f_fs.c 87.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
 * f_fs.c -- user mode file system API for USB composite function controllers
4 5
 *
 * Copyright (C) 2010 Samsung Electronics
6
 * Author: Michal Nazarewicz <mina86@mina86.com>
7
 *
8
 * Based on inode.c (GadgetFS) which was:
9 10 11 12 13 14 15 16 17
 * Copyright (C) 2003-2004 David Brownell
 * Copyright (C) 2003 Agilent Technologies
 */


/* #define DEBUG */
/* #define VERBOSE_DEBUG */

#include <linux/blkdev.h>
18
#include <linux/pagemap.h>
19
#include <linux/export.h>
20
#include <linux/hid.h>
21
#include <linux/module.h>
22
#include <linux/sched/signal.h>
23
#include <linux/uio.h>
24 25 26 27 28
#include <asm/unaligned.h>

#include <linux/usb/composite.h>
#include <linux/usb/functionfs.h>

29 30
#include <linux/aio.h>
#include <linux/mmu_context.h>
31
#include <linux/poll.h>
32
#include <linux/eventfd.h>
33

34
#include "u_fs.h"
35
#include "u_f.h"
36
#include "u_os_desc.h"
37
#include "configfs.h"
38 39 40 41 42 43 44

#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */

/* Reference counter handling */
static void ffs_data_get(struct ffs_data *ffs);
static void ffs_data_put(struct ffs_data *ffs);
/* Creates new ffs_data object. */
45 46
static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
	__attribute__((malloc));
47 48 49 50 51

/* Opened counter handling. */
static void ffs_data_opened(struct ffs_data *ffs);
static void ffs_data_closed(struct ffs_data *ffs);

52
/* Called with ffs->mutex held; take over ownership of data. */
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static int __must_check
__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
static int __must_check
__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);


/* The function structure ***************************************************/

struct ffs_ep;

struct ffs_function {
	struct usb_configuration	*conf;
	struct usb_gadget		*gadget;
	struct ffs_data			*ffs;

	struct ffs_ep			*eps;
	u8				eps_revmap[16];
	short				*interfaces_nums;

	struct usb_function		function;
};


static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
{
	return container_of(f, struct ffs_function, function);
}


82 83 84 85 86 87 88 89
static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
{
	return (enum ffs_setup_state)
		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
}


90 91 92 93 94 95 96 97 98
static void ffs_func_eps_disable(struct ffs_function *func);
static int __must_check ffs_func_eps_enable(struct ffs_function *func);

static int ffs_func_bind(struct usb_configuration *,
			 struct usb_function *);
static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
static void ffs_func_disable(struct usb_function *);
static int ffs_func_setup(struct usb_function *,
			  const struct usb_ctrlrequest *);
99
static bool ffs_func_req_match(struct usb_function *,
100 101
			       const struct usb_ctrlrequest *,
			       bool config0);
102 103 104 105 106 107 108 109 110 111 112 113 114 115
static void ffs_func_suspend(struct usb_function *);
static void ffs_func_resume(struct usb_function *);


static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);


/* The endpoints structures *************************************************/

struct ffs_ep {
	struct usb_ep			*ep;	/* P: ffs->eps_lock */
	struct usb_request		*req;	/* P: epfile->mutex */

116 117
	/* [0]: full speed, [1]: high speed, [2]: super speed */
	struct usb_endpoint_descriptor	*descs[3];
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

	u8				num;

	int				status;	/* P: epfile->mutex */
};

struct ffs_epfile {
	/* Protects ep->ep and ep->req. */
	struct mutex			mutex;

	struct ffs_data			*ffs;
	struct ffs_ep			*ep;	/* P: ffs->eps_lock */

	struct dentry			*dentry;

133 134 135
	/*
	 * Buffer for holding data from partial reads which may happen since
	 * we’re rounding user read requests to a multiple of a max packet size.
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	 *
	 * The pointer is initialised with NULL value and may be set by
	 * __ffs_epfile_read_data function to point to a temporary buffer.
	 *
	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
	 * data from said buffer and eventually free it.  Importantly, while the
	 * function is using the buffer, it sets the pointer to NULL.  This is
	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
	 * can never run concurrently (they are synchronised by epfile->mutex)
	 * so the latter will not assign a new value to the pointer.
	 *
	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
	 * value is crux of the synchronisation between ffs_func_eps_disable and
	 * __ffs_epfile_read_data.
	 *
	 * Once __ffs_epfile_read_data is about to finish it will try to set the
	 * pointer back to its old value (as described above), but seeing as the
	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
	 * the buffer.
	 *
	 * == State transitions ==
	 *
	 * • ptr == NULL:  (initial state)
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    nop
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == DROP:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == buf:
	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
	 *                                    is always called first
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == NULL and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes and …
	 *     … all data read:               free buf, go to ptr == NULL
	 *     … otherwise:                   go to ptr == buf and reading
	 * • ptr == DROP and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes:              free buf, go to ptr == DROP
187
	 */
188 189
	struct ffs_buffer		*read_buffer;
#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
190

191 192 193 194 195 196 197 198
	char				name[5];

	unsigned char			in;	/* P: ffs->eps_lock */
	unsigned char			isoc;	/* P: ffs->eps_lock */

	unsigned char			_pad;
};

199 200 201 202 203 204
struct ffs_buffer {
	size_t length;
	char *data;
	char storage[];
};

205 206 207 208 209 210 211
/*  ffs_io_data structure ***************************************************/

struct ffs_io_data {
	bool aio;
	bool read;

	struct kiocb *kiocb;
212 213 214
	struct iov_iter data;
	const void *to_free;
	char *buf;
215 216 217 218 219 220

	struct mm_struct *mm;
	struct work_struct work;

	struct usb_ep *ep;
	struct usb_request *req;
221 222

	struct ffs_data *ffs;
223 224
};

225 226 227 228 229 230
struct ffs_desc_helper {
	struct ffs_data *ffs;
	unsigned interfaces_count;
	unsigned eps_count;
};

231 232 233
static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);

A
Al Viro 已提交
234
static struct dentry *
235
ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
A
Al Viro 已提交
236
		   const struct file_operations *fops);
237

238 239 240
/* Devices management *******************************************************/

DEFINE_MUTEX(ffs_lock);
241
EXPORT_SYMBOL_GPL(ffs_lock);
242

243 244 245
static struct ffs_dev *_ffs_find_dev(const char *name);
static struct ffs_dev *_ffs_alloc_dev(void);
static void _ffs_free_dev(struct ffs_dev *dev);
246 247 248 249
static void *ffs_acquire_dev(const char *dev_name);
static void ffs_release_dev(struct ffs_data *ffs_data);
static int ffs_ready(struct ffs_data *ffs);
static void ffs_closed(struct ffs_data *ffs);
250 251 252 253 254

/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
	__attribute__((warn_unused_result, nonnull));
A
Al Viro 已提交
255
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
256 257 258 259 260 261 262 263 264
	__attribute__((warn_unused_result, nonnull));


/* Control file aka ep0 *****************************************************/

static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
{
	struct ffs_data *ffs = req->context;

265
	complete(&ffs->ep0req_completion);
266 267 268 269 270 271 272 273 274 275 276 277 278 279
}

static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
{
	struct usb_request *req = ffs->ep0req;
	int ret;

	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);

	spin_unlock_irq(&ffs->ev.waitq.lock);

	req->buf      = data;
	req->length   = len;

280 281 282 283 284 285 286 287
	/*
	 * UDC layer requires to provide a buffer even for ZLP, but should
	 * not use it at all. Let's provide some poisoned pointer to catch
	 * possible bug in the driver.
	 */
	if (req->buf == NULL)
		req->buf = (void *)0xDEADBABE;

288
	reinit_completion(&ffs->ep0req_completion);
289 290 291 292 293 294 295 296 297 298 299 300

	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
	if (unlikely(ret)) {
		usb_ep_dequeue(ffs->gadget->ep0, req);
		return -EINTR;
	}

	ffs->setup_state = FFS_NO_SETUP;
301
	return req->status ? req->status : req->actual;
302 303 304 305 306
}

static int __ffs_ep0_stall(struct ffs_data *ffs)
{
	if (ffs->ev.can_stall) {
307
		pr_vdebug("ep0 stall\n");
308 309 310 311
		usb_ep_set_halt(ffs->gadget->ep0);
		ffs->setup_state = FFS_NO_SETUP;
		return -EL2HLT;
	} else {
312
		pr_debug("bogus ep0 stall!\n");
313 314 315 316 317 318 319 320 321 322 323 324 325 326
		return -ESRCH;
	}
}

static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
			     size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	ssize_t ret;
	char *data;

	ENTER();

	/* Fast check if setup was canceled */
327
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		/* Copy data */
		if (unlikely(len < 16)) {
			ret = -EINVAL;
			break;
		}

		data = ffs_prepare_buffer(buf, len);
346
		if (IS_ERR(data)) {
347 348 349 350 351 352
			ret = PTR_ERR(data);
			break;
		}

		/* Handle data */
		if (ffs->state == FFS_READ_DESCRIPTORS) {
353
			pr_info("read descriptors\n");
354 355 356 357 358 359 360
			ret = __ffs_data_got_descs(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ffs->state = FFS_READ_STRINGS;
			ret = len;
		} else {
361
			pr_info("read strings\n");
362 363 364 365 366 367 368 369 370 371 372 373 374
			ret = __ffs_data_got_strings(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ret = ffs_epfiles_create(ffs);
			if (unlikely(ret)) {
				ffs->state = FFS_CLOSING;
				break;
			}

			ffs->state = FFS_ACTIVE;
			mutex_unlock(&ffs->mutex);

375
			ret = ffs_ready(ffs);
376 377 378 379 380 381 382 383 384 385 386
			if (unlikely(ret < 0)) {
				ffs->state = FFS_CLOSING;
				return ret;
			}

			return len;
		}
		break;

	case FFS_ACTIVE:
		data = NULL;
387 388 389 390
		/*
		 * We're called from user space, we can use _irq
		 * rather then _irqsave
		 */
391
		spin_lock_irq(&ffs->ev.waitq.lock);
392
		switch (ffs_setup_state_clear_cancelled(ffs)) {
393
		case FFS_SETUP_CANCELLED:
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
			ret = -EIDRM;
			goto done_spin;

		case FFS_NO_SETUP:
			ret = -ESRCH;
			goto done_spin;

		case FFS_SETUP_PENDING:
			break;
		}

		/* FFS_SETUP_PENDING */
		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			break;
		}

		/* FFS_SETUP_PENDING and not stall */
		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		data = ffs_prepare_buffer(buf, len);
418
		if (IS_ERR(data)) {
419 420 421 422 423 424
			ret = PTR_ERR(data);
			break;
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

425 426
		/*
		 * We are guaranteed to be still in FFS_ACTIVE state
427
		 * but the state of setup could have changed from
428
		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
429
		 * to check for that.  If that happened we copied data
430 431 432
		 * from user space in vain but it's unlikely.
		 *
		 * For sure we are not in FFS_NO_SETUP since this is
433 434
		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
		 * transition can be performed and it's protected by
435 436
		 * mutex.
		 */
437 438
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
			ret = -EIDRM;
done_spin:
			spin_unlock_irq(&ffs->ev.waitq.lock);
		} else {
			/* unlocks spinlock */
			ret = __ffs_ep0_queue_wait(ffs, data, len);
		}
		kfree(data);
		break;

	default:
		ret = -EBADFD;
		break;
	}

	mutex_unlock(&ffs->mutex);
	return ret;
}

458
/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
459 460 461
static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
				     size_t n)
{
462
	/*
463 464 465
	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
	 * size of ffs->ev.types array (which is four) so that's how much space
	 * we reserve.
466
	 */
467 468
	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
	const size_t size = n * sizeof *events;
469 470
	unsigned i = 0;

471
	memset(events, 0, size);
472 473 474 475 476 477 478 479 480

	do {
		events[i].type = ffs->ev.types[i];
		if (events[i].type == FUNCTIONFS_SETUP) {
			events[i].u.setup = ffs->ev.setup;
			ffs->setup_state = FFS_SETUP_PENDING;
		}
	} while (++i < n);

481 482
	ffs->ev.count -= n;
	if (ffs->ev.count)
483 484 485 486 487 488
		memmove(ffs->ev.types, ffs->ev.types + n,
			ffs->ev.count * sizeof *ffs->ev.types);

	spin_unlock_irq(&ffs->ev.waitq.lock);
	mutex_unlock(&ffs->mutex);

