f_fs.c 90.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
 * f_fs.c -- user mode file system API for USB composite function controllers
4 5
 *
 * Copyright (C) 2010 Samsung Electronics
6
 * Author: Michal Nazarewicz <mina86@mina86.com>
7
 *
8
 * Based on inode.c (GadgetFS) which was:
9 10 11 12 13 14 15 16 17
 * Copyright (C) 2003-2004 David Brownell
 * Copyright (C) 2003 Agilent Technologies
 */


/* #define DEBUG */
/* #define VERBOSE_DEBUG */

#include <linux/blkdev.h>
18
#include <linux/pagemap.h>
19
#include <linux/export.h>
20
#include <linux/fs_parser.h>
21
#include <linux/hid.h>
22
#include <linux/mm.h>
23
#include <linux/module.h>
24
#include <linux/scatterlist.h>
25
#include <linux/sched/signal.h>
26
#include <linux/uio.h>
27
#include <linux/vmalloc.h>
28 29
#include <asm/unaligned.h>

30
#include <linux/usb/ccid.h>
31 32 33
#include <linux/usb/composite.h>
#include <linux/usb/functionfs.h>

34
#include <linux/aio.h>
35
#include <linux/kthread.h>
36
#include <linux/poll.h>
37
#include <linux/eventfd.h>
38

39
#include "u_fs.h"
40
#include "u_f.h"
41
#include "u_os_desc.h"
42
#include "configfs.h"
43 44 45 46 47 48 49

#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */

/* Reference counter handling */
static void ffs_data_get(struct ffs_data *ffs);
static void ffs_data_put(struct ffs_data *ffs);
/* Creates new ffs_data object. */
50 51
static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
	__attribute__((malloc));
52 53 54 55 56

/* Opened counter handling. */
static void ffs_data_opened(struct ffs_data *ffs);
static void ffs_data_closed(struct ffs_data *ffs);

57
/* Called with ffs->mutex held; take over ownership of data. */
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
static int __must_check
__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
static int __must_check
__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);


/* The function structure ***************************************************/

struct ffs_ep;

struct ffs_function {
	struct usb_configuration	*conf;
	struct usb_gadget		*gadget;
	struct ffs_data			*ffs;

	struct ffs_ep			*eps;
	u8				eps_revmap[16];
	short				*interfaces_nums;

	struct usb_function		function;
};


static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
{
	return container_of(f, struct ffs_function, function);
}


87 88 89 90 91 92 93 94
static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
{
	return (enum ffs_setup_state)
		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
}


95 96 97 98 99 100 101 102 103
static void ffs_func_eps_disable(struct ffs_function *func);
static int __must_check ffs_func_eps_enable(struct ffs_function *func);

static int ffs_func_bind(struct usb_configuration *,
			 struct usb_function *);
static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
static void ffs_func_disable(struct usb_function *);
static int ffs_func_setup(struct usb_function *,
			  const struct usb_ctrlrequest *);
104
static bool ffs_func_req_match(struct usb_function *,
105 106
			       const struct usb_ctrlrequest *,
			       bool config0);
107 108 109 110 111 112 113 114 115 116 117 118 119 120
static void ffs_func_suspend(struct usb_function *);
static void ffs_func_resume(struct usb_function *);


static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);


/* The endpoints structures *************************************************/

struct ffs_ep {
	struct usb_ep			*ep;	/* P: ffs->eps_lock */
	struct usb_request		*req;	/* P: epfile->mutex */

121 122
	/* [0]: full speed, [1]: high speed, [2]: super speed */
	struct usb_endpoint_descriptor	*descs[3];
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

	u8				num;

	int				status;	/* P: epfile->mutex */
};

struct ffs_epfile {
	/* Protects ep->ep and ep->req. */
	struct mutex			mutex;

	struct ffs_data			*ffs;
	struct ffs_ep			*ep;	/* P: ffs->eps_lock */

	struct dentry			*dentry;

138 139 140
	/*
	 * Buffer for holding data from partial reads which may happen since
	 * we’re rounding user read requests to a multiple of a max packet size.
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
	 *
	 * The pointer is initialised with NULL value and may be set by
	 * __ffs_epfile_read_data function to point to a temporary buffer.
	 *
	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
	 * data from said buffer and eventually free it.  Importantly, while the
	 * function is using the buffer, it sets the pointer to NULL.  This is
	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
	 * can never run concurrently (they are synchronised by epfile->mutex)
	 * so the latter will not assign a new value to the pointer.
	 *
	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
	 * value is crux of the synchronisation between ffs_func_eps_disable and
	 * __ffs_epfile_read_data.
	 *
	 * Once __ffs_epfile_read_data is about to finish it will try to set the
	 * pointer back to its old value (as described above), but seeing as the
	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
	 * the buffer.
	 *
	 * == State transitions ==
	 *
	 * • ptr == NULL:  (initial state)
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    nop
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == DROP:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == buf:
	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
	 *                                    is always called first
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == NULL and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes and …
	 *     … all data read:               free buf, go to ptr == NULL
	 *     … otherwise:                   go to ptr == buf and reading
	 * • ptr == DROP and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes:              free buf, go to ptr == DROP
192
	 */
193 194
	struct ffs_buffer		*read_buffer;
#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195

196 197 198 199 200 201 202 203
	char				name[5];

	unsigned char			in;	/* P: ffs->eps_lock */
	unsigned char			isoc;	/* P: ffs->eps_lock */

	unsigned char			_pad;
};

204 205 206 207 208 209
struct ffs_buffer {
	size_t length;
	char *data;
	char storage[];
};

210 211 212 213 214 215 216
/*  ffs_io_data structure ***************************************************/

struct ffs_io_data {
	bool aio;
	bool read;

	struct kiocb *kiocb;
217 218 219
	struct iov_iter data;
	const void *to_free;
	char *buf;
220 221 222 223 224 225

	struct mm_struct *mm;
	struct work_struct work;

	struct usb_ep *ep;
	struct usb_request *req;
226 227
	struct sg_table sgt;
	bool use_sg;
228 229

	struct ffs_data *ffs;
230 231
};

232 233 234 235 236 237
struct ffs_desc_helper {
	struct ffs_data *ffs;
	unsigned interfaces_count;
	unsigned eps_count;
};

238 239 240
static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);

A
Al Viro 已提交
241
static struct dentry *
242
ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
A
Al Viro 已提交
243
		   const struct file_operations *fops);
244

245 246 247
/* Devices management *******************************************************/

DEFINE_MUTEX(ffs_lock);
248
EXPORT_SYMBOL_GPL(ffs_lock);
249

250 251 252
static struct ffs_dev *_ffs_find_dev(const char *name);
static struct ffs_dev *_ffs_alloc_dev(void);
static void _ffs_free_dev(struct ffs_dev *dev);
253 254 255 256
static void *ffs_acquire_dev(const char *dev_name);
static void ffs_release_dev(struct ffs_data *ffs_data);
static int ffs_ready(struct ffs_data *ffs);
static void ffs_closed(struct ffs_data *ffs);
257 258 259 260 261

/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
	__attribute__((warn_unused_result, nonnull));
A
Al Viro 已提交
262
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 264 265 266 267 268 269 270 271
	__attribute__((warn_unused_result, nonnull));


/* Control file aka ep0 *****************************************************/

static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
{
	struct ffs_data *ffs = req->context;

272
	complete(&ffs->ep0req_completion);
273 274 275
}

static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276
	__releases(&ffs->ev.waitq.lock)
277 278 279 280 281 282 283 284 285 286 287
{
	struct usb_request *req = ffs->ep0req;
	int ret;

	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);

	spin_unlock_irq(&ffs->ev.waitq.lock);

	req->buf      = data;
	req->length   = len;

288 289 290 291 292 293 294 295
	/*
	 * UDC layer requires to provide a buffer even for ZLP, but should
	 * not use it at all. Let's provide some poisoned pointer to catch
	 * possible bug in the driver.
	 */
	if (req->buf == NULL)
		req->buf = (void *)0xDEADBABE;

296
	reinit_completion(&ffs->ep0req_completion);
297 298 299 300 301 302 303 304 305 306 307 308

	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
	if (unlikely(ret)) {
		usb_ep_dequeue(ffs->gadget->ep0, req);
		return -EINTR;
	}

	ffs->setup_state = FFS_NO_SETUP;
309
	return req->status ? req->status : req->actual;
310 311 312 313 314
}

static int __ffs_ep0_stall(struct ffs_data *ffs)
{
	if (ffs->ev.can_stall) {
315
		pr_vdebug("ep0 stall\n");
316 317 318 319
		usb_ep_set_halt(ffs->gadget->ep0);
		ffs->setup_state = FFS_NO_SETUP;
		return -EL2HLT;
	} else {
320
		pr_debug("bogus ep0 stall!\n");
321 322 323 324 325 326 327 328 329 330 331 332 333 334
		return -ESRCH;
	}
}

static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
			     size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	ssize_t ret;
	char *data;

	ENTER();

	/* Fast check if setup was canceled */
335
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		/* Copy data */
		if (unlikely(len < 16)) {
			ret = -EINVAL;
			break;
		}

		data = ffs_prepare_buffer(buf, len);
354
		if (IS_ERR(data)) {
355 356 357 358 359 360
			ret = PTR_ERR(data);
			break;
		}

		/* Handle data */
		if (ffs->state == FFS_READ_DESCRIPTORS) {
361
			pr_info("read descriptors\n");
362 363 364 365 366 367 368
			ret = __ffs_data_got_descs(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ffs->state = FFS_READ_STRINGS;
			ret = len;
		} else {
369
			pr_info("read strings\n");
370 371 372 373 374 375 376 377 378 379 380 381 382
			ret = __ffs_data_got_strings(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ret = ffs_epfiles_create(ffs);
			if (unlikely(ret)) {
				ffs->state = FFS_CLOSING;
				break;
			}

			ffs->state = FFS_ACTIVE;
			mutex_unlock(&ffs->mutex);

383
			ret = ffs_ready(ffs);
384 385 386 387 388 389 390 391 392 393 394
			if (unlikely(ret < 0)) {
				ffs->state = FFS_CLOSING;
				return ret;
			}

			return len;
		}
		break;

	case FFS_ACTIVE:
		data = NULL;
395 396 397 398
		/*
		 * We're called from user space, we can use _irq
		 * rather then _irqsave
		 */
399
		spin_lock_irq(&ffs->ev.waitq.lock);
400
		switch (ffs_setup_state_clear_cancelled(ffs)) {
401
		case FFS_SETUP_CANCELLED:
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
			ret = -EIDRM;
			goto done_spin;

		case FFS_NO_SETUP:
			ret = -ESRCH;
			goto done_spin;

		case FFS_SETUP_PENDING:
			break;
		}

		/* FFS_SETUP_PENDING */
		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			break;
		}

		/* FFS_SETUP_PENDING and not stall */
		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		data = ffs_prepare_buffer(buf, len);
426
		if (IS_ERR(data)) {
427 428 429 430 431 432
			ret = PTR_ERR(data);
			break;
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

433 434
		/*
		 * We are guaranteed to be still in FFS_ACTIVE state
435
		 * but the state of setup could have changed from
436
		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
437
		 * to check for that.  If that happened we copied data
438 439 440
		 * from user space in vain but it's unlikely.
		 *
		 * For sure we are not in FFS_NO_SETUP since this is
441 442
		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
		 * transition can be performed and it's protected by
443 444
		 * mutex.
		 */
445 446
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
			ret = -EIDRM;
done_spin:
			spin_unlock_irq(&ffs->ev.waitq.lock);
		} else {
			/* unlocks spinlock */
			ret = __ffs_ep0_queue_wait(ffs, data, len);
		}
		kfree(data);
		break;

	default:
		ret = -EBADFD;
		break;
	}

	mutex_unlock(&ffs->mutex);
	return ret;
}

466
/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
467 468
static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
				     size_t n)
469
	__releases(&ffs->ev.waitq.lock)
470
{
471
	/*
472 473 474
	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
	 * size of ffs->ev.types array (which is four) so that's how much space
	 * we reserve.
475
	 */
476 477
	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
	const size_t size = n * sizeof *events;
478 479
	unsigned i = 0;

480
	memset(events, 0, size);
481 482 483 484 485 486 487 488 489

	do {
		events[i].type = ffs->ev.types[i];
		if (events[i].type == FUNCTIONFS_SETUP) {
			events[i].u.setup = ffs->ev.setup;
			ffs->setup_state = FFS_SETUP_PENDING;
		}
	} while (++i < n);

490 491
	ffs->ev.count -= n;
	if (ffs->ev.count)
492 493 494 495 496 497
		memmove(ffs->ev.types, ffs->ev.types + n,
			ffs->ev.count * sizeof *ffs->ev.types);

	spin_unlock_irq(&ffs->ev.waitq.lock);
	mutex_unlock(&ffs->mutex);

