f_fs.c 90.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
 * f_fs.c -- user mode file system API for USB composite function controllers
4 5
 *
 * Copyright (C) 2010 Samsung Electronics
6
 * Author: Michal Nazarewicz <mina86@mina86.com>
7
 *
8
 * Based on inode.c (GadgetFS) which was:
9 10 11 12 13 14 15 16 17
 * Copyright (C) 2003-2004 David Brownell
 * Copyright (C) 2003 Agilent Technologies
 */


/* #define DEBUG */
/* #define VERBOSE_DEBUG */

#include <linux/blkdev.h>
18
#include <linux/pagemap.h>
19
#include <linux/export.h>
20
#include <linux/hid.h>
21
#include <linux/mm.h>
22
#include <linux/module.h>
23
#include <linux/scatterlist.h>
24
#include <linux/sched/signal.h>
25
#include <linux/uio.h>
26
#include <linux/vmalloc.h>
27 28
#include <asm/unaligned.h>

29
#include <linux/usb/ccid.h>
30 31 32
#include <linux/usb/composite.h>
#include <linux/usb/functionfs.h>

33 34
#include <linux/aio.h>
#include <linux/mmu_context.h>
35
#include <linux/poll.h>
36
#include <linux/eventfd.h>
37

38
#include "u_fs.h"
39
#include "u_f.h"
40
#include "u_os_desc.h"
41
#include "configfs.h"
42 43 44 45 46 47 48

#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */

/* Reference counter handling */
static void ffs_data_get(struct ffs_data *ffs);
static void ffs_data_put(struct ffs_data *ffs);
/* Creates new ffs_data object. */
49 50
static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
	__attribute__((malloc));
51 52 53 54 55

/* Opened counter handling. */
static void ffs_data_opened(struct ffs_data *ffs);
static void ffs_data_closed(struct ffs_data *ffs);

56
/* Called with ffs->mutex held; take over ownership of data. */
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int __must_check
__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
static int __must_check
__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);


/* The function structure ***************************************************/

struct ffs_ep;

struct ffs_function {
	struct usb_configuration	*conf;
	struct usb_gadget		*gadget;
	struct ffs_data			*ffs;

	struct ffs_ep			*eps;
	u8				eps_revmap[16];
	short				*interfaces_nums;

	struct usb_function		function;
};


static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
{
	return container_of(f, struct ffs_function, function);
}


86 87 88 89 90 91 92 93
static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
{
	return (enum ffs_setup_state)
		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
}


94 95 96 97 98 99 100 101 102
static void ffs_func_eps_disable(struct ffs_function *func);
static int __must_check ffs_func_eps_enable(struct ffs_function *func);

static int ffs_func_bind(struct usb_configuration *,
			 struct usb_function *);
static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
static void ffs_func_disable(struct usb_function *);
static int ffs_func_setup(struct usb_function *,
			  const struct usb_ctrlrequest *);
103
static bool ffs_func_req_match(struct usb_function *,
104 105
			       const struct usb_ctrlrequest *,
			       bool config0);
106 107 108 109 110 111 112 113 114 115 116 117 118 119
static void ffs_func_suspend(struct usb_function *);
static void ffs_func_resume(struct usb_function *);


static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);


/* The endpoints structures *************************************************/

struct ffs_ep {
	struct usb_ep			*ep;	/* P: ffs->eps_lock */
	struct usb_request		*req;	/* P: epfile->mutex */

120 121
	/* [0]: full speed, [1]: high speed, [2]: super speed */
	struct usb_endpoint_descriptor	*descs[3];
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

	u8				num;

	int				status;	/* P: epfile->mutex */
};

struct ffs_epfile {
	/* Protects ep->ep and ep->req. */
	struct mutex			mutex;

	struct ffs_data			*ffs;
	struct ffs_ep			*ep;	/* P: ffs->eps_lock */

	struct dentry			*dentry;

137 138 139
	/*
	 * Buffer for holding data from partial reads which may happen since
	 * we’re rounding user read requests to a multiple of a max packet size.
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	 *
	 * The pointer is initialised with NULL value and may be set by
	 * __ffs_epfile_read_data function to point to a temporary buffer.
	 *
	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
	 * data from said buffer and eventually free it.  Importantly, while the
	 * function is using the buffer, it sets the pointer to NULL.  This is
	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
	 * can never run concurrently (they are synchronised by epfile->mutex)
	 * so the latter will not assign a new value to the pointer.
	 *
	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
	 * value is crux of the synchronisation between ffs_func_eps_disable and
	 * __ffs_epfile_read_data.
	 *
	 * Once __ffs_epfile_read_data is about to finish it will try to set the
	 * pointer back to its old value (as described above), but seeing as the
	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
	 * the buffer.
	 *
	 * == State transitions ==
	 *
	 * • ptr == NULL:  (initial state)
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    nop
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == DROP:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == buf:
	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
	 *                                    is always called first
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == NULL and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes and …
	 *     … all data read:               free buf, go to ptr == NULL
	 *     … otherwise:                   go to ptr == buf and reading
	 * • ptr == DROP and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes:              free buf, go to ptr == DROP
191
	 */
192 193
	struct ffs_buffer		*read_buffer;
#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194

195 196 197 198 199 200 201 202
	char				name[5];

	unsigned char			in;	/* P: ffs->eps_lock */
	unsigned char			isoc;	/* P: ffs->eps_lock */

	unsigned char			_pad;
};

203 204 205 206 207 208
struct ffs_buffer {
	size_t length;
	char *data;
	char storage[];
};

209 210 211 212 213 214 215
/*  ffs_io_data structure ***************************************************/

struct ffs_io_data {
	bool aio;
	bool read;

	struct kiocb *kiocb;
216 217 218
	struct iov_iter data;
	const void *to_free;
	char *buf;
219 220 221 222 223 224

	struct mm_struct *mm;
	struct work_struct work;

	struct usb_ep *ep;
	struct usb_request *req;
225 226
	struct sg_table sgt;
	bool use_sg;
227 228

	struct ffs_data *ffs;
229 230
};

231 232 233 234 235 236
struct ffs_desc_helper {
	struct ffs_data *ffs;
	unsigned interfaces_count;
	unsigned eps_count;
};

237 238 239
static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);

A
Al Viro 已提交
240
static struct dentry *
241
ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
A
Al Viro 已提交
242
		   const struct file_operations *fops);
243

244 245 246
/* Devices management *******************************************************/

DEFINE_MUTEX(ffs_lock);
247
EXPORT_SYMBOL_GPL(ffs_lock);
248

249 250 251
static struct ffs_dev *_ffs_find_dev(const char *name);
static struct ffs_dev *_ffs_alloc_dev(void);
static void _ffs_free_dev(struct ffs_dev *dev);
252 253 254 255
static void *ffs_acquire_dev(const char *dev_name);
static void ffs_release_dev(struct ffs_data *ffs_data);
static int ffs_ready(struct ffs_data *ffs);
static void ffs_closed(struct ffs_data *ffs);
256 257 258 259 260

/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
	__attribute__((warn_unused_result, nonnull));
A
Al Viro 已提交
261
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
262 263 264 265 266 267 268 269 270
	__attribute__((warn_unused_result, nonnull));


/* Control file aka ep0 *****************************************************/

static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
{
	struct ffs_data *ffs = req->context;

271
	complete(&ffs->ep0req_completion);
272 273 274
}

static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
275
	__releases(&ffs->ev.waitq.lock)
276 277 278 279 280 281 282 283 284 285 286
{
	struct usb_request *req = ffs->ep0req;
	int ret;

	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);

	spin_unlock_irq(&ffs->ev.waitq.lock);

	req->buf      = data;
	req->length   = len;

287 288 289 290 291 292 293 294
	/*
	 * UDC layer requires to provide a buffer even for ZLP, but should
	 * not use it at all. Let's provide some poisoned pointer to catch
	 * possible bug in the driver.
	 */
	if (req->buf == NULL)
		req->buf = (void *)0xDEADBABE;

295
	reinit_completion(&ffs->ep0req_completion);
296 297 298 299 300 301 302 303 304 305 306 307

	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
	if (unlikely(ret)) {
		usb_ep_dequeue(ffs->gadget->ep0, req);
		return -EINTR;
	}

	ffs->setup_state = FFS_NO_SETUP;
308
	return req->status ? req->status : req->actual;
309 310 311 312 313
}

static int __ffs_ep0_stall(struct ffs_data *ffs)
{
	if (ffs->ev.can_stall) {
314
		pr_vdebug("ep0 stall\n");
315 316 317 318
		usb_ep_set_halt(ffs->gadget->ep0);
		ffs->setup_state = FFS_NO_SETUP;
		return -EL2HLT;
	} else {
319
		pr_debug("bogus ep0 stall!\n");
320 321 322 323 324 325 326 327 328 329 330 331 332 333
		return -ESRCH;
	}
}

static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
			     size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	ssize_t ret;
	char *data;

	ENTER();

	/* Fast check if setup was canceled */
334
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		/* Copy data */
		if (unlikely(len < 16)) {
			ret = -EINVAL;
			break;
		}

		data = ffs_prepare_buffer(buf, len);
353
		if (IS_ERR(data)) {
354 355 356 357 358 359
			ret = PTR_ERR(data);
			break;
		}

		/* Handle data */
		if (ffs->state == FFS_READ_DESCRIPTORS) {
360
			pr_info("read descriptors\n");
361 362 363 364 365 366 367
			ret = __ffs_data_got_descs(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ffs->state = FFS_READ_STRINGS;
			ret = len;
		} else {
368
			pr_info("read strings\n");
369 370 371 372 373 374 375 376 377 378 379 380 381
			ret = __ffs_data_got_strings(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ret = ffs_epfiles_create(ffs);
			if (unlikely(ret)) {
				ffs->state = FFS_CLOSING;
				break;
			}

			ffs->state = FFS_ACTIVE;
			mutex_unlock(&ffs->mutex);

382
			ret = ffs_ready(ffs);
383 384 385 386 387 388 389 390 391 392 393
			if (unlikely(ret < 0)) {
				ffs->state = FFS_CLOSING;
				return ret;
			}

			return len;
		}
		break;

	case FFS_ACTIVE:
		data = NULL;
394 395 396 397
		/*
		 * We're called from user space, we can use _irq
		 * rather then _irqsave
		 */
398
		spin_lock_irq(&ffs->ev.waitq.lock);
399
		switch (ffs_setup_state_clear_cancelled(ffs)) {
400
		case FFS_SETUP_CANCELLED:
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
			ret = -EIDRM;
			goto done_spin;

		case FFS_NO_SETUP:
			ret = -ESRCH;
			goto done_spin;

		case FFS_SETUP_PENDING:
			break;
		}

		/* FFS_SETUP_PENDING */
		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			break;
		}

		/* FFS_SETUP_PENDING and not stall */
		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		data = ffs_prepare_buffer(buf, len);
425
		if (IS_ERR(data)) {
426 427 428 429 430 431
			ret = PTR_ERR(data);
			break;
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

432 433
		/*
		 * We are guaranteed to be still in FFS_ACTIVE state
434
		 * but the state of setup could have changed from
435
		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
436
		 * to check for that.  If that happened we copied data
437 438 439
		 * from user space in vain but it's unlikely.
		 *
		 * For sure we are not in FFS_NO_SETUP since this is
440 441
		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
		 * transition can be performed and it's protected by
442 443
		 * mutex.
		 */
444 445
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
			ret = -EIDRM;
done_spin:
			spin_unlock_irq(&ffs->ev.waitq.lock);
		} else {
			/* unlocks spinlock */
			ret = __ffs_ep0_queue_wait(ffs, data, len);
		}
		kfree(data);
		break;

	default:
		ret = -EBADFD;
		break;
	}

	mutex_unlock(&ffs->mutex);
	return ret;
}

465
/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
466 467
static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
				     size_t n)
468
	__releases(&ffs->ev.waitq.lock)
469
{
470
	/*
471 472 473
	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
	 * size of ffs->ev.types array (which is four) so that's how much space
	 * we reserve.
474
	 */
475 476
	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
	const size_t size = n * sizeof *events;
477 478
	unsigned i = 0;

479
	memset(events, 0, size);
480 481 482 483 484 485 486 487 488

	do {
		events[i].type = ffs->ev.types[i];
		if (events[i].type == FUNCTIONFS_SETUP) {
			events[i].u.setup = ffs->ev.setup;
			ffs->setup_state = FFS_SETUP_PENDING;
		}
	} while (++i < n);

489 490
	ffs->ev.count -= n;
	if (ffs->ev.count)
491 492 493 494 495 496
		memmove(ffs->ev.types, ffs->ev.types + n,
			ffs->ev.count * sizeof *ffs->ev.types);

	spin_unlock_irq(&ffs->ev.waitq.lock);
	mutex_unlock(&ffs->mutex);