489
	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
490 491 492 493 494 495 496 497 498 499 500 501 502
}

static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
			    size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	char *data = NULL;
	size_t n;
	int ret;

	ENTER();

	/* Fast check if setup was canceled */
503
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
504 505 506 507 508 509 510 511 512 513 514 515 516
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	if (ffs->state != FFS_ACTIVE) {
		ret = -EBADFD;
		goto done_mutex;
	}

517 518 519 520
	/*
	 * We're called from user space, we can use _irq rather then
	 * _irqsave
	 */
521 522
	spin_lock_irq(&ffs->ev.waitq.lock);

523
	switch (ffs_setup_state_clear_cancelled(ffs)) {
524
	case FFS_SETUP_CANCELLED:
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		ret = -EIDRM;
		break;

	case FFS_NO_SETUP:
		n = len / sizeof(struct usb_functionfs_event);
		if (unlikely(!n)) {
			ret = -EINVAL;
			break;
		}

		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
			ret = -EAGAIN;
			break;
		}

540 541
		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
							ffs->ev.count)) {
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
			ret = -EINTR;
			break;
		}

		return __ffs_ep0_read_events(ffs, buf,
					     min(n, (size_t)ffs->ev.count));

	case FFS_SETUP_PENDING:
		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			goto done_mutex;
		}

		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		if (likely(len)) {
			data = kmalloc(len, GFP_KERNEL);
			if (unlikely(!data)) {
				ret = -ENOMEM;
				goto done_mutex;
			}
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

		/* See ffs_ep0_write() */
571 572
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
573 574 575 576 577 578
			ret = -EIDRM;
			break;
		}

		/* unlocks spinlock */
		ret = __ffs_ep0_queue_wait(ffs, data, len);
579
		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
			ret = -EFAULT;
		goto done_mutex;

	default:
		ret = -EBADFD;
		break;
	}

	spin_unlock_irq(&ffs->ev.waitq.lock);
done_mutex:
	mutex_unlock(&ffs->mutex);
	kfree(data);
	return ret;
}

static int ffs_ep0_open(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = inode->i_private;

	ENTER();

	if (unlikely(ffs->state == FFS_CLOSING))
		return -EBUSY;

	file->private_data = ffs;
	ffs_data_opened(ffs);

	return 0;
}

static int ffs_ep0_release(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = file->private_data;

	ENTER();

	ffs_data_closed(ffs);

	return 0;
}

static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
{
	struct ffs_data *ffs = file->private_data;
	struct usb_gadget *gadget = ffs->gadget;
	long ret;

	ENTER();

	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
		struct ffs_function *func = ffs->func;
		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
632
	} else if (gadget && gadget->ops->ioctl) {
633 634 635 636 637 638 639 640
		ret = gadget->ops->ioctl(gadget, code, value);
	} else {
		ret = -ENOTTY;
	}

	return ret;
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
{
	struct ffs_data *ffs = file->private_data;
	unsigned int mask = POLLWRNORM;
	int ret;

	poll_wait(file, &ffs->ev.waitq, wait);

	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return mask;

	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		mask |= POLLOUT;
		break;

	case FFS_ACTIVE:
		switch (ffs->setup_state) {
		case FFS_NO_SETUP:
			if (ffs->ev.count)
				mask |= POLLIN;
			break;

		case FFS_SETUP_PENDING:
		case FFS_SETUP_CANCELLED:
			mask |= (POLLIN | POLLOUT);
			break;
		}
	case FFS_CLOSING:
		break;
673 674
	case FFS_DEACTIVATED:
		break;
675 676 677 678 679 680 681
	}

	mutex_unlock(&ffs->mutex);

	return mask;
}

682 683 684 685 686 687 688 689
static const struct file_operations ffs_ep0_operations = {
	.llseek =	no_llseek,

	.open =		ffs_ep0_open,
	.write =	ffs_ep0_write,
	.read =		ffs_ep0_read,
	.release =	ffs_ep0_release,
	.unlocked_ioctl =	ffs_ep0_ioctl,
690
	.poll =		ffs_ep0_poll,
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
};


/* "Normal" endpoints operations ********************************************/

static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
{
	ENTER();
	if (likely(req->context)) {
		struct ffs_ep *ep = _ep->driver_data;
		ep->status = req->status ? req->status : req->actual;
		complete(req->context);
	}
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
{
	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(ret == data_len))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/*
	 * Dear user space developer!
	 *
	 * TL;DR: To stop getting below error message in your kernel log, change
	 * user space code using functionfs to align read buffers to a max
	 * packet size.
	 *
	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
	 * packet size.  When unaligned buffer is passed to functionfs, it
	 * internally uses a larger, aligned buffer so that such UDCs are happy.
	 *
	 * Unfortunately, this means that host may send more data than was
	 * requested in read(2) system call.  f_fs doesn’t know what to do with
	 * that excess data so it simply drops it.
	 *
	 * Was the buffer aligned in the first place, no such problem would
	 * happen.
	 *
733 734 735 736 737
	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
	 * by splitting a request into multiple parts.  This splitting may still
	 * be a problem though so it’s likely best to align the buffer
	 * regardless of it being AIO or not..
	 *
738 739 740 741 742 743 744 745 746 747 748
	 * This only affects OUT endpoints, i.e. reading data with a read(2),
	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
	 * affected.
	 */
	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
	       "Align read buffer size to max packet size to avoid the problem.\n",
	       data_len, ret);

	return ret;
}

749 750 751 752 753 754
static void ffs_user_copy_worker(struct work_struct *work)
{
	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
						   work);
	int ret = io_data->req->status ? io_data->req->status :
					 io_data->req->actual;
755
	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
756 757 758

	if (io_data->read && ret > 0) {
		use_mm(io_data->mm);
759
		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
760 761 762
		unuse_mm(io_data->mm);
	}

763
	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
764

765
	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
766 767
		eventfd_signal(io_data->ffs->ffs_eventfd, 1);

768 769 770
	usb_ep_free_request(io_data->ep, io_data->req);

	if (io_data->read)
771
		kfree(io_data->to_free);
772 773 774 775 776 777 778 779
	kfree(io_data->buf);
	kfree(io_data);
}

static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
					 struct usb_request *req)
{
	struct ffs_io_data *io_data = req->context;
780
	struct ffs_data *ffs = io_data->ffs;
781 782 783 784

	ENTER();

	INIT_WORK(&io_data->work, ffs_user_copy_worker);
785
	queue_work(ffs->io_completion_wq, &io_data->work);
786 787
}

788 789 790 791 792 793 794 795 796 797 798
static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
{
	/*
	 * See comment in struct ffs_epfile for full read_buffer pointer
	 * synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
	if (buf && buf != READ_BUFFER_DROP)
		kfree(buf);
}

799 800 801 802
/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
					  struct iov_iter *iter)
{
803 804 805 806 807 808
	/*
	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
	 * the buffer while we are using it.  See comment in struct ffs_epfile
	 * for full read_buffer pointer synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
809
	ssize_t ret;
810
	if (!buf || buf == READ_BUFFER_DROP)
811 812 813 814 815
		return 0;

	ret = copy_to_iter(buf->data, buf->length, iter);
	if (buf->length == ret) {
		kfree(buf);
816 817 818 819
		return ret;
	}

	if (unlikely(iov_iter_count(iter))) {
820 821 822 823 824
		ret = -EFAULT;
	} else {
		buf->length -= ret;
		buf->data += ret;
	}
825 826 827 828

	if (cmpxchg(&epfile->read_buffer, NULL, buf))
		kfree(buf);

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	return ret;
}

/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
				      void *data, int data_len,
				      struct iov_iter *iter)
{
	struct ffs_buffer *buf;

	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(data_len == ret))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/* See ffs_copy_to_iter for more context. */
	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
		data_len, ret);

	data_len -= ret;
	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
852 853
	if (!buf)
		return -ENOMEM;
854 855 856
	buf->length = data_len;
	buf->data = buf->storage;
	memcpy(buf->storage, data + ret, data_len);
857 858 859 860 861 862 863 864 865

	/*
	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
	 * in struct ffs_epfile for full read_buffer pointer synchronisation
	 * story.
	 */
	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
		kfree(buf);
866 867 868 869

	return ret;
}

870
static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
871 872
{
	struct ffs_epfile *epfile = file->private_data;
873
	struct usb_request *req;
874 875
	struct ffs_ep *ep;
	char *data = NULL;
876
	ssize_t ret, data_len = -EINVAL;
877 878
	int halt;

879
	/* Are we still active? */
880 881
	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;
882

883 884 885
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
886 887
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;
888

889 890
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
891 892
		if (ret)
			return -EINTR;
893
	}
894

895
	/* Do we halt? */
896
	halt = (!io_data->read == !epfile->in);
897 898
	if (halt && epfile->isoc)
		return -EINVAL;
899

900 901 902 903 904
	/* We will be using request and read_buffer */
	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret))
		goto error;

905 906
	/* Allocate & copy */
	if (!halt) {
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
		struct usb_gadget *gadget;

		/*
		 * Do we have buffered data from previous partial read?  Check
		 * that for synchronous case only because we do not have
		 * facility to ‘wake up’ a pending asynchronous read and push
		 * buffered data to it which we would need to make things behave
		 * consistently.
		 */
		if (!io_data->aio && io_data->read) {
			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
			if (ret)
				goto error_mutex;
		}

922 923
		/*
		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
924 925
		 * before the waiting completes, so do not assign to 'gadget'
		 * earlier
926
		 */
927
		gadget = epfile->ffs->gadget;
928

929 930 931
		spin_lock_irq(&epfile->ffs->eps_lock);
		/* In the meantime, endpoint got disabled or changed. */
		if (epfile->ep != ep) {
932 933
			ret = -ESHUTDOWN;
			goto error_lock;
934
		}
935
		data_len = iov_iter_count(&io_data->data);
936 937 938 939
		/*
		 * Controller may require buffer size to be aligned to
		 * maxpacketsize of an out endpoint.
		 */
940 941
		if (io_data->read)
			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
942
		spin_unlock_irq(&epfile->ffs->eps_lock);
943 944

		data = kmalloc(data_len, GFP_KERNEL);
945 946 947 948 949
		if (unlikely(!data)) {
			ret = -ENOMEM;
			goto error_mutex;
		}
		if (!io_data->read &&
950
		    !copy_from_iter_full(data, data_len, &io_data->data)) {
951 952
			ret = -EFAULT;
			goto error_mutex;
953 954
		}
	}
955

956
	spin_lock_irq(&epfile->ffs->eps_lock);
957

958 959 960 961
	if (epfile->ep != ep) {
		/* In the meantime, endpoint got disabled or changed. */
		ret = -ESHUTDOWN;
	} else if (halt) {
962 963 964
		ret = usb_ep_set_halt(ep->ep);
		if (!ret)
			ret = -EBADMSG;
965
	} else if (unlikely(data_len == -EINVAL)) {
966 967 968 969 970 971 972 973 974 975 976
		/*
		 * Sanity Check: even though data_len can't be used
		 * uninitialized at the time I write this comment, some
		 * compilers complain about this situation.
		 * In order to keep the code clean from warnings, data_len is
		 * being initialized to -EINVAL during its declaration, which
		 * means we can't rely on compiler anymore to warn no future
		 * changes won't result in data_len being used uninitialized.
		 * For such reason, we're adding this redundant sanity check
		 * here.
		 */
977 978 979 980
		WARN(1, "%s: data_len == -EINVAL\n", __func__);
		ret = -EINVAL;
	} else if (!io_data->aio) {
		DECLARE_COMPLETION_ONSTACK(done);
981
		bool interrupted = false;
982

983 984 985
		req = ep->req;
		req->buf      = data;
		req->length   = data_len;
986

987 988
		req->context  = &done;
		req->complete = ffs_epfile_io_complete;
989

990 991 992
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret < 0))
			goto error_lock;
993

994
		spin_unlock_irq(&epfile->ffs->eps_lock);
995

996
		if (unlikely(wait_for_completion_interruptible(&done))) {
997 998 999 1000 1001 1002
			/*
			 * To avoid race condition with ffs_epfile_io_complete,
			 * dequeue the request first then check
			 * status. usb_ep_dequeue API should guarantee no race
			 * condition with req->complete callback.
			 */
1003
			usb_ep_dequeue(ep->ep, req);
1004
			interrupted = ep->status < 0;
1005
		}
1006