498
	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
499 500 501 502 503 504 505 506 507 508 509 510 511
}

static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
			    size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	char *data = NULL;
	size_t n;
	int ret;

	ENTER();

	/* Fast check if setup was canceled */
512
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
513 514 515 516 517 518 519 520 521 522 523 524 525
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	if (ffs->state != FFS_ACTIVE) {
		ret = -EBADFD;
		goto done_mutex;
	}

526 527 528 529
	/*
	 * We're called from user space, we can use _irq rather then
	 * _irqsave
	 */
530 531
	spin_lock_irq(&ffs->ev.waitq.lock);

532
	switch (ffs_setup_state_clear_cancelled(ffs)) {
533
	case FFS_SETUP_CANCELLED:
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
		ret = -EIDRM;
		break;

	case FFS_NO_SETUP:
		n = len / sizeof(struct usb_functionfs_event);
		if (unlikely(!n)) {
			ret = -EINVAL;
			break;
		}

		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
			ret = -EAGAIN;
			break;
		}

549 550
		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
							ffs->ev.count)) {
551 552 553 554
			ret = -EINTR;
			break;
		}

555
		/* unlocks spinlock */
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
		return __ffs_ep0_read_events(ffs, buf,
					     min(n, (size_t)ffs->ev.count));

	case FFS_SETUP_PENDING:
		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			goto done_mutex;
		}

		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		if (likely(len)) {
			data = kmalloc(len, GFP_KERNEL);
			if (unlikely(!data)) {
				ret = -ENOMEM;
				goto done_mutex;
			}
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

		/* See ffs_ep0_write() */
581 582
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
583 584 585 586 587 588
			ret = -EIDRM;
			break;
		}

		/* unlocks spinlock */
		ret = __ffs_ep0_queue_wait(ffs, data, len);
589
		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
			ret = -EFAULT;
		goto done_mutex;

	default:
		ret = -EBADFD;
		break;
	}

	spin_unlock_irq(&ffs->ev.waitq.lock);
done_mutex:
	mutex_unlock(&ffs->mutex);
	kfree(data);
	return ret;
}

static int ffs_ep0_open(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = inode->i_private;

	ENTER();

	if (unlikely(ffs->state == FFS_CLOSING))
		return -EBUSY;

	file->private_data = ffs;
	ffs_data_opened(ffs);

	return 0;
}

static int ffs_ep0_release(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = file->private_data;

	ENTER();

	ffs_data_closed(ffs);

	return 0;
}

static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
{
	struct ffs_data *ffs = file->private_data;
	struct usb_gadget *gadget = ffs->gadget;
	long ret;

	ENTER();

	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
		struct ffs_function *func = ffs->func;
		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
642
	} else if (gadget && gadget->ops->ioctl) {
643 644 645 646 647 648 649 650
		ret = gadget->ops->ioctl(gadget, code, value);
	} else {
		ret = -ENOTTY;
	}

	return ret;
}

651
static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
652 653
{
	struct ffs_data *ffs = file->private_data;
654
	__poll_t mask = EPOLLWRNORM;
655 656 657 658 659 660 661 662 663 664 665
	int ret;

	poll_wait(file, &ffs->ev.waitq, wait);

	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return mask;

	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
666
		mask |= EPOLLOUT;
667 668 669 670 671 672
		break;

	case FFS_ACTIVE:
		switch (ffs->setup_state) {
		case FFS_NO_SETUP:
			if (ffs->ev.count)
673
				mask |= EPOLLIN;
674 675 676 677
			break;

		case FFS_SETUP_PENDING:
		case FFS_SETUP_CANCELLED:
678
			mask |= (EPOLLIN | EPOLLOUT);
679 680 681 682
			break;
		}
	case FFS_CLOSING:
		break;
683 684
	case FFS_DEACTIVATED:
		break;
685 686 687 688 689 690 691
	}

	mutex_unlock(&ffs->mutex);

	return mask;
}

692 693 694 695 696 697 698 699
static const struct file_operations ffs_ep0_operations = {
	.llseek =	no_llseek,

	.open =		ffs_ep0_open,
	.write =	ffs_ep0_write,
	.read =		ffs_ep0_read,
	.release =	ffs_ep0_release,
	.unlocked_ioctl =	ffs_ep0_ioctl,
700
	.poll =		ffs_ep0_poll,
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
};


/* "Normal" endpoints operations ********************************************/

static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
{
	ENTER();
	if (likely(req->context)) {
		struct ffs_ep *ep = _ep->driver_data;
		ep->status = req->status ? req->status : req->actual;
		complete(req->context);
	}
}

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
{
	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(ret == data_len))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/*
	 * Dear user space developer!
	 *
	 * TL;DR: To stop getting below error message in your kernel log, change
	 * user space code using functionfs to align read buffers to a max
	 * packet size.
	 *
	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
	 * packet size.  When unaligned buffer is passed to functionfs, it
	 * internally uses a larger, aligned buffer so that such UDCs are happy.
	 *
	 * Unfortunately, this means that host may send more data than was
	 * requested in read(2) system call.  f_fs doesn’t know what to do with
	 * that excess data so it simply drops it.
	 *
	 * Was the buffer aligned in the first place, no such problem would
	 * happen.
	 *
743 744 745 746 747
	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
	 * by splitting a request into multiple parts.  This splitting may still
	 * be a problem though so it’s likely best to align the buffer
	 * regardless of it being AIO or not..
	 *
748 749 750 751 752 753 754 755 756 757 758
	 * This only affects OUT endpoints, i.e. reading data with a read(2),
	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
	 * affected.
	 */
	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
	       "Align read buffer size to max packet size to avoid the problem.\n",
	       data_len, ret);

	return ret;
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/*
 * allocate a virtually contiguous buffer and create a scatterlist describing it
 * @sg_table	- pointer to a place to be filled with sg_table contents
 * @size	- required buffer size
 */
static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
{
	struct page **pages;
	void *vaddr, *ptr;
	unsigned int n_pages;
	int i;

	vaddr = vmalloc(sz);
	if (!vaddr)
		return NULL;

	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
	if (!pages) {
		vfree(vaddr);

		return NULL;
	}
	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
		pages[i] = vmalloc_to_page(ptr);

	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
		kvfree(pages);
		vfree(vaddr);

		return NULL;
	}
	kvfree(pages);

	return vaddr;
}

static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
	size_t data_len)
{
	if (io_data->use_sg)
		return ffs_build_sg_list(&io_data->sgt, data_len);

	return kmalloc(data_len, GFP_KERNEL);
}

static inline void ffs_free_buffer(struct ffs_io_data *io_data)
{
	if (!io_data->buf)
		return;

	if (io_data->use_sg) {
		sg_free_table(&io_data->sgt);
		vfree(io_data->buf);
	} else {
		kfree(io_data->buf);
	}
}

818 819 820 821 822 823
static void ffs_user_copy_worker(struct work_struct *work)
{
	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
						   work);
	int ret = io_data->req->status ? io_data->req->status :
					 io_data->req->actual;
824
	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
825 826

	if (io_data->read && ret > 0) {
827 828 829
		mm_segment_t oldfs = get_fs();

		set_fs(USER_DS);
830
		use_mm(io_data->mm);
831
		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
832
		unuse_mm(io_data->mm);
833
		set_fs(oldfs);
834 835
	}

836
	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
837

838
	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
839 840
		eventfd_signal(io_data->ffs->ffs_eventfd, 1);

841 842 843
	usb_ep_free_request(io_data->ep, io_data->req);

	if (io_data->read)
844
		kfree(io_data->to_free);
845
	ffs_free_buffer(io_data);
846 847 848 849 850 851 852
	kfree(io_data);
}

static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
					 struct usb_request *req)
{
	struct ffs_io_data *io_data = req->context;
853
	struct ffs_data *ffs = io_data->ffs;
854 855 856 857

	ENTER();

	INIT_WORK(&io_data->work, ffs_user_copy_worker);
858
	queue_work(ffs->io_completion_wq, &io_data->work);
859 860
}

861 862 863 864 865 866 867 868 869 870 871
static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
{
	/*
	 * See comment in struct ffs_epfile for full read_buffer pointer
	 * synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
	if (buf && buf != READ_BUFFER_DROP)
		kfree(buf);
}

872 873 874 875
/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
					  struct iov_iter *iter)
{
876 877 878 879 880 881
	/*
	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
	 * the buffer while we are using it.  See comment in struct ffs_epfile
	 * for full read_buffer pointer synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
882
	ssize_t ret;
883
	if (!buf || buf == READ_BUFFER_DROP)
884 885 886 887 888
		return 0;

	ret = copy_to_iter(buf->data, buf->length, iter);
	if (buf->length == ret) {
		kfree(buf);
889 890 891 892
		return ret;
	}

	if (unlikely(iov_iter_count(iter))) {
893 894 895 896 897
		ret = -EFAULT;
	} else {
		buf->length -= ret;
		buf->data += ret;
	}
898 899 900 901

	if (cmpxchg(&epfile->read_buffer, NULL, buf))
		kfree(buf);

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	return ret;
}

/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
				      void *data, int data_len,
				      struct iov_iter *iter)
{
	struct ffs_buffer *buf;

	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(data_len == ret))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/* See ffs_copy_to_iter for more context. */
	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
		data_len, ret);

	data_len -= ret;
	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
925 926
	if (!buf)
		return -ENOMEM;
927 928 929
	buf->length = data_len;
	buf->data = buf->storage;
	memcpy(buf->storage, data + ret, data_len);
930 931 932 933 934 935 936 937 938

	/*
	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
	 * in struct ffs_epfile for full read_buffer pointer synchronisation
	 * story.
	 */
	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
		kfree(buf);
939 940 941 942

	return ret;
}

943
static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
944 945
{
	struct ffs_epfile *epfile = file->private_data;
946
	struct usb_request *req;
947 948
	struct ffs_ep *ep;
	char *data = NULL;
949
	ssize_t ret, data_len = -EINVAL;
950 951
	int halt;

952
	/* Are we still active? */
953 954
	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;
955

956 957 958
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
959 960
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;
961

962 963
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
964 965
		if (ret)
			return -EINTR;
966
	}
967

968
	/* Do we halt? */
969
	halt = (!io_data->read == !epfile->in);
970 971
	if (halt && epfile->isoc)
		return -EINVAL;
972

973 974 975 976 977
	/* We will be using request and read_buffer */
	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret))
		goto error;

978 979
	/* Allocate & copy */
	if (!halt) {
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
		struct usb_gadget *gadget;

		/*
		 * Do we have buffered data from previous partial read?  Check
		 * that for synchronous case only because we do not have
		 * facility to ‘wake up’ a pending asynchronous read and push
		 * buffered data to it which we would need to make things behave
		 * consistently.
		 */
		if (!io_data->aio && io_data->read) {
			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
			if (ret)
				goto error_mutex;
		}

995 996
		/*
		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
997 998
		 * before the waiting completes, so do not assign to 'gadget'
		 * earlier
999
		 */
1000
		gadget = epfile->ffs->gadget;
1001

1002 1003 1004
		spin_lock_irq(&epfile->ffs->eps_lock);
		/* In the meantime, endpoint got disabled or changed. */
		if (epfile->ep != ep) {
1005 1006
			ret = -ESHUTDOWN;
			goto error_lock;
1007
		}
1008
		data_len = iov_iter_count(&io_data->data);
1009 1010 1011 1012
		/*
		 * Controller may require buffer size to be aligned to
		 * maxpacketsize of an out endpoint.
		 */
1013 1014
		if (io_data->read)
			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1015 1016

		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1017
		spin_unlock_irq(&epfile->ffs->eps_lock);
1018

1019
		data = ffs_alloc_buffer(io_data, data_len);
1020 1021 1022 1023 1024
		if (unlikely(!data)) {
			ret = -ENOMEM;
			goto error_mutex;
		}
		if (!io_data->read &&
1025
		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1026 1027
			ret = -EFAULT;
			goto error_mutex;
1028 1029
		}
	}
1030

1031
	spin_lock_irq(&epfile->ffs->eps_lock);
1032

1033 1034 1035 1036
	if (epfile->ep != ep) {
		/* In the meantime, endpoint got disabled or changed. */
		ret = -ESHUTDOWN;
	} else if (halt) {
1037 1038 1039
		ret = usb_ep_set_halt(ep->ep);
		if (!ret)
			ret = -EBADMSG;
1040
	} else if (unlikely(data_len == -EINVAL)) {
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		/*
		 * Sanity Check: even though data_len can't be used
		 * uninitialized at the time I write this comment, some
		 * compilers complain about this situation.
		 * In order to keep the code clean from warnings, data_len is
		 * being initialized to -EINVAL during its declaration, which
		 * means we can't rely on compiler anymore to warn no future
		 * changes won't result in data_len being used uninitialized.
		 * For such reason, we're adding this redundant sanity check
		 * here.
		 */
1052 1053 1054 1055
		WARN(1, "%s: data_len == -EINVAL\n", __func__);
		ret = -EINVAL;
	} else if (!io_data->aio) {
		DECLARE_COMPLETION_ONSTACK(done);
1056
		bool interrupted = false;
1057

