_offset = i40e_rx_offset(rx_ring);
732 733

	/* initialize pagecnt_bias to 1 representing we fully own page */
734
	bi->pagecnt_bias = 1;
735

736 737
	return true;
}
738

739 740 741 742 743 744 745 746 747 748
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
749

750 751 752 753 754
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
755 756 757
}

/**
758
 * i40evf_alloc_rx_buffers - Replace used receive buffers
759 760
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
761
 *
762
 * Returns false if all allocations were successful, true if any fail
763
 **/
764
bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
765
{
766
	u16 ntu = rx_ring->next_to_use;
767 768 769 770 771
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
772
		return false;
773

774 775
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
776

777 778 779
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
780

781 782 783
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
784
						 rx_ring->rx_buf_len,
785 786
						 DMA_FROM_DEVICE);

787 788 789 790
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
791

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
809 810 811

	return false;

812
no_buffers:
813 814
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
815 816 817 818 819

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
820 821 822 823 824 825
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
826
 * @rx_desc: the receive descriptor
827 828 829
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
830
				    union i40e_rx_desc *rx_desc)
831
{
832 833
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
834
	bool ipv4, ipv6;
835 836 837 838 839 840 841 842 843 844
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
845 846 847

	skb->ip_summed = CHECKSUM_NONE;

848 849
	skb_checksum_none_assert(skb);

850
	/* Rx csum enabled and ip headers found? */
851 852 853 854
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
855
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
856 857 858 859
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
860 861
		return;

862 863 864 865
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
866 867

	if (ipv4 &&
868 869
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
870 871
		goto checksum_fail;

J
Jesse Brandeburg 已提交
872
	/* likely incorrect csum if alternate IP extension headers found */
873
	if (ipv6 &&
874
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
875
		/* don't increment checksum err here, non-fatal err */
876 877
		return;

878
	/* there was some L4 error, count error and punt packet to the stack */
879
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
880 881 882 883 884 885
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
886
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
887 888
		return;

889 890 891 892 893 894 895 896 897 898
	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
899 900 901 902 903

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
904 905 906
}

/**
907
 * i40e_ptype_to_htype - get a hash type
908 909 910 911
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
912
static inline int i40e_ptype_to_htype(u8 ptype)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

929 930 931 932 933 934 935 936 937 938 939
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
940
	const __le64 rss_mask =
941 942 943 944 945 946 947 948 949 950 951 952
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if (ring->netdev->features & NETIF_F_RXHASH)
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

953
/**
954 955 956 957 958
 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
959
 *
960 961 962
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
963
 **/
964 965 966 967
static inline
void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
			       union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			       u8 rx_ptype)
968
{
969
	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
970

971
	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
972

973
	skb_record_rx_queue(skb, rx_ring->queue_index);
974 975 976

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
977
}
978

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;
997

998 999
	return false;
}
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;
1013

1014
	new_buff = &rx_ring->rx_bi[nta];
1015

1016 1017 1018
	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1019

1020
	/* transfer page from old buffer to new buffer */
1021 1022 1023 1024
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1025 1026 1027
}

/**
1028
 * i40e_page_is_reusable - check if any reuse is possible
1029
 * @page: page struct to check
1030 1031 1032
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1033
 */
1034
static inline bool i40e_page_is_reusable(struct page *page)
1035
{
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1067
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1068
{
1069 1070
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1071 1072 1073 1074 1075 1076 1077

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1078
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1079 1080
		return false;
#else
1081 1082 1083
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1084 1085 1086
		return false;
#endif

1087 1088 1089 1090
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1091
	if (unlikely(!pagecnt_bias)) {
1092 1093 1094
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1095 1096

	return true;
1097 1098 1099 1100 1101 1102 1103
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1104
 * @size: packet length from rx_desc
1105 1106
 *
 * This function will add the data contained in rx_buffer->page to the skb.
1107
 * It will just attach the page as a frag to the skb.
1108
 *
1109
 * The function will then update the page offset.
1110
 **/
1111
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1112
			     struct i40e_rx_buffer *rx_buffer,
1113 1114
			     struct sk_buff *skb,
			     unsigned int size)
1115 1116
{
#if (PAGE_SIZE < 8192)
1117
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1118
#else
1119
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1120
#endif
1121