1007 1008 1009
		if (interrupted)
			ret = -EINTR;
		else if (io_data->read && ep->status > 0)
1010 1011
			ret = __ffs_epfile_read_data(epfile, data, ep->status,
						     &io_data->data);
1012 1013
		else
			ret = ep->status;
1014 1015 1016 1017 1018 1019
		goto error_mutex;
	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
		ret = -ENOMEM;
	} else {
		req->buf      = data;
		req->length   = data_len;
1020

1021 1022 1023 1024
		io_data->buf = data;
		io_data->ep = ep->ep;
		io_data->req = req;
		io_data->ffs = epfile->ffs;
1025

1026 1027
		req->context  = io_data;
		req->complete = ffs_epfile_async_io_complete;
1028

1029 1030 1031 1032
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret)) {
			usb_ep_free_request(ep->ep, req);
			goto error_lock;
1033 1034
		}

1035 1036 1037 1038 1039 1040 1041
		ret = -EIOCBQUEUED;
		/*
		 * Do not kfree the buffer in this function.  It will be freed
		 * by ffs_user_copy_worker.
		 */
		data = NULL;
	}
1042 1043 1044

error_lock:
	spin_unlock_irq(&epfile->ffs->eps_lock);
1045
error_mutex:
1046
	mutex_unlock(&epfile->mutex);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
error:
	kfree(data);
	return ret;
}

static int
ffs_epfile_open(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

	file->private_data = epfile;
	ffs_data_opened(epfile->ffs);

	return 0;
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static int ffs_aio_cancel(struct kiocb *kiocb)
{
	struct ffs_io_data *io_data = kiocb->private;
	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
	int value;

	ENTER();

	spin_lock_irq(&epfile->ffs->eps_lock);

	if (likely(io_data && io_data->ep && io_data->req))
		value = usb_ep_dequeue(io_data->ep, io_data->req);
	else
		value = -EINVAL;

	spin_unlock_irq(&epfile->ffs->eps_lock);

	return value;
}

1088
static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1089
{
1090
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1091
	ssize_t res;
1092 1093 1094

	ENTER();

1095 1096 1097 1098 1099 1100 1101 1102
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
	}
1103

1104 1105 1106 1107
	p->read = false;
	p->kiocb = kiocb;
	p->data = *from;
	p->mm = current->mm;
1108

1109
	kiocb->private = p;
1110

1111 1112
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1113

1114 1115 1116 1117 1118 1119 1120
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;
	if (p->aio)
		kfree(p);
	else
		*from = p->data;
A
Al Viro 已提交
1121
	return res;
1122 1123
}

1124
static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1125
{
1126
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1127
	ssize_t res;
1128 1129 1130

	ENTER();

1131 1132 1133 1134 1135 1136 1137
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
1138 1139
	}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	p->read = true;
	p->kiocb = kiocb;
	if (p->aio) {
		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
		if (!p->to_free) {
			kfree(p);
			return -ENOMEM;
		}
	} else {
		p->data = *to;
		p->to_free = NULL;
	}
	p->mm = current->mm;
1153

1154
	kiocb->private = p;
1155

1156 1157
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;

	if (p->aio) {
		kfree(p->to_free);
		kfree(p);
	} else {
		*to = p->data;
A
Al Viro 已提交
1168 1169
	}
	return res;
1170 1171
}

1172 1173 1174 1175 1176 1177 1178
static int
ffs_epfile_release(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

1179
	__ffs_epfile_read_buffer_free(epfile);
1180 1181 1182 1183 1184 1185 1186 1187 1188
	ffs_data_closed(epfile->ffs);

	return 0;
}

static long ffs_epfile_ioctl(struct file *file, unsigned code,
			     unsigned long value)
{
	struct ffs_epfile *epfile = file->private_data;
1189
	struct ffs_ep *ep;
1190 1191 1192 1193 1194 1195 1196
	int ret;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

1197 1198 1199 1200 1201 1202
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;

1203 1204
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
1205 1206 1207 1208
		if (ret)
			return -EINTR;
	}

1209
	spin_lock_irq(&epfile->ffs->eps_lock);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	/* In the meantime, endpoint got disabled or changed. */
	if (epfile->ep != ep) {
		spin_unlock_irq(&epfile->ffs->eps_lock);
		return -ESHUTDOWN;
	}

	switch (code) {
	case FUNCTIONFS_FIFO_STATUS:
		ret = usb_ep_fifo_status(epfile->ep->ep);
		break;
	case FUNCTIONFS_FIFO_FLUSH:
		usb_ep_fifo_flush(epfile->ep->ep);
		ret = 0;
		break;
	case FUNCTIONFS_CLEAR_HALT:
		ret = usb_ep_clear_halt(epfile->ep->ep);
		break;
	case FUNCTIONFS_ENDPOINT_REVMAP:
		ret = epfile->ep->num;
		break;
	case FUNCTIONFS_ENDPOINT_DESC:
	{
		int desc_idx;
		struct usb_endpoint_descriptor *desc;

		switch (epfile->ffs->gadget->speed) {
		case USB_SPEED_SUPER:
			desc_idx = 2;
1239
			break;
1240 1241
		case USB_SPEED_HIGH:
			desc_idx = 1;
1242 1243
			break;
		default:
1244
			desc_idx = 0;
1245
		}
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		desc = epfile->ep->descs[desc_idx];

		spin_unlock_irq(&epfile->ffs->eps_lock);
		ret = copy_to_user((void *)value, desc, desc->bLength);
		if (ret)
			ret = -EFAULT;
		return ret;
	}
	default:
		ret = -ENOTTY;
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	}
	spin_unlock_irq(&epfile->ffs->eps_lock);

	return ret;
}

static const struct file_operations ffs_epfile_operations = {
	.llseek =	no_llseek,

	.open =		ffs_epfile_open,
1266 1267
	.write_iter =	ffs_epfile_write_iter,
	.read_iter =	ffs_epfile_read_iter,
1268 1269 1270 1271 1272 1273 1274 1275
	.release =	ffs_epfile_release,
	.unlocked_ioctl =	ffs_epfile_ioctl,
};


/* File system and super block operations ***********************************/

/*
1276
 * Mounting the file system creates a controller file, used first for
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
 * function configuration then later for event monitoring.
 */

static struct inode *__must_check
ffs_sb_make_inode(struct super_block *sb, void *data,
		  const struct file_operations *fops,
		  const struct inode_operations *iops,
		  struct ffs_file_perms *perms)
{
	struct inode *inode;

	ENTER();

	inode = new_inode(sb);

	if (likely(inode)) {
1293
		struct timespec ts = current_time(inode);
1294

1295
		inode->i_ino	 = get_next_ino();
1296 1297 1298
		inode->i_mode    = perms->mode;
		inode->i_uid     = perms->uid;
		inode->i_gid     = perms->gid;
1299 1300 1301
		inode->i_atime   = ts;
		inode->i_mtime   = ts;
		inode->i_ctime   = ts;
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		inode->i_private = data;
		if (fops)
			inode->i_fop = fops;
		if (iops)
			inode->i_op  = iops;
	}

	return inode;
}

/* Create "regular" file */
A
Al Viro 已提交
1313
static struct dentry *ffs_sb_create_file(struct super_block *sb,
1314
					const char *name, void *data,
A
Al Viro 已提交
1315
					const struct file_operations *fops)
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
{
	struct ffs_data	*ffs = sb->s_fs_info;
	struct dentry	*dentry;
	struct inode	*inode;

	ENTER();

	dentry = d_alloc_name(sb->s_root, name);
	if (unlikely(!dentry))
		return NULL;

	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
	if (unlikely(!inode)) {
		dput(dentry);
		return NULL;
	}

	d_add(dentry, inode);
A
Al Viro 已提交
1334
	return dentry;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
}

/* Super block */
static const struct super_operations ffs_sb_operations = {
	.statfs =	simple_statfs,
	.drop_inode =	generic_delete_inode,
};

struct ffs_sb_fill_data {
	struct ffs_file_perms perms;
	umode_t root_mode;
	const char *dev_name;
1347
	bool no_disconnect;
A
Al Viro 已提交
1348
	struct ffs_data *ffs_data;
1349 1350 1351 1352 1353 1354
};

static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
{
	struct ffs_sb_fill_data *data = _data;
	struct inode	*inode;
A
Al Viro 已提交
1355
	struct ffs_data	*ffs = data->ffs_data;
1356 1357 1358 1359

	ENTER();

	ffs->sb              = sb;
A
Al Viro 已提交
1360
	data->ffs_data       = NULL;
1361
	sb->s_fs_info        = ffs;
1362 1363
	sb->s_blocksize      = PAGE_SIZE;
	sb->s_blocksize_bits = PAGE_SHIFT;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	sb->s_magic          = FUNCTIONFS_MAGIC;
	sb->s_op             = &ffs_sb_operations;
	sb->s_time_gran      = 1;

	/* Root inode */
	data->perms.mode = data->root_mode;
	inode = ffs_sb_make_inode(sb, NULL,
				  &simple_dir_operations,
				  &simple_dir_inode_operations,
				  &data->perms);
1374 1375
	sb->s_root = d_make_root(inode);
	if (unlikely(!sb->s_root))
A
Al Viro 已提交
1376
		return -ENOMEM;
1377 1378 1379

	/* EP0 file */
	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
A
Al Viro 已提交
1380
					 &ffs_ep0_operations)))
A
Al Viro 已提交
1381
		return -ENOMEM;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	return 0;
}

static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
{
	ENTER();

	if (!opts || !*opts)
		return 0;

	for (;;) {
		unsigned long value;
1395
		char *eq, *comma;
1396 1397 1398 1399 1400 1401 1402 1403 1404

		/* Option limit */
		comma = strchr(opts, ',');
		if (comma)
			*comma = 0;

		/* Value limit */
		eq = strchr(opts, '=');
		if (unlikely(!eq)) {
1405
			pr_err("'=' missing in %s\n", opts);
1406 1407 1408 1409 1410
			return -EINVAL;
		}
		*eq = 0;

		/* Parse value */
1411
		if (kstrtoul(eq + 1, 0, &value)) {
1412
			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1413 1414 1415 1416 1417
			return -EINVAL;
		}

		/* Interpret option */
		switch (eq - opts) {
1418 1419 1420 1421 1422 1423
		case 13:
			if (!memcmp(opts, "no_disconnect", 13))
				data->no_disconnect = !!value;
			else
				goto invalid;
			break;
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		case 5:
			if (!memcmp(opts, "rmode", 5))
				data->root_mode  = (value & 0555) | S_IFDIR;
			else if (!memcmp(opts, "fmode", 5))
				data->perms.mode = (value & 0666) | S_IFREG;
			else
				goto invalid;
			break;

		case 4:
			if (!memcmp(opts, "mode", 4)) {
				data->root_mode  = (value & 0555) | S_IFDIR;
				data->perms.mode = (value & 0666) | S_IFREG;
			} else {
				goto invalid;
			}
			break;

		case 3:
1443 1444 1445 1446 1447 1448
			if (!memcmp(opts, "uid", 3)) {
				data->perms.uid = make_kuid(current_user_ns(), value);
				if (!uid_valid(data->perms.uid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1449
			} else if (!memcmp(opts, "gid", 3)) {
1450 1451 1452 1453 1454
				data->perms.gid = make_kgid(current_user_ns(), value);
				if (!gid_valid(data->perms.gid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1455
			} else {
1456
				goto invalid;
1457
			}
1458 1459 1460 1461
			break;

		default:
invalid:
1462
			pr_err("%s: invalid option\n", opts);
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
			return -EINVAL;
		}

		/* Next iteration */
		if (!comma)
			break;
		opts = comma + 1;
	}

	return 0;
}

/* "mount -t functionfs dev_name /dev/function" ends up here */

A
Al Viro 已提交
1477 1478 1479
static struct dentry *
ffs_fs_mount(struct file_system_type *t, int flags,
	      const char *dev_name, void *opts)
1480 1481 1482 1483
{
	struct ffs_sb_fill_data data = {
		.perms = {
			.mode = S_IFREG | 0600,
1484 1485
			.uid = GLOBAL_ROOT_UID,
			.gid = GLOBAL_ROOT_GID,
1486 1487
		},
		.root_mode = S_IFDIR | 0500,
1488
		.no_disconnect = false,
1489
	};
1490
	struct dentry *rv;
1491
	int ret;
1492
	void *ffs_dev;
A
Al Viro 已提交
1493
	struct ffs_data	*ffs;
1494 1495 1496 1497 1498