497
	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
498 499 500 501 502 503 504 505 506 507 508 509 510
}

static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
			    size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	char *data = NULL;
	size_t n;
	int ret;

	ENTER();

	/* Fast check if setup was canceled */
511
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
512 513 514 515 516 517 518 519 520 521 522 523 524
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	if (ffs->state != FFS_ACTIVE) {
		ret = -EBADFD;
		goto done_mutex;
	}

525 526 527 528
	/*
	 * We're called from user space, we can use _irq rather then
	 * _irqsave
	 */
529 530
	spin_lock_irq(&ffs->ev.waitq.lock);

531
	switch (ffs_setup_state_clear_cancelled(ffs)) {
532
	case FFS_SETUP_CANCELLED:
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
		ret = -EIDRM;
		break;

	case FFS_NO_SETUP:
		n = len / sizeof(struct usb_functionfs_event);
		if (unlikely(!n)) {
			ret = -EINVAL;
			break;
		}

		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
			ret = -EAGAIN;
			break;
		}

548 549
		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
							ffs->ev.count)) {
550 551 552 553
			ret = -EINTR;
			break;
		}

554
		/* unlocks spinlock */
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		return __ffs_ep0_read_events(ffs, buf,
					     min(n, (size_t)ffs->ev.count));

	case FFS_SETUP_PENDING:
		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			goto done_mutex;
		}

		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		if (likely(len)) {
			data = kmalloc(len, GFP_KERNEL);
			if (unlikely(!data)) {
				ret = -ENOMEM;
				goto done_mutex;
			}
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

		/* See ffs_ep0_write() */
580 581
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
582 583 584 585 586 587
			ret = -EIDRM;
			break;
		}

		/* unlocks spinlock */
		ret = __ffs_ep0_queue_wait(ffs, data, len);
588
		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
			ret = -EFAULT;
		goto done_mutex;

	default:
		ret = -EBADFD;
		break;
	}

	spin_unlock_irq(&ffs->ev.waitq.lock);
done_mutex:
	mutex_unlock(&ffs->mutex);
	kfree(data);
	return ret;
}

static int ffs_ep0_open(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = inode->i_private;

	ENTER();

	if (unlikely(ffs->state == FFS_CLOSING))
		return -EBUSY;

	file->private_data = ffs;
	ffs_data_opened(ffs);

	return 0;
}

static int ffs_ep0_release(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = file->private_data;

	ENTER();

	ffs_data_closed(ffs);

	return 0;
}

static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
{
	struct ffs_data *ffs = file->private_data;
	struct usb_gadget *gadget = ffs->gadget;
	long ret;

	ENTER();

	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
		struct ffs_function *func = ffs->func;
		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
641
	} else if (gadget && gadget->ops->ioctl) {
642 643 644 645 646 647 648 649
		ret = gadget->ops->ioctl(gadget, code, value);
	} else {
		ret = -ENOTTY;
	}

	return ret;
}

650
static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
651 652
{
	struct ffs_data *ffs = file->private_data;
653
	__poll_t mask = EPOLLWRNORM;
654 655 656 657 658 659 660 661 662 663 664
	int ret;

	poll_wait(file, &ffs->ev.waitq, wait);

	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return mask;

	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
665
		mask |= EPOLLOUT;
666 667 668 669 670 671
		break;

	case FFS_ACTIVE:
		switch (ffs->setup_state) {
		case FFS_NO_SETUP:
			if (ffs->ev.count)
672
				mask |= EPOLLIN;
673 674 675 676
			break;

		case FFS_SETUP_PENDING:
		case FFS_SETUP_CANCELLED:
677
			mask |= (EPOLLIN | EPOLLOUT);
678 679 680 681
			break;
		}
	case FFS_CLOSING:
		break;
682 683
	case FFS_DEACTIVATED:
		break;
684 685 686 687 688 689 690
	}

	mutex_unlock(&ffs->mutex);

	return mask;
}

691 692 693 694 695 696 697 698
static const struct file_operations ffs_ep0_operations = {
	.llseek =	no_llseek,

	.open =		ffs_ep0_open,
	.write =	ffs_ep0_write,
	.read =		ffs_ep0_read,
	.release =	ffs_ep0_release,
	.unlocked_ioctl =	ffs_ep0_ioctl,
699
	.poll =		ffs_ep0_poll,
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
};


/* "Normal" endpoints operations ********************************************/

static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
{
	ENTER();
	if (likely(req->context)) {
		struct ffs_ep *ep = _ep->driver_data;
		ep->status = req->status ? req->status : req->actual;
		complete(req->context);
	}
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
{
	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(ret == data_len))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/*
	 * Dear user space developer!
	 *
	 * TL;DR: To stop getting below error message in your kernel log, change
	 * user space code using functionfs to align read buffers to a max
	 * packet size.
	 *
	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
	 * packet size.  When unaligned buffer is passed to functionfs, it
	 * internally uses a larger, aligned buffer so that such UDCs are happy.
	 *
	 * Unfortunately, this means that host may send more data than was
	 * requested in read(2) system call.  f_fs doesn’t know what to do with
	 * that excess data so it simply drops it.
	 *
	 * Was the buffer aligned in the first place, no such problem would
	 * happen.
	 *
742 743 744 745 746
	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
	 * by splitting a request into multiple parts.  This splitting may still
	 * be a problem though so it’s likely best to align the buffer
	 * regardless of it being AIO or not..
	 *
747 748 749 750 751 752 753 754 755 756 757
	 * This only affects OUT endpoints, i.e. reading data with a read(2),
	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
	 * affected.
	 */
	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
	       "Align read buffer size to max packet size to avoid the problem.\n",
	       data_len, ret);

	return ret;
}

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * allocate a virtually contiguous buffer and create a scatterlist describing it
 * @sg_table	- pointer to a place to be filled with sg_table contents
 * @size	- required buffer size
 */
static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
{
	struct page **pages;
	void *vaddr, *ptr;
	unsigned int n_pages;
	int i;

	vaddr = vmalloc(sz);
	if (!vaddr)
		return NULL;

	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
	if (!pages) {
		vfree(vaddr);

		return NULL;
	}
	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
		pages[i] = vmalloc_to_page(ptr);

	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
		kvfree(pages);
		vfree(vaddr);

		return NULL;
	}
	kvfree(pages);

	return vaddr;
}

static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
	size_t data_len)
{
	if (io_data->use_sg)
		return ffs_build_sg_list(&io_data->sgt, data_len);

	return kmalloc(data_len, GFP_KERNEL);
}

static inline void ffs_free_buffer(struct ffs_io_data *io_data)
{
	if (!io_data->buf)
		return;

	if (io_data->use_sg) {
		sg_free_table(&io_data->sgt);
		vfree(io_data->buf);
	} else {
		kfree(io_data->buf);
	}
}

817 818 819 820 821 822
static void ffs_user_copy_worker(struct work_struct *work)
{
	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
						   work);
	int ret = io_data->req->status ? io_data->req->status :
					 io_data->req->actual;
823
	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
824 825

	if (io_data->read && ret > 0) {
826 827 828
		mm_segment_t oldfs = get_fs();

		set_fs(USER_DS);
829
		use_mm(io_data->mm);
830
		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
831
		unuse_mm(io_data->mm);
832
		set_fs(oldfs);
833 834
	}

835
	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
836

837
	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
838 839
		eventfd_signal(io_data->ffs->ffs_eventfd, 1);

840 841 842
	usb_ep_free_request(io_data->ep, io_data->req);

	if (io_data->read)
843
		kfree(io_data->to_free);
844
	ffs_free_buffer(io_data);
845 846 847 848 849 850 851
	kfree(io_data);
}

static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
					 struct usb_request *req)
{
	struct ffs_io_data *io_data = req->context;
852
	struct ffs_data *ffs = io_data->ffs;
853 854 855 856

	ENTER();

	INIT_WORK(&io_data->work, ffs_user_copy_worker);
857
	queue_work(ffs->io_completion_wq, &io_data->work);
858 859
}

860 861 862 863 864 865 866 867 868 869 870
static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
{
	/*
	 * See comment in struct ffs_epfile for full read_buffer pointer
	 * synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
	if (buf && buf != READ_BUFFER_DROP)
		kfree(buf);
}

871 872 873 874
/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
					  struct iov_iter *iter)
{
875 876 877 878 879 880
	/*
	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
	 * the buffer while we are using it.  See comment in struct ffs_epfile
	 * for full read_buffer pointer synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
881
	ssize_t ret;
882
	if (!buf || buf == READ_BUFFER_DROP)
883 884 885 886 887
		return 0;

	ret = copy_to_iter(buf->data, buf->length, iter);
	if (buf->length == ret) {
		kfree(buf);
888 889 890 891
		return ret;
	}

	if (unlikely(iov_iter_count(iter))) {
892 893 894 895 896
		ret = -EFAULT;
	} else {
		buf->length -= ret;
		buf->data += ret;
	}
897 898 899 900

	if (cmpxchg(&epfile->read_buffer, NULL, buf))
		kfree(buf);

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	return ret;
}

/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
				      void *data, int data_len,
				      struct iov_iter *iter)
{
	struct ffs_buffer *buf;

	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(data_len == ret))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/* See ffs_copy_to_iter for more context. */
	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
		data_len, ret);

	data_len -= ret;
	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
924 925
	if (!buf)
		return -ENOMEM;
926 927 928
	buf->length = data_len;
	buf->data = buf->storage;
	memcpy(buf->storage, data + ret, data_len);
929 930 931 932 933 934 935 936 937

	/*
	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
	 * in struct ffs_epfile for full read_buffer pointer synchronisation
	 * story.
	 */
	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
		kfree(buf);
938 939 940 941

	return ret;
}

942
static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
943 944
{
	struct ffs_epfile *epfile = file->private_data;
945
	struct usb_request *req;
946 947
	struct ffs_ep *ep;
	char *data = NULL;
948
	ssize_t ret, data_len = -EINVAL;
949 950
	int halt;

951
	/* Are we still active? */
952 953
	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;
954

955 956 957
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
958 959
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;
960

961 962
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
963 964
		if (ret)
			return -EINTR;
965
	}
966

967
	/* Do we halt? */
968
	halt = (!io_data->read == !epfile->in);
969 970
	if (halt && epfile->isoc)
		return -EINVAL;
971

972 973 974 975 976
	/* We will be using request and read_buffer */
	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret))
		goto error;

977 978
	/* Allocate & copy */
	if (!halt) {
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
		struct usb_gadget *gadget;

		/*
		 * Do we have buffered data from previous partial read?  Check
		 * that for synchronous case only because we do not have
		 * facility to ‘wake up’ a pending asynchronous read and push
		 * buffered data to it which we would need to make things behave
		 * consistently.
		 */
		if (!io_data->aio && io_data->read) {
			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
			if (ret)
				goto error_mutex;
		}

994 995
		/*
		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
996 997
		 * before the waiting completes, so do not assign to 'gadget'
		 * earlier
998
		 */
999
		gadget = epfile->ffs->gadget;
1000

1001 1002 1003
		spin_lock_irq(&epfile->ffs->eps_lock);
		/* In the meantime, endpoint got disabled or changed. */
		if (epfile->ep != ep) {
1004 1005
			ret = -ESHUTDOWN;
			goto error_lock;
1006
		}
1007
		data_len = iov_iter_count(&io_data->data);
1008 1009 1010 1011
		/*
		 * Controller may require buffer size to be aligned to
		 * maxpacketsize of an out endpoint.
		 */
1012 1013
		if (io_data->read)
			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1014 1015

		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1016
		spin_unlock_irq(&epfile->ffs->eps_lock);
1017

1018
		data = ffs_alloc_buffer(io_data, data_len);
1019 1020 1021 1022 1023
		if (unlikely(!data)) {
			ret = -ENOMEM;
			goto error_mutex;
		}
		if (!io_data->read &&
1024
		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1025 1026
			ret = -EFAULT;
			goto error_mutex;
1027 1028
		}
	}
1029