1058
		req = ep->req;
1059 1060 1061 1062 1063 1064
		if (io_data->use_sg) {
			req->buf = NULL;
			req->sg	= io_data->sgt.sgl;
			req->num_sgs = io_data->sgt.nents;
		} else {
			req->buf = data;
1065
			req->num_sgs = 0;
1066 1067 1068 1069
		}
		req->length = data_len;

		io_data->buf = data;
1070

1071 1072
		req->context  = &done;
		req->complete = ffs_epfile_io_complete;
1073

1074 1075 1076
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret < 0))
			goto error_lock;
1077

1078
		spin_unlock_irq(&epfile->ffs->eps_lock);
1079

1080
		if (unlikely(wait_for_completion_interruptible(&done))) {
1081 1082 1083 1084 1085 1086
			/*
			 * To avoid race condition with ffs_epfile_io_complete,
			 * dequeue the request first then check
			 * status. usb_ep_dequeue API should guarantee no race
			 * condition with req->complete callback.
			 */
1087
			usb_ep_dequeue(ep->ep, req);
1088
			wait_for_completion(&done);
1089
			interrupted = ep->status < 0;
1090
		}
1091

1092 1093 1094
		if (interrupted)
			ret = -EINTR;
		else if (io_data->read && ep->status > 0)
1095 1096
			ret = __ffs_epfile_read_data(epfile, data, ep->status,
						     &io_data->data);
1097 1098
		else
			ret = ep->status;
1099
		goto error_mutex;
1100
	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1101 1102
		ret = -ENOMEM;
	} else {
1103 1104 1105 1106 1107 1108
		if (io_data->use_sg) {
			req->buf = NULL;
			req->sg	= io_data->sgt.sgl;
			req->num_sgs = io_data->sgt.nents;
		} else {
			req->buf = data;
1109
			req->num_sgs = 0;
1110 1111
		}
		req->length = data_len;
1112

1113 1114 1115 1116
		io_data->buf = data;
		io_data->ep = ep->ep;
		io_data->req = req;
		io_data->ffs = epfile->ffs;
1117

1118 1119
		req->context  = io_data;
		req->complete = ffs_epfile_async_io_complete;
1120

1121 1122
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret)) {
1123
			io_data->req = NULL;
1124 1125
			usb_ep_free_request(ep->ep, req);
			goto error_lock;
1126 1127
		}

1128 1129 1130 1131 1132 1133 1134
		ret = -EIOCBQUEUED;
		/*
		 * Do not kfree the buffer in this function.  It will be freed
		 * by ffs_user_copy_worker.
		 */
		data = NULL;
	}
1135 1136 1137

error_lock:
	spin_unlock_irq(&epfile->ffs->eps_lock);
1138
error_mutex:
1139
	mutex_unlock(&epfile->mutex);
1140
error:
1141 1142
	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
		ffs_free_buffer(io_data);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	return ret;
}

static int
ffs_epfile_open(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

	file->private_data = epfile;
	ffs_data_opened(epfile->ffs);

	return 0;
}

1162 1163 1164
static int ffs_aio_cancel(struct kiocb *kiocb)
{
	struct ffs_io_data *io_data = kiocb->private;
1165
	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1166
	unsigned long flags;
1167 1168 1169 1170
	int value;

	ENTER();

1171
	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1172 1173 1174 1175

	if (likely(io_data && io_data->ep && io_data->req))
		value = usb_ep_dequeue(io_data->ep, io_data->req);
	else
1176
		value = -EINVAL;
1177

1178
	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1179 1180 1181 1182

	return value;
}

1183
static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1184
{
1185
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1186
	ssize_t res;
1187 1188 1189

	ENTER();

1190
	if (!is_sync_kiocb(kiocb)) {
1191
		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1192 1193 1194 1195
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
1196
		memset(p, 0, sizeof(*p));
1197 1198
		p->aio = false;
	}
1199

1200 1201 1202 1203
	p->read = false;
	p->kiocb = kiocb;
	p->data = *from;
	p->mm = current->mm;
1204

1205
	kiocb->private = p;
1206

1207 1208
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1209

1210 1211 1212 1213 1214 1215 1216
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;
	if (p->aio)
		kfree(p);
	else
		*from = p->data;
A
Al Viro 已提交
1217
	return res;
1218 1219
}

1220
static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1221
{
1222
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1223
	ssize_t res;
1224 1225 1226

	ENTER();

1227
	if (!is_sync_kiocb(kiocb)) {
1228
		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1229 1230 1231 1232
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
1233
		memset(p, 0, sizeof(*p));
1234
		p->aio = false;
1235 1236
	}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	p->read = true;
	p->kiocb = kiocb;
	if (p->aio) {
		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
		if (!p->to_free) {
			kfree(p);
			return -ENOMEM;
		}
	} else {
		p->data = *to;
		p->to_free = NULL;
	}
	p->mm = current->mm;
1250

1251
	kiocb->private = p;
1252

1253 1254
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;

	if (p->aio) {
		kfree(p->to_free);
		kfree(p);
	} else {
		*to = p->data;
A
Al Viro 已提交
1265 1266
	}
	return res;
1267 1268
}

1269 1270 1271 1272 1273 1274 1275
static int
ffs_epfile_release(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

1276
	__ffs_epfile_read_buffer_free(epfile);
1277 1278 1279 1280 1281 1282 1283 1284 1285
	ffs_data_closed(epfile->ffs);

	return 0;
}

static long ffs_epfile_ioctl(struct file *file, unsigned code,
			     unsigned long value)
{
	struct ffs_epfile *epfile = file->private_data;
1286
	struct ffs_ep *ep;
1287 1288 1289 1290 1291 1292 1293
	int ret;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

1294 1295 1296 1297 1298 1299
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;

1300 1301
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
1302 1303 1304 1305
		if (ret)
			return -EINTR;
	}

1306
	spin_lock_irq(&epfile->ffs->eps_lock);
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

	/* In the meantime, endpoint got disabled or changed. */
	if (epfile->ep != ep) {
		spin_unlock_irq(&epfile->ffs->eps_lock);
		return -ESHUTDOWN;
	}

	switch (code) {
	case FUNCTIONFS_FIFO_STATUS:
		ret = usb_ep_fifo_status(epfile->ep->ep);
		break;
	case FUNCTIONFS_FIFO_FLUSH:
		usb_ep_fifo_flush(epfile->ep->ep);
		ret = 0;
		break;
	case FUNCTIONFS_CLEAR_HALT:
		ret = usb_ep_clear_halt(epfile->ep->ep);
		break;
	case FUNCTIONFS_ENDPOINT_REVMAP:
		ret = epfile->ep->num;
		break;
	case FUNCTIONFS_ENDPOINT_DESC:
	{
		int desc_idx;
		struct usb_endpoint_descriptor *desc;

		switch (epfile->ffs->gadget->speed) {
		case USB_SPEED_SUPER:
			desc_idx = 2;
1336
			break;
1337 1338
		case USB_SPEED_HIGH:
			desc_idx = 1;
1339 1340
			break;
		default:
1341
			desc_idx = 0;
1342
		}
1343 1344 1345
		desc = epfile->ep->descs[desc_idx];

		spin_unlock_irq(&epfile->ffs->eps_lock);
1346
		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1347 1348 1349 1350 1351 1352
		if (ret)
			ret = -EFAULT;
		return ret;
	}
	default:
		ret = -ENOTTY;
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	}
	spin_unlock_irq(&epfile->ffs->eps_lock);

	return ret;
}

static const struct file_operations ffs_epfile_operations = {
	.llseek =	no_llseek,

	.open =		ffs_epfile_open,
1363 1364
	.write_iter =	ffs_epfile_write_iter,
	.read_iter =	ffs_epfile_read_iter,
1365 1366
	.release =	ffs_epfile_release,
	.unlocked_ioctl =	ffs_epfile_ioctl,
1367
	.compat_ioctl = compat_ptr_ioctl,
1368 1369 1370 1371 1372 1373
};


/* File system and super block operations ***********************************/

/*
1374
 * Mounting the file system creates a controller file, used first for
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
 * function configuration then later for event monitoring.
 */

static struct inode *__must_check
ffs_sb_make_inode(struct super_block *sb, void *data,
		  const struct file_operations *fops,
		  const struct inode_operations *iops,
		  struct ffs_file_perms *perms)
{
	struct inode *inode;

	ENTER();

	inode = new_inode(sb);

	if (likely(inode)) {
1391
		struct timespec64 ts = current_time(inode);
1392

1393
		inode->i_ino	 = get_next_ino();
1394 1395 1396
		inode->i_mode    = perms->mode;
		inode->i_uid     = perms->uid;
		inode->i_gid     = perms->gid;
1397 1398 1399
		inode->i_atime   = ts;
		inode->i_mtime   = ts;
		inode->i_ctime   = ts;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		inode->i_private = data;
		if (fops)
			inode->i_fop = fops;
		if (iops)
			inode->i_op  = iops;
	}

	return inode;
}

/* Create "regular" file */
A
Al Viro 已提交
1411
static struct dentry *ffs_sb_create_file(struct super_block *sb,
1412
					const char *name, void *data,
A
Al Viro 已提交
1413
					const struct file_operations *fops)
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
{
	struct ffs_data	*ffs = sb->s_fs_info;
	struct dentry	*dentry;
	struct inode	*inode;

	ENTER();

	dentry = d_alloc_name(sb->s_root, name);
	if (unlikely(!dentry))
		return NULL;

	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
	if (unlikely(!inode)) {
		dput(dentry);
		return NULL;
	}

	d_add(dentry, inode);
A
Al Viro 已提交
1432
	return dentry;
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
}

/* Super block */
static const struct super_operations ffs_sb_operations = {
	.statfs =	simple_statfs,
	.drop_inode =	generic_delete_inode,
};

struct ffs_sb_fill_data {
	struct ffs_file_perms perms;
	umode_t root_mode;
	const char *dev_name;
1445
	bool no_disconnect;
A
Al Viro 已提交
1446
	struct ffs_data *ffs_data;
1447 1448
};

1449
static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1450
{
1451
	struct ffs_sb_fill_data *data = fc->fs_private;
1452
	struct inode	*inode;
A
Al Viro 已提交
1453
	struct ffs_data	*ffs = data->ffs_data;
1454 1455 1456 1457

	ENTER();

	ffs->sb              = sb;
A
Al Viro 已提交
1458
	data->ffs_data       = NULL;
1459
	sb->s_fs_info        = ffs;
1460 1461
	sb->s_blocksize      = PAGE_SIZE;
	sb->s_blocksize_bits = PAGE_SHIFT;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	sb->s_magic          = FUNCTIONFS_MAGIC;
	sb->s_op             = &ffs_sb_operations;
	sb->s_time_gran      = 1;

	/* Root inode */
	data->perms.mode = data->root_mode;
	inode = ffs_sb_make_inode(sb, NULL,
				  &simple_dir_operations,
				  &simple_dir_inode_operations,
				  &data->perms);
1472 1473
	sb->s_root = d_make_root(inode);
	if (unlikely(!sb->s_root))
A
Al Viro 已提交
1474
		return -ENOMEM;
1475 1476 1477

	/* EP0 file */
	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
A
Al Viro 已提交
1478
					 &ffs_ep0_operations)))
A
Al Viro 已提交
1479
		return -ENOMEM;
1480 1481 1482 1483

	return 0;
}

1484 1485 1486 1487 1488 1489 1490 1491
enum {
	Opt_no_disconnect,
	Opt_rmode,
	Opt_fmode,
	Opt_mode,
	Opt_uid,
	Opt_gid,
};
1492

1493
static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1494 1495 1496 1497 1498 1499 1500 1501
	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
	fsparam_u32	("rmode",		Opt_rmode),
	fsparam_u32	("fmode",		Opt_fmode),
	fsparam_u32	("mode",		Opt_mode),
	fsparam_u32	("uid",			Opt_uid),
	fsparam_u32	("gid",			Opt_gid),
	{}
};
1502

1503 1504 1505 1506 1507
static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
{
	struct ffs_sb_fill_data *data = fc->fs_private;
	struct fs_parse_result result;
	int opt;
1508

1509
	ENTER();
1510

1511
	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1512 1513
	if (opt < 0)
		return opt;
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	switch (opt) {
	case Opt_no_disconnect:
		data->no_disconnect = result.boolean;
		break;
	case Opt_rmode:
		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
		break;
	case Opt_fmode:
		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
		break;
	case Opt_mode:
		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
		break;
1529