	ENTER();

	ret = ffs_fs_parse_opts(&data, opts);
	if (unlikely(ret < 0))
A
Al Viro 已提交
1499
		return ERR_PTR(ret);
1500

1501
	ffs = ffs_data_new(dev_name);
A
Al Viro 已提交
1502 1503 1504
	if (unlikely(!ffs))
		return ERR_PTR(-ENOMEM);
	ffs->file_perms = data.perms;
1505
	ffs->no_disconnect = data.no_disconnect;
A
Al Viro 已提交
1506 1507 1508 1509 1510 1511 1512

	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
	if (unlikely(!ffs->dev_name)) {
		ffs_data_put(ffs);
		return ERR_PTR(-ENOMEM);
	}

1513
	ffs_dev = ffs_acquire_dev(dev_name);
A
Al Viro 已提交
1514 1515 1516 1517 1518 1519
	if (IS_ERR(ffs_dev)) {
		ffs_data_put(ffs);
		return ERR_CAST(ffs_dev);
	}
	ffs->private_data = ffs_dev;
	data.ffs_data = ffs;
1520 1521

	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
A
Al Viro 已提交
1522
	if (IS_ERR(rv) && data.ffs_data) {
1523
		ffs_release_dev(data.ffs_data);
A
Al Viro 已提交
1524 1525
		ffs_data_put(data.ffs_data);
	}
1526
	return rv;
1527 1528 1529 1530 1531 1532 1533 1534
}

static void
ffs_fs_kill_sb(struct super_block *sb)
{
	ENTER();

	kill_litter_super(sb);
1535
	if (sb->s_fs_info) {
1536
		ffs_release_dev(sb->s_fs_info);
1537
		ffs_data_closed(sb->s_fs_info);
1538
		ffs_data_put(sb->s_fs_info);
1539
	}
1540 1541 1542 1543 1544
}

static struct file_system_type ffs_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "functionfs",
A
Al Viro 已提交
1545
	.mount		= ffs_fs_mount,
1546 1547
	.kill_sb	= ffs_fs_kill_sb,
};
1548
MODULE_ALIAS_FS("functionfs");
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560


/* Driver's main init/cleanup functions *************************************/

static int functionfs_init(void)
{
	int ret;

	ENTER();

	ret = register_filesystem(&ffs_fs_type);
	if (likely(!ret))
1561
		pr_info("file system registered\n");
1562
	else
1563
		pr_err("failed registering file system (%d)\n", ret);
1564 1565 1566 1567 1568 1569 1570 1571

	return ret;
}

static void functionfs_cleanup(void)
{
	ENTER();

1572
	pr_info("unloading\n");
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	unregister_filesystem(&ffs_fs_type);
}


/* ffs_data and ffs_function construction and destruction code **************/

static void ffs_data_clear(struct ffs_data *ffs);
static void ffs_data_reset(struct ffs_data *ffs);

static void ffs_data_get(struct ffs_data *ffs)
{
	ENTER();

1586
	refcount_inc(&ffs->ref);
1587 1588 1589 1590 1591 1592
}

static void ffs_data_opened(struct ffs_data *ffs)
{
	ENTER();

1593
	refcount_inc(&ffs->ref);
1594 1595 1596 1597 1598
	if (atomic_add_return(1, &ffs->opened) == 1 &&
			ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}
1599 1600 1601 1602 1603 1604
}

static void ffs_data_put(struct ffs_data *ffs)
{
	ENTER();

1605
	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1606
		pr_info("%s(): freeing\n", __func__);
1607
		ffs_data_clear(ffs);
1608
		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1609 1610
		       waitqueue_active(&ffs->ep0req_completion.wait) ||
		       waitqueue_active(&ffs->wait));
1611
		destroy_workqueue(ffs->io_completion_wq);
1612
		kfree(ffs->dev_name);
1613 1614 1615 1616 1617 1618 1619 1620 1621
		kfree(ffs);
	}
}

static void ffs_data_closed(struct ffs_data *ffs)
{
	ENTER();

	if (atomic_dec_and_test(&ffs->opened)) {
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
		if (ffs->no_disconnect) {
			ffs->state = FFS_DEACTIVATED;
			if (ffs->epfiles) {
				ffs_epfiles_destroy(ffs->epfiles,
						   ffs->eps_count);
				ffs->epfiles = NULL;
			}
			if (ffs->setup_state == FFS_SETUP_PENDING)
				__ffs_ep0_stall(ffs);
		} else {
			ffs->state = FFS_CLOSING;
			ffs_data_reset(ffs);
		}
	}
	if (atomic_read(&ffs->opened) < 0) {
1637 1638 1639 1640 1641 1642 1643
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}

	ffs_data_put(ffs);
}

1644
static struct ffs_data *ffs_data_new(const char *dev_name)
1645 1646 1647
{
	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
	if (unlikely(!ffs))
1648
		return NULL;
1649 1650 1651

	ENTER();

1652 1653 1654 1655 1656 1657
	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
	if (!ffs->io_completion_wq) {
		kfree(ffs);
		return NULL;
	}

1658
	refcount_set(&ffs->ref, 1);
1659 1660 1661 1662 1663
	atomic_set(&ffs->opened, 0);
	ffs->state = FFS_READ_DESCRIPTORS;
	mutex_init(&ffs->mutex);
	spin_lock_init(&ffs->eps_lock);
	init_waitqueue_head(&ffs->ev.waitq);
1664
	init_waitqueue_head(&ffs->wait);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	init_completion(&ffs->ep0req_completion);

	/* XXX REVISIT need to update it in some places, or do we? */
	ffs->ev.can_stall = 1;

	return ffs;
}

static void ffs_data_clear(struct ffs_data *ffs)
{
	ENTER();

1677
	ffs_closed(ffs);
1678 1679 1680 1681 1682 1683

	BUG_ON(ffs->gadget);

	if (ffs->epfiles)
		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);

1684 1685 1686
	if (ffs->ffs_eventfd)
		eventfd_ctx_put(ffs->ffs_eventfd);

1687
	kfree(ffs->raw_descs_data);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	kfree(ffs->raw_strings);
	kfree(ffs->stringtabs);
}

static void ffs_data_reset(struct ffs_data *ffs)
{
	ENTER();

	ffs_data_clear(ffs);

	ffs->epfiles = NULL;
1699
	ffs->raw_descs_data = NULL;
1700 1701 1702 1703 1704 1705 1706
	ffs->raw_descs = NULL;
	ffs->raw_strings = NULL;
	ffs->stringtabs = NULL;

	ffs->raw_descs_length = 0;
	ffs->fs_descs_count = 0;
	ffs->hs_descs_count = 0;
1707
	ffs->ss_descs_count = 0;
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

	ffs->strings_count = 0;
	ffs->interfaces_count = 0;
	ffs->eps_count = 0;

	ffs->ev.count = 0;

	ffs->state = FFS_READ_DESCRIPTORS;
	ffs->setup_state = FFS_NO_SETUP;
	ffs->flags = 0;
}


static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
{
1723 1724
	struct usb_gadget_strings **lang;
	int first_id;
1725 1726 1727 1728 1729 1730 1731

	ENTER();

	if (WARN_ON(ffs->state != FFS_ACTIVE
		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
		return -EBADFD;

1732 1733 1734
	first_id = usb_string_ids_n(cdev, ffs->strings_count);
	if (unlikely(first_id < 0))
		return first_id;
1735 1736 1737 1738 1739 1740 1741

	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
	if (unlikely(!ffs->ep0req))
		return -ENOMEM;
	ffs->ep0req->complete = ffs_ep0_complete;
	ffs->ep0req->context = ffs;

1742
	lang = ffs->stringtabs;
1743 1744 1745 1746 1747 1748 1749
	if (lang) {
		for (; *lang; ++lang) {
			struct usb_string *str = (*lang)->strings;
			int id = first_id;
			for (; str->s; ++id, ++str)
				str->id = id;
		}
1750 1751 1752
	}

	ffs->gadget = cdev->gadget;
1753
	ffs_data_get(ffs);
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	return 0;
}

static void functionfs_unbind(struct ffs_data *ffs)
{
	ENTER();

	if (!WARN_ON(!ffs->gadget)) {
		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
		ffs->ep0req = NULL;
		ffs->gadget = NULL;
1765
		clear_bit(FFS_FL_BOUND, &ffs->flags);
1766
		ffs_data_put(ffs);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	}
}

static int ffs_epfiles_create(struct ffs_data *ffs)
{
	struct ffs_epfile *epfile, *epfiles;
	unsigned i, count;

	ENTER();

	count = ffs->eps_count;
1778
	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1779 1780 1781 1782 1783 1784 1785
	if (!epfiles)
		return -ENOMEM;

	epfile = epfiles;
	for (i = 1; i <= count; ++i, ++epfile) {
		epfile->ffs = ffs;
		mutex_init(&epfile->mutex);
1786
		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1787
			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1788
		else
1789 1790
			sprintf(epfile->name, "ep%u", i);
		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
A
Al Viro 已提交
1791 1792 1793
						 epfile,
						 &ffs_epfile_operations);
		if (unlikely(!epfile->dentry)) {
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
			ffs_epfiles_destroy(epfiles, i - 1);
			return -ENOMEM;
		}
	}

	ffs->epfiles = epfiles;
	return 0;
}

static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
{
	struct ffs_epfile *epfile = epfiles;

	ENTER();

	for (; count; --count, ++epfile) {
1810
		BUG_ON(mutex_is_locked(&epfile->mutex));
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		if (epfile->dentry) {
			d_delete(epfile->dentry);
			dput(epfile->dentry);
			epfile->dentry = NULL;
		}
	}

	kfree(epfiles);
}

static void ffs_func_eps_disable(struct ffs_function *func)
{
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = func->ffs->epfiles;
	unsigned count            = func->ffs->eps_count;
	unsigned long flags;

1828
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1829
	while (count--) {
1830 1831 1832 1833
		/* pending requests get nuked */
		if (likely(ep->ep))
			usb_ep_disable(ep->ep);
		++ep;
1834 1835

		if (epfile) {
1836 1837
			epfile->ep = NULL;
			__ffs_epfile_read_buffer_free(epfile);
1838 1839
			++epfile;
		}
1840
	}
1841
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
}

static int ffs_func_eps_enable(struct ffs_function *func)
{
	struct ffs_data *ffs      = func->ffs;
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = ffs->epfiles;
	unsigned count            = ffs->eps_count;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1854
	while(count--) {
1855
		struct usb_endpoint_descriptor *ds;
1856 1857
		struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
		int needs_comp_desc = false;
1858 1859
		int desc_idx;

1860
		if (ffs->gadget->speed == USB_SPEED_SUPER) {
1861
			desc_idx = 2;
1862 1863
			needs_comp_desc = true;
		} else if (ffs->gadget->speed == USB_SPEED_HIGH)
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
			desc_idx = 1;
		else
			desc_idx = 0;

		/* fall-back to lower speed if desc missing for current speed */
		do {
			ds = ep->descs[desc_idx];
		} while (!ds && --desc_idx >= 0);

		if (!ds) {
			ret = -EINVAL;
			break;
		}
1877 1878

		ep->ep->driver_data = ep;
1879
		ep->ep->desc = ds;
1880

1881 1882 1883 1884
		if (needs_comp_desc) {
			comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
					USB_DT_ENDPOINT_SIZE);
			ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1885
			ep->ep->comp_desc = comp_desc;
1886
		}
1887

1888
		ret = usb_ep_enable(ep->ep);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		if (likely(!ret)) {
			epfile->ep = ep;
			epfile->in = usb_endpoint_dir_in(ds);
			epfile->isoc = usb_endpoint_xfer_isoc(ds);
		} else {
			break;
		}

		++ep;
		++epfile;
1899
	}
1900 1901

	wake_up_interruptible(&ffs->wait);
1902 1903 1904 1905 1906 1907 1908 1909
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);

	return ret;
}


/* Parsing and building descriptors and strings *****************************/

1910 1911
/*
 * This validates if data pointed by data is a valid USB descriptor as
1912
 * well as record how many interfaces, endpoints and strings are
1913 1914 1915
 * required by given configuration.  Returns address after the
 * descriptor or NULL if data is invalid.
 */
1916 1917 1918 1919 1920

enum ffs_entity_type {
	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
};