1030
	spin_lock_irq(&epfile->ffs->eps_lock);
1031

1032 1033 1034 1035
	if (epfile->ep != ep) {
		/* In the meantime, endpoint got disabled or changed. */
		ret = -ESHUTDOWN;
	} else if (halt) {
1036 1037 1038
		ret = usb_ep_set_halt(ep->ep);
		if (!ret)
			ret = -EBADMSG;
1039
	} else if (unlikely(data_len == -EINVAL)) {
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		/*
		 * Sanity Check: even though data_len can't be used
		 * uninitialized at the time I write this comment, some
		 * compilers complain about this situation.
		 * In order to keep the code clean from warnings, data_len is
		 * being initialized to -EINVAL during its declaration, which
		 * means we can't rely on compiler anymore to warn no future
		 * changes won't result in data_len being used uninitialized.
		 * For such reason, we're adding this redundant sanity check
		 * here.
		 */
1051 1052 1053 1054
		WARN(1, "%s: data_len == -EINVAL\n", __func__);
		ret = -EINVAL;
	} else if (!io_data->aio) {
		DECLARE_COMPLETION_ONSTACK(done);
1055
		bool interrupted = false;
1056

1057
		req = ep->req;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		if (io_data->use_sg) {
			req->buf = NULL;
			req->sg	= io_data->sgt.sgl;
			req->num_sgs = io_data->sgt.nents;
		} else {
			req->buf = data;
		}
		req->length = data_len;

		io_data->buf = data;
1068

1069 1070
		req->context  = &done;
		req->complete = ffs_epfile_io_complete;
1071

1072 1073 1074
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret < 0))
			goto error_lock;
1075

1076
		spin_unlock_irq(&epfile->ffs->eps_lock);
1077

1078
		if (unlikely(wait_for_completion_interruptible(&done))) {
1079 1080 1081 1082 1083 1084
			/*
			 * To avoid race condition with ffs_epfile_io_complete,
			 * dequeue the request first then check
			 * status. usb_ep_dequeue API should guarantee no race
			 * condition with req->complete callback.
			 */
1085
			usb_ep_dequeue(ep->ep, req);
1086
			wait_for_completion(&done);
1087
			interrupted = ep->status < 0;
1088
		}
1089

1090 1091 1092
		if (interrupted)
			ret = -EINTR;
		else if (io_data->read && ep->status > 0)
1093 1094
			ret = __ffs_epfile_read_data(epfile, data, ep->status,
						     &io_data->data);
1095 1096
		else
			ret = ep->status;
1097
		goto error_mutex;
1098
	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1099 1100
		ret = -ENOMEM;
	} else {
1101 1102 1103 1104 1105 1106 1107 1108
		if (io_data->use_sg) {
			req->buf = NULL;
			req->sg	= io_data->sgt.sgl;
			req->num_sgs = io_data->sgt.nents;
		} else {
			req->buf = data;
		}
		req->length = data_len;
1109

1110 1111 1112 1113
		io_data->buf = data;
		io_data->ep = ep->ep;
		io_data->req = req;
		io_data->ffs = epfile->ffs;
1114

1115 1116
		req->context  = io_data;
		req->complete = ffs_epfile_async_io_complete;
1117

1118 1119 1120 1121
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret)) {
			usb_ep_free_request(ep->ep, req);
			goto error_lock;
1122 1123
		}

1124 1125 1126 1127 1128 1129 1130
		ret = -EIOCBQUEUED;
		/*
		 * Do not kfree the buffer in this function.  It will be freed
		 * by ffs_user_copy_worker.
		 */
		data = NULL;
	}
1131 1132 1133

error_lock:
	spin_unlock_irq(&epfile->ffs->eps_lock);
1134
error_mutex:
1135
	mutex_unlock(&epfile->mutex);
1136
error:
1137 1138
	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
		ffs_free_buffer(io_data);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	return ret;
}

static int
ffs_epfile_open(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

	file->private_data = epfile;
	ffs_data_opened(epfile->ffs);

	return 0;
}

1158 1159 1160
static int ffs_aio_cancel(struct kiocb *kiocb)
{
	struct ffs_io_data *io_data = kiocb->private;
1161
	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1162 1163 1164 1165
	int value;

	ENTER();

1166 1167 1168 1169 1170
	spin_lock_irq(&epfile->ffs->eps_lock);

	if (likely(io_data && io_data->ep && io_data->req))
		value = usb_ep_dequeue(io_data->ep, io_data->req);
	else
1171
		value = -EINVAL;
1172 1173

	spin_unlock_irq(&epfile->ffs->eps_lock);
1174 1175 1176 1177

	return value;
}

1178
static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1179
{
1180
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1181
	ssize_t res;
1182 1183 1184

	ENTER();

1185 1186 1187 1188 1189 1190 1191 1192
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
	}
1193

1194 1195 1196 1197
	p->read = false;
	p->kiocb = kiocb;
	p->data = *from;
	p->mm = current->mm;
1198

1199
	kiocb->private = p;
1200

1201 1202
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1203

1204 1205 1206 1207 1208 1209 1210
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;
	if (p->aio)
		kfree(p);
	else
		*from = p->data;
A
Al Viro 已提交
1211
	return res;
1212 1213
}

1214
static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1215
{
1216
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1217
	ssize_t res;
1218 1219 1220

	ENTER();

1221 1222 1223 1224 1225 1226 1227
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
1228 1229
	}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	p->read = true;
	p->kiocb = kiocb;
	if (p->aio) {
		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
		if (!p->to_free) {
			kfree(p);
			return -ENOMEM;
		}
	} else {
		p->data = *to;
		p->to_free = NULL;
	}
	p->mm = current->mm;
1243

1244
	kiocb->private = p;
1245

1246 1247
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;

	if (p->aio) {
		kfree(p->to_free);
		kfree(p);
	} else {
		*to = p->data;
A
Al Viro 已提交
1258 1259
	}
	return res;
1260 1261
}

1262 1263 1264 1265 1266 1267 1268
static int
ffs_epfile_release(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

1269
	__ffs_epfile_read_buffer_free(epfile);
1270 1271 1272 1273 1274 1275 1276 1277 1278
	ffs_data_closed(epfile->ffs);

	return 0;
}

static long ffs_epfile_ioctl(struct file *file, unsigned code,
			     unsigned long value)
{
	struct ffs_epfile *epfile = file->private_data;
1279
	struct ffs_ep *ep;
1280 1281 1282 1283 1284 1285 1286
	int ret;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

1287 1288 1289 1290 1291 1292
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;

1293 1294
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
1295 1296 1297 1298
		if (ret)
			return -EINTR;
	}

1299
	spin_lock_irq(&epfile->ffs->eps_lock);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

	/* In the meantime, endpoint got disabled or changed. */
	if (epfile->ep != ep) {
		spin_unlock_irq(&epfile->ffs->eps_lock);
		return -ESHUTDOWN;
	}

	switch (code) {
	case FUNCTIONFS_FIFO_STATUS:
		ret = usb_ep_fifo_status(epfile->ep->ep);
		break;
	case FUNCTIONFS_FIFO_FLUSH:
		usb_ep_fifo_flush(epfile->ep->ep);
		ret = 0;
		break;
	case FUNCTIONFS_CLEAR_HALT:
		ret = usb_ep_clear_halt(epfile->ep->ep);
		break;
	case FUNCTIONFS_ENDPOINT_REVMAP:
		ret = epfile->ep->num;
		break;
	case FUNCTIONFS_ENDPOINT_DESC:
	{
		int desc_idx;
		struct usb_endpoint_descriptor *desc;

		switch (epfile->ffs->gadget->speed) {
		case USB_SPEED_SUPER:
			desc_idx = 2;
1329
			break;
1330 1331
		case USB_SPEED_HIGH:
			desc_idx = 1;
1332 1333
			break;
		default:
1334
			desc_idx = 0;
1335
		}
1336 1337 1338
		desc = epfile->ep->descs[desc_idx];

		spin_unlock_irq(&epfile->ffs->eps_lock);
1339
		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1340 1341 1342 1343 1344 1345
		if (ret)
			ret = -EFAULT;
		return ret;
	}
	default:
		ret = -ENOTTY;
1346 1347 1348 1349 1350 1351
	}
	spin_unlock_irq(&epfile->ffs->eps_lock);

	return ret;
}

1352 1353 1354 1355 1356 1357 1358 1359
#ifdef CONFIG_COMPAT
static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
		unsigned long value)
{
	return ffs_epfile_ioctl(file, code, value);
}
#endif

1360 1361 1362 1363
static const struct file_operations ffs_epfile_operations = {
	.llseek =	no_llseek,

	.open =		ffs_epfile_open,
1364 1365
	.write_iter =	ffs_epfile_write_iter,
	.read_iter =	ffs_epfile_read_iter,
1366 1367
	.release =	ffs_epfile_release,
	.unlocked_ioctl =	ffs_epfile_ioctl,
1368 1369 1370
#ifdef CONFIG_COMPAT
	.compat_ioctl = ffs_epfile_compat_ioctl,
#endif
1371 1372 1373 1374 1375 1376
};


/* File system and super block operations ***********************************/

/*
1377
 * Mounting the file system creates a controller file, used first for
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
 * function configuration then later for event monitoring.
 */

static struct inode *__must_check
ffs_sb_make_inode(struct super_block *sb, void *data,
		  const struct file_operations *fops,
		  const struct inode_operations *iops,
		  struct ffs_file_perms *perms)
{
	struct inode *inode;

	ENTER();

	inode = new_inode(sb);

	if (likely(inode)) {
1394
		struct timespec64 ts = current_time(inode);
1395

1396
		inode->i_ino	 = get_next_ino();
1397 1398 1399
		inode->i_mode    = perms->mode;
		inode->i_uid     = perms->uid;
		inode->i_gid     = perms->gid;
1400 1401 1402
		inode->i_atime   = ts;
		inode->i_mtime   = ts;
		inode->i_ctime   = ts;
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		inode->i_private = data;
		if (fops)
			inode->i_fop = fops;
		if (iops)
			inode->i_op  = iops;
	}

	return inode;
}

/* Create "regular" file */
A
Al Viro 已提交
1414
static struct dentry *ffs_sb_create_file(struct super_block *sb,
1415
					const char *name, void *data,
A
Al Viro 已提交
1416
					const struct file_operations *fops)
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
{
	struct ffs_data	*ffs = sb->s_fs_info;
	struct dentry	*dentry;
	struct inode	*inode;

	ENTER();

	dentry = d_alloc_name(sb->s_root, name);
	if (unlikely(!dentry))
		return NULL;

	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
	if (unlikely(!inode)) {
		dput(dentry);
		return NULL;
	}

	d_add(dentry, inode);
A
Al Viro 已提交
1435
	return dentry;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
}

/* Super block */
static const struct super_operations ffs_sb_operations = {
	.statfs =	simple_statfs,
	.drop_inode =	generic_delete_inode,
};

struct ffs_sb_fill_data {
	struct ffs_file_perms perms;
	umode_t root_mode;
	const char *dev_name;
1448
	bool no_disconnect;
A
Al Viro 已提交
1449
	struct ffs_data *ffs_data;
1450 1451 1452 1453 1454 1455
};

static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
{
	struct ffs_sb_fill_data *data = _data;
	struct inode	*inode;
A
Al Viro 已提交
1456
	struct ffs_data	*ffs = data->ffs_data;
1457 1458 1459 1460

	ENTER();

	ffs->sb              = sb;
A
Al Viro 已提交
1461
	data->ffs_data       = NULL;
1462
	sb->s_fs_info        = ffs;
1463 1464
	sb->s_blocksize      = PAGE_SIZE;
	sb->s_blocksize_bits = PAGE_SHIFT;
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	sb->s_magic          = FUNCTIONFS_MAGIC;
	sb->s_op             = &ffs_sb_operations;
	sb->s_time_gran      = 1;

	/* Root inode */
	data->perms.mode = data->root_mode;
	inode = ffs_sb_make_inode(sb, NULL,
				  &simple_dir_operations,
				  &simple_dir_inode_operations,
				  &data->perms);
1475 1476
	sb->s_root = d_make_root(inode);
	if (unlikely(!sb->s_root))
A
Al Viro 已提交
1477
		return -ENOMEM;
1478 1479 1480

	/* EP0 file */
	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
A
Al Viro 已提交
1481
					 &ffs_ep0_operations)))
A
Al Viro 已提交
1482
		return -ENOMEM;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

	return 0;
}

static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
{
	ENTER();

	if (!opts || !*opts)
		return 0;

	for (;;) {
		unsigned long value;
1496
		char *eq, *comma;
1497 1498 1499 1500 1501 1502 1503 1504 1505

		/* Option limit */
		comma = strchr(opts, ',');
		if (comma)
			*comma = 0;

		/* Value limit */
		eq = strchr(opts, '=');
		if (unlikely(!eq)) {
1506
			pr_err("'=' missing in %s\n", opts);
1507 1508 1509 1510 1511
			return -EINVAL;
		}
		*eq = 0;

		/* Parse value */
1512
		if (kstrtoul(eq + 1, 0, &value)) {
1513
			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1514 1515 1516 1517 1518
			return -EINVAL;
		}