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	case Opt_uid:
		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
		if (!uid_valid(data->perms.uid))
			goto unmapped_value;
		break;
	case Opt_gid:
		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
		if (!gid_valid(data->perms.gid))
			goto unmapped_value;
		break;
1540

1541 1542
	default:
		return -ENOPARAM;
1543 1544 1545 1546
	}

	return 0;

1547 1548 1549
unmapped_value:
	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
}
1550

1551 1552 1553 1554
/*
 * Set up the superblock for a mount.
 */
static int ffs_fs_get_tree(struct fs_context *fc)
1555
{
1556
	struct ffs_sb_fill_data *ctx = fc->fs_private;
1557
	void *ffs_dev;
A
Al Viro 已提交
1558
	struct ffs_data	*ffs;
1559 1560 1561

	ENTER();

1562 1563
	if (!fc->source)
		return invalf(fc, "No source specified");
1564

1565
	ffs = ffs_data_new(fc->source);
A
Al Viro 已提交
1566
	if (unlikely(!ffs))
1567 1568 1569
		return -ENOMEM;
	ffs->file_perms = ctx->perms;
	ffs->no_disconnect = ctx->no_disconnect;
A
Al Viro 已提交
1570

1571
	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
A
Al Viro 已提交
1572 1573
	if (unlikely(!ffs->dev_name)) {
		ffs_data_put(ffs);
1574
		return -ENOMEM;
A
Al Viro 已提交
1575 1576
	}

1577
	ffs_dev = ffs_acquire_dev(ffs->dev_name);
A
Al Viro 已提交
1578 1579
	if (IS_ERR(ffs_dev)) {
		ffs_data_put(ffs);
1580
		return PTR_ERR(ffs_dev);
A
Al Viro 已提交
1581
	}
1582

A
Al Viro 已提交
1583
	ffs->private_data = ffs_dev;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	ctx->ffs_data = ffs;
	return get_tree_nodev(fc, ffs_sb_fill);
}

static void ffs_fs_free_fc(struct fs_context *fc)
{
	struct ffs_sb_fill_data *ctx = fc->fs_private;

	if (ctx) {
		if (ctx->ffs_data) {
			ffs_release_dev(ctx->ffs_data);
			ffs_data_put(ctx->ffs_data);
		}
1597

1598
		kfree(ctx);
A
Al Viro 已提交
1599
	}
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
}

static const struct fs_context_operations ffs_fs_context_ops = {
	.free		= ffs_fs_free_fc,
	.parse_param	= ffs_fs_parse_param,
	.get_tree	= ffs_fs_get_tree,
};

static int ffs_fs_init_fs_context(struct fs_context *fc)
{
	struct ffs_sb_fill_data *ctx;

	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;

	ctx->perms.mode = S_IFREG | 0600;
	ctx->perms.uid = GLOBAL_ROOT_UID;
	ctx->perms.gid = GLOBAL_ROOT_GID;
	ctx->root_mode = S_IFDIR | 0500;
	ctx->no_disconnect = false;

	fc->fs_private = ctx;
	fc->ops = &ffs_fs_context_ops;
	return 0;
1625 1626 1627 1628 1629 1630 1631 1632
}

static void
ffs_fs_kill_sb(struct super_block *sb)
{
	ENTER();

	kill_litter_super(sb);
1633
	if (sb->s_fs_info) {
1634
		ffs_release_dev(sb->s_fs_info);
1635
		ffs_data_closed(sb->s_fs_info);
1636
	}
1637 1638 1639 1640 1641
}

static struct file_system_type ffs_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "functionfs",
1642
	.init_fs_context = ffs_fs_init_fs_context,
1643
	.parameters	= ffs_fs_fs_parameters,
1644 1645
	.kill_sb	= ffs_fs_kill_sb,
};
1646
MODULE_ALIAS_FS("functionfs");
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658


/* Driver's main init/cleanup functions *************************************/

static int functionfs_init(void)
{
	int ret;

	ENTER();

	ret = register_filesystem(&ffs_fs_type);
	if (likely(!ret))
1659
		pr_info("file system registered\n");
1660
	else
1661
		pr_err("failed registering file system (%d)\n", ret);
1662 1663 1664 1665 1666 1667 1668 1669

	return ret;
}

static void functionfs_cleanup(void)
{
	ENTER();

1670
	pr_info("unloading\n");
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	unregister_filesystem(&ffs_fs_type);
}


/* ffs_data and ffs_function construction and destruction code **************/

static void ffs_data_clear(struct ffs_data *ffs);
static void ffs_data_reset(struct ffs_data *ffs);

static void ffs_data_get(struct ffs_data *ffs)
{
	ENTER();

1684
	refcount_inc(&ffs->ref);
1685 1686 1687 1688 1689 1690
}

static void ffs_data_opened(struct ffs_data *ffs)
{
	ENTER();

1691
	refcount_inc(&ffs->ref);
1692 1693 1694 1695 1696
	if (atomic_add_return(1, &ffs->opened) == 1 &&
			ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}
1697 1698 1699 1700 1701 1702
}

static void ffs_data_put(struct ffs_data *ffs)
{
	ENTER();

1703
	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1704
		pr_info("%s(): freeing\n", __func__);
1705
		ffs_data_clear(ffs);
1706
		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1707
		       swait_active(&ffs->ep0req_completion.wait) ||
1708
		       waitqueue_active(&ffs->wait));
1709
		destroy_workqueue(ffs->io_completion_wq);
1710
		kfree(ffs->dev_name);
1711 1712 1713 1714 1715 1716 1717 1718 1719
		kfree(ffs);
	}
}

static void ffs_data_closed(struct ffs_data *ffs)
{
	ENTER();

	if (atomic_dec_and_test(&ffs->opened)) {
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		if (ffs->no_disconnect) {
			ffs->state = FFS_DEACTIVATED;
			if (ffs->epfiles) {
				ffs_epfiles_destroy(ffs->epfiles,
						   ffs->eps_count);
				ffs->epfiles = NULL;
			}
			if (ffs->setup_state == FFS_SETUP_PENDING)
				__ffs_ep0_stall(ffs);
		} else {
			ffs->state = FFS_CLOSING;
			ffs_data_reset(ffs);
		}
	}
	if (atomic_read(&ffs->opened) < 0) {
1735 1736 1737 1738 1739 1740 1741
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}

	ffs_data_put(ffs);
}

1742
static struct ffs_data *ffs_data_new(const char *dev_name)
1743 1744 1745
{
	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
	if (unlikely(!ffs))
1746
		return NULL;
1747 1748 1749

	ENTER();

1750 1751 1752 1753 1754 1755
	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
	if (!ffs->io_completion_wq) {
		kfree(ffs);
		return NULL;
	}

1756
	refcount_set(&ffs->ref, 1);
1757 1758 1759 1760 1761
	atomic_set(&ffs->opened, 0);
	ffs->state = FFS_READ_DESCRIPTORS;
	mutex_init(&ffs->mutex);
	spin_lock_init(&ffs->eps_lock);
	init_waitqueue_head(&ffs->ev.waitq);
1762
	init_waitqueue_head(&ffs->wait);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	init_completion(&ffs->ep0req_completion);

	/* XXX REVISIT need to update it in some places, or do we? */
	ffs->ev.can_stall = 1;

	return ffs;
}

static void ffs_data_clear(struct ffs_data *ffs)
{
	ENTER();

1775
	ffs_closed(ffs);
1776 1777 1778 1779 1780 1781

	BUG_ON(ffs->gadget);

	if (ffs->epfiles)
		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);

1782 1783 1784
	if (ffs->ffs_eventfd)
		eventfd_ctx_put(ffs->ffs_eventfd);

1785
	kfree(ffs->raw_descs_data);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	kfree(ffs->raw_strings);
	kfree(ffs->stringtabs);
}

static void ffs_data_reset(struct ffs_data *ffs)
{
	ENTER();

	ffs_data_clear(ffs);

	ffs->epfiles = NULL;
1797
	ffs->raw_descs_data = NULL;
1798 1799 1800 1801 1802 1803 1804
	ffs->raw_descs = NULL;
	ffs->raw_strings = NULL;
	ffs->stringtabs = NULL;

	ffs->raw_descs_length = 0;
	ffs->fs_descs_count = 0;
	ffs->hs_descs_count = 0;
1805
	ffs->ss_descs_count = 0;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

	ffs->strings_count = 0;
	ffs->interfaces_count = 0;
	ffs->eps_count = 0;

	ffs->ev.count = 0;

	ffs->state = FFS_READ_DESCRIPTORS;
	ffs->setup_state = FFS_NO_SETUP;
	ffs->flags = 0;
1816 1817 1818 1819

	ffs->ms_os_descs_ext_prop_count = 0;
	ffs->ms_os_descs_ext_prop_name_len = 0;
	ffs->ms_os_descs_ext_prop_data_len = 0;
1820 1821 1822 1823 1824
}


static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
{
1825 1826
	struct usb_gadget_strings **lang;
	int first_id;
1827 1828 1829 1830 1831 1832 1833

	ENTER();

	if (WARN_ON(ffs->state != FFS_ACTIVE
		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
		return -EBADFD;

1834 1835 1836
	first_id = usb_string_ids_n(cdev, ffs->strings_count);
	if (unlikely(first_id < 0))
		return first_id;
1837 1838 1839 1840 1841 1842 1843

	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
	if (unlikely(!ffs->ep0req))
		return -ENOMEM;
	ffs->ep0req->complete = ffs_ep0_complete;
	ffs->ep0req->context = ffs;

1844
	lang = ffs->stringtabs;
1845 1846 1847 1848 1849 1850 1851
	if (lang) {
		for (; *lang; ++lang) {
			struct usb_string *str = (*lang)->strings;
			int id = first_id;
			for (; str->s; ++id, ++str)
				str->id = id;
		}
1852 1853 1854
	}

	ffs->gadget = cdev->gadget;
1855
	ffs_data_get(ffs);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	return 0;
}

static void functionfs_unbind(struct ffs_data *ffs)
{
	ENTER();

	if (!WARN_ON(!ffs->gadget)) {
		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
		ffs->ep0req = NULL;
		ffs->gadget = NULL;
1867
		clear_bit(FFS_FL_BOUND, &ffs->flags);
1868
		ffs_data_put(ffs);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	}
}

static int ffs_epfiles_create(struct ffs_data *ffs)
{
	struct ffs_epfile *epfile, *epfiles;
	unsigned i, count;

	ENTER();

	count = ffs->eps_count;
1880
	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1881 1882 1883 1884 1885 1886 1887
	if (!epfiles)
		return -ENOMEM;

	epfile = epfiles;
	for (i = 1; i <= count; ++i, ++epfile) {
		epfile->ffs = ffs;
		mutex_init(&epfile->mutex);
1888
		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1889
			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1890
		else
1891 1892
			sprintf(epfile->name, "ep%u", i);
		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
A
Al Viro 已提交
1893 1894 1895
						 epfile,
						 &ffs_epfile_operations);
		if (unlikely(!epfile->dentry)) {
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
			ffs_epfiles_destroy(epfiles, i - 1);
			return -ENOMEM;
		}
	}

	ffs->epfiles = epfiles;
	return 0;
}

static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
{
	struct ffs_epfile *epfile = epfiles;

	ENTER();

	for (; count; --count, ++epfile) {
1912
		BUG_ON(mutex_is_locked(&epfile->mutex));
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
		if (epfile->dentry) {
			d_delete(epfile->dentry);
			dput(epfile->dentry);
			epfile->dentry = NULL;
		}
	}

	kfree(epfiles);
}

static void ffs_func_eps_disable(struct ffs_function *func)
{
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = func->ffs->epfiles;
	unsigned count            = func->ffs->eps_count;
	unsigned long flags;

1930
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1931
	while (count--) {
1932 1933 1934 1935
		/* pending requests get nuked */
		if (likely(ep->ep))
			usb_ep_disable(ep->ep);
		++ep;
1936 1937

		if (epfile) {
1938 1939
			epfile->ep = NULL;
			__ffs_epfile_read_buffer_free(epfile);
1940 1941
			++epfile;
		}
1942
	}
1943
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
}

static int ffs_func_eps_enable(struct ffs_function *func)
{
	struct ffs_data *ffs      = func->ffs;
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = ffs->epfiles;
	unsigned count            = ffs->eps_count;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1956
	while(count--) {
1957
		ep->ep->driver_data = ep;
1958

1959 1960 1961 1962 1963
		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
		if (ret) {
			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
					__func__, ep->ep->name, ret);
			break;
1964
		}
1965

1966
		ret = usb_ep_enable(ep->ep);
1967 1968
		if (likely(!ret)) {
			epfile->ep = ep;
1969 1970
			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1971 1972 1973 1974 1975 1976
		} else {
			break;
		}