1921 1922 1923 1924
enum ffs_os_desc_type {
	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
};

1925 1926 1927 1928 1929
typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
				   u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv);

1930 1931 1932 1933
typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
				    struct usb_os_desc_header *h, void *data,
				    unsigned len, void *priv);

1934 1935 1936
static int __must_check ffs_do_single_desc(char *data, unsigned len,
					   ffs_entity_callback entity,
					   void *priv)
1937 1938 1939 1940 1941 1942 1943 1944 1945
{
	struct usb_descriptor_header *_ds = (void *)data;
	u8 length;
	int ret;

	ENTER();

	/* At least two bytes are required: length and type */
	if (len < 2) {
1946
		pr_vdebug("descriptor too short\n");
1947 1948 1949 1950 1951 1952
		return -EINVAL;
	}

	/* If we have at least as many bytes as the descriptor takes? */
	length = _ds->bLength;
	if (len < length) {
1953
		pr_vdebug("descriptor longer then available data\n");
1954 1955 1956 1957 1958 1959 1960
		return -EINVAL;
	}

#define __entity_check_INTERFACE(val)  1
#define __entity_check_STRING(val)     (val)
#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
#define __entity(type, val) do {					\
1961
		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1962
		if (unlikely(!__entity_check_ ##type(val))) {		\
1963
			pr_vdebug("invalid entity's value\n");		\
1964 1965 1966 1967
			return -EINVAL;					\
		}							\
		ret = entity(FFS_ ##type, &val, _ds, priv);		\
		if (unlikely(ret < 0)) {				\
1968
			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1969
				 (val), ret);				\
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
			return ret;					\
		}							\
	} while (0)

	/* Parse descriptor depending on type. */
	switch (_ds->bDescriptorType) {
	case USB_DT_DEVICE:
	case USB_DT_CONFIG:
	case USB_DT_STRING:
	case USB_DT_DEVICE_QUALIFIER:
		/* function can't have any of those */
1981
		pr_vdebug("descriptor reserved for gadget: %d\n",
1982
		      _ds->bDescriptorType);
1983 1984 1985 1986
		return -EINVAL;

	case USB_DT_INTERFACE: {
		struct usb_interface_descriptor *ds = (void *)_ds;
1987
		pr_vdebug("interface descriptor\n");
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
		if (length != sizeof *ds)
			goto inv_length;

		__entity(INTERFACE, ds->bInterfaceNumber);
		if (ds->iInterface)
			__entity(STRING, ds->iInterface);
	}
		break;

	case USB_DT_ENDPOINT: {
		struct usb_endpoint_descriptor *ds = (void *)_ds;
1999
		pr_vdebug("endpoint descriptor\n");
2000 2001 2002 2003 2004 2005 2006
		if (length != USB_DT_ENDPOINT_SIZE &&
		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
			goto inv_length;
		__entity(ENDPOINT, ds->bEndpointAddress);
	}
		break;

2007 2008 2009 2010 2011 2012
	case HID_DT_HID:
		pr_vdebug("hid descriptor\n");
		if (length != sizeof(struct hid_descriptor))
			goto inv_length;
		break;

2013 2014 2015 2016 2017 2018 2019
	case USB_DT_OTG:
		if (length != sizeof(struct usb_otg_descriptor))
			goto inv_length;
		break;

	case USB_DT_INTERFACE_ASSOCIATION: {
		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2020
		pr_vdebug("interface association descriptor\n");
2021 2022 2023 2024 2025 2026 2027
		if (length != sizeof *ds)
			goto inv_length;
		if (ds->iFunction)
			__entity(STRING, ds->iFunction);
	}
		break;

2028 2029 2030 2031 2032 2033
	case USB_DT_SS_ENDPOINT_COMP:
		pr_vdebug("EP SS companion descriptor\n");
		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
			goto inv_length;
		break;

2034 2035 2036 2037 2038 2039
	case USB_DT_OTHER_SPEED_CONFIG:
	case USB_DT_INTERFACE_POWER:
	case USB_DT_DEBUG:
	case USB_DT_SECURITY:
	case USB_DT_CS_RADIO_CONTROL:
		/* TODO */
2040
		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2041 2042 2043 2044
		return -EINVAL;

	default:
		/* We should never be here */
2045
		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2046 2047
		return -EINVAL;

2048
inv_length:
2049
		pr_vdebug("invalid length: %d (descriptor %d)\n",
2050
			  _ds->bLength, _ds->bDescriptorType);
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
		return -EINVAL;
	}

#undef __entity
#undef __entity_check_DESCRIPTOR
#undef __entity_check_INTERFACE
#undef __entity_check_STRING
#undef __entity_check_ENDPOINT

	return length;
}

static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
				     ffs_entity_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (;;) {
		int ret;

		if (num == count)
			data = NULL;

2077
		/* Record "descriptor" entity */
2078 2079
		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
		if (unlikely(ret < 0)) {
2080
			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2081
				 num, ret);
2082 2083 2084 2085 2086 2087
			return ret;
		}

		if (!data)
			return _len - len;

2088
		ret = ffs_do_single_desc(data, len, entity, priv);
2089
		if (unlikely(ret < 0)) {
2090
			pr_debug("%s returns %d\n", __func__, ret);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
			return ret;
		}

		len -= ret;
		data += ret;
		++num;
	}
}

static int __ffs_data_do_entity(enum ffs_entity_type type,
				u8 *valuep, struct usb_descriptor_header *desc,
				void *priv)
{
2104 2105
	struct ffs_desc_helper *helper = priv;
	struct usb_endpoint_descriptor *d;
2106 2107 2108 2109 2110 2111 2112 2113

	ENTER();

	switch (type) {
	case FFS_DESCRIPTOR:
		break;

	case FFS_INTERFACE:
2114 2115
		/*
		 * Interfaces are indexed from zero so if we
2116
		 * encountered interface "n" then there are at least
2117 2118
		 * "n+1" interfaces.
		 */
2119 2120
		if (*valuep >= helper->interfaces_count)
			helper->interfaces_count = *valuep + 1;
2121 2122 2123
		break;

	case FFS_STRING:
2124
		/*
2125 2126
		 * Strings are indexed from 1 (0 is reserved
		 * for languages list)
2127
		 */
2128 2129
		if (*valuep > helper->ffs->strings_count)
			helper->ffs->strings_count = *valuep;
2130 2131 2132
		break;

	case FFS_ENDPOINT:
2133 2134
		d = (void *)desc;
		helper->eps_count++;
2135
		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2136 2137 2138 2139 2140 2141 2142 2143
			return -EINVAL;
		/* Check if descriptors for any speed were already parsed */
		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
			helper->ffs->eps_addrmap[helper->eps_count] =
				d->bEndpointAddress;
		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
				d->bEndpointAddress)
			return -EINVAL;
2144 2145 2146 2147 2148 2149
		break;
	}

	return 0;
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
				   struct usb_os_desc_header *desc)
{
	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
	u16 w_index = le16_to_cpu(desc->wIndex);

	if (bcd_version != 1) {
		pr_vdebug("unsupported os descriptors version: %d",
			  bcd_version);
		return -EINVAL;
	}
	switch (w_index) {
	case 0x4:
		*next_type = FFS_OS_DESC_EXT_COMPAT;
		break;
	case 0x5:
		*next_type = FFS_OS_DESC_EXT_PROP;
		break;
	default:
		pr_vdebug("unsupported os descriptor type: %d", w_index);
		return -EINVAL;
	}

	return sizeof(*desc);
}

/*
 * Process all extended compatibility/extended property descriptors
 * of a feature descriptor
 */
static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
					      enum ffs_os_desc_type type,
					      u16 feature_count,
					      ffs_os_desc_callback entity,
					      void *priv,
					      struct usb_os_desc_header *h)
{
	int ret;
	const unsigned _len = len;

	ENTER();

	/* loop over all ext compat/ext prop descriptors */
	while (feature_count--) {
		ret = entity(type, h, data, len, priv);
		if (unlikely(ret < 0)) {
			pr_debug("bad OS descriptor, type: %d\n", type);
			return ret;
		}
		data += ret;
		len -= ret;
	}
	return _len - len;
}

/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
static int __must_check ffs_do_os_descs(unsigned count,
					char *data, unsigned len,
					ffs_os_desc_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (num = 0; num < count; ++num) {
		int ret;
		enum ffs_os_desc_type type;
		u16 feature_count;
		struct usb_os_desc_header *desc = (void *)data;

		if (len < sizeof(*desc))
			return -EINVAL;

		/*
		 * Record "descriptor" entity.
		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
		 * Move the data pointer to the beginning of extended
		 * compatibilities proper or extended properties proper
		 * portions of the data
		 */
		if (le32_to_cpu(desc->dwLength) > len)
			return -EINVAL;

		ret = __ffs_do_os_desc_header(&type, desc);
		if (unlikely(ret < 0)) {
			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
				 num, ret);
			return ret;
		}
		/*
		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
		 */
		feature_count = le16_to_cpu(desc->wCount);
		if (type == FFS_OS_DESC_EXT_COMPAT &&
		    (feature_count > 255 || desc->Reserved))
				return -EINVAL;
		len -= ret;
		data += ret;

		/*
		 * Process all function/property descriptors
		 * of this Feature Descriptor
		 */
		ret = ffs_do_single_os_desc(data, len, type,
					    feature_count, entity, priv, desc);
		if (unlikely(ret < 0)) {
			pr_debug("%s returns %d\n", __func__, ret);
			return ret;
		}

		len -= ret;
		data += ret;
	}
	return _len - len;
}

/**
 * Validate contents of the buffer from userspace related to OS descriptors.
 */
static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
				 struct usb_os_desc_header *h, void *data,
				 unsigned len, void *priv)
{
	struct ffs_data *ffs = priv;
	u8 length;

	ENTER();

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *d = data;
		int i;

		if (len < sizeof(*d) ||
		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2286
		    !d->Reserved1)
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
			return -EINVAL;
		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
			if (d->Reserved2[i])
				return -EINVAL;

		length = sizeof(struct usb_ext_compat_desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *d = data;
		u32 type, pdl;
		u16 pnl;

		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
			return -EINVAL;
		length = le32_to_cpu(d->dwSize);
2303 2304
		if (len < length)
			return -EINVAL;
2305 2306 2307 2308 2309 2310 2311 2312
		type = le32_to_cpu(d->dwPropertyDataType);
		if (type < USB_EXT_PROP_UNICODE ||
		    type > USB_EXT_PROP_UNICODE_MULTI) {
			pr_vdebug("unsupported os descriptor property type: %d",
				  type);
			return -EINVAL;
		}
		pnl = le16_to_cpu(d->wPropertyNameLength);
2313 2314 2315 2316 2317
		if (length < 14 + pnl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
				  length, pnl, type);
			return -EINVAL;
		}
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
		if (length != 14 + pnl + pdl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
				  length, pnl, pdl, type);
			return -EINVAL;
		}
		++ffs->ms_os_descs_ext_prop_count;
		/* property name reported to the host as "WCHAR"s */
		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
		ffs->ms_os_descs_ext_prop_data_len += pdl;
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
		return -EINVAL;
	}
	return length;
}

2337 2338 2339
static int __ffs_data_got_descs(struct ffs_data *ffs,
				char *const _data, size_t len)
{
2340
	char *data = _data, *raw_descs;
2341
	unsigned os_descs_count = 0, counts[3], flags;
2342
	int ret = -EINVAL, i;
2343
	struct ffs_desc_helper helper;
2344 2345 2346

	ENTER();

2347
	if (get_unaligned_le32(data + 4) != len)
2348 2349
		goto error;