		/* Interpret option */
		switch (eq - opts) {
1519 1520 1521 1522 1523 1524
		case 13:
			if (!memcmp(opts, "no_disconnect", 13))
				data->no_disconnect = !!value;
			else
				goto invalid;
			break;
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
		case 5:
			if (!memcmp(opts, "rmode", 5))
				data->root_mode  = (value & 0555) | S_IFDIR;
			else if (!memcmp(opts, "fmode", 5))
				data->perms.mode = (value & 0666) | S_IFREG;
			else
				goto invalid;
			break;

		case 4:
			if (!memcmp(opts, "mode", 4)) {
				data->root_mode  = (value & 0555) | S_IFDIR;
				data->perms.mode = (value & 0666) | S_IFREG;
			} else {
				goto invalid;
			}
			break;

		case 3:
1544 1545 1546 1547 1548 1549
			if (!memcmp(opts, "uid", 3)) {
				data->perms.uid = make_kuid(current_user_ns(), value);
				if (!uid_valid(data->perms.uid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1550
			} else if (!memcmp(opts, "gid", 3)) {
1551 1552 1553 1554 1555
				data->perms.gid = make_kgid(current_user_ns(), value);
				if (!gid_valid(data->perms.gid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1556
			} else {
1557
				goto invalid;
1558
			}
1559 1560 1561 1562
			break;

		default:
invalid:
1563
			pr_err("%s: invalid option\n", opts);
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
			return -EINVAL;
		}

		/* Next iteration */
		if (!comma)
			break;
		opts = comma + 1;
	}

	return 0;
}

/* "mount -t functionfs dev_name /dev/function" ends up here */

A
Al Viro 已提交
1578 1579 1580
static struct dentry *
ffs_fs_mount(struct file_system_type *t, int flags,
	      const char *dev_name, void *opts)
1581 1582 1583 1584
{
	struct ffs_sb_fill_data data = {
		.perms = {
			.mode = S_IFREG | 0600,
1585 1586
			.uid = GLOBAL_ROOT_UID,
			.gid = GLOBAL_ROOT_GID,
1587 1588
		},
		.root_mode = S_IFDIR | 0500,
1589
		.no_disconnect = false,
1590
	};
1591
	struct dentry *rv;
1592
	int ret;
1593
	void *ffs_dev;
A
Al Viro 已提交
1594
	struct ffs_data	*ffs;
1595 1596 1597 1598 1599

	ENTER();

	ret = ffs_fs_parse_opts(&data, opts);
	if (unlikely(ret < 0))
A
Al Viro 已提交
1600
		return ERR_PTR(ret);
1601

1602
	ffs = ffs_data_new(dev_name);
A
Al Viro 已提交
1603 1604 1605
	if (unlikely(!ffs))
		return ERR_PTR(-ENOMEM);
	ffs->file_perms = data.perms;
1606
	ffs->no_disconnect = data.no_disconnect;
A
Al Viro 已提交
1607 1608 1609 1610 1611 1612 1613

	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
	if (unlikely(!ffs->dev_name)) {
		ffs_data_put(ffs);
		return ERR_PTR(-ENOMEM);
	}

1614
	ffs_dev = ffs_acquire_dev(dev_name);
A
Al Viro 已提交
1615 1616 1617 1618 1619 1620
	if (IS_ERR(ffs_dev)) {
		ffs_data_put(ffs);
		return ERR_CAST(ffs_dev);
	}
	ffs->private_data = ffs_dev;
	data.ffs_data = ffs;
1621 1622

	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
A
Al Viro 已提交
1623
	if (IS_ERR(rv) && data.ffs_data) {
1624
		ffs_release_dev(data.ffs_data);
A
Al Viro 已提交
1625 1626
		ffs_data_put(data.ffs_data);
	}
1627
	return rv;
1628 1629 1630 1631 1632 1633 1634 1635
}

static void
ffs_fs_kill_sb(struct super_block *sb)
{
	ENTER();

	kill_litter_super(sb);
1636
	if (sb->s_fs_info) {
1637
		ffs_release_dev(sb->s_fs_info);
1638
		ffs_data_closed(sb->s_fs_info);
1639
	}
1640 1641 1642 1643 1644
}

static struct file_system_type ffs_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "functionfs",
A
Al Viro 已提交
1645
	.mount		= ffs_fs_mount,
1646 1647
	.kill_sb	= ffs_fs_kill_sb,
};
1648
MODULE_ALIAS_FS("functionfs");
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660


/* Driver's main init/cleanup functions *************************************/

static int functionfs_init(void)
{
	int ret;

	ENTER();

	ret = register_filesystem(&ffs_fs_type);
	if (likely(!ret))
1661
		pr_info("file system registered\n");
1662
	else
1663
		pr_err("failed registering file system (%d)\n", ret);
1664 1665 1666 1667 1668 1669 1670 1671

	return ret;
}

static void functionfs_cleanup(void)
{
	ENTER();

1672
	pr_info("unloading\n");
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	unregister_filesystem(&ffs_fs_type);
}


/* ffs_data and ffs_function construction and destruction code **************/

static void ffs_data_clear(struct ffs_data *ffs);
static void ffs_data_reset(struct ffs_data *ffs);

static void ffs_data_get(struct ffs_data *ffs)
{
	ENTER();

1686
	refcount_inc(&ffs->ref);
1687 1688 1689 1690 1691 1692
}

static void ffs_data_opened(struct ffs_data *ffs)
{
	ENTER();

1693
	refcount_inc(&ffs->ref);
1694 1695 1696 1697 1698
	if (atomic_add_return(1, &ffs->opened) == 1 &&
			ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}
1699 1700 1701 1702 1703 1704
}

static void ffs_data_put(struct ffs_data *ffs)
{
	ENTER();

1705
	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1706
		pr_info("%s(): freeing\n", __func__);
1707
		ffs_data_clear(ffs);
1708
		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1709 1710
		       waitqueue_active(&ffs->ep0req_completion.wait) ||
		       waitqueue_active(&ffs->wait));
1711
		destroy_workqueue(ffs->io_completion_wq);
1712
		kfree(ffs->dev_name);
1713 1714 1715 1716 1717 1718 1719 1720 1721
		kfree(ffs);
	}
}

static void ffs_data_closed(struct ffs_data *ffs)
{
	ENTER();

	if (atomic_dec_and_test(&ffs->opened)) {
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
		if (ffs->no_disconnect) {
			ffs->state = FFS_DEACTIVATED;
			if (ffs->epfiles) {
				ffs_epfiles_destroy(ffs->epfiles,
						   ffs->eps_count);
				ffs->epfiles = NULL;
			}
			if (ffs->setup_state == FFS_SETUP_PENDING)
				__ffs_ep0_stall(ffs);
		} else {
			ffs->state = FFS_CLOSING;
			ffs_data_reset(ffs);
		}
	}
	if (atomic_read(&ffs->opened) < 0) {
1737 1738 1739 1740 1741 1742 1743
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}

	ffs_data_put(ffs);
}

1744
static struct ffs_data *ffs_data_new(const char *dev_name)
1745 1746 1747
{
	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
	if (unlikely(!ffs))
1748
		return NULL;
1749 1750 1751

	ENTER();

1752 1753 1754 1755 1756 1757
	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
	if (!ffs->io_completion_wq) {
		kfree(ffs);
		return NULL;
	}

1758
	refcount_set(&ffs->ref, 1);
1759 1760 1761 1762 1763
	atomic_set(&ffs->opened, 0);
	ffs->state = FFS_READ_DESCRIPTORS;
	mutex_init(&ffs->mutex);
	spin_lock_init(&ffs->eps_lock);
	init_waitqueue_head(&ffs->ev.waitq);
1764
	init_waitqueue_head(&ffs->wait);
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	init_completion(&ffs->ep0req_completion);

	/* XXX REVISIT need to update it in some places, or do we? */
	ffs->ev.can_stall = 1;

	return ffs;
}

static void ffs_data_clear(struct ffs_data *ffs)
{
	ENTER();

1777
	ffs_closed(ffs);
1778 1779 1780 1781 1782 1783

	BUG_ON(ffs->gadget);

	if (ffs->epfiles)
		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);

1784 1785 1786
	if (ffs->ffs_eventfd)
		eventfd_ctx_put(ffs->ffs_eventfd);

1787
	kfree(ffs->raw_descs_data);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	kfree(ffs->raw_strings);
	kfree(ffs->stringtabs);
}

static void ffs_data_reset(struct ffs_data *ffs)
{
	ENTER();

	ffs_data_clear(ffs);

	ffs->epfiles = NULL;
1799
	ffs->raw_descs_data = NULL;
1800 1801 1802 1803 1804 1805 1806
	ffs->raw_descs = NULL;
	ffs->raw_strings = NULL;
	ffs->stringtabs = NULL;

	ffs->raw_descs_length = 0;
	ffs->fs_descs_count = 0;
	ffs->hs_descs_count = 0;
1807
	ffs->ss_descs_count = 0;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

	ffs->strings_count = 0;
	ffs->interfaces_count = 0;
	ffs->eps_count = 0;

	ffs->ev.count = 0;

	ffs->state = FFS_READ_DESCRIPTORS;
	ffs->setup_state = FFS_NO_SETUP;
	ffs->flags = 0;
}


static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
{
1823 1824
	struct usb_gadget_strings **lang;
	int first_id;
1825 1826 1827 1828 1829 1830 1831

	ENTER();

	if (WARN_ON(ffs->state != FFS_ACTIVE
		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
		return -EBADFD;

1832 1833 1834
	first_id = usb_string_ids_n(cdev, ffs->strings_count);
	if (unlikely(first_id < 0))
		return first_id;
1835 1836 1837 1838 1839 1840 1841

	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
	if (unlikely(!ffs->ep0req))
		return -ENOMEM;
	ffs->ep0req->complete = ffs_ep0_complete;
	ffs->ep0req->context = ffs;

1842
	lang = ffs->stringtabs;
1843 1844 1845 1846 1847 1848 1849
	if (lang) {
		for (; *lang; ++lang) {
			struct usb_string *str = (*lang)->strings;
			int id = first_id;
			for (; str->s; ++id, ++str)
				str->id = id;
		}
1850 1851 1852
	}

	ffs->gadget = cdev->gadget;
1853
	ffs_data_get(ffs);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	return 0;
}

static void functionfs_unbind(struct ffs_data *ffs)
{
	ENTER();

	if (!WARN_ON(!ffs->gadget)) {
		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
		ffs->ep0req = NULL;
		ffs->gadget = NULL;
1865
		clear_bit(FFS_FL_BOUND, &ffs->flags);
1866
		ffs_data_put(ffs);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	}
}

static int ffs_epfiles_create(struct ffs_data *ffs)
{
	struct ffs_epfile *epfile, *epfiles;
	unsigned i, count;

	ENTER();

	count = ffs->eps_count;
1878
	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1879 1880 1881 1882 1883 1884 1885
	if (!epfiles)
		return -ENOMEM;

	epfile = epfiles;
	for (i = 1; i <= count; ++i, ++epfile) {
		epfile->ffs = ffs;
		mutex_init(&epfile->mutex);
1886
		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1887
			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1888
		else
1889 1890
			sprintf(epfile->name, "ep%u", i);
		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
A
Al Viro 已提交
1891 1892 1893
						 epfile,
						 &ffs_epfile_operations);
		if (unlikely(!epfile->dentry)) {
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
			ffs_epfiles_destroy(epfiles, i - 1);
			return -ENOMEM;
		}
	}

	ffs->epfiles = epfiles;
	return 0;
}

static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
{
	struct ffs_epfile *epfile = epfiles;

	ENTER();

	for (; count; --count, ++epfile) {
1910
		BUG_ON(mutex_is_locked(&epfile->mutex));
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		if (epfile->dentry) {
			d_delete(epfile->dentry);
			dput(epfile->dentry);
			epfile->dentry = NULL;
		}
	}

	kfree(epfiles);
}

static void ffs_func_eps_disable(struct ffs_function *func)
{
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = func->ffs->epfiles;
	unsigned count            = func->ffs->eps_count;
	unsigned long flags;

1928
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1929
	while (count--) {
1930 1931 1932 1933
		/* pending requests get nuked */
		if (likely(ep->ep))
			usb_ep_disable(ep->ep);
		++ep;
1934 1935

		if (epfile) {
1936 1937
			epfile->ep = NULL;
			__ffs_epfile_read_buffer_free(epfile);
1938 1939
			++epfile;
		}
1940
	}
1941
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
}

static int ffs_func_eps_enable(struct ffs_function *func)
{
	struct ffs_data *ffs      = func->ffs;
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = ffs->epfiles;
	unsigned count            = ffs->eps_count;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1954
	while(count--) {
1955
		ep->ep->driver_data = ep;
1956