		++ep;
		++epfile;
1977
	}
1978 1979

	wake_up_interruptible(&ffs->wait);
1980 1981 1982 1983 1984 1985 1986 1987
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);

	return ret;
}


/* Parsing and building descriptors and strings *****************************/

1988 1989
/*
 * This validates if data pointed by data is a valid USB descriptor as
1990
 * well as record how many interfaces, endpoints and strings are
1991 1992 1993
 * required by given configuration.  Returns address after the
 * descriptor or NULL if data is invalid.
 */
1994 1995 1996 1997 1998

enum ffs_entity_type {
	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
};

1999 2000 2001 2002
enum ffs_os_desc_type {
	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
};

2003 2004 2005 2006 2007
typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
				   u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv);

2008 2009 2010 2011
typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
				    struct usb_os_desc_header *h, void *data,
				    unsigned len, void *priv);

2012 2013
static int __must_check ffs_do_single_desc(char *data, unsigned len,
					   ffs_entity_callback entity,
2014
					   void *priv, int *current_class)
2015 2016 2017 2018 2019 2020 2021 2022 2023
{
	struct usb_descriptor_header *_ds = (void *)data;
	u8 length;
	int ret;

	ENTER();

	/* At least two bytes are required: length and type */
	if (len < 2) {
2024
		pr_vdebug("descriptor too short\n");
2025 2026 2027 2028 2029 2030
		return -EINVAL;
	}

	/* If we have at least as many bytes as the descriptor takes? */
	length = _ds->bLength;
	if (len < length) {
2031
		pr_vdebug("descriptor longer then available data\n");
2032 2033 2034 2035 2036 2037 2038
		return -EINVAL;
	}

#define __entity_check_INTERFACE(val)  1
#define __entity_check_STRING(val)     (val)
#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
#define __entity(type, val) do {					\
2039
		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2040
		if (unlikely(!__entity_check_ ##type(val))) {		\
2041
			pr_vdebug("invalid entity's value\n");		\
2042 2043 2044 2045
			return -EINVAL;					\
		}							\
		ret = entity(FFS_ ##type, &val, _ds, priv);		\
		if (unlikely(ret < 0)) {				\
2046
			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2047
				 (val), ret);				\
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
			return ret;					\
		}							\
	} while (0)

	/* Parse descriptor depending on type. */
	switch (_ds->bDescriptorType) {
	case USB_DT_DEVICE:
	case USB_DT_CONFIG:
	case USB_DT_STRING:
	case USB_DT_DEVICE_QUALIFIER:
		/* function can't have any of those */
2059
		pr_vdebug("descriptor reserved for gadget: %d\n",
2060
		      _ds->bDescriptorType);
2061 2062 2063 2064
		return -EINVAL;

	case USB_DT_INTERFACE: {
		struct usb_interface_descriptor *ds = (void *)_ds;
2065
		pr_vdebug("interface descriptor\n");
2066 2067 2068 2069 2070 2071
		if (length != sizeof *ds)
			goto inv_length;

		__entity(INTERFACE, ds->bInterfaceNumber);
		if (ds->iInterface)
			__entity(STRING, ds->iInterface);
2072
		*current_class = ds->bInterfaceClass;
2073 2074 2075 2076 2077
	}
		break;

	case USB_DT_ENDPOINT: {
		struct usb_endpoint_descriptor *ds = (void *)_ds;
2078
		pr_vdebug("endpoint descriptor\n");
2079 2080 2081 2082 2083 2084 2085
		if (length != USB_DT_ENDPOINT_SIZE &&
		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
			goto inv_length;
		__entity(ENDPOINT, ds->bEndpointAddress);
	}
		break;

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	case USB_TYPE_CLASS | 0x01:
                if (*current_class == USB_INTERFACE_CLASS_HID) {
			pr_vdebug("hid descriptor\n");
			if (length != sizeof(struct hid_descriptor))
				goto inv_length;
			break;
		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
			pr_vdebug("ccid descriptor\n");
			if (length != sizeof(struct ccid_descriptor))
				goto inv_length;
			break;
		} else {
			pr_vdebug("unknown descriptor: %d for class %d\n",
			      _ds->bDescriptorType, *current_class);
			return -EINVAL;
		}
2102

2103 2104 2105 2106 2107 2108 2109
	case USB_DT_OTG:
		if (length != sizeof(struct usb_otg_descriptor))
			goto inv_length;
		break;

	case USB_DT_INTERFACE_ASSOCIATION: {
		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2110
		pr_vdebug("interface association descriptor\n");
2111 2112 2113 2114 2115 2116 2117
		if (length != sizeof *ds)
			goto inv_length;
		if (ds->iFunction)
			__entity(STRING, ds->iFunction);
	}
		break;

2118 2119 2120 2121 2122 2123
	case USB_DT_SS_ENDPOINT_COMP:
		pr_vdebug("EP SS companion descriptor\n");
		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
			goto inv_length;
		break;

2124 2125 2126 2127 2128 2129
	case USB_DT_OTHER_SPEED_CONFIG:
	case USB_DT_INTERFACE_POWER:
	case USB_DT_DEBUG:
	case USB_DT_SECURITY:
	case USB_DT_CS_RADIO_CONTROL:
		/* TODO */
2130
		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2131 2132 2133 2134
		return -EINVAL;

	default:
		/* We should never be here */
2135
		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2136 2137
		return -EINVAL;

2138
inv_length:
2139
		pr_vdebug("invalid length: %d (descriptor %d)\n",
2140
			  _ds->bLength, _ds->bDescriptorType);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		return -EINVAL;
	}

#undef __entity
#undef __entity_check_DESCRIPTOR
#undef __entity_check_INTERFACE
#undef __entity_check_STRING
#undef __entity_check_ENDPOINT

	return length;
}

static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
				     ffs_entity_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;
2158
	int current_class = -1;
2159 2160 2161 2162 2163 2164 2165 2166 2167

	ENTER();

	for (;;) {
		int ret;

		if (num == count)
			data = NULL;

2168
		/* Record "descriptor" entity */
2169 2170
		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
		if (unlikely(ret < 0)) {
2171
			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2172
				 num, ret);
2173 2174 2175 2176 2177 2178
			return ret;
		}

		if (!data)
			return _len - len;

2179 2180
		ret = ffs_do_single_desc(data, len, entity, priv,
			&current_class);
2181
		if (unlikely(ret < 0)) {
2182
			pr_debug("%s returns %d\n", __func__, ret);
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
			return ret;
		}

		len -= ret;
		data += ret;
		++num;
	}
}

static int __ffs_data_do_entity(enum ffs_entity_type type,
				u8 *valuep, struct usb_descriptor_header *desc,
				void *priv)
{
2196 2197
	struct ffs_desc_helper *helper = priv;
	struct usb_endpoint_descriptor *d;
2198 2199 2200 2201 2202 2203 2204 2205

	ENTER();

	switch (type) {
	case FFS_DESCRIPTOR:
		break;

	case FFS_INTERFACE:
2206 2207
		/*
		 * Interfaces are indexed from zero so if we
2208
		 * encountered interface "n" then there are at least
2209 2210
		 * "n+1" interfaces.
		 */
2211 2212
		if (*valuep >= helper->interfaces_count)
			helper->interfaces_count = *valuep + 1;
2213 2214 2215
		break;

	case FFS_STRING:
2216
		/*
2217 2218
		 * Strings are indexed from 1 (0 is reserved
		 * for languages list)
2219
		 */
2220 2221
		if (*valuep > helper->ffs->strings_count)
			helper->ffs->strings_count = *valuep;
2222 2223 2224
		break;

	case FFS_ENDPOINT:
2225 2226
		d = (void *)desc;
		helper->eps_count++;
2227
		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2228 2229 2230 2231 2232 2233 2234 2235
			return -EINVAL;
		/* Check if descriptors for any speed were already parsed */
		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
			helper->ffs->eps_addrmap[helper->eps_count] =
				d->bEndpointAddress;
		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
				d->bEndpointAddress)
			return -EINVAL;
2236 2237 2238 2239 2240 2241
		break;
	}

	return 0;
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
				   struct usb_os_desc_header *desc)
{
	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
	u16 w_index = le16_to_cpu(desc->wIndex);

	if (bcd_version != 1) {
		pr_vdebug("unsupported os descriptors version: %d",
			  bcd_version);
		return -EINVAL;
	}
	switch (w_index) {
	case 0x4:
		*next_type = FFS_OS_DESC_EXT_COMPAT;
		break;
	case 0x5:
		*next_type = FFS_OS_DESC_EXT_PROP;
		break;
	default:
		pr_vdebug("unsupported os descriptor type: %d", w_index);
		return -EINVAL;
	}

	return sizeof(*desc);
}

/*
 * Process all extended compatibility/extended property descriptors
 * of a feature descriptor
 */
static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
					      enum ffs_os_desc_type type,
					      u16 feature_count,
					      ffs_os_desc_callback entity,
					      void *priv,
					      struct usb_os_desc_header *h)
{
	int ret;
	const unsigned _len = len;

	ENTER();

	/* loop over all ext compat/ext prop descriptors */
	while (feature_count--) {
		ret = entity(type, h, data, len, priv);
		if (unlikely(ret < 0)) {
			pr_debug("bad OS descriptor, type: %d\n", type);
			return ret;
		}
		data += ret;
		len -= ret;
	}
	return _len - len;
}

/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
static int __must_check ffs_do_os_descs(unsigned count,
					char *data, unsigned len,
					ffs_os_desc_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (num = 0; num < count; ++num) {
		int ret;
		enum ffs_os_desc_type type;
		u16 feature_count;
		struct usb_os_desc_header *desc = (void *)data;

		if (len < sizeof(*desc))
			return -EINVAL;

		/*
		 * Record "descriptor" entity.
		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
		 * Move the data pointer to the beginning of extended
		 * compatibilities proper or extended properties proper
		 * portions of the data
		 */
		if (le32_to_cpu(desc->dwLength) > len)
			return -EINVAL;

		ret = __ffs_do_os_desc_header(&type, desc);
		if (unlikely(ret < 0)) {
			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
				 num, ret);
			return ret;
		}
		/*
		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
		 */
		feature_count = le16_to_cpu(desc->wCount);
		if (type == FFS_OS_DESC_EXT_COMPAT &&
		    (feature_count > 255 || desc->Reserved))
				return -EINVAL;
		len -= ret;
		data += ret;

		/*
		 * Process all function/property descriptors
		 * of this Feature Descriptor
		 */
		ret = ffs_do_single_os_desc(data, len, type,
					    feature_count, entity, priv, desc);
		if (unlikely(ret < 0)) {
			pr_debug("%s returns %d\n", __func__, ret);
			return ret;
		}

		len -= ret;
		data += ret;
	}
	return _len - len;
}

/**
 * Validate contents of the buffer from userspace related to OS descriptors.
 */
static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
				 struct usb_os_desc_header *h, void *data,
				 unsigned len, void *priv)
{
	struct ffs_data *ffs = priv;
	u8 length;

	ENTER();

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *d = data;
		int i;

		if (len < sizeof(*d) ||
2377
		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2378
			return -EINVAL;
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
		if (d->Reserved1 != 1) {
			/*
			 * According to the spec, Reserved1 must be set to 1
			 * but older kernels incorrectly rejected non-zero
			 * values.  We fix it here to avoid returning EINVAL
			 * in response to values we used to accept.
			 */
			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
			d->Reserved1 = 1;
		}
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
			if (d->Reserved2[i])
				return -EINVAL;

		length = sizeof(struct usb_ext_compat_desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *d = data;
		u32 type, pdl;
		u16 pnl;

		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
			return -EINVAL;
		length = le32_to_cpu(d->dwSize);
2404 2405
		if (len < length)
			return -EINVAL;
2406 2407 2408 2409 2410 2411 2412 2413
		type = le32_to_cpu(d->dwPropertyDataType);
		if (type < USB_EXT_PROP_UNICODE ||
		    type > USB_EXT_PROP_UNICODE_MULTI) {
			pr_vdebug("unsupported os descriptor property type: %d",
				  type);
			return -EINVAL;
		}
		pnl = le16_to_cpu(d->wPropertyNameLength);
2414 2415 2416 2417 2418
		if (length < 14 + pnl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
				  length, pnl, type);
			return -EINVAL;
		}
2419
		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
		if (length != 14 + pnl + pdl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
				  length, pnl, pdl, type);
			return -EINVAL;
		}
		++ffs->ms_os_descs_ext_prop_count;
		/* property name reported to the host as "WCHAR"s */
		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
		ffs->ms_os_descs_ext_prop_data_len += pdl;
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
		return -EINVAL;
	}
	return length;
}