2350 2351 2352 2353 2354 2355 2356 2357
	switch (get_unaligned_le32(data)) {
	case FUNCTIONFS_DESCRIPTORS_MAGIC:
		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
		data += 8;
		len  -= 8;
		break;
	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
		flags = get_unaligned_le32(data + 8);
2358
		ffs->user_flags = flags;
2359 2360
		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
			      FUNCTIONFS_HAS_HS_DESC |
2361
			      FUNCTIONFS_HAS_SS_DESC |
2362
			      FUNCTIONFS_HAS_MS_OS_DESC |
2363
			      FUNCTIONFS_VIRTUAL_ADDR |
2364
			      FUNCTIONFS_EVENTFD |
2365 2366
			      FUNCTIONFS_ALL_CTRL_RECIP |
			      FUNCTIONFS_CONFIG0_SETUP)) {
2367
			ret = -ENOSYS;
2368 2369
			goto error;
		}
2370 2371 2372 2373 2374
		data += 12;
		len  -= 12;
		break;
	default:
		goto error;
2375 2376
	}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	if (flags & FUNCTIONFS_EVENTFD) {
		if (len < 4)
			goto error;
		ffs->ffs_eventfd =
			eventfd_ctx_fdget((int)get_unaligned_le32(data));
		if (IS_ERR(ffs->ffs_eventfd)) {
			ret = PTR_ERR(ffs->ffs_eventfd);
			ffs->ffs_eventfd = NULL;
			goto error;
		}
		data += 4;
		len  -= 4;
	}

2391 2392 2393 2394 2395
	/* Read fs_count, hs_count and ss_count (if present) */
	for (i = 0; i < 3; ++i) {
		if (!(flags & (1 << i))) {
			counts[i] = 0;
		} else if (len < 4) {
2396
			goto error;
2397 2398 2399 2400
		} else {
			counts[i] = get_unaligned_le32(data);
			data += 4;
			len  -= 4;
2401
		}
2402
	}
2403
	if (flags & (1 << i)) {
2404 2405 2406
		if (len < 4) {
			goto error;
		}
2407 2408 2409 2410
		os_descs_count = get_unaligned_le32(data);
		data += 4;
		len -= 4;
	};
2411

2412 2413
	/* Read descriptors */
	raw_descs = data;
2414
	helper.ffs = ffs;
2415 2416 2417
	for (i = 0; i < 3; ++i) {
		if (!counts[i])
			continue;
2418 2419
		helper.interfaces_count = 0;
		helper.eps_count = 0;
2420
		ret = ffs_do_descs(counts[i], data, len,
2421
				   __ffs_data_do_entity, &helper);
2422
		if (ret < 0)
2423
			goto error;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		if (!ffs->eps_count && !ffs->interfaces_count) {
			ffs->eps_count = helper.eps_count;
			ffs->interfaces_count = helper.interfaces_count;
		} else {
			if (ffs->eps_count != helper.eps_count) {
				ret = -EINVAL;
				goto error;
			}
			if (ffs->interfaces_count != helper.interfaces_count) {
				ret = -EINVAL;
				goto error;
			}
		}
2437 2438
		data += ret;
		len  -= ret;
2439
	}
2440 2441 2442 2443 2444 2445 2446 2447
	if (os_descs_count) {
		ret = ffs_do_os_descs(os_descs_count, data, len,
				      __ffs_data_do_os_desc, ffs);
		if (ret < 0)
			goto error;
		data += ret;
		len -= ret;
	}
2448

2449 2450 2451 2452
	if (raw_descs == data || len) {
		ret = -EINVAL;
		goto error;
	}
2453

2454 2455 2456 2457 2458 2459
	ffs->raw_descs_data	= _data;
	ffs->raw_descs		= raw_descs;
	ffs->raw_descs_length	= data - raw_descs;
	ffs->fs_descs_count	= counts[0];
	ffs->hs_descs_count	= counts[1];
	ffs->ss_descs_count	= counts[2];
2460
	ffs->ms_os_descs_count	= os_descs_count;
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

	return 0;

error:
	kfree(_data);
	return ret;
}

static int __ffs_data_got_strings(struct ffs_data *ffs,
				  char *const _data, size_t len)
{
	u32 str_count, needed_count, lang_count;
	struct usb_gadget_strings **stringtabs, *t;
	const char *data = _data;
2475
	struct usb_string *s;
2476 2477 2478

	ENTER();

2479 2480
	if (unlikely(len < 16 ||
		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
		     get_unaligned_le32(data + 4) != len))
		goto error;
	str_count  = get_unaligned_le32(data + 8);
	lang_count = get_unaligned_le32(data + 12);

	/* if one is zero the other must be zero */
	if (unlikely(!str_count != !lang_count))
		goto error;

	/* Do we have at least as many strings as descriptors need? */
	needed_count = ffs->strings_count;
	if (unlikely(str_count < needed_count))
		goto error;

2495 2496 2497 2498
	/*
	 * If we don't need any strings just return and free all
	 * memory.
	 */
2499 2500 2501 2502 2503
	if (!needed_count) {
		kfree(_data);
		return 0;
	}

2504
	/* Allocate everything in one chunk so there's less maintenance. */
2505 2506
	{
		unsigned i = 0;
2507 2508 2509 2510 2511 2512
		vla_group(d);
		vla_item(d, struct usb_gadget_strings *, stringtabs,
			lang_count + 1);
		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
		vla_item(d, struct usb_string, strings,
			lang_count*(needed_count+1));
2513

2514 2515 2516
		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);

		if (unlikely(!vlabuf)) {
2517 2518 2519 2520
			kfree(_data);
			return -ENOMEM;
		}

2521 2522 2523
		/* Initialize the VLA pointers */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
2524 2525 2526 2527 2528 2529
		i = lang_count;
		do {
			*stringtabs++ = t++;
		} while (--i);
		*stringtabs = NULL;

2530 2531 2532 2533
		/* stringtabs = vlabuf = d_stringtabs for later kfree */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
		s = vla_ptr(vlabuf, d, strings);
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	}

	/* For each language */
	data += 16;
	len -= 16;

	do { /* lang_count > 0 so we can use do-while */
		unsigned needed = needed_count;

		if (unlikely(len < 3))
			goto error_free;
		t->language = get_unaligned_le16(data);
		t->strings  = s;
		++t;

		data += 2;
		len -= 2;

		/* For each string */
		do { /* str_count > 0 so we can use do-while */
			size_t length = strnlen(data, len);

			if (unlikely(length == len))
				goto error_free;

2559 2560 2561 2562 2563
			/*
			 * User may provide more strings then we need,
			 * if that's the case we simply ignore the
			 * rest
			 */
2564
			if (likely(needed)) {
2565 2566
				/*
				 * s->id will be set while adding
2567
				 * function to configuration so for
2568 2569
				 * now just leave garbage here.
				 */
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
				s->s = data;
				--needed;
				++s;
			}

			data += length + 1;
			len -= length + 1;
		} while (--str_count);

		s->id = 0;   /* terminator */
		s->s = NULL;
		++s;

	} while (--lang_count);

	/* Some garbage left? */
	if (unlikely(len))
		goto error_free;

	/* Done! */
	ffs->stringtabs = stringtabs;
	ffs->raw_strings = _data;

	return 0;

error_free:
	kfree(stringtabs);
error:
	kfree(_data);
	return -EINVAL;
}


/* Events handling and management *******************************************/

static void __ffs_event_add(struct ffs_data *ffs,
			    enum usb_functionfs_event_type type)
{
	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
	int neg = 0;

2611 2612 2613 2614
	/*
	 * Abort any unhandled setup
	 *
	 * We do not need to worry about some cmpxchg() changing value
2615 2616
	 * of ffs->setup_state without holding the lock because when
	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2617 2618
	 * the source does nothing.
	 */
2619
	if (ffs->setup_state == FFS_SETUP_PENDING)
2620
		ffs->setup_state = FFS_SETUP_CANCELLED;
2621

2622 2623 2624 2625 2626 2627 2628
	/*
	 * Logic of this function guarantees that there are at most four pending
	 * evens on ffs->ev.types queue.  This is important because the queue
	 * has space for four elements only and __ffs_ep0_read_events function
	 * depends on that limit as well.  If more event types are added, those
	 * limits have to be revisited or guaranteed to still hold.
	 */
2629 2630 2631
	switch (type) {
	case FUNCTIONFS_RESUME:
		rem_type2 = FUNCTIONFS_SUSPEND;
2632
		/* FALL THROUGH */
2633 2634 2635
	case FUNCTIONFS_SUSPEND:
	case FUNCTIONFS_SETUP:
		rem_type1 = type;
2636
		/* Discard all similar events */
2637 2638 2639 2640 2641 2642
		break;

	case FUNCTIONFS_BIND:
	case FUNCTIONFS_UNBIND:
	case FUNCTIONFS_DISABLE:
	case FUNCTIONFS_ENABLE:
2643
		/* Discard everything other then power management. */
2644 2645 2646 2647 2648 2649
		rem_type1 = FUNCTIONFS_SUSPEND;
		rem_type2 = FUNCTIONFS_RESUME;
		neg = 1;
		break;

	default:
2650 2651
		WARN(1, "%d: unknown event, this should not happen\n", type);
		return;
2652 2653 2654 2655 2656 2657 2658 2659 2660
	}

	{
		u8 *ev  = ffs->ev.types, *out = ev;
		unsigned n = ffs->ev.count;
		for (; n; --n, ++ev)
			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
				*out++ = *ev;
			else
2661
				pr_vdebug("purging event %d\n", *ev);
2662 2663 2664
		ffs->ev.count = out - ffs->ev.types;
	}

2665
	pr_vdebug("adding event %d\n", type);
2666 2667
	ffs->ev.types[ffs->ev.count++] = type;
	wake_up_locked(&ffs->ev.waitq);
2668 2669
	if (ffs->ffs_eventfd)
		eventfd_signal(ffs->ffs_eventfd, 1);
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
}

static void ffs_event_add(struct ffs_data *ffs,
			  enum usb_functionfs_event_type type)
{
	unsigned long flags;
	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	__ffs_event_add(ffs, type);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
}

/* Bind/unbind USB function hooks *******************************************/

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
		if (ffs->eps_addrmap[i] == endpoint_address)
			return i;
	return -ENOENT;
}

2693 2694 2695 2696 2697 2698 2699
static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
				    struct usb_descriptor_header *desc,
				    void *priv)
{
	struct usb_endpoint_descriptor *ds = (void *)desc;
	struct ffs_function *func = priv;
	struct ffs_ep *ffs_ep;
2700 2701
	unsigned ep_desc_id;
	int idx;
2702
	static const char *speed_names[] = { "full", "high", "super" };
2703 2704 2705 2706

	if (type != FFS_DESCRIPTOR)
		return 0;

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	/*
	 * If ss_descriptors is not NULL, we are reading super speed
	 * descriptors; if hs_descriptors is not NULL, we are reading high
	 * speed descriptors; otherwise, we are reading full speed
	 * descriptors.
	 */
	if (func->function.ss_descriptors) {
		ep_desc_id = 2;
		func->function.ss_descriptors[(long)valuep] = desc;
	} else if (func->function.hs_descriptors) {
		ep_desc_id = 1;
2718
		func->function.hs_descriptors[(long)valuep] = desc;
2719 2720
	} else {
		ep_desc_id = 0;
2721
		func->function.fs_descriptors[(long)valuep]    = desc;
2722
	}
2723 2724 2725 2726

	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
		return 0;

2727 2728 2729 2730
	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
	if (idx < 0)
		return idx;

2731 2732
	ffs_ep = func->eps + idx;

2733 2734 2735
	if (unlikely(ffs_ep->descs[ep_desc_id])) {
		pr_err("two %sspeed descriptors for EP %d\n",
			  speed_names[ep_desc_id],
2736
			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2737 2738
		return -EINVAL;
	}
2739
	ffs_ep->descs[ep_desc_id] = ds;
2740 2741 2742 2743 2744 2745 2746 2747 2748

	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
	if (ffs_ep->ep) {
		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
		if (!ds->wMaxPacketSize)
			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
	} else {
		struct usb_request *req;
		struct usb_ep *ep;
2749
		u8 bEndpointAddress;
2750