1957 1958 1959 1960 1961
		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
		if (ret) {
			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
					__func__, ep->ep->name, ret);
			break;
1962
		}
1963

1964
		ret = usb_ep_enable(ep->ep);
1965 1966
		if (likely(!ret)) {
			epfile->ep = ep;
1967 1968
			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1969 1970 1971 1972 1973 1974
		} else {
			break;
		}

		++ep;
		++epfile;
1975
	}
1976 1977

	wake_up_interruptible(&ffs->wait);
1978 1979 1980 1981 1982 1983 1984 1985
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);

	return ret;
}


/* Parsing and building descriptors and strings *****************************/

1986 1987
/*
 * This validates if data pointed by data is a valid USB descriptor as
1988
 * well as record how many interfaces, endpoints and strings are
1989 1990 1991
 * required by given configuration.  Returns address after the
 * descriptor or NULL if data is invalid.
 */
1992 1993 1994 1995 1996

enum ffs_entity_type {
	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
};

1997 1998 1999 2000
enum ffs_os_desc_type {
	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
};

2001 2002 2003 2004 2005
typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
				   u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv);

2006 2007 2008 2009
typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
				    struct usb_os_desc_header *h, void *data,
				    unsigned len, void *priv);

2010 2011
static int __must_check ffs_do_single_desc(char *data, unsigned len,
					   ffs_entity_callback entity,
2012
					   void *priv, int *current_class)
2013 2014 2015 2016 2017 2018 2019 2020 2021
{
	struct usb_descriptor_header *_ds = (void *)data;
	u8 length;
	int ret;

	ENTER();

	/* At least two bytes are required: length and type */
	if (len < 2) {
2022
		pr_vdebug("descriptor too short\n");
2023 2024 2025 2026 2027 2028
		return -EINVAL;
	}

	/* If we have at least as many bytes as the descriptor takes? */
	length = _ds->bLength;
	if (len < length) {
2029
		pr_vdebug("descriptor longer then available data\n");
2030 2031 2032 2033 2034 2035 2036
		return -EINVAL;
	}

#define __entity_check_INTERFACE(val)  1
#define __entity_check_STRING(val)     (val)
#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
#define __entity(type, val) do {					\
2037
		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2038
		if (unlikely(!__entity_check_ ##type(val))) {		\
2039
			pr_vdebug("invalid entity's value\n");		\
2040 2041 2042 2043
			return -EINVAL;					\
		}							\
		ret = entity(FFS_ ##type, &val, _ds, priv);		\
		if (unlikely(ret < 0)) {				\
2044
			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2045
				 (val), ret);				\
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
			return ret;					\
		}							\
	} while (0)

	/* Parse descriptor depending on type. */
	switch (_ds->bDescriptorType) {
	case USB_DT_DEVICE:
	case USB_DT_CONFIG:
	case USB_DT_STRING:
	case USB_DT_DEVICE_QUALIFIER:
		/* function can't have any of those */
2057
		pr_vdebug("descriptor reserved for gadget: %d\n",
2058
		      _ds->bDescriptorType);
2059 2060 2061 2062
		return -EINVAL;

	case USB_DT_INTERFACE: {
		struct usb_interface_descriptor *ds = (void *)_ds;
2063
		pr_vdebug("interface descriptor\n");
2064 2065 2066 2067 2068 2069
		if (length != sizeof *ds)
			goto inv_length;

		__entity(INTERFACE, ds->bInterfaceNumber);
		if (ds->iInterface)
			__entity(STRING, ds->iInterface);
2070
		*current_class = ds->bInterfaceClass;
2071 2072 2073 2074 2075
	}
		break;

	case USB_DT_ENDPOINT: {
		struct usb_endpoint_descriptor *ds = (void *)_ds;
2076
		pr_vdebug("endpoint descriptor\n");
2077 2078 2079 2080 2081 2082 2083
		if (length != USB_DT_ENDPOINT_SIZE &&
		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
			goto inv_length;
		__entity(ENDPOINT, ds->bEndpointAddress);
	}
		break;

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	case USB_TYPE_CLASS | 0x01:
                if (*current_class == USB_INTERFACE_CLASS_HID) {
			pr_vdebug("hid descriptor\n");
			if (length != sizeof(struct hid_descriptor))
				goto inv_length;
			break;
		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
			pr_vdebug("ccid descriptor\n");
			if (length != sizeof(struct ccid_descriptor))
				goto inv_length;
			break;
		} else {
			pr_vdebug("unknown descriptor: %d for class %d\n",
			      _ds->bDescriptorType, *current_class);
			return -EINVAL;
		}
2100

2101 2102 2103 2104 2105 2106 2107
	case USB_DT_OTG:
		if (length != sizeof(struct usb_otg_descriptor))
			goto inv_length;
		break;

	case USB_DT_INTERFACE_ASSOCIATION: {
		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2108
		pr_vdebug("interface association descriptor\n");
2109 2110 2111 2112 2113 2114 2115
		if (length != sizeof *ds)
			goto inv_length;
		if (ds->iFunction)
			__entity(STRING, ds->iFunction);
	}
		break;

2116 2117 2118 2119 2120 2121
	case USB_DT_SS_ENDPOINT_COMP:
		pr_vdebug("EP SS companion descriptor\n");
		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
			goto inv_length;
		break;

2122 2123 2124 2125 2126 2127
	case USB_DT_OTHER_SPEED_CONFIG:
	case USB_DT_INTERFACE_POWER:
	case USB_DT_DEBUG:
	case USB_DT_SECURITY:
	case USB_DT_CS_RADIO_CONTROL:
		/* TODO */
2128
		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2129 2130 2131 2132
		return -EINVAL;

	default:
		/* We should never be here */
2133
		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2134 2135
		return -EINVAL;

2136
inv_length:
2137
		pr_vdebug("invalid length: %d (descriptor %d)\n",
2138
			  _ds->bLength, _ds->bDescriptorType);
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		return -EINVAL;
	}

#undef __entity
#undef __entity_check_DESCRIPTOR
#undef __entity_check_INTERFACE
#undef __entity_check_STRING
#undef __entity_check_ENDPOINT

	return length;
}

static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
				     ffs_entity_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;
2156
	int current_class = -1;
2157 2158 2159 2160 2161 2162 2163 2164 2165

	ENTER();

	for (;;) {
		int ret;

		if (num == count)
			data = NULL;

2166
		/* Record "descriptor" entity */
2167 2168
		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
		if (unlikely(ret < 0)) {
2169
			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2170
				 num, ret);
2171 2172 2173 2174 2175 2176
			return ret;
		}

		if (!data)
			return _len - len;

2177 2178
		ret = ffs_do_single_desc(data, len, entity, priv,
			&current_class);
2179
		if (unlikely(ret < 0)) {
2180
			pr_debug("%s returns %d\n", __func__, ret);
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
			return ret;
		}

		len -= ret;
		data += ret;
		++num;
	}
}

static int __ffs_data_do_entity(enum ffs_entity_type type,
				u8 *valuep, struct usb_descriptor_header *desc,
				void *priv)
{
2194 2195
	struct ffs_desc_helper *helper = priv;
	struct usb_endpoint_descriptor *d;
2196 2197 2198 2199 2200 2201 2202 2203

	ENTER();

	switch (type) {
	case FFS_DESCRIPTOR:
		break;

	case FFS_INTERFACE:
2204 2205
		/*
		 * Interfaces are indexed from zero so if we
2206
		 * encountered interface "n" then there are at least
2207 2208
		 * "n+1" interfaces.
		 */
2209 2210
		if (*valuep >= helper->interfaces_count)
			helper->interfaces_count = *valuep + 1;
2211 2212 2213
		break;

	case FFS_STRING:
2214
		/*
2215 2216
		 * Strings are indexed from 1 (0 is reserved
		 * for languages list)
2217
		 */
2218 2219
		if (*valuep > helper->ffs->strings_count)
			helper->ffs->strings_count = *valuep;
2220 2221 2222
		break;

	case FFS_ENDPOINT:
2223 2224
		d = (void *)desc;
		helper->eps_count++;
2225
		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2226 2227 2228 2229 2230 2231 2232 2233
			return -EINVAL;
		/* Check if descriptors for any speed were already parsed */
		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
			helper->ffs->eps_addrmap[helper->eps_count] =
				d->bEndpointAddress;
		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
				d->bEndpointAddress)
			return -EINVAL;
2234 2235 2236 2237 2238 2239
		break;
	}

	return 0;
}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
				   struct usb_os_desc_header *desc)
{
	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
	u16 w_index = le16_to_cpu(desc->wIndex);

	if (bcd_version != 1) {
		pr_vdebug("unsupported os descriptors version: %d",
			  bcd_version);
		return -EINVAL;
	}
	switch (w_index) {
	case 0x4:
		*next_type = FFS_OS_DESC_EXT_COMPAT;
		break;
	case 0x5:
		*next_type = FFS_OS_DESC_EXT_PROP;
		break;
	default:
		pr_vdebug("unsupported os descriptor type: %d", w_index);
		return -EINVAL;
	}

	return sizeof(*desc);
}

/*
 * Process all extended compatibility/extended property descriptors
 * of a feature descriptor
 */
static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
					      enum ffs_os_desc_type type,
					      u16 feature_count,
					      ffs_os_desc_callback entity,
					      void *priv,
					      struct usb_os_desc_header *h)
{
	int ret;
	const unsigned _len = len;

	ENTER();

	/* loop over all ext compat/ext prop descriptors */
	while (feature_count--) {
		ret = entity(type, h, data, len, priv);
		if (unlikely(ret < 0)) {
			pr_debug("bad OS descriptor, type: %d\n", type);
			return ret;
		}
		data += ret;
		len -= ret;
	}
	return _len - len;
}

/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
static int __must_check ffs_do_os_descs(unsigned count,
					char *data, unsigned len,
					ffs_os_desc_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (num = 0; num < count; ++num) {
		int ret;
		enum ffs_os_desc_type type;
		u16 feature_count;
		struct usb_os_desc_header *desc = (void *)data;

		if (len < sizeof(*desc))
			return -EINVAL;

		/*
		 * Record "descriptor" entity.
		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
		 * Move the data pointer to the beginning of extended
		 * compatibilities proper or extended properties proper
		 * portions of the data
		 */
		if (le32_to_cpu(desc->dwLength) > len)
			return -EINVAL;

		ret = __ffs_do_os_desc_header(&type, desc);
		if (unlikely(ret < 0)) {
			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
				 num, ret);
			return ret;
		}
		/*
		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
		 */
		feature_count = le16_to_cpu(desc->wCount);
		if (type == FFS_OS_DESC_EXT_COMPAT &&
		    (feature_count > 255 || desc->Reserved))
				return -EINVAL;
		len -= ret;
		data += ret;

		/*
		 * Process all function/property descriptors
		 * of this Feature Descriptor
		 */
		ret = ffs_do_single_os_desc(data, len, type,
					    feature_count, entity, priv, desc);
		if (unlikely(ret < 0)) {
			pr_debug("%s returns %d\n", __func__, ret);
			return ret;
		}

		len -= ret;
		data += ret;
	}
	return _len - len;
}

/**
 * Validate contents of the buffer from userspace related to OS descriptors.
 */
static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
				 struct usb_os_desc_header *h, void *data,
				 unsigned len, void *priv)
{
	struct ffs_data *ffs = priv;
	u8 length;

	ENTER();

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *d = data;
		int i;

		if (len < sizeof(*d) ||
2375
		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2376
			return -EINVAL;
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
		if (d->Reserved1 != 1) {
			/*
			 * According to the spec, Reserved1 must be set to 1
			 * but older kernels incorrectly rejected non-zero
			 * values.  We fix it here to avoid returning EINVAL
			 * in response to values we used to accept.
			 */
			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
			d->Reserved1 = 1;
		}
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
			if (d->Reserved2[i])
				return -EINVAL;

		length = sizeof(struct usb_ext_compat_desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *d = data;
		u32 type, pdl;
		u16 pnl;

		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
			return -EINVAL;
		length = le32_to_cpu(d->dwSize);
2402 2403
		if (len < length)
			return -EINVAL;
2404 2405 2406 2407 2408 2409 2410 2411
		type = le32_to_cpu(d->dwPropertyDataType);
		if (type < USB_EXT_PROP_UNICODE ||
		    type > USB_EXT_PROP_UNICODE_MULTI) {
			pr_vdebug("unsupported os descriptor property type: %d",
				  type);
			return -EINVAL;
		}
		pnl = le16_to_cpu(d->wPropertyNameLength);
2412 2413 2414 2415 2416
		if (length < 14 + pnl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
				  length, pnl, type);
			return -EINVAL;
		}
2417
		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		if (length != 14 + pnl + pdl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
				  length, pnl, pdl, type);
			return -EINVAL;
		}
		++ffs->ms_os_descs_ext_prop_count;
		/* property name reported to the host as "WCHAR"s */
		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
		ffs->ms_os_descs_ext_prop_data_len += pdl;
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
		return -EINVAL;
	}
	return length;
}