2438 2439 2440
static int __ffs_data_got_descs(struct ffs_data *ffs,
				char *const _data, size_t len)
{
2441
	char *data = _data, *raw_descs;
2442
	unsigned os_descs_count = 0, counts[3], flags;
2443
	int ret = -EINVAL, i;
2444
	struct ffs_desc_helper helper;
2445 2446 2447

	ENTER();

2448
	if (get_unaligned_le32(data + 4) != len)
2449 2450
		goto error;

2451 2452 2453 2454 2455 2456 2457 2458
	switch (get_unaligned_le32(data)) {
	case FUNCTIONFS_DESCRIPTORS_MAGIC:
		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
		data += 8;
		len  -= 8;
		break;
	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
		flags = get_unaligned_le32(data + 8);
2459
		ffs->user_flags = flags;
2460 2461
		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
			      FUNCTIONFS_HAS_HS_DESC |
2462
			      FUNCTIONFS_HAS_SS_DESC |
2463
			      FUNCTIONFS_HAS_MS_OS_DESC |
2464
			      FUNCTIONFS_VIRTUAL_ADDR |
2465
			      FUNCTIONFS_EVENTFD |
2466 2467
			      FUNCTIONFS_ALL_CTRL_RECIP |
			      FUNCTIONFS_CONFIG0_SETUP)) {
2468
			ret = -ENOSYS;
2469 2470
			goto error;
		}
2471 2472 2473 2474 2475
		data += 12;
		len  -= 12;
		break;
	default:
		goto error;
2476 2477
	}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	if (flags & FUNCTIONFS_EVENTFD) {
		if (len < 4)
			goto error;
		ffs->ffs_eventfd =
			eventfd_ctx_fdget((int)get_unaligned_le32(data));
		if (IS_ERR(ffs->ffs_eventfd)) {
			ret = PTR_ERR(ffs->ffs_eventfd);
			ffs->ffs_eventfd = NULL;
			goto error;
		}
		data += 4;
		len  -= 4;
	}

2492 2493 2494 2495 2496
	/* Read fs_count, hs_count and ss_count (if present) */
	for (i = 0; i < 3; ++i) {
		if (!(flags & (1 << i))) {
			counts[i] = 0;
		} else if (len < 4) {
2497
			goto error;
2498 2499 2500 2501
		} else {
			counts[i] = get_unaligned_le32(data);
			data += 4;
			len  -= 4;
2502
		}
2503
	}
2504
	if (flags & (1 << i)) {
2505 2506 2507
		if (len < 4) {
			goto error;
		}
2508 2509 2510
		os_descs_count = get_unaligned_le32(data);
		data += 4;
		len -= 4;
2511
	}
2512

2513 2514
	/* Read descriptors */
	raw_descs = data;
2515
	helper.ffs = ffs;
2516 2517 2518
	for (i = 0; i < 3; ++i) {
		if (!counts[i])
			continue;
2519 2520
		helper.interfaces_count = 0;
		helper.eps_count = 0;
2521
		ret = ffs_do_descs(counts[i], data, len,
2522
				   __ffs_data_do_entity, &helper);
2523
		if (ret < 0)
2524
			goto error;
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
		if (!ffs->eps_count && !ffs->interfaces_count) {
			ffs->eps_count = helper.eps_count;
			ffs->interfaces_count = helper.interfaces_count;
		} else {
			if (ffs->eps_count != helper.eps_count) {
				ret = -EINVAL;
				goto error;
			}
			if (ffs->interfaces_count != helper.interfaces_count) {
				ret = -EINVAL;
				goto error;
			}
		}
2538 2539
		data += ret;
		len  -= ret;
2540
	}
2541 2542 2543 2544 2545 2546 2547 2548
	if (os_descs_count) {
		ret = ffs_do_os_descs(os_descs_count, data, len,
				      __ffs_data_do_os_desc, ffs);
		if (ret < 0)
			goto error;
		data += ret;
		len -= ret;
	}
2549

2550 2551 2552 2553
	if (raw_descs == data || len) {
		ret = -EINVAL;
		goto error;
	}
2554

2555 2556 2557 2558 2559 2560
	ffs->raw_descs_data	= _data;
	ffs->raw_descs		= raw_descs;
	ffs->raw_descs_length	= data - raw_descs;
	ffs->fs_descs_count	= counts[0];
	ffs->hs_descs_count	= counts[1];
	ffs->ss_descs_count	= counts[2];
2561
	ffs->ms_os_descs_count	= os_descs_count;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

	return 0;

error:
	kfree(_data);
	return ret;
}

static int __ffs_data_got_strings(struct ffs_data *ffs,
				  char *const _data, size_t len)
{
	u32 str_count, needed_count, lang_count;
	struct usb_gadget_strings **stringtabs, *t;
	const char *data = _data;
2576
	struct usb_string *s;
2577 2578 2579

	ENTER();

2580 2581
	if (unlikely(len < 16 ||
		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
		     get_unaligned_le32(data + 4) != len))
		goto error;
	str_count  = get_unaligned_le32(data + 8);
	lang_count = get_unaligned_le32(data + 12);

	/* if one is zero the other must be zero */
	if (unlikely(!str_count != !lang_count))
		goto error;

	/* Do we have at least as many strings as descriptors need? */
	needed_count = ffs->strings_count;
	if (unlikely(str_count < needed_count))
		goto error;

2596 2597 2598 2599
	/*
	 * If we don't need any strings just return and free all
	 * memory.
	 */
2600 2601 2602 2603 2604
	if (!needed_count) {
		kfree(_data);
		return 0;
	}

2605
	/* Allocate everything in one chunk so there's less maintenance. */
2606 2607
	{
		unsigned i = 0;
2608 2609 2610 2611 2612 2613
		vla_group(d);
		vla_item(d, struct usb_gadget_strings *, stringtabs,
			lang_count + 1);
		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
		vla_item(d, struct usb_string, strings,
			lang_count*(needed_count+1));
2614

2615 2616 2617
		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);

		if (unlikely(!vlabuf)) {
2618 2619 2620 2621
			kfree(_data);
			return -ENOMEM;
		}

2622 2623 2624
		/* Initialize the VLA pointers */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
2625 2626 2627 2628 2629 2630
		i = lang_count;
		do {
			*stringtabs++ = t++;
		} while (--i);
		*stringtabs = NULL;

2631 2632 2633 2634
		/* stringtabs = vlabuf = d_stringtabs for later kfree */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
		s = vla_ptr(vlabuf, d, strings);
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	}

	/* For each language */
	data += 16;
	len -= 16;

	do { /* lang_count > 0 so we can use do-while */
		unsigned needed = needed_count;

		if (unlikely(len < 3))
			goto error_free;
		t->language = get_unaligned_le16(data);
		t->strings  = s;
		++t;

		data += 2;
		len -= 2;

		/* For each string */
		do { /* str_count > 0 so we can use do-while */
			size_t length = strnlen(data, len);

			if (unlikely(length == len))
				goto error_free;

2660 2661 2662 2663 2664
			/*
			 * User may provide more strings then we need,
			 * if that's the case we simply ignore the
			 * rest
			 */
2665
			if (likely(needed)) {
2666 2667
				/*
				 * s->id will be set while adding
2668
				 * function to configuration so for
2669 2670
				 * now just leave garbage here.
				 */
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
				s->s = data;
				--needed;
				++s;
			}

			data += length + 1;
			len -= length + 1;
		} while (--str_count);

		s->id = 0;   /* terminator */
		s->s = NULL;
		++s;

	} while (--lang_count);

	/* Some garbage left? */
	if (unlikely(len))
		goto error_free;

	/* Done! */
	ffs->stringtabs = stringtabs;
	ffs->raw_strings = _data;

	return 0;

error_free:
	kfree(stringtabs);
error:
	kfree(_data);
	return -EINVAL;
}


/* Events handling and management *******************************************/

static void __ffs_event_add(struct ffs_data *ffs,
			    enum usb_functionfs_event_type type)
{
	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
	int neg = 0;

2712 2713 2714 2715
	/*
	 * Abort any unhandled setup
	 *
	 * We do not need to worry about some cmpxchg() changing value
2716 2717
	 * of ffs->setup_state without holding the lock because when
	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2718 2719
	 * the source does nothing.
	 */
2720
	if (ffs->setup_state == FFS_SETUP_PENDING)
2721
		ffs->setup_state = FFS_SETUP_CANCELLED;
2722

2723 2724 2725 2726 2727 2728 2729
	/*
	 * Logic of this function guarantees that there are at most four pending
	 * evens on ffs->ev.types queue.  This is important because the queue
	 * has space for four elements only and __ffs_ep0_read_events function
	 * depends on that limit as well.  If more event types are added, those
	 * limits have to be revisited or guaranteed to still hold.
	 */
2730 2731 2732
	switch (type) {
	case FUNCTIONFS_RESUME:
		rem_type2 = FUNCTIONFS_SUSPEND;
2733
		/* FALL THROUGH */
2734 2735 2736
	case FUNCTIONFS_SUSPEND:
	case FUNCTIONFS_SETUP:
		rem_type1 = type;
2737
		/* Discard all similar events */
2738 2739 2740 2741 2742 2743
		break;

	case FUNCTIONFS_BIND:
	case FUNCTIONFS_UNBIND:
	case FUNCTIONFS_DISABLE:
	case FUNCTIONFS_ENABLE:
2744
		/* Discard everything other then power management. */
2745 2746 2747 2748 2749 2750
		rem_type1 = FUNCTIONFS_SUSPEND;
		rem_type2 = FUNCTIONFS_RESUME;
		neg = 1;
		break;

	default:
2751 2752
		WARN(1, "%d: unknown event, this should not happen\n", type);
		return;
2753 2754 2755 2756 2757 2758 2759 2760 2761
	}

	{
		u8 *ev  = ffs->ev.types, *out = ev;
		unsigned n = ffs->ev.count;
		for (; n; --n, ++ev)
			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
				*out++ = *ev;
			else
2762
				pr_vdebug("purging event %d\n", *ev);
2763 2764 2765
		ffs->ev.count = out - ffs->ev.types;
	}

2766
	pr_vdebug("adding event %d\n", type);
2767 2768
	ffs->ev.types[ffs->ev.count++] = type;
	wake_up_locked(&ffs->ev.waitq);
2769 2770
	if (ffs->ffs_eventfd)
		eventfd_signal(ffs->ffs_eventfd, 1);
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
}

static void ffs_event_add(struct ffs_data *ffs,
			  enum usb_functionfs_event_type type)
{
	unsigned long flags;
	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	__ffs_event_add(ffs, type);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
}

/* Bind/unbind USB function hooks *******************************************/

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
		if (ffs->eps_addrmap[i] == endpoint_address)
			return i;
	return -ENOENT;
}

2794 2795 2796 2797 2798 2799 2800
static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
				    struct usb_descriptor_header *desc,
				    void *priv)
{
	struct usb_endpoint_descriptor *ds = (void *)desc;
	struct ffs_function *func = priv;
	struct ffs_ep *ffs_ep;
2801 2802
	unsigned ep_desc_id;
	int idx;
2803
	static const char *speed_names[] = { "full", "high", "super" };
2804 2805 2806 2807

	if (type != FFS_DESCRIPTOR)
		return 0;

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	/*
	 * If ss_descriptors is not NULL, we are reading super speed
	 * descriptors; if hs_descriptors is not NULL, we are reading high
	 * speed descriptors; otherwise, we are reading full speed
	 * descriptors.
	 */
	if (func->function.ss_descriptors) {
		ep_desc_id = 2;
		func->function.ss_descriptors[(long)valuep] = desc;
	} else if (func->function.hs_descriptors) {
		ep_desc_id = 1;
2819
		func->function.hs_descriptors[(long)valuep] = desc;
2820 2821
	} else {
		ep_desc_id = 0;
2822
		func->function.fs_descriptors[(long)valuep]    = desc;
2823
	}
2824 2825 2826 2827

	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
		return 0;

2828 2829 2830 2831
	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
	if (idx < 0)
		return idx;

2832 2833
	ffs_ep = func->eps + idx;

2834 2835 2836
	if (unlikely(ffs_ep->descs[ep_desc_id])) {
		pr_err("two %sspeed descriptors for EP %d\n",
			  speed_names[ep_desc_id],
2837
			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2838 2839
		return -EINVAL;
	}
2840
	ffs_ep->descs[ep_desc_id] = ds;
2841 2842 2843 2844 2845 2846 2847 2848 2849

	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
	if (ffs_ep->ep) {
		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
		if (!ds->wMaxPacketSize)
			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
	} else {
		struct usb_request *req;
		struct usb_ep *ep;
2850
		u8 bEndpointAddress;
2851
		u16 wMaxPacketSize;
2852