1122 1123
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
1124

1125 1126 1127 1128 1129 1130
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1131 1132
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

1156 1157 1158
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

1159 1160 1161
	return rx_buffer;
}

1162
/**
1163
 * i40e_construct_skb - Allocate skb and populate it
1164
 * @rx_ring: rx descriptor ring to transact packets on
1165
 * @rx_buffer: rx buffer to pull data from
1166
 * @size: size of buffer to add to skb
1167
 *
1168 1169 1170
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
1171
 */
1172 1173 1174
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
					  unsigned int size)
1175
{
1176 1177
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
1178
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1179 1180 1181 1182 1183
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
1184

1185 1186
	/* prefetch first cache line of first page */
	prefetch(va);
1187
#if L1_CACHE_BYTES < 128
1188
	prefetch(va + L1_CACHE_BYTES);
1189 1190
#endif

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
		headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	/* align pull length to size of long to optimize memcpy performance */
	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
1223 1224 1225 1226

	return skb;
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/**
 * i40e_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buffer: Rx buffer to pull data from
 * @size: size of buffer to add to skb
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *rx_buffer,
				      unsigned int size)
{
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
1244 1245
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
#endif
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
	prefetch(va);
#if L1_CACHE_BYTES < 128
	prefetch(va + L1_CACHE_BYTES);
#endif
	/* build an skb around the page buffer */
	skb = build_skb(va - I40E_SKB_PAD, truesize);
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
	skb_reserve(skb, I40E_SKB_PAD);
	__skb_put(skb, size);

	/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

1273 1274 1275 1276 1277 1278
/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
 *
 * This function will clean up the contents of the rx_buffer.  It will
1279
 * either recycle the buffer or unmap it and free the associated resources.
1280 1281 1282 1283 1284
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *rx_buffer)
{
	if (i40e_can_reuse_rx_page(rx_buffer)) {
1285 1286 1287 1288 1289
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1290 1291
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
1292
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1293 1294
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
1332 1333 1334
}

/**
1335 1336 1337 1338 1339 1340 1341 1342
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
1343
 *
1344
 * Returns amount of work completed
1345
 **/
1346
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1347 1348
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1349
	struct sk_buff *skb = rx_ring->skb;
1350
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1351
	bool failure = false;
1352

1353
	while (likely(total_rx_packets < (unsigned int)budget)) {
1354
		struct i40e_rx_buffer *rx_buffer;
1355
		union i40e_rx_desc *rx_desc;
1356
		unsigned int size;
1357
		u16 vlan_tag;
1358 1359 1360
		u8 rx_ptype;
		u64 qword;

1361 1362
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1363
			failure = failure ||
1364
				  i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1365 1366 1367
			cleaned_count = 0;
		}

1368 1369 1370 1371 1372
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
1373
		 * hardware wrote DD then the length will be non-zero
1374
		 */
1375
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1376

1377
		/* This memory barrier is needed to keep us from reading
1378 1379
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
1380
		 */
1381
		dma_rmb();
1382

1383 1384 1385 1386 1387
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

S
Scott Peterson 已提交
1388
		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1389 1390
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

1391 1392 1393
		/* retrieve a buffer from the ring */
		if (skb)
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
1394 1395
		else if (ring_uses_build_skb(rx_ring))
			skb = i40e_build_skb(rx_ring, rx_buffer, size);
1396 1397 1398 1399 1400 1401 1402
		else
			skb = i40e_construct_skb(rx_ring, rx_buffer, size);

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
1403
			break;
1404
		}
1405

1406
		i40e_put_rx_buffer(rx_ring, rx_buffer);
1407 1408
		cleaned_count++;

1409
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1410 1411
			continue;

1412 1413 1414 1415 1416 1417
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1418
			dev_kfree_skb_any(skb);
1419
			skb = NULL;
1420 1421 1422
			continue;
		}

1423 1424
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1425
			continue;
1426
		}
1427

1428 1429 1430
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1431 1432 1433 1434
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1435 1436
		/* populate checksum, VLAN, and protocol */
		i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1437 1438