2436 2437 2438
static int __ffs_data_got_descs(struct ffs_data *ffs,
				char *const _data, size_t len)
{
2439
	char *data = _data, *raw_descs;
2440
	unsigned os_descs_count = 0, counts[3], flags;
2441
	int ret = -EINVAL, i;
2442
	struct ffs_desc_helper helper;
2443 2444 2445

	ENTER();

2446
	if (get_unaligned_le32(data + 4) != len)
2447 2448
		goto error;

2449 2450 2451 2452 2453 2454 2455 2456
	switch (get_unaligned_le32(data)) {
	case FUNCTIONFS_DESCRIPTORS_MAGIC:
		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
		data += 8;
		len  -= 8;
		break;
	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
		flags = get_unaligned_le32(data + 8);
2457
		ffs->user_flags = flags;
2458 2459
		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
			      FUNCTIONFS_HAS_HS_DESC |
2460
			      FUNCTIONFS_HAS_SS_DESC |
2461
			      FUNCTIONFS_HAS_MS_OS_DESC |
2462
			      FUNCTIONFS_VIRTUAL_ADDR |
2463
			      FUNCTIONFS_EVENTFD |
2464 2465
			      FUNCTIONFS_ALL_CTRL_RECIP |
			      FUNCTIONFS_CONFIG0_SETUP)) {
2466
			ret = -ENOSYS;
2467 2468
			goto error;
		}
2469 2470 2471 2472 2473
		data += 12;
		len  -= 12;
		break;
	default:
		goto error;
2474 2475
	}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	if (flags & FUNCTIONFS_EVENTFD) {
		if (len < 4)
			goto error;
		ffs->ffs_eventfd =
			eventfd_ctx_fdget((int)get_unaligned_le32(data));
		if (IS_ERR(ffs->ffs_eventfd)) {
			ret = PTR_ERR(ffs->ffs_eventfd);
			ffs->ffs_eventfd = NULL;
			goto error;
		}
		data += 4;
		len  -= 4;
	}

2490 2491 2492 2493 2494
	/* Read fs_count, hs_count and ss_count (if present) */
	for (i = 0; i < 3; ++i) {
		if (!(flags & (1 << i))) {
			counts[i] = 0;
		} else if (len < 4) {
2495
			goto error;
2496 2497 2498 2499
		} else {
			counts[i] = get_unaligned_le32(data);
			data += 4;
			len  -= 4;
2500
		}
2501
	}
2502
	if (flags & (1 << i)) {
2503 2504 2505
		if (len < 4) {
			goto error;
		}
2506 2507 2508 2509
		os_descs_count = get_unaligned_le32(data);
		data += 4;
		len -= 4;
	};
2510

2511 2512
	/* Read descriptors */
	raw_descs = data;
2513
	helper.ffs = ffs;
2514 2515 2516
	for (i = 0; i < 3; ++i) {
		if (!counts[i])
			continue;
2517 2518
		helper.interfaces_count = 0;
		helper.eps_count = 0;
2519
		ret = ffs_do_descs(counts[i], data, len,
2520
				   __ffs_data_do_entity, &helper);
2521
		if (ret < 0)
2522
			goto error;
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
		if (!ffs->eps_count && !ffs->interfaces_count) {
			ffs->eps_count = helper.eps_count;
			ffs->interfaces_count = helper.interfaces_count;
		} else {
			if (ffs->eps_count != helper.eps_count) {
				ret = -EINVAL;
				goto error;
			}
			if (ffs->interfaces_count != helper.interfaces_count) {
				ret = -EINVAL;
				goto error;
			}
		}
2536 2537
		data += ret;
		len  -= ret;
2538
	}
2539 2540 2541 2542 2543 2544 2545 2546
	if (os_descs_count) {
		ret = ffs_do_os_descs(os_descs_count, data, len,
				      __ffs_data_do_os_desc, ffs);
		if (ret < 0)
			goto error;
		data += ret;
		len -= ret;
	}
2547

2548 2549 2550 2551
	if (raw_descs == data || len) {
		ret = -EINVAL;
		goto error;
	}
2552

2553 2554 2555 2556 2557 2558
	ffs->raw_descs_data	= _data;
	ffs->raw_descs		= raw_descs;
	ffs->raw_descs_length	= data - raw_descs;
	ffs->fs_descs_count	= counts[0];
	ffs->hs_descs_count	= counts[1];
	ffs->ss_descs_count	= counts[2];
2559
	ffs->ms_os_descs_count	= os_descs_count;
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573

	return 0;

error:
	kfree(_data);
	return ret;
}

static int __ffs_data_got_strings(struct ffs_data *ffs,
				  char *const _data, size_t len)
{
	u32 str_count, needed_count, lang_count;
	struct usb_gadget_strings **stringtabs, *t;
	const char *data = _data;
2574
	struct usb_string *s;
2575 2576 2577

	ENTER();

2578 2579
	if (unlikely(len < 16 ||
		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
		     get_unaligned_le32(data + 4) != len))
		goto error;
	str_count  = get_unaligned_le32(data + 8);
	lang_count = get_unaligned_le32(data + 12);

	/* if one is zero the other must be zero */
	if (unlikely(!str_count != !lang_count))
		goto error;

	/* Do we have at least as many strings as descriptors need? */
	needed_count = ffs->strings_count;
	if (unlikely(str_count < needed_count))
		goto error;

2594 2595 2596 2597
	/*
	 * If we don't need any strings just return and free all
	 * memory.
	 */
2598 2599 2600 2601 2602
	if (!needed_count) {
		kfree(_data);
		return 0;
	}

2603
	/* Allocate everything in one chunk so there's less maintenance. */
2604 2605
	{
		unsigned i = 0;
2606 2607 2608 2609 2610 2611
		vla_group(d);
		vla_item(d, struct usb_gadget_strings *, stringtabs,
			lang_count + 1);
		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
		vla_item(d, struct usb_string, strings,
			lang_count*(needed_count+1));
2612

2613 2614 2615
		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);

		if (unlikely(!vlabuf)) {
2616 2617 2618 2619
			kfree(_data);
			return -ENOMEM;
		}

2620 2621 2622
		/* Initialize the VLA pointers */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
2623 2624 2625 2626 2627 2628
		i = lang_count;
		do {
			*stringtabs++ = t++;
		} while (--i);
		*stringtabs = NULL;

2629 2630 2631 2632
		/* stringtabs = vlabuf = d_stringtabs for later kfree */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
		s = vla_ptr(vlabuf, d, strings);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
	}

	/* For each language */
	data += 16;
	len -= 16;

	do { /* lang_count > 0 so we can use do-while */
		unsigned needed = needed_count;

		if (unlikely(len < 3))
			goto error_free;
		t->language = get_unaligned_le16(data);
		t->strings  = s;
		++t;

		data += 2;
		len -= 2;

		/* For each string */
		do { /* str_count > 0 so we can use do-while */
			size_t length = strnlen(data, len);

			if (unlikely(length == len))
				goto error_free;

2658 2659 2660 2661 2662
			/*
			 * User may provide more strings then we need,
			 * if that's the case we simply ignore the
			 * rest
			 */
2663
			if (likely(needed)) {
2664 2665
				/*
				 * s->id will be set while adding
2666
				 * function to configuration so for
2667 2668
				 * now just leave garbage here.
				 */
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
				s->s = data;
				--needed;
				++s;
			}

			data += length + 1;
			len -= length + 1;
		} while (--str_count);

		s->id = 0;   /* terminator */
		s->s = NULL;
		++s;

	} while (--lang_count);

	/* Some garbage left? */
	if (unlikely(len))
		goto error_free;

	/* Done! */
	ffs->stringtabs = stringtabs;
	ffs->raw_strings = _data;

	return 0;

error_free:
	kfree(stringtabs);
error:
	kfree(_data);
	return -EINVAL;
}


/* Events handling and management *******************************************/

static void __ffs_event_add(struct ffs_data *ffs,
			    enum usb_functionfs_event_type type)
{
	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
	int neg = 0;

2710 2711 2712 2713
	/*
	 * Abort any unhandled setup
	 *
	 * We do not need to worry about some cmpxchg() changing value
2714 2715
	 * of ffs->setup_state without holding the lock because when
	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2716 2717
	 * the source does nothing.
	 */
2718
	if (ffs->setup_state == FFS_SETUP_PENDING)
2719
		ffs->setup_state = FFS_SETUP_CANCELLED;
2720

2721 2722 2723 2724 2725 2726 2727
	/*
	 * Logic of this function guarantees that there are at most four pending
	 * evens on ffs->ev.types queue.  This is important because the queue
	 * has space for four elements only and __ffs_ep0_read_events function
	 * depends on that limit as well.  If more event types are added, those
	 * limits have to be revisited or guaranteed to still hold.
	 */
2728 2729 2730
	switch (type) {
	case FUNCTIONFS_RESUME:
		rem_type2 = FUNCTIONFS_SUSPEND;
2731
		/* FALL THROUGH */
2732 2733 2734
	case FUNCTIONFS_SUSPEND:
	case FUNCTIONFS_SETUP:
		rem_type1 = type;
2735
		/* Discard all similar events */
2736 2737 2738 2739 2740 2741
		break;

	case FUNCTIONFS_BIND:
	case FUNCTIONFS_UNBIND:
	case FUNCTIONFS_DISABLE:
	case FUNCTIONFS_ENABLE:
2742
		/* Discard everything other then power management. */
2743 2744 2745 2746 2747 2748
		rem_type1 = FUNCTIONFS_SUSPEND;
		rem_type2 = FUNCTIONFS_RESUME;
		neg = 1;
		break;

	default:
2749 2750
		WARN(1, "%d: unknown event, this should not happen\n", type);
		return;
2751 2752 2753 2754 2755 2756 2757 2758 2759
	}

	{
		u8 *ev  = ffs->ev.types, *out = ev;
		unsigned n = ffs->ev.count;
		for (; n; --n, ++ev)
			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
				*out++ = *ev;
			else
2760
				pr_vdebug("purging event %d\n", *ev);
2761 2762 2763
		ffs->ev.count = out - ffs->ev.types;
	}

2764
	pr_vdebug("adding event %d\n", type);
2765 2766
	ffs->ev.types[ffs->ev.count++] = type;
	wake_up_locked(&ffs->ev.waitq);
2767 2768
	if (ffs->ffs_eventfd)
		eventfd_signal(ffs->ffs_eventfd, 1);
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
}

static void ffs_event_add(struct ffs_data *ffs,
			  enum usb_functionfs_event_type type)
{
	unsigned long flags;
	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	__ffs_event_add(ffs, type);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
}

/* Bind/unbind USB function hooks *******************************************/

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
		if (ffs->eps_addrmap[i] == endpoint_address)
			return i;
	return -ENOENT;
}

2792 2793 2794 2795 2796 2797 2798
static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
				    struct usb_descriptor_header *desc,
				    void *priv)
{
	struct usb_endpoint_descriptor *ds = (void *)desc;
	struct ffs_function *func = priv;
	struct ffs_ep *ffs_ep;
2799 2800
	unsigned ep_desc_id;
	int idx;
2801
	static const char *speed_names[] = { "full", "high", "super" };
2802 2803 2804 2805

	if (type != FFS_DESCRIPTOR)
		return 0;

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	/*
	 * If ss_descriptors is not NULL, we are reading super speed
	 * descriptors; if hs_descriptors is not NULL, we are reading high
	 * speed descriptors; otherwise, we are reading full speed
	 * descriptors.
	 */
	if (func->function.ss_descriptors) {
		ep_desc_id = 2;
		func->function.ss_descriptors[(long)valuep] = desc;
	} else if (func->function.hs_descriptors) {
		ep_desc_id = 1;
2817
		func->function.hs_descriptors[(long)valuep] = desc;
2818 2819
	} else {
		ep_desc_id = 0;
2820
		func->function.fs_descriptors[(long)valuep]    = desc;
2821
	}
2822 2823 2824 2825

	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
		return 0;

2826 2827 2828 2829
	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
	if (idx < 0)
		return idx;

2830 2831
	ffs_ep = func->eps + idx;