2853 2854 2855 2856 2857
		/*
		 * We back up bEndpointAddress because autoconfig overwrites
		 * it with physical endpoint address.
		 */
		bEndpointAddress = ds->bEndpointAddress;
2858 2859 2860 2861 2862
		/*
		 * We back up wMaxPacketSize because autoconfig treats
		 * endpoint descriptors as if they were full speed.
		 */
		wMaxPacketSize = ds->wMaxPacketSize;
2863
		pr_vdebug("autoconfig\n");
2864 2865 2866
		ep = usb_ep_autoconfig(func->gadget, ds);
		if (unlikely(!ep))
			return -ENOTSUPP;
2867
		ep->driver_data = func->eps + idx;
2868 2869 2870 2871 2872 2873 2874 2875 2876

		req = usb_ep_alloc_request(ep, GFP_KERNEL);
		if (unlikely(!req))
			return -ENOMEM;

		ffs_ep->ep  = ep;
		ffs_ep->req = req;
		func->eps_revmap[ds->bEndpointAddress &
				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2877 2878 2879 2880 2881 2882
		/*
		 * If we use virtual address mapping, we restore
		 * original bEndpointAddress value.
		 */
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ds->bEndpointAddress = bEndpointAddress;
2883 2884 2885 2886 2887
		/*
		 * Restore wMaxPacketSize which was potentially
		 * overwritten by autoconfig.
		 */
		ds->wMaxPacketSize = wMaxPacketSize;
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	}
	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);

	return 0;
}

static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv)
{
	struct ffs_function *func = priv;
	unsigned idx;
	u8 newValue;

	switch (type) {
	default:
	case FFS_DESCRIPTOR:
		/* Handled in previous pass by __ffs_func_bind_do_descs() */
		return 0;

	case FFS_INTERFACE:
		idx = *valuep;
		if (func->interfaces_nums[idx] < 0) {
			int id = usb_interface_id(func->conf, &func->function);
			if (unlikely(id < 0))
				return id;
			func->interfaces_nums[idx] = id;
		}
		newValue = func->interfaces_nums[idx];
		break;

	case FFS_STRING:
		/* String' IDs are allocated when fsf_data is bound to cdev */
		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
		break;

	case FFS_ENDPOINT:
2925 2926 2927 2928
		/*
		 * USB_DT_ENDPOINT are handled in
		 * __ffs_func_bind_do_descs().
		 */
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
		if (desc->bDescriptorType == USB_DT_ENDPOINT)
			return 0;

		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
		if (unlikely(!func->eps[idx].ep))
			return -EINVAL;

		{
			struct usb_endpoint_descriptor **descs;
			descs = func->eps[idx].descs;
			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
		}
		break;
	}

2944
	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2945 2946 2947 2948
	*valuep = newValue;
	return 0;
}

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
				      struct usb_os_desc_header *h, void *data,
				      unsigned len, void *priv)
{
	struct ffs_function *func = priv;
	u8 length = 0;

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *desc = data;
		struct usb_os_desc_table *t;

		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
		       ARRAY_SIZE(desc->CompatibleID) +
		       ARRAY_SIZE(desc->SubCompatibleID));
		length = sizeof(*desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *desc = data;
		struct usb_os_desc_table *t;
		struct usb_os_desc_ext_prop *ext_prop;
		char *ext_prop_name;
		char *ext_prop_data;

		t = &func->function.os_desc_table[h->interface];
		t->if_id = func->interfaces_nums[h->interface];

		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);

		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2984
		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
		length = ext_prop->name_len + ext_prop->data_len + 14;

		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
		func->ffs->ms_os_descs_ext_prop_name_avail +=
			ext_prop->name_len;

		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
		func->ffs->ms_os_descs_ext_prop_data_avail +=
			ext_prop->data_len;
		memcpy(ext_prop_data,
		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
		       ext_prop->data_len);
		/* unicode data reported to the host as "WCHAR"s */
		switch (ext_prop->type) {
		case USB_EXT_PROP_UNICODE:
		case USB_EXT_PROP_UNICODE_ENV:
		case USB_EXT_PROP_UNICODE_LINK:
		case USB_EXT_PROP_UNICODE_MULTI:
			ext_prop->data_len *= 2;
			break;
		}
		ext_prop->data = ext_prop_data;

		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
		       ext_prop->name_len);
		/* property name reported to the host as "WCHAR"s */
		ext_prop->name_len *= 2;
		ext_prop->name = ext_prop_name;

		t->os_desc->ext_prop_len +=
			ext_prop->name_len + ext_prop->data_len + 14;
		++t->os_desc->ext_prop_count;
		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
	}

	return length;
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
						struct usb_configuration *c)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct f_fs_opts *ffs_opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	int ret;

	ENTER();

	/*
	 * Legacy gadget triggers binding in functionfs_ready_callback,
	 * which already uses locking; taking the same lock here would
	 * cause a deadlock.
	 *
	 * Configfs-enabled gadgets however do need ffs_dev_lock.
	 */
	if (!ffs_opts->no_configfs)
		ffs_dev_lock();
	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
	func->ffs = ffs_opts->dev->ffs_data;
	if (!ffs_opts->no_configfs)
		ffs_dev_unlock();
	if (ret)
		return ERR_PTR(ret);

	func->conf = c;
	func->gadget = c->cdev->gadget;

	/*
	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
	 * configurations are bound in sequence with list_for_each_entry,
	 * in each configuration its functions are bound in sequence
	 * with list_for_each_entry, so we assume no race condition
	 * with regard to ffs_opts->bound access
	 */
	if (!ffs_opts->refcnt) {
		ret = functionfs_bind(func->ffs, c->cdev);
		if (ret)
			return ERR_PTR(ret);
	}
	ffs_opts->refcnt++;
	func->function.strings = func->ffs->stringtabs;

	return ffs_opts;
}

static int _ffs_func_bind(struct usb_configuration *c,
			  struct usb_function *f)
3077 3078 3079 3080 3081
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;

	const int full = !!func->ffs->fs_descs_count;
3082 3083
	const int high = !!func->ffs->hs_descs_count;
	const int super = !!func->ffs->ss_descs_count;
3084

3085
	int fs_len, hs_len, ss_len, ret, i;
3086
	struct ffs_ep *eps_ptr;
3087 3088

	/* Make it a single chunk, less management later on */
3089 3090 3091 3092 3093 3094
	vla_group(d);
	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
		full ? ffs->fs_descs_count + 1 : 0);
	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
		high ? ffs->hs_descs_count + 1 : 0);
3095 3096
	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
		super ? ffs->ss_descs_count + 1 : 0);
3097
	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, char[16], ext_compat,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc, os_desc,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
			 ffs->ms_os_descs_ext_prop_count);
	vla_item_with_sz(d, char, ext_prop_name,
			 ffs->ms_os_descs_ext_prop_name_len);
	vla_item_with_sz(d, char, ext_prop_data,
			 ffs->ms_os_descs_ext_prop_data_len);
3110
	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3111
	char *vlabuf;
3112 3113 3114

	ENTER();

3115 3116
	/* Has descriptors only for speeds gadget does not support */
	if (unlikely(!(full | high | super)))
3117 3118
		return -ENOTSUPP;

3119
	/* Allocate a single chunk, less management later on */
3120
	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3121
	if (unlikely(!vlabuf))
3122 3123
		return -ENOMEM;

3124 3125 3126 3127 3128 3129
	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
	ffs->ms_os_descs_ext_prop_name_avail =
		vla_ptr(vlabuf, d, ext_prop_name);
	ffs->ms_os_descs_ext_prop_data_avail =
		vla_ptr(vlabuf, d, ext_prop_data);

3130 3131 3132
	/* Copy descriptors  */
	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
	       ffs->raw_descs_length);
3133

3134
	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3135 3136 3137
	eps_ptr = vla_ptr(vlabuf, d, eps);
	for (i = 0; i < ffs->eps_count; i++)
		eps_ptr[i].num = -1;
3138

3139 3140 3141 3142 3143
	/* Save pointers
	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
	*/
	func->eps             = vla_ptr(vlabuf, d, eps);
	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3144

3145 3146
	/*
	 * Go through all the endpoint descriptors and allocate
3147
	 * endpoints first, so that later we can rewrite the endpoint
3148 3149
	 * numbers without worrying that it may be described later on.
	 */
3150
	if (likely(full)) {
3151
		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3152 3153 3154 3155 3156 3157
		fs_len = ffs_do_descs(ffs->fs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs),
				      d_raw_descs__sz,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(fs_len < 0)) {
			ret = fs_len;
3158
			goto error;
3159
		}
3160
	} else {
3161
		fs_len = 0;
3162 3163 3164
	}

	if (likely(high)) {
3165
		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
		hs_len = ffs_do_descs(ffs->hs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
				      d_raw_descs__sz - fs_len,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(hs_len < 0)) {
			ret = hs_len;
			goto error;
		}
	} else {
		hs_len = 0;
	}

	if (likely(super)) {
		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3180
		ss_len = ffs_do_descs(ffs->ss_descs_count,
3181 3182 3183
				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
				d_raw_descs__sz - fs_len - hs_len,
				__ffs_func_bind_do_descs, func);
3184 3185
		if (unlikely(ss_len < 0)) {
			ret = ss_len;
3186
			goto error;
3187 3188 3189
		}
	} else {
		ss_len = 0;
3190 3191
	}

3192 3193 3194 3195 3196
	/*
	 * Now handle interface numbers allocation and interface and
	 * endpoint numbers rewriting.  We can do that in one go
	 * now.
	 */
3197
	ret = ffs_do_descs(ffs->fs_descs_count +
3198 3199
			   (high ? ffs->hs_descs_count : 0) +
			   (super ? ffs->ss_descs_count : 0),
3200
			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3201 3202 3203 3204
			   __ffs_func_bind_do_nums, func);
	if (unlikely(ret < 0))
		goto error;

3205
	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3206
	if (c->cdev->use_os_string) {
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
		for (i = 0; i < ffs->interfaces_count; ++i) {
			struct usb_os_desc *desc;

			desc = func->function.os_desc_table[i].os_desc =
				vla_ptr(vlabuf, d, os_desc) +
				i * sizeof(struct usb_os_desc);
			desc->ext_compat_id =
				vla_ptr(vlabuf, d, ext_compat) + i * 16;
			INIT_LIST_HEAD(&desc->ext_prop);
		}
3217 3218 3219 3220 3221 3222 3223 3224 3225
		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) +
				      fs_len + hs_len + ss_len,
				      d_raw_descs__sz - fs_len - hs_len -
				      ss_len,
				      __ffs_func_bind_do_os_desc, func);
		if (unlikely(ret < 0))
			goto error;
	}
3226 3227 3228
	func->function.os_desc_n =
		c->cdev->use_os_string ? ffs->interfaces_count : 0;

3229 3230 3231 3232 3233 3234 3235 3236 3237
	/* And we're done */
	ffs_event_add(ffs, FUNCTIONFS_BIND);
	return 0;

error:
	/* XXX Do we need to release all claimed endpoints here? */
	return ret;
}

3238 3239 3240 3241
static int ffs_func_bind(struct usb_configuration *c,
			 struct usb_function *f)
{
	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3242 3243
	struct ffs_function *func = ffs_func_from_usb(f);
	int ret;
3244 3245 3246 3247

	if (IS_ERR(ffs_opts))
		return PTR_ERR(ffs_opts);

3248 3249 3250 3251 3252
	ret = _ffs_func_bind(c, f);
	if (ret && !--ffs_opts->refcnt)
		functionfs_unbind(func->ffs);

	return ret;
3253 3254
}

3255 3256 3257

/* Other USB function hooks *************************************************/

3258 3259 3260 3261 3262 3263 3264
static void ffs_reset_work(struct work_struct *work)
{
	struct ffs_data *ffs = container_of(work,
		struct ffs_data, reset_work);
	ffs_data_reset(ffs);
}

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
static int ffs_func_set_alt(struct usb_function *f,
			    unsigned interface, unsigned alt)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	int ret = 0, intf;

	if (alt != (unsigned)-1) {
		intf = ffs_func_revmap_intf(func, interface);
		if (unlikely(intf < 0))
			return intf;
	}

	if (ffs->func)
		ffs_func_eps_disable(ffs->func);

3281 3282 3283 3284 3285 3286 3287
	if (ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		INIT_WORK(&ffs->reset_work, ffs_reset_work);
		schedule_work(&ffs->reset_work);
		return -ENODEV;
	}

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	if (alt == (unsigned)-1) {
		ffs->func = NULL;
		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
		return 0;
	}

	ffs->func = func;
	ret = ffs_func_eps_enable(func);
	if (likely(ret >= 0))
		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
	return ret;
}

static void ffs_func_disable(struct usb_function *f)
{
	ffs_func_set_alt(f, 0, (unsigned)-1);
}

static int ffs_func_setup(struct usb_function *f,
			  const struct usb_ctrlrequest *creq)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	unsigned long flags;
	int ret;