1439 1440 1441
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

S
Scott Peterson 已提交
1442
		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1443
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1444
		skb = NULL;
1445

1446 1447 1448
		/* update budget accounting */
		total_rx_packets++;
	}
1449

1450 1451
	rx_ring->skb = skb;

1452 1453 1454 1455 1456 1457 1458
	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1459
	/* guarantee a trip back through this routine if there was a failure */
1460
	return failure ? budget : (int)total_rx_packets;
1461 1462
}

1463 1464 1465 1466
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	/* We don't bother with setting the CLEARPBA bit as the data sheet
	 * points out doing so is "meaningless since it was already
	 * auto-cleared". The auto-clearing happens when the interrupt is
	 * asserted.
	 *
	 * Hardware errata 28 for also indicates that writing to a
	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
	 * an event in the PBA anyway so we need to rely on the automask
	 * to hold pending events for us until the interrupt is re-enabled
	 */
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_VFINT_DYN_CTLN1

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1497
	bool rx = false, tx = false;
1498
	u32 txval;
1499

1500
	txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1501

1502 1503
	/* avoid dynamic calculation if in countdown mode */
	if (q_vector->itr_countdown > 0)
1504 1505
		goto enable_int;

1506 1507 1508
	/* these will return false if dynamic mode is disabled */
	rx = i40e_set_new_dynamic_itr(&q_vector->rx);
	tx = i40e_set_new_dynamic_itr(&q_vector->tx);
J
Jesse Brandeburg 已提交
1509

1510 1511 1512 1513 1514 1515
	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1516
		u32 rxval;
1517 1518 1519 1520 1521 1522 1523

		q_vector->tx.itr = q_vector->rx.itr = itr;

		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
1524 1525
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr) | BIT(31);

1526
		/* don't check _DOWN because interrupt isn't being enabled */
1527
		wr32(hw, INTREG(q_vector->reg_idx), rxval);
1528 1529

		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1530 1531
	}

1532
enable_int:
1533
	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
1534
		wr32(hw, INTREG(q_vector->reg_idx), txval);
1535 1536 1537 1538 1539

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1540 1541
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1558
	bool arm_wb = false;
1559
	int budget_per_ring;
1560
	int work_done = 0;
1561

1562
	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
1563 1564 1565 1566 1567 1568 1569
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1570
	i40e_for_each_ring(ring, q_vector->tx) {
1571
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1572 1573 1574 1575
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
1576
		ring->arm_wb = false;
1577
	}
1578

1579 1580 1581 1582
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1583 1584 1585 1586 1587
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1588
	i40e_for_each_ring(ring, q_vector->rx) {
1589
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1590 1591

		work_done += cleaned;
1592 1593 1594
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
1595
	}
1596 1597

	/* If work not completed, return budget and polling will return */
1598
	if (!clean_complete) {
1599 1600 1601 1602 1603 1604 1605 1606 1607
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
			/* Tell napi that we are done polling */
			napi_complete_done(napi, work_done);

			/* Force an interrupt */
			i40evf_force_wb(vsi, q_vector);

			/* Return budget-1 so that polling stops */
			return budget - 1;
		}
1618
tx_only:
1619 1620 1621
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
			i40e_enable_wb_on_itr(vsi, q_vector);
1622
		}
1623
		return budget;
1624
	}
1625

1626 1627 1628
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1629
	/* Work is done so exit the polling mode and re-enable the interrupt */
1630
	napi_complete_done(napi, work_done);
1631

1632
	i40e_update_enable_itr(vsi, q_vector);
1633

1634
	return min(work_done, budget - 1);
1635 1636 1637
}

/**
1638
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1649 1650 1651
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1652 1653 1654 1655
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1669
	/* if we have a HW VLAN tag being added, default to the HW one */
1670 1671
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1672 1673 1674 1675
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1686
out:
1687 1688 1689 1690 1691 1692
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
1693
 * @first:    pointer to first Tx buffer for xmit
1694
 * @hdr_len:  ptr to the size of the packet header
1695
 * @cd_type_cmd_tso_mss: Quad Word 1
1696 1697 1698
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
1699 1700
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
1701
{
1702
	struct sk_buff *skb = first->skb;
1703
	u64 cd_cmd, cd_tso_len, cd_mss;
1704 1705 1706 1707 1708
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1709 1710
	union {
		struct tcphdr *tcp;
1711
		struct udphdr *udp;
1712 1713 1714
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
1715
	u16 gso_segs, gso_size;
1716 1717
	int err;