2751 2752 2753 2754 2755
		/*
		 * We back up bEndpointAddress because autoconfig overwrites
		 * it with physical endpoint address.
		 */
		bEndpointAddress = ds->bEndpointAddress;
2756
		pr_vdebug("autoconfig\n");
2757 2758 2759
		ep = usb_ep_autoconfig(func->gadget, ds);
		if (unlikely(!ep))
			return -ENOTSUPP;
2760
		ep->driver_data = func->eps + idx;
2761 2762 2763 2764 2765 2766 2767 2768 2769

		req = usb_ep_alloc_request(ep, GFP_KERNEL);
		if (unlikely(!req))
			return -ENOMEM;

		ffs_ep->ep  = ep;
		ffs_ep->req = req;
		func->eps_revmap[ds->bEndpointAddress &
				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2770 2771 2772 2773 2774 2775
		/*
		 * If we use virtual address mapping, we restore
		 * original bEndpointAddress value.
		 */
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ds->bEndpointAddress = bEndpointAddress;
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
	}
	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);

	return 0;
}

static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv)
{
	struct ffs_function *func = priv;
	unsigned idx;
	u8 newValue;

	switch (type) {
	default:
	case FFS_DESCRIPTOR:
		/* Handled in previous pass by __ffs_func_bind_do_descs() */
		return 0;

	case FFS_INTERFACE:
		idx = *valuep;
		if (func->interfaces_nums[idx] < 0) {
			int id = usb_interface_id(func->conf, &func->function);
			if (unlikely(id < 0))
				return id;
			func->interfaces_nums[idx] = id;
		}
		newValue = func->interfaces_nums[idx];
		break;

	case FFS_STRING:
		/* String' IDs are allocated when fsf_data is bound to cdev */
		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
		break;

	case FFS_ENDPOINT:
2813 2814 2815 2816
		/*
		 * USB_DT_ENDPOINT are handled in
		 * __ffs_func_bind_do_descs().
		 */
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		if (desc->bDescriptorType == USB_DT_ENDPOINT)
			return 0;

		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
		if (unlikely(!func->eps[idx].ep))
			return -EINVAL;

		{
			struct usb_endpoint_descriptor **descs;
			descs = func->eps[idx].descs;
			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
		}
		break;
	}

2832
	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2833 2834 2835 2836
	*valuep = newValue;
	return 0;
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
				      struct usb_os_desc_header *h, void *data,
				      unsigned len, void *priv)
{
	struct ffs_function *func = priv;
	u8 length = 0;

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *desc = data;
		struct usb_os_desc_table *t;

		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
		       ARRAY_SIZE(desc->CompatibleID) +
		       ARRAY_SIZE(desc->SubCompatibleID));
		length = sizeof(*desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *desc = data;
		struct usb_os_desc_table *t;
		struct usb_os_desc_ext_prop *ext_prop;
		char *ext_prop_name;
		char *ext_prop_data;

		t = &func->function.os_desc_table[h->interface];
		t->if_id = func->interfaces_nums[h->interface];

		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);

		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
		ext_prop->data_len = le32_to_cpu(*(u32 *)
			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
		length = ext_prop->name_len + ext_prop->data_len + 14;

		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
		func->ffs->ms_os_descs_ext_prop_name_avail +=
			ext_prop->name_len;

		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
		func->ffs->ms_os_descs_ext_prop_data_avail +=
			ext_prop->data_len;
		memcpy(ext_prop_data,
		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
		       ext_prop->data_len);
		/* unicode data reported to the host as "WCHAR"s */
		switch (ext_prop->type) {
		case USB_EXT_PROP_UNICODE:
		case USB_EXT_PROP_UNICODE_ENV:
		case USB_EXT_PROP_UNICODE_LINK:
		case USB_EXT_PROP_UNICODE_MULTI:
			ext_prop->data_len *= 2;
			break;
		}
		ext_prop->data = ext_prop_data;

		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
		       ext_prop->name_len);
		/* property name reported to the host as "WCHAR"s */
		ext_prop->name_len *= 2;
		ext_prop->name = ext_prop_name;

		t->os_desc->ext_prop_len +=
			ext_prop->name_len + ext_prop->data_len + 14;
		++t->os_desc->ext_prop_count;
		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
	}

	return length;
}

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
						struct usb_configuration *c)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct f_fs_opts *ffs_opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	int ret;

	ENTER();

	/*
	 * Legacy gadget triggers binding in functionfs_ready_callback,
	 * which already uses locking; taking the same lock here would
	 * cause a deadlock.
	 *
	 * Configfs-enabled gadgets however do need ffs_dev_lock.
	 */
	if (!ffs_opts->no_configfs)
		ffs_dev_lock();
	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
	func->ffs = ffs_opts->dev->ffs_data;
	if (!ffs_opts->no_configfs)
		ffs_dev_unlock();
	if (ret)
		return ERR_PTR(ret);

	func->conf = c;
	func->gadget = c->cdev->gadget;

	/*
	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
	 * configurations are bound in sequence with list_for_each_entry,
	 * in each configuration its functions are bound in sequence
	 * with list_for_each_entry, so we assume no race condition
	 * with regard to ffs_opts->bound access
	 */
	if (!ffs_opts->refcnt) {
		ret = functionfs_bind(func->ffs, c->cdev);
		if (ret)
			return ERR_PTR(ret);
	}
	ffs_opts->refcnt++;
	func->function.strings = func->ffs->stringtabs;

	return ffs_opts;
}

static int _ffs_func_bind(struct usb_configuration *c,
			  struct usb_function *f)
2965 2966 2967 2968 2969 2970 2971
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;

	const int full = !!func->ffs->fs_descs_count;
	const int high = gadget_is_dualspeed(func->gadget) &&
		func->ffs->hs_descs_count;
2972 2973
	const int super = gadget_is_superspeed(func->gadget) &&
		func->ffs->ss_descs_count;
2974

2975
	int fs_len, hs_len, ss_len, ret, i;
2976
	struct ffs_ep *eps_ptr;
2977 2978

	/* Make it a single chunk, less management later on */
2979 2980 2981 2982 2983 2984
	vla_group(d);
	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
		full ? ffs->fs_descs_count + 1 : 0);
	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
		high ? ffs->hs_descs_count + 1 : 0);
2985 2986
	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
		super ? ffs->ss_descs_count + 1 : 0);
2987
	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, char[16], ext_compat,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc, os_desc,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
			 ffs->ms_os_descs_ext_prop_count);
	vla_item_with_sz(d, char, ext_prop_name,
			 ffs->ms_os_descs_ext_prop_name_len);
	vla_item_with_sz(d, char, ext_prop_data,
			 ffs->ms_os_descs_ext_prop_data_len);
3000
	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3001
	char *vlabuf;
3002 3003 3004

	ENTER();

3005 3006
	/* Has descriptors only for speeds gadget does not support */
	if (unlikely(!(full | high | super)))
3007 3008
		return -ENOTSUPP;

3009
	/* Allocate a single chunk, less management later on */
3010
	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3011
	if (unlikely(!vlabuf))
3012 3013
		return -ENOMEM;

3014 3015 3016 3017 3018 3019
	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
	ffs->ms_os_descs_ext_prop_name_avail =
		vla_ptr(vlabuf, d, ext_prop_name);
	ffs->ms_os_descs_ext_prop_data_avail =
		vla_ptr(vlabuf, d, ext_prop_data);

3020 3021 3022
	/* Copy descriptors  */
	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
	       ffs->raw_descs_length);
3023

3024
	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3025 3026 3027
	eps_ptr = vla_ptr(vlabuf, d, eps);
	for (i = 0; i < ffs->eps_count; i++)
		eps_ptr[i].num = -1;
3028

3029 3030 3031 3032 3033
	/* Save pointers
	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
	*/
	func->eps             = vla_ptr(vlabuf, d, eps);
	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3034

3035 3036
	/*
	 * Go through all the endpoint descriptors and allocate
3037
	 * endpoints first, so that later we can rewrite the endpoint
3038 3039
	 * numbers without worrying that it may be described later on.
	 */
3040
	if (likely(full)) {
3041
		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3042 3043 3044 3045 3046 3047
		fs_len = ffs_do_descs(ffs->fs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs),
				      d_raw_descs__sz,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(fs_len < 0)) {
			ret = fs_len;
3048
			goto error;
3049
		}
3050
	} else {
3051
		fs_len = 0;
3052 3053 3054
	}

	if (likely(high)) {
3055
		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
		hs_len = ffs_do_descs(ffs->hs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
				      d_raw_descs__sz - fs_len,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(hs_len < 0)) {
			ret = hs_len;
			goto error;
		}
	} else {
		hs_len = 0;
	}

	if (likely(super)) {
		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3070
		ss_len = ffs_do_descs(ffs->ss_descs_count,
3071 3072 3073
				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
				d_raw_descs__sz - fs_len - hs_len,
				__ffs_func_bind_do_descs, func);
3074 3075
		if (unlikely(ss_len < 0)) {
			ret = ss_len;
3076
			goto error;
3077 3078 3079
		}
	} else {
		ss_len = 0;
3080 3081
	}

3082 3083 3084 3085 3086
	/*
	 * Now handle interface numbers allocation and interface and
	 * endpoint numbers rewriting.  We can do that in one go
	 * now.
	 */
3087
	ret = ffs_do_descs(ffs->fs_descs_count +
3088 3089
			   (high ? ffs->hs_descs_count : 0) +
			   (super ? ffs->ss_descs_count : 0),
3090
			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3091 3092 3093 3094
			   __ffs_func_bind_do_nums, func);
	if (unlikely(ret < 0))
		goto error;

3095
	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3096
	if (c->cdev->use_os_string) {
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
		for (i = 0; i < ffs->interfaces_count; ++i) {
			struct usb_os_desc *desc;

			desc = func->function.os_desc_table[i].os_desc =
				vla_ptr(vlabuf, d, os_desc) +
				i * sizeof(struct usb_os_desc);
			desc->ext_compat_id =
				vla_ptr(vlabuf, d, ext_compat) + i * 16;
			INIT_LIST_HEAD(&desc->ext_prop);
		}
3107 3108 3109 3110 3111 3112 3113 3114 3115
		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) +
				      fs_len + hs_len + ss_len,
				      d_raw_descs__sz - fs_len - hs_len -
				      ss_len,
				      __ffs_func_bind_do_os_desc, func);
		if (unlikely(ret < 0))
			goto error;
	}
3116 3117 3118
	func->function.os_desc_n =
		c->cdev->use_os_string ? ffs->interfaces_count : 0;

3119 3120 3121 3122 3123 3124 3125 3126 3127
	/* And we're done */
	ffs_event_add(ffs, FUNCTIONFS_BIND);
	return 0;

error:
	/* XXX Do we need to release all claimed endpoints here? */
	return ret;
}

3128 3129 3130 3131
static int ffs_func_bind(struct usb_configuration *c,
			 struct usb_function *f)
{
	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3132 3133
	struct ffs_function *func = ffs_func_from_usb(f);
	int ret;
3134 3135 3136 3137

	if (IS_ERR(ffs_opts))
		return PTR_ERR(ffs_opts);

3138 3139 3140 3141 3142
	ret = _ffs_func_bind(c, f);
	if (ret && !--ffs_opts->refcnt)
		functionfs_unbind(func->ffs);

	return ret;
3143 3144
}

3145 3146 3147

/* Other USB function hooks *************************************************/

3148 3149 3150 3151 3152 3153 3154
static void ffs_reset_work(struct work_struct *work)
{
	struct ffs_data *ffs = container_of(work,
		struct ffs_data, reset_work);
	ffs_data_reset(ffs);
}

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
static int ffs_func_set_alt(struct usb_function *f,
			    unsigned interface, unsigned alt)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	int ret = 0, intf;

	if (alt != (unsigned)-1) {
		intf = ffs_func_revmap_intf(func, interface);
		if (unlikely(intf < 0))
			return intf;
	}

	if (ffs->func)
		ffs_func_eps_disable(ffs->func);

3171 3172 3173 3174 3175 3176 3177
	if (ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		INIT_WORK(&ffs->reset_work, ffs_reset_work);
		schedule_work(&ffs->reset_work);
		return -ENODEV;
	}

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	if (alt == (unsigned)-1) {
		ffs->func = NULL;
		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
		return 0;
	}

	ffs->func = func;
	ret = ffs_func_eps_enable(func);
	if (likely(ret >= 0))
		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
	return ret;
}

static void ffs_func_disable(struct usb_function *f)
{
	ffs_func_set_alt(f, 0, (unsigned)-1);
}

static int ffs_func_setup(struct usb_function *f,
			  const struct usb_ctrlrequest *creq)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	unsigned long flags;
	int ret;

	ENTER();

3209 3210 3211 3212 3213
	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3214