	ENTER();

3319 3320 3321 3322 3323
	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3324

3325 3326
	/*
	 * Most requests directed to interface go through here
3327 3328 3329 3330
	 * (notable exceptions are set/get interface) so we need to
	 * handle them.  All other either handled by composite or
	 * passed to usb_configuration->setup() (if one is set).  No
	 * matter, we will handle requests directed to endpoint here
3331 3332 3333
	 * as well (as it's straightforward).  Other request recipient
	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
	 * is being used.
3334
	 */
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
		break;

	case USB_RECIP_ENDPOINT:
		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
3349 3350
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ret = func->ffs->eps_addrmap[ret];
3351 3352 3353
		break;

	default:
3354 3355 3356 3357
		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
			ret = le16_to_cpu(creq->wIndex);
		else
			return -EOPNOTSUPP;
3358 3359 3360 3361 3362 3363 3364 3365
	}

	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	ffs->ev.setup = *creq;
	ffs->ev.setup.wIndex = cpu_to_le16(ret);
	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);

3366
	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3367 3368
}

3369
static bool ffs_func_req_match(struct usb_function *f,
3370 3371
			       const struct usb_ctrlrequest *creq,
			       bool config0)
3372 3373 3374
{
	struct ffs_function *func = ffs_func_from_usb(f);

3375
	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3376 3377
		return false;

3378 3379
	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
3380 3381
		return (ffs_func_revmap_intf(func,
					     le16_to_cpu(creq->wIndex)) >= 0);
3382
	case USB_RECIP_ENDPOINT:
3383 3384
		return (ffs_func_revmap_ep(func,
					   le16_to_cpu(creq->wIndex)) >= 0);
3385 3386 3387 3388 3389 3390
	default:
		return (bool) (func->ffs->user_flags &
			       FUNCTIONFS_ALL_CTRL_RECIP);
	}
}

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
static void ffs_func_suspend(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
}

static void ffs_func_resume(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
}


3404
/* Endpoint and interface numbers reverse mapping ***************************/
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425

static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
{
	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
	return num ? num : -EDOM;
}

static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
{
	short *nums = func->interfaces_nums;
	unsigned count = func->ffs->interfaces_count;

	for (; count; --count, ++nums) {
		if (*nums >= 0 && *nums == intf)
			return nums - func->interfaces_nums;
	}

	return -EDOM;
}


3426 3427 3428 3429
/* Devices management *******************************************************/

static LIST_HEAD(ffs_devices);

3430
static struct ffs_dev *_ffs_do_find_dev(const char *name)
3431 3432 3433
{
	struct ffs_dev *dev;

3434 3435 3436
	if (!name)
		return NULL;

3437 3438 3439 3440
	list_for_each_entry(dev, &ffs_devices, entry) {
		if (strcmp(dev->name, name) == 0)
			return dev;
	}
3441

3442 3443 3444 3445 3446 3447
	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3448
static struct ffs_dev *_ffs_get_single_dev(void)
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
{
	struct ffs_dev *dev;

	if (list_is_singular(&ffs_devices)) {
		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
		if (dev->single)
			return dev;
	}

	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3464
static struct ffs_dev *_ffs_find_dev(const char *name)
3465 3466 3467
{
	struct ffs_dev *dev;

3468
	dev = _ffs_get_single_dev();
3469 3470 3471
	if (dev)
		return dev;

3472
	return _ffs_do_find_dev(name);
3473 3474
}

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
/* Configfs support *********************************************************/

static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
{
	return container_of(to_config_group(item), struct f_fs_opts,
			    func_inst.group);
}

static void ffs_attr_release(struct config_item *item)
{
	struct f_fs_opts *opts = to_ffs_opts(item);

	usb_put_function_instance(&opts->func_inst);
}

static struct configfs_item_operations ffs_item_ops = {
	.release	= ffs_attr_release,
};

3494
static const struct config_item_type ffs_func_type = {
3495 3496 3497 3498 3499
	.ct_item_ops	= &ffs_item_ops,
	.ct_owner	= THIS_MODULE,
};


3500 3501 3502 3503 3504 3505 3506 3507
/* Function registration interface ******************************************/

static void ffs_free_inst(struct usb_function_instance *f)
{
	struct f_fs_opts *opts;

	opts = to_f_fs_opts(f);
	ffs_dev_lock();
3508
	_ffs_free_dev(opts->dev);
3509 3510 3511 3512
	ffs_dev_unlock();
	kfree(opts);
}

3513 3514
static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
{
3515
	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3516
		return -ENAMETOOLONG;
3517
	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3518 3519
}

3520 3521 3522 3523 3524 3525 3526 3527 3528
static struct usb_function_instance *ffs_alloc_inst(void)
{
	struct f_fs_opts *opts;
	struct ffs_dev *dev;

	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
	if (!opts)
		return ERR_PTR(-ENOMEM);

3529
	opts->func_inst.set_inst_name = ffs_set_inst_name;
3530 3531
	opts->func_inst.free_func_inst = ffs_free_inst;
	ffs_dev_lock();
3532
	dev = _ffs_alloc_dev();
3533 3534 3535 3536 3537 3538
	ffs_dev_unlock();
	if (IS_ERR(dev)) {
		kfree(opts);
		return ERR_CAST(dev);
	}
	opts->dev = dev;
3539
	dev->opts = opts;
3540

3541 3542
	config_group_init_type_name(&opts->func_inst.group, "",
				    &ffs_func_type);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	return &opts->func_inst;
}

static void ffs_free(struct usb_function *f)
{
	kfree(ffs_func_from_usb(f));
}

static void ffs_func_unbind(struct usb_configuration *c,
			    struct usb_function *f)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	struct f_fs_opts *opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	struct ffs_ep *ep = func->eps;
	unsigned count = ffs->eps_count;
	unsigned long flags;

	ENTER();
	if (ffs->func == func) {
		ffs_func_eps_disable(func);
		ffs->func = NULL;
	}

	if (!--opts->refcnt)
		functionfs_unbind(ffs);

	/* cleanup after autoconfig */
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3573
	while (count--) {
3574 3575 3576 3577
		if (ep->ep && ep->req)
			usb_ep_free_request(ep->ep, ep->req);
		ep->req = NULL;
		++ep;
3578
	}
3579 3580 3581 3582 3583 3584 3585 3586 3587
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
	kfree(func->eps);
	func->eps = NULL;
	/*
	 * eps, descriptors and interfaces_nums are allocated in the
	 * same chunk so only one free is required.
	 */
	func->function.fs_descriptors = NULL;
	func->function.hs_descriptors = NULL;
3588
	func->function.ss_descriptors = NULL;
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	func->interfaces_nums = NULL;

	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
}

static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
{
	struct ffs_function *func;

	ENTER();

	func = kzalloc(sizeof(*func), GFP_KERNEL);
	if (unlikely(!func))
		return ERR_PTR(-ENOMEM);

	func->function.name    = "Function FS Gadget";

	func->function.bind    = ffs_func_bind;
	func->function.unbind  = ffs_func_unbind;
	func->function.set_alt = ffs_func_set_alt;
	func->function.disable = ffs_func_disable;
	func->function.setup   = ffs_func_setup;
3611
	func->function.req_match = ffs_func_req_match;
3612 3613 3614 3615 3616 3617 3618
	func->function.suspend = ffs_func_suspend;
	func->function.resume  = ffs_func_resume;
	func->function.free_func = ffs_free;

	return &func->function;
}

3619 3620 3621
/*
 * ffs_lock must be taken by the caller of this function
 */
3622
static struct ffs_dev *_ffs_alloc_dev(void)
3623 3624 3625 3626
{
	struct ffs_dev *dev;
	int ret;

3627
	if (_ffs_get_single_dev())
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
			return ERR_PTR(-EBUSY);

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return ERR_PTR(-ENOMEM);

	if (list_empty(&ffs_devices)) {
		ret = functionfs_init();
		if (ret) {
			kfree(dev);
			return ERR_PTR(ret);
		}
	}

	list_add(&dev->entry, &ffs_devices);

	return dev;
}

3647
int ffs_name_dev(struct ffs_dev *dev, const char *name)
3648 3649
{
	struct ffs_dev *existing;
3650
	int ret = 0;
3651

3652
	ffs_dev_lock();
3653

3654 3655 3656 3657 3658
	existing = _ffs_do_find_dev(name);
	if (!existing)
		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
	else if (existing != dev)
		ret = -EBUSY;
3659 3660 3661 3662 3663

	ffs_dev_unlock();

	return ret;
}
3664
EXPORT_SYMBOL_GPL(ffs_name_dev);
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680

int ffs_single_dev(struct ffs_dev *dev)
{
	int ret;

	ret = 0;
	ffs_dev_lock();

	if (!list_is_singular(&ffs_devices))
		ret = -EBUSY;
	else
		dev->single = true;

	ffs_dev_unlock();
	return ret;
}
3681
EXPORT_SYMBOL_GPL(ffs_single_dev);
3682 3683 3684 3685

/*
 * ffs_lock must be taken by the caller of this function
 */
3686
static void _ffs_free_dev(struct ffs_dev *dev)
3687 3688
{
	list_del(&dev->entry);
3689 3690 3691 3692 3693

	/* Clear the private_data pointer to stop incorrect dev access */
	if (dev->ffs_data)
		dev->ffs_data->private_data = NULL;

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	kfree(dev);
	if (list_empty(&ffs_devices))
		functionfs_cleanup();
}

static void *ffs_acquire_dev(const char *dev_name)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

3706
	ffs_dev = _ffs_find_dev(dev_name);
3707
	if (!ffs_dev)
3708
		ffs_dev = ERR_PTR(-ENOENT);
3709 3710
	else if (ffs_dev->mounted)
		ffs_dev = ERR_PTR(-EBUSY);
3711 3712
	else if (ffs_dev->ffs_acquire_dev_callback &&
	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3713
		ffs_dev = ERR_PTR(-ENOENT);
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	else
		ffs_dev->mounted = true;

	ffs_dev_unlock();
	return ffs_dev;
}

static void ffs_release_dev(struct ffs_data *ffs_data)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

	ffs_dev = ffs_data->private_data;
3729
	if (ffs_dev) {
3730
		ffs_dev->mounted = false;
3731 3732 3733 3734

		if (ffs_dev->ffs_release_dev_callback)
			ffs_dev->ffs_release_dev_callback(ffs_dev);
	}
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

	ffs_dev_unlock();
}

static int ffs_ready(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
	int ret = 0;

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj) {
		ret = -EINVAL;
		goto done;
	}
	if (WARN_ON(ffs_obj->desc_ready)) {
		ret = -EBUSY;
		goto done;
	}

	ffs_obj->desc_ready = true;
	ffs_obj->ffs_data = ffs;

3760
	if (ffs_obj->ffs_ready_callback) {
3761
		ret = ffs_obj->ffs_ready_callback(ffs);
3762 3763 3764
		if (ret)
			goto done;
	}
3765

3766
	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3767 3768 3769 3770 3771 3772 3773 3774
done:
	ffs_dev_unlock();
	return ret;
}

static void ffs_closed(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
3775
	struct f_fs_opts *opts;
3776
	struct config_item *ci;
3777 3778 3779 3780 3781 3782 3783 3784 3785

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj)
		goto done;

	ffs_obj->desc_ready = false;
3786
	ffs_obj->ffs_data = NULL;
3787

3788 3789
	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
	    ffs_obj->ffs_closed_callback)
3790
		ffs_obj->ffs_closed_callback(ffs);
3791

3792 3793 3794 3795 3796 3797
	if (ffs_obj->opts)
		opts = ffs_obj->opts;
	else
		goto done;

	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3798
	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3799 3800
		goto done;

3801 3802 3803
	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
	ffs_dev_unlock();

3804 3805
	if (test_bit(FFS_FL_BOUND, &ffs->flags))
		unregister_gadget_item(ci);
3806
	return;
3807 3808 3809 3810
done:
	ffs_dev_unlock();
}

3811 3812 3813 3814 3815 3816 3817 3818 3819
/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
{
	return nonblock
		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
		: mutex_lock_interruptible(mutex);
}

A
Al Viro 已提交
3820
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
{
	char *data;

	if (unlikely(!len))
		return NULL;

	data = kmalloc(len, GFP_KERNEL);
	if (unlikely(!data))
		return ERR_PTR(-ENOMEM);

3831
	if (unlikely(copy_from_user(data, buf, len))) {
3832 3833 3834 3835
		kfree(data);
		return ERR_PTR(-EFAULT);
	}

3836
	pr_vdebug("Buffer from user space:\n");
3837 3838 3839 3840
	ffs_dump_mem("", data, len);

	return data;
}
3841 3842 3843 3844

DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Nazarewicz");