2832 2833 2834
	if (unlikely(ffs_ep->descs[ep_desc_id])) {
		pr_err("two %sspeed descriptors for EP %d\n",
			  speed_names[ep_desc_id],
2835
			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2836 2837
		return -EINVAL;
	}
2838
	ffs_ep->descs[ep_desc_id] = ds;
2839 2840 2841 2842 2843 2844 2845 2846 2847

	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
	if (ffs_ep->ep) {
		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
		if (!ds->wMaxPacketSize)
			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
	} else {
		struct usb_request *req;
		struct usb_ep *ep;
2848
		u8 bEndpointAddress;
2849
		u16 wMaxPacketSize;
2850

2851 2852 2853 2854 2855
		/*
		 * We back up bEndpointAddress because autoconfig overwrites
		 * it with physical endpoint address.
		 */
		bEndpointAddress = ds->bEndpointAddress;
2856 2857 2858 2859 2860
		/*
		 * We back up wMaxPacketSize because autoconfig treats
		 * endpoint descriptors as if they were full speed.
		 */
		wMaxPacketSize = ds->wMaxPacketSize;
2861
		pr_vdebug("autoconfig\n");
2862 2863 2864
		ep = usb_ep_autoconfig(func->gadget, ds);
		if (unlikely(!ep))
			return -ENOTSUPP;
2865
		ep->driver_data = func->eps + idx;
2866 2867 2868 2869 2870 2871 2872 2873 2874

		req = usb_ep_alloc_request(ep, GFP_KERNEL);
		if (unlikely(!req))
			return -ENOMEM;

		ffs_ep->ep  = ep;
		ffs_ep->req = req;
		func->eps_revmap[ds->bEndpointAddress &
				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2875 2876 2877 2878 2879 2880
		/*
		 * If we use virtual address mapping, we restore
		 * original bEndpointAddress value.
		 */
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ds->bEndpointAddress = bEndpointAddress;
2881 2882 2883 2884 2885
		/*
		 * Restore wMaxPacketSize which was potentially
		 * overwritten by autoconfig.
		 */
		ds->wMaxPacketSize = wMaxPacketSize;
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	}
	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);

	return 0;
}

static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv)
{
	struct ffs_function *func = priv;
	unsigned idx;
	u8 newValue;

	switch (type) {
	default:
	case FFS_DESCRIPTOR:
		/* Handled in previous pass by __ffs_func_bind_do_descs() */
		return 0;

	case FFS_INTERFACE:
		idx = *valuep;
		if (func->interfaces_nums[idx] < 0) {
			int id = usb_interface_id(func->conf, &func->function);
			if (unlikely(id < 0))
				return id;
			func->interfaces_nums[idx] = id;
		}
		newValue = func->interfaces_nums[idx];
		break;

	case FFS_STRING:
		/* String' IDs are allocated when fsf_data is bound to cdev */
		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
		break;

	case FFS_ENDPOINT:
2923 2924 2925 2926
		/*
		 * USB_DT_ENDPOINT are handled in
		 * __ffs_func_bind_do_descs().
		 */
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
		if (desc->bDescriptorType == USB_DT_ENDPOINT)
			return 0;

		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
		if (unlikely(!func->eps[idx].ep))
			return -EINVAL;

		{
			struct usb_endpoint_descriptor **descs;
			descs = func->eps[idx].descs;
			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
		}
		break;
	}

2942
	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2943 2944 2945 2946
	*valuep = newValue;
	return 0;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
				      struct usb_os_desc_header *h, void *data,
				      unsigned len, void *priv)
{
	struct ffs_function *func = priv;
	u8 length = 0;

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *desc = data;
		struct usb_os_desc_table *t;

		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
		       ARRAY_SIZE(desc->CompatibleID) +
		       ARRAY_SIZE(desc->SubCompatibleID));
		length = sizeof(*desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *desc = data;
		struct usb_os_desc_table *t;
		struct usb_os_desc_ext_prop *ext_prop;
		char *ext_prop_name;
		char *ext_prop_data;

		t = &func->function.os_desc_table[h->interface];
		t->if_id = func->interfaces_nums[h->interface];

		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);

		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2982
		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
		length = ext_prop->name_len + ext_prop->data_len + 14;

		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
		func->ffs->ms_os_descs_ext_prop_name_avail +=
			ext_prop->name_len;

		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
		func->ffs->ms_os_descs_ext_prop_data_avail +=
			ext_prop->data_len;
		memcpy(ext_prop_data,
		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
		       ext_prop->data_len);
		/* unicode data reported to the host as "WCHAR"s */
		switch (ext_prop->type) {
		case USB_EXT_PROP_UNICODE:
		case USB_EXT_PROP_UNICODE_ENV:
		case USB_EXT_PROP_UNICODE_LINK:
		case USB_EXT_PROP_UNICODE_MULTI:
			ext_prop->data_len *= 2;
			break;
		}
		ext_prop->data = ext_prop_data;

		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
		       ext_prop->name_len);
		/* property name reported to the host as "WCHAR"s */
		ext_prop->name_len *= 2;
		ext_prop->name = ext_prop_name;

		t->os_desc->ext_prop_len +=
			ext_prop->name_len + ext_prop->data_len + 14;
		++t->os_desc->ext_prop_count;
		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
	}

	return length;
}

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
						struct usb_configuration *c)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct f_fs_opts *ffs_opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	int ret;

	ENTER();

	/*
	 * Legacy gadget triggers binding in functionfs_ready_callback,
	 * which already uses locking; taking the same lock here would
	 * cause a deadlock.
	 *
	 * Configfs-enabled gadgets however do need ffs_dev_lock.
	 */
	if (!ffs_opts->no_configfs)
		ffs_dev_lock();
	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
	func->ffs = ffs_opts->dev->ffs_data;
	if (!ffs_opts->no_configfs)
		ffs_dev_unlock();
	if (ret)
		return ERR_PTR(ret);

	func->conf = c;
	func->gadget = c->cdev->gadget;

	/*
	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
	 * configurations are bound in sequence with list_for_each_entry,
	 * in each configuration its functions are bound in sequence
	 * with list_for_each_entry, so we assume no race condition
	 * with regard to ffs_opts->bound access
	 */
	if (!ffs_opts->refcnt) {
		ret = functionfs_bind(func->ffs, c->cdev);
		if (ret)
			return ERR_PTR(ret);
	}
	ffs_opts->refcnt++;
	func->function.strings = func->ffs->stringtabs;

	return ffs_opts;
}

static int _ffs_func_bind(struct usb_configuration *c,
			  struct usb_function *f)
3075 3076 3077 3078 3079
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;

	const int full = !!func->ffs->fs_descs_count;
3080 3081
	const int high = !!func->ffs->hs_descs_count;
	const int super = !!func->ffs->ss_descs_count;
3082

3083
	int fs_len, hs_len, ss_len, ret, i;
3084
	struct ffs_ep *eps_ptr;
3085 3086

	/* Make it a single chunk, less management later on */
3087 3088 3089 3090 3091 3092
	vla_group(d);
	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
		full ? ffs->fs_descs_count + 1 : 0);
	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
		high ? ffs->hs_descs_count + 1 : 0);
3093 3094
	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
		super ? ffs->ss_descs_count + 1 : 0);
3095
	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, char[16], ext_compat,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc, os_desc,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
			 ffs->ms_os_descs_ext_prop_count);
	vla_item_with_sz(d, char, ext_prop_name,
			 ffs->ms_os_descs_ext_prop_name_len);
	vla_item_with_sz(d, char, ext_prop_data,
			 ffs->ms_os_descs_ext_prop_data_len);
3108
	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3109
	char *vlabuf;
3110 3111 3112

	ENTER();

3113 3114
	/* Has descriptors only for speeds gadget does not support */
	if (unlikely(!(full | high | super)))
3115 3116
		return -ENOTSUPP;

3117
	/* Allocate a single chunk, less management later on */
3118
	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3119
	if (unlikely(!vlabuf))
3120 3121
		return -ENOMEM;

3122 3123 3124 3125 3126 3127
	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
	ffs->ms_os_descs_ext_prop_name_avail =
		vla_ptr(vlabuf, d, ext_prop_name);
	ffs->ms_os_descs_ext_prop_data_avail =
		vla_ptr(vlabuf, d, ext_prop_data);

3128 3129 3130
	/* Copy descriptors  */
	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
	       ffs->raw_descs_length);
3131

3132
	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3133 3134 3135
	eps_ptr = vla_ptr(vlabuf, d, eps);
	for (i = 0; i < ffs->eps_count; i++)
		eps_ptr[i].num = -1;
3136

3137 3138 3139 3140 3141
	/* Save pointers
	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
	*/
	func->eps             = vla_ptr(vlabuf, d, eps);
	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3142

3143 3144
	/*
	 * Go through all the endpoint descriptors and allocate
3145
	 * endpoints first, so that later we can rewrite the endpoint
3146 3147
	 * numbers without worrying that it may be described later on.
	 */
3148
	if (likely(full)) {
3149
		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3150 3151 3152 3153 3154 3155
		fs_len = ffs_do_descs(ffs->fs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs),
				      d_raw_descs__sz,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(fs_len < 0)) {
			ret = fs_len;
3156
			goto error;
3157
		}
3158
	} else {
3159
		fs_len = 0;
3160 3161 3162
	}

	if (likely(high)) {
3163
		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
		hs_len = ffs_do_descs(ffs->hs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
				      d_raw_descs__sz - fs_len,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(hs_len < 0)) {
			ret = hs_len;
			goto error;
		}
	} else {
		hs_len = 0;
	}

	if (likely(super)) {
		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3178
		ss_len = ffs_do_descs(ffs->ss_descs_count,
3179 3180 3181
				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
				d_raw_descs__sz - fs_len - hs_len,
				__ffs_func_bind_do_descs, func);
3182 3183
		if (unlikely(ss_len < 0)) {
			ret = ss_len;
3184
			goto error;
3185 3186 3187
		}
	} else {
		ss_len = 0;
3188 3189
	}

3190 3191 3192 3193 3194
	/*
	 * Now handle interface numbers allocation and interface and
	 * endpoint numbers rewriting.  We can do that in one go
	 * now.
	 */
3195
	ret = ffs_do_descs(ffs->fs_descs_count +
3196 3197
			   (high ? ffs->hs_descs_count : 0) +
			   (super ? ffs->ss_descs_count : 0),
3198
			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3199 3200 3201 3202
			   __ffs_func_bind_do_nums, func);
	if (unlikely(ret < 0))
		goto error;

3203
	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3204
	if (c->cdev->use_os_string) {
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
		for (i = 0; i < ffs->interfaces_count; ++i) {
			struct usb_os_desc *desc;

			desc = func->function.os_desc_table[i].os_desc =
				vla_ptr(vlabuf, d, os_desc) +
				i * sizeof(struct usb_os_desc);
			desc->ext_compat_id =
				vla_ptr(vlabuf, d, ext_compat) + i * 16;
			INIT_LIST_HEAD(&desc->ext_prop);
		}
3215 3216 3217 3218 3219 3220 3221 3222 3223
		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) +
				      fs_len + hs_len + ss_len,
				      d_raw_descs__sz - fs_len - hs_len -
				      ss_len,
				      __ffs_func_bind_do_os_desc, func);
		if (unlikely(ret < 0))
			goto error;
	}
3224 3225 3226
	func->function.os_desc_n =
		c->cdev->use_os_string ? ffs->interfaces_count : 0;

3227 3228 3229 3230 3231 3232 3233 3234 3235
	/* And we're done */
	ffs_event_add(ffs, FUNCTIONFS_BIND);
	return 0;

error:
	/* XXX Do we need to release all claimed endpoints here? */
	return ret;
}

3236 3237 3238 3239
static int ffs_func_bind(struct usb_configuration *c,
			 struct usb_function *f)
{
	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3240 3241
	struct ffs_function *func = ffs_func_from_usb(f);
	int ret;
3242 3243 3244 3245

	if (IS_ERR(ffs_opts))
		return PTR_ERR(ffs_opts);

3246 3247 3248 3249 3250
	ret = _ffs_func_bind(c, f);
	if (ret && !--ffs_opts->refcnt)
		functionfs_unbind(func->ffs);

	return ret;
3251 3252
}

3253 3254 3255

/* Other USB function hooks *************************************************/

3256 3257 3258 3259 3260 3261 3262
static void ffs_reset_work(struct work_struct *work)
{
	struct ffs_data *ffs = container_of(work,
		struct ffs_data, reset_work);
	ffs_data_reset(ffs);
}

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
static int ffs_func_set_alt(struct usb_function *f,
			    unsigned interface, unsigned alt)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	int ret = 0, intf;

	if (alt != (unsigned)-1) {
		intf = ffs_func_revmap_intf(func, interface);
		if (unlikely(intf < 0))
			return intf;
	}

	if (ffs->func)
		ffs_func_eps_disable(ffs->func);