1718 1719 1720
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1721 1722 1723
	if (!skb_is_gso(skb))
		return 0;

1724 1725 1726
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1727

1728 1729
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1730

1731 1732 1733 1734
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
1735
	} else {
1736 1737 1738
		ip.v6->payload_len = 0;
	}

1739
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1740
					 SKB_GSO_GRE_CSUM |
1741
					 SKB_GSO_IPXIP4 |
1742
					 SKB_GSO_IPXIP6 |
1743
					 SKB_GSO_UDP_TUNNEL |
1744
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1745 1746 1747 1748
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

1749 1750 1751 1752
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
1753
			paylen = skb->len - l4_offset;
1754 1755
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
1756 1757
		}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
1769 1770
	}

1771 1772 1773 1774
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
1775
	paylen = skb->len - l4_offset;
1776
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1777 1778 1779

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1780

1781 1782 1783 1784 1785 1786 1787 1788
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

1789 1790 1791
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
1792
	cd_mss = gso_size;
1793 1794 1795
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1796 1797 1798 1799 1800 1801
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1802
 * @tx_flags: pointer to Tx flags currently set
1803 1804
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
1805
 * @tx_ring: Tx descriptor ring
1806 1807
 * @cd_tunneling: ptr to context desc bits
 **/
1808 1809 1810 1811
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
1812
{
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
1823
	unsigned char *exthdr;
1824
	u32 offset, cmd = 0;
1825
	__be16 frag_off;
1826 1827
	u8 l4_proto = 0;

1828 1829 1830
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1831 1832
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1833

1834 1835 1836
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

1837
	if (skb->encapsulation) {
1838
		u32 tunnel = 0;
1839 1840
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1841 1842 1843 1844
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

1845 1846
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1847
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1848 1849

			exthdr = ip.hdr + sizeof(*ip.v6);
1850
			l4_proto = ip.v6->nexthdr;
1851 1852 1853
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
1854 1855 1856 1857
		}

		/* define outer transport */
		switch (l4_proto) {
1858
		case IPPROTO_UDP:
1859
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1860
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1861
			break;
1862
		case IPPROTO_GRE:
1863
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1864 1865
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			break;
1866 1867 1868 1869 1870
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
1871
		default:
1872 1873 1874 1875 1876
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
1877
		}
1878

1879 1880 1881 1882 1883 1884 1885
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

1886 1887 1888 1889
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

1890 1891
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1892
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1893 1894 1895
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

1896 1897 1898
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

1899 1900
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
1901
		l4_proto = 0;
1902

1903 1904 1905 1906 1907
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
1908
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1909 1910 1911
	}

	/* Enable IP checksum offloads */
1912
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1913
		l4_proto = ip.v4->protocol;
1914 1915 1916
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1917 1918 1919
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
1920
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1921
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1922 1923 1924 1925 1926 1927

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
1928
	}
1929

1930 1931
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1932 1933

	/* Enable L4 checksum offloads */
1934
	switch (l4_proto) {
1935 1936
	case IPPROTO_TCP:
		/* enable checksum offloads */
1937 1938
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1939 1940 1941
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
1942 1943 1944
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1945 1946 1947
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
1948 1949 1950
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1951 1952
		break;
	default:
1953 1954 1955 1956
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
1957
	}
1958 1959 1960

	*td_cmd |= cmd;
	*td_offset |= offset;
1961 1962

	return 1;
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1979 1980
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1992
	context_desc->rsvd = cpu_to_le16(0);
1993 1994 1995
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