3215 3216
	/*
	 * Most requests directed to interface go through here
3217 3218 3219 3220
	 * (notable exceptions are set/get interface) so we need to
	 * handle them.  All other either handled by composite or
	 * passed to usb_configuration->setup() (if one is set).  No
	 * matter, we will handle requests directed to endpoint here
3221 3222 3223
	 * as well (as it's straightforward).  Other request recipient
	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
	 * is being used.
3224
	 */
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
		break;

	case USB_RECIP_ENDPOINT:
		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
3239 3240
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ret = func->ffs->eps_addrmap[ret];
3241 3242 3243
		break;

	default:
3244 3245 3246 3247
		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
			ret = le16_to_cpu(creq->wIndex);
		else
			return -EOPNOTSUPP;
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	}

	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	ffs->ev.setup = *creq;
	ffs->ev.setup.wIndex = cpu_to_le16(ret);
	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);

	return 0;
}

3259
static bool ffs_func_req_match(struct usb_function *f,
3260 3261
			       const struct usb_ctrlrequest *creq,
			       bool config0)
3262 3263 3264
{
	struct ffs_function *func = ffs_func_from_usb(f);

3265
	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3266 3267
		return false;

3268 3269
	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
3270 3271
		return (ffs_func_revmap_intf(func,
					     le16_to_cpu(creq->wIndex)) >= 0);
3272
	case USB_RECIP_ENDPOINT:
3273 3274
		return (ffs_func_revmap_ep(func,
					   le16_to_cpu(creq->wIndex)) >= 0);
3275 3276 3277 3278 3279 3280
	default:
		return (bool) (func->ffs->user_flags &
			       FUNCTIONFS_ALL_CTRL_RECIP);
	}
}

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
static void ffs_func_suspend(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
}

static void ffs_func_resume(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
}


3294
/* Endpoint and interface numbers reverse mapping ***************************/
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315

static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
{
	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
	return num ? num : -EDOM;
}

static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
{
	short *nums = func->interfaces_nums;
	unsigned count = func->ffs->interfaces_count;

	for (; count; --count, ++nums) {
		if (*nums >= 0 && *nums == intf)
			return nums - func->interfaces_nums;
	}

	return -EDOM;
}


3316 3317 3318 3319
/* Devices management *******************************************************/

static LIST_HEAD(ffs_devices);

3320
static struct ffs_dev *_ffs_do_find_dev(const char *name)
3321 3322 3323
{
	struct ffs_dev *dev;

3324 3325 3326
	if (!name)
		return NULL;

3327 3328 3329 3330
	list_for_each_entry(dev, &ffs_devices, entry) {
		if (strcmp(dev->name, name) == 0)
			return dev;
	}
3331

3332 3333 3334 3335 3336 3337
	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3338
static struct ffs_dev *_ffs_get_single_dev(void)
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
{
	struct ffs_dev *dev;

	if (list_is_singular(&ffs_devices)) {
		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
		if (dev->single)
			return dev;
	}

	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3354
static struct ffs_dev *_ffs_find_dev(const char *name)
3355 3356 3357
{
	struct ffs_dev *dev;

3358
	dev = _ffs_get_single_dev();
3359 3360 3361
	if (dev)
		return dev;

3362
	return _ffs_do_find_dev(name);
3363 3364
}

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
/* Configfs support *********************************************************/

static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
{
	return container_of(to_config_group(item), struct f_fs_opts,
			    func_inst.group);
}

static void ffs_attr_release(struct config_item *item)
{
	struct f_fs_opts *opts = to_ffs_opts(item);

	usb_put_function_instance(&opts->func_inst);
}

static struct configfs_item_operations ffs_item_ops = {
	.release	= ffs_attr_release,
};

3384
static const struct config_item_type ffs_func_type = {
3385 3386 3387 3388 3389
	.ct_item_ops	= &ffs_item_ops,
	.ct_owner	= THIS_MODULE,
};


3390 3391 3392 3393 3394 3395 3396 3397
/* Function registration interface ******************************************/

static void ffs_free_inst(struct usb_function_instance *f)
{
	struct f_fs_opts *opts;

	opts = to_f_fs_opts(f);
	ffs_dev_lock();
3398
	_ffs_free_dev(opts->dev);
3399 3400 3401 3402
	ffs_dev_unlock();
	kfree(opts);
}

3403 3404
static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
{
3405
	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3406
		return -ENAMETOOLONG;
3407
	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3408 3409
}

3410 3411 3412 3413 3414 3415 3416 3417 3418
static struct usb_function_instance *ffs_alloc_inst(void)
{
	struct f_fs_opts *opts;
	struct ffs_dev *dev;

	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
	if (!opts)
		return ERR_PTR(-ENOMEM);

3419
	opts->func_inst.set_inst_name = ffs_set_inst_name;
3420 3421
	opts->func_inst.free_func_inst = ffs_free_inst;
	ffs_dev_lock();
3422
	dev = _ffs_alloc_dev();
3423 3424 3425 3426 3427 3428
	ffs_dev_unlock();
	if (IS_ERR(dev)) {
		kfree(opts);
		return ERR_CAST(dev);
	}
	opts->dev = dev;
3429
	dev->opts = opts;
3430

3431 3432
	config_group_init_type_name(&opts->func_inst.group, "",
				    &ffs_func_type);
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	return &opts->func_inst;
}

static void ffs_free(struct usb_function *f)
{
	kfree(ffs_func_from_usb(f));
}

static void ffs_func_unbind(struct usb_configuration *c,
			    struct usb_function *f)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	struct f_fs_opts *opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	struct ffs_ep *ep = func->eps;
	unsigned count = ffs->eps_count;
	unsigned long flags;

	ENTER();
	if (ffs->func == func) {
		ffs_func_eps_disable(func);
		ffs->func = NULL;
	}

	if (!--opts->refcnt)
		functionfs_unbind(ffs);

	/* cleanup after autoconfig */
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3463
	while (count--) {
3464 3465 3466 3467
		if (ep->ep && ep->req)
			usb_ep_free_request(ep->ep, ep->req);
		ep->req = NULL;
		++ep;
3468
	}
3469 3470 3471 3472 3473 3474 3475 3476 3477
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
	kfree(func->eps);
	func->eps = NULL;
	/*
	 * eps, descriptors and interfaces_nums are allocated in the
	 * same chunk so only one free is required.
	 */
	func->function.fs_descriptors = NULL;
	func->function.hs_descriptors = NULL;
3478
	func->function.ss_descriptors = NULL;
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
	func->interfaces_nums = NULL;

	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
}

static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
{
	struct ffs_function *func;

	ENTER();

	func = kzalloc(sizeof(*func), GFP_KERNEL);
	if (unlikely(!func))
		return ERR_PTR(-ENOMEM);

	func->function.name    = "Function FS Gadget";

	func->function.bind    = ffs_func_bind;
	func->function.unbind  = ffs_func_unbind;
	func->function.set_alt = ffs_func_set_alt;
	func->function.disable = ffs_func_disable;
	func->function.setup   = ffs_func_setup;
3501
	func->function.req_match = ffs_func_req_match;
3502 3503 3504 3505 3506 3507 3508
	func->function.suspend = ffs_func_suspend;
	func->function.resume  = ffs_func_resume;
	func->function.free_func = ffs_free;

	return &func->function;
}

3509 3510 3511
/*
 * ffs_lock must be taken by the caller of this function
 */
3512
static struct ffs_dev *_ffs_alloc_dev(void)
3513 3514 3515 3516
{
	struct ffs_dev *dev;
	int ret;

3517
	if (_ffs_get_single_dev())
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
			return ERR_PTR(-EBUSY);

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return ERR_PTR(-ENOMEM);

	if (list_empty(&ffs_devices)) {
		ret = functionfs_init();
		if (ret) {
			kfree(dev);
			return ERR_PTR(ret);
		}
	}

	list_add(&dev->entry, &ffs_devices);

	return dev;
}

3537
int ffs_name_dev(struct ffs_dev *dev, const char *name)
3538 3539
{
	struct ffs_dev *existing;
3540
	int ret = 0;
3541

3542
	ffs_dev_lock();
3543

3544 3545 3546 3547 3548
	existing = _ffs_do_find_dev(name);
	if (!existing)
		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
	else if (existing != dev)
		ret = -EBUSY;
3549 3550 3551 3552 3553

	ffs_dev_unlock();

	return ret;
}
3554
EXPORT_SYMBOL_GPL(ffs_name_dev);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570

int ffs_single_dev(struct ffs_dev *dev)
{
	int ret;

	ret = 0;
	ffs_dev_lock();

	if (!list_is_singular(&ffs_devices))
		ret = -EBUSY;
	else
		dev->single = true;

	ffs_dev_unlock();
	return ret;
}
3571
EXPORT_SYMBOL_GPL(ffs_single_dev);
3572 3573 3574 3575

/*
 * ffs_lock must be taken by the caller of this function
 */
3576
static void _ffs_free_dev(struct ffs_dev *dev)
3577 3578
{
	list_del(&dev->entry);
3579 3580 3581 3582 3583

	/* Clear the private_data pointer to stop incorrect dev access */
	if (dev->ffs_data)
		dev->ffs_data->private_data = NULL;

3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
	kfree(dev);
	if (list_empty(&ffs_devices))
		functionfs_cleanup();
}

static void *ffs_acquire_dev(const char *dev_name)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

3596
	ffs_dev = _ffs_find_dev(dev_name);
3597
	if (!ffs_dev)
3598
		ffs_dev = ERR_PTR(-ENOENT);
3599 3600
	else if (ffs_dev->mounted)
		ffs_dev = ERR_PTR(-EBUSY);
3601 3602
	else if (ffs_dev->ffs_acquire_dev_callback &&
	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3603
		ffs_dev = ERR_PTR(-ENOENT);
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	else
		ffs_dev->mounted = true;

	ffs_dev_unlock();
	return ffs_dev;
}

static void ffs_release_dev(struct ffs_data *ffs_data)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

	ffs_dev = ffs_data->private_data;
3619
	if (ffs_dev) {
3620
		ffs_dev->mounted = false;
3621 3622 3623 3624

		if (ffs_dev->ffs_release_dev_callback)
			ffs_dev->ffs_release_dev_callback(ffs_dev);
	}
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649

	ffs_dev_unlock();
}

static int ffs_ready(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
	int ret = 0;

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj) {
		ret = -EINVAL;
		goto done;
	}
	if (WARN_ON(ffs_obj->desc_ready)) {
		ret = -EBUSY;
		goto done;
	}

	ffs_obj->desc_ready = true;
	ffs_obj->ffs_data = ffs;

3650
	if (ffs_obj->ffs_ready_callback) {
3651
		ret = ffs_obj->ffs_ready_callback(ffs);
3652 3653 3654
		if (ret)
			goto done;
	}
3655

3656
	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3657 3658 3659 3660 3661 3662 3663 3664
done:
	ffs_dev_unlock();
	return ret;
}

static void ffs_closed(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
3665
	struct f_fs_opts *opts;
3666
	struct config_item *ci;
3667 3668 3669 3670 3671 3672 3673 3674 3675

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj)
		goto done;

	ffs_obj->desc_ready = false;
3676
	ffs_obj->ffs_data = NULL;
3677

3678 3679
	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
	    ffs_obj->ffs_closed_callback)
3680
		ffs_obj->ffs_closed_callback(ffs);
3681

3682 3683 3684 3685 3686 3687
	if (ffs_obj->opts)
		opts = ffs_obj->opts;
	else
		goto done;

	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3688
	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3689 3690
		goto done;

3691 3692 3693 3694 3695
	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
	ffs_dev_unlock();

	unregister_gadget_item(ci);
	return;
3696 3697 3698 3699
done:
	ffs_dev_unlock();
}

3700 3701 3702 3703 3704 3705 3706 3707 3708
/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
{
	return nonblock
		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
		: mutex_lock_interruptible(mutex);
}

A
Al Viro 已提交
3709
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
{
	char *data;

	if (unlikely(!len))
		return NULL;

	data = kmalloc(len, GFP_KERNEL);
	if (unlikely(!data))
		return ERR_PTR(-ENOMEM);

3720
	if (unlikely(copy_from_user(data, buf, len))) {
3721 3722 3723 3724
		kfree(data);
		return ERR_PTR(-EFAULT);
	}

3725
	pr_vdebug("Buffer from user space:\n");
3726 3727 3728 3729
	ffs_dump_mem("", data, len);

	return data;
}
3730 3731 3732 3733

DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Nazarewicz");