J
Jesse Brandeburg 已提交
1996
/**
1997
 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1998 1999
 * @skb:      send buffer
 *
2000 2001 2002 2003 2004 2005 2006 2007
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
2008
 **/
2009
bool __i40evf_chk_linearize(struct sk_buff *skb)
2010
{
2011
	const struct skb_frag_struct *frag, *stale;
2012
	int nr_frags, sum;
2013

2014
	/* no need to check if number of frags is less than 7 */
2015
	nr_frags = skb_shinfo(skb)->nr_frags;
2016
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2017
		return false;
2018

2019
	/* We need to walk through the list and validate that each group
2020
	 * of 6 fragments totals at least gso_size.
2021
	 */
2022
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2023 2024 2025 2026 2027 2028 2029 2030
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2031
	sum = 1 - skb_shinfo(skb)->gso_size;
2032

2033 2034 2035 2036 2037 2038
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2039 2040 2041 2042

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
2043 2044 2045
	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
		int stale_size = skb_frag_size(stale);

2046
		sum += skb_frag_size(frag++);
2047

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
		/* The stale fragment may present us with a smaller
		 * descriptor than the actual fragment size. To account
		 * for that we need to remove all the data on the front and
		 * figure out what the remainder would be in the last
		 * descriptor associated with the fragment.
		 */
		if (stale_size > I40E_MAX_DATA_PER_TXD) {
			int align_pad = -(stale->page_offset) &
					(I40E_MAX_READ_REQ_SIZE - 1);

			sum -= align_pad;
			stale_size -= align_pad;

			do {
				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
			} while (stale_size > I40E_MAX_DATA_PER_TXD);
		}

2067 2068 2069 2070
		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2071
		if (!nr_frags--)
2072 2073
			break;

2074
		sum -= stale_size;
2075 2076
	}

2077
	return false;
2078 2079
}

2080 2081 2082 2083 2084 2085 2086
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2087
int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2103
/**
2104
 * i40evf_tx_map - Build the Tx descriptor
2105 2106 2107 2108 2109 2110 2111 2112
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2113 2114 2115
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2140 2141
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

2142 2143 2144 2145 2146 2147 2148
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2149 2150
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2151 2152 2153 2154 2155
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2156
					   max_data, td_tag);
2157 2158 2159

			tx_desc++;
			i++;
2160

2161 2162 2163 2164 2165
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2166 2167
			dma += max_data;
			size -= max_data;
2168

2169
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
2181

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

2196
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2197 2198 2199 2200 2201 2202 2203

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

2204
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2205

2206 2207
	/* write last descriptor with RS and EOP bits */
	td_cmd |= I40E_TXD_CMD;
2208
	tx_desc->cmd_type_offset_bsz =
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
2221

2222
	/* notify HW of packet */
2223
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2224
		writel(i, tx_ring->tail);
2225 2226 2227 2228 2229

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
2230
	}
2231

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2269
	int tso, count;
J
Jesse Brandeburg 已提交
2270

2271 2272 2273
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

S
Scott Peterson 已提交
2274 2275
	i40e_trace(xmit_frame_ring, skb, tx_ring);

2276
	count = i40e_xmit_descriptor_count(skb);
2277
	if (i40e_chk_linearize(skb, count)) {
2278 2279 2280 2281
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
2282
		count = i40e_txd_use_count(skb->len);
2283 2284
		tx_ring->tx_stats.tx_linearize++;
	}
2285 2286 2287 2288 2289 2290 2291 2292 2293

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2294
		return NETDEV_TX_BUSY;
2295
	}
2296

2297 2298 2299 2300 2301 2302
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

2303
	/* prepare the xmit flags */
2304
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2305 2306 2307
		goto out_drop;

	/* obtain protocol of skb */
2308
	protocol = vlan_get_protocol(skb);
2309 2310 2311 2312 2313 2314 2315

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

2316
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2317 2318 2319 2320 2321 2322 2323

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

	/* Always offload the checksum, since it's in the data descriptor */
2324 2325 2326 2327
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;
2328

2329 2330 2331 2332 2333
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

2334 2335 2336
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

2337 2338
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
2339 2340 2341 2342

	return NETDEV_TX_OK;

out_drop:
S
Scott Peterson 已提交
2343
	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2344 2345
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
2359
	struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}