3279 3280 3281 3282 3283 3284 3285
	if (ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		INIT_WORK(&ffs->reset_work, ffs_reset_work);
		schedule_work(&ffs->reset_work);
		return -ENODEV;
	}

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	if (alt == (unsigned)-1) {
		ffs->func = NULL;
		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
		return 0;
	}

	ffs->func = func;
	ret = ffs_func_eps_enable(func);
	if (likely(ret >= 0))
		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
	return ret;
}

static void ffs_func_disable(struct usb_function *f)
{
	ffs_func_set_alt(f, 0, (unsigned)-1);
}

static int ffs_func_setup(struct usb_function *f,
			  const struct usb_ctrlrequest *creq)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	unsigned long flags;
	int ret;

	ENTER();

3317 3318 3319 3320 3321
	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3322

3323 3324
	/*
	 * Most requests directed to interface go through here
3325 3326 3327 3328
	 * (notable exceptions are set/get interface) so we need to
	 * handle them.  All other either handled by composite or
	 * passed to usb_configuration->setup() (if one is set).  No
	 * matter, we will handle requests directed to endpoint here
3329 3330 3331
	 * as well (as it's straightforward).  Other request recipient
	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
	 * is being used.
3332
	 */
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
		break;

	case USB_RECIP_ENDPOINT:
		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
3347 3348
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ret = func->ffs->eps_addrmap[ret];
3349 3350 3351
		break;

	default:
3352 3353 3354 3355
		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
			ret = le16_to_cpu(creq->wIndex);
		else
			return -EOPNOTSUPP;
3356 3357 3358 3359 3360 3361 3362 3363
	}

	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	ffs->ev.setup = *creq;
	ffs->ev.setup.wIndex = cpu_to_le16(ret);
	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);

3364
	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3365 3366
}

3367
static bool ffs_func_req_match(struct usb_function *f,
3368 3369
			       const struct usb_ctrlrequest *creq,
			       bool config0)
3370 3371 3372
{
	struct ffs_function *func = ffs_func_from_usb(f);

3373
	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3374 3375
		return false;

3376 3377
	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
3378 3379
		return (ffs_func_revmap_intf(func,
					     le16_to_cpu(creq->wIndex)) >= 0);
3380
	case USB_RECIP_ENDPOINT:
3381 3382
		return (ffs_func_revmap_ep(func,
					   le16_to_cpu(creq->wIndex)) >= 0);
3383 3384 3385 3386 3387 3388
	default:
		return (bool) (func->ffs->user_flags &
			       FUNCTIONFS_ALL_CTRL_RECIP);
	}
}

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
static void ffs_func_suspend(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
}

static void ffs_func_resume(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
}


3402
/* Endpoint and interface numbers reverse mapping ***************************/
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
{
	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
	return num ? num : -EDOM;
}

static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
{
	short *nums = func->interfaces_nums;
	unsigned count = func->ffs->interfaces_count;

	for (; count; --count, ++nums) {
		if (*nums >= 0 && *nums == intf)
			return nums - func->interfaces_nums;
	}

	return -EDOM;
}


3424 3425 3426 3427
/* Devices management *******************************************************/

static LIST_HEAD(ffs_devices);

3428
static struct ffs_dev *_ffs_do_find_dev(const char *name)
3429 3430 3431
{
	struct ffs_dev *dev;

3432 3433 3434
	if (!name)
		return NULL;

3435 3436 3437 3438
	list_for_each_entry(dev, &ffs_devices, entry) {
		if (strcmp(dev->name, name) == 0)
			return dev;
	}
3439

3440 3441 3442 3443 3444 3445
	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3446
static struct ffs_dev *_ffs_get_single_dev(void)
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
{
	struct ffs_dev *dev;

	if (list_is_singular(&ffs_devices)) {
		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
		if (dev->single)
			return dev;
	}

	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3462
static struct ffs_dev *_ffs_find_dev(const char *name)
3463 3464 3465
{
	struct ffs_dev *dev;

3466
	dev = _ffs_get_single_dev();
3467 3468 3469
	if (dev)
		return dev;

3470
	return _ffs_do_find_dev(name);
3471 3472
}

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
/* Configfs support *********************************************************/

static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
{
	return container_of(to_config_group(item), struct f_fs_opts,
			    func_inst.group);
}

static void ffs_attr_release(struct config_item *item)
{
	struct f_fs_opts *opts = to_ffs_opts(item);

	usb_put_function_instance(&opts->func_inst);
}

static struct configfs_item_operations ffs_item_ops = {
	.release	= ffs_attr_release,
};

3492
static const struct config_item_type ffs_func_type = {
3493 3494 3495 3496 3497
	.ct_item_ops	= &ffs_item_ops,
	.ct_owner	= THIS_MODULE,
};


3498 3499 3500 3501 3502 3503 3504 3505
/* Function registration interface ******************************************/

static void ffs_free_inst(struct usb_function_instance *f)
{
	struct f_fs_opts *opts;

	opts = to_f_fs_opts(f);
	ffs_dev_lock();
3506
	_ffs_free_dev(opts->dev);
3507 3508 3509 3510
	ffs_dev_unlock();
	kfree(opts);
}

3511 3512
static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
{
3513
	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3514
		return -ENAMETOOLONG;
3515
	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3516 3517
}

3518 3519 3520 3521 3522 3523 3524 3525 3526
static struct usb_function_instance *ffs_alloc_inst(void)
{
	struct f_fs_opts *opts;
	struct ffs_dev *dev;

	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
	if (!opts)
		return ERR_PTR(-ENOMEM);

3527
	opts->func_inst.set_inst_name = ffs_set_inst_name;
3528 3529
	opts->func_inst.free_func_inst = ffs_free_inst;
	ffs_dev_lock();
3530
	dev = _ffs_alloc_dev();
3531 3532 3533 3534 3535 3536
	ffs_dev_unlock();
	if (IS_ERR(dev)) {
		kfree(opts);
		return ERR_CAST(dev);
	}
	opts->dev = dev;
3537
	dev->opts = opts;
3538

3539 3540
	config_group_init_type_name(&opts->func_inst.group, "",
				    &ffs_func_type);
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
	return &opts->func_inst;
}

static void ffs_free(struct usb_function *f)
{
	kfree(ffs_func_from_usb(f));
}

static void ffs_func_unbind(struct usb_configuration *c,
			    struct usb_function *f)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	struct f_fs_opts *opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	struct ffs_ep *ep = func->eps;
	unsigned count = ffs->eps_count;
	unsigned long flags;

	ENTER();
	if (ffs->func == func) {
		ffs_func_eps_disable(func);
		ffs->func = NULL;
	}

	if (!--opts->refcnt)
		functionfs_unbind(ffs);

	/* cleanup after autoconfig */
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3571
	while (count--) {
3572 3573 3574 3575
		if (ep->ep && ep->req)
			usb_ep_free_request(ep->ep, ep->req);
		ep->req = NULL;
		++ep;
3576
	}
3577 3578 3579 3580 3581 3582 3583 3584 3585
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
	kfree(func->eps);
	func->eps = NULL;
	/*
	 * eps, descriptors and interfaces_nums are allocated in the
	 * same chunk so only one free is required.
	 */
	func->function.fs_descriptors = NULL;
	func->function.hs_descriptors = NULL;
3586
	func->function.ss_descriptors = NULL;
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
	func->interfaces_nums = NULL;

	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
}

static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
{
	struct ffs_function *func;

	ENTER();

	func = kzalloc(sizeof(*func), GFP_KERNEL);
	if (unlikely(!func))
		return ERR_PTR(-ENOMEM);

	func->function.name    = "Function FS Gadget";

	func->function.bind    = ffs_func_bind;
	func->function.unbind  = ffs_func_unbind;
	func->function.set_alt = ffs_func_set_alt;
	func->function.disable = ffs_func_disable;
	func->function.setup   = ffs_func_setup;
3609
	func->function.req_match = ffs_func_req_match;
3610 3611 3612 3613 3614 3615 3616
	func->function.suspend = ffs_func_suspend;
	func->function.resume  = ffs_func_resume;
	func->function.free_func = ffs_free;

	return &func->function;
}

3617 3618 3619
/*
 * ffs_lock must be taken by the caller of this function
 */
3620
static struct ffs_dev *_ffs_alloc_dev(void)
3621 3622 3623 3624
{
	struct ffs_dev *dev;
	int ret;

3625
	if (_ffs_get_single_dev())
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
			return ERR_PTR(-EBUSY);

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return ERR_PTR(-ENOMEM);

	if (list_empty(&ffs_devices)) {
		ret = functionfs_init();
		if (ret) {
			kfree(dev);
			return ERR_PTR(ret);
		}
	}

	list_add(&dev->entry, &ffs_devices);

	return dev;
}

3645
int ffs_name_dev(struct ffs_dev *dev, const char *name)
3646 3647
{
	struct ffs_dev *existing;
3648
	int ret = 0;
3649

3650
	ffs_dev_lock();
3651

3652 3653 3654 3655 3656
	existing = _ffs_do_find_dev(name);
	if (!existing)
		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
	else if (existing != dev)
		ret = -EBUSY;
3657 3658 3659 3660 3661

	ffs_dev_unlock();

	return ret;
}
3662
EXPORT_SYMBOL_GPL(ffs_name_dev);
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678

int ffs_single_dev(struct ffs_dev *dev)
{
	int ret;

	ret = 0;
	ffs_dev_lock();

	if (!list_is_singular(&ffs_devices))
		ret = -EBUSY;
	else
		dev->single = true;

	ffs_dev_unlock();
	return ret;
}
3679
EXPORT_SYMBOL_GPL(ffs_single_dev);
3680 3681 3682 3683

/*
 * ffs_lock must be taken by the caller of this function
 */
3684
static void _ffs_free_dev(struct ffs_dev *dev)
3685 3686
{
	list_del(&dev->entry);
3687 3688 3689 3690 3691

	/* Clear the private_data pointer to stop incorrect dev access */
	if (dev->ffs_data)
		dev->ffs_data->private_data = NULL;

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	kfree(dev);
	if (list_empty(&ffs_devices))
		functionfs_cleanup();
}

static void *ffs_acquire_dev(const char *dev_name)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

3704
	ffs_dev = _ffs_find_dev(dev_name);
3705
	if (!ffs_dev)
3706
		ffs_dev = ERR_PTR(-ENOENT);
3707 3708
	else if (ffs_dev->mounted)
		ffs_dev = ERR_PTR(-EBUSY);
3709 3710
	else if (ffs_dev->ffs_acquire_dev_callback &&
	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3711
		ffs_dev = ERR_PTR(-ENOENT);
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
	else
		ffs_dev->mounted = true;

	ffs_dev_unlock();
	return ffs_dev;
}

static void ffs_release_dev(struct ffs_data *ffs_data)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

	ffs_dev = ffs_data->private_data;
3727
	if (ffs_dev) {
3728
		ffs_dev->mounted = false;
3729 3730 3731 3732

		if (ffs_dev->ffs_release_dev_callback)
			ffs_dev->ffs_release_dev_callback(ffs_dev);
	}
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757

	ffs_dev_unlock();
}

static int ffs_ready(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
	int ret = 0;

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj) {
		ret = -EINVAL;
		goto done;
	}
	if (WARN_ON(ffs_obj->desc_ready)) {
		ret = -EBUSY;
		goto done;
	}

	ffs_obj->desc_ready = true;
	ffs_obj->ffs_data = ffs;

3758
	if (ffs_obj->ffs_ready_callback) {
3759
		ret = ffs_obj->ffs_ready_callback(ffs);
3760 3761 3762
		if (ret)
			goto done;
	}
3763

3764
	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3765 3766 3767 3768 3769 3770 3771 3772
done:
	ffs_dev_unlock();
	return ret;
}

static void ffs_closed(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
3773
	struct f_fs_opts *opts;
3774
	struct config_item *ci;
3775 3776 3777 3778 3779 3780 3781 3782 3783

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj)
		goto done;

	ffs_obj->desc_ready = false;
3784
	ffs_obj->ffs_data = NULL;
3785

3786 3787
	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
	    ffs_obj->ffs_closed_callback)
3788
		ffs_obj->ffs_closed_callback(ffs);
3789

3790 3791 3792 3793 3794 3795
	if (ffs_obj->opts)
		opts = ffs_obj->opts;
	else
		goto done;

	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3796
	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3797 3798
		goto done;

3799 3800 3801
	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
	ffs_dev_unlock();

3802 3803
	if (test_bit(FFS_FL_BOUND, &ffs->flags))
		unregister_gadget_item(ci);
3804
	return;
3805 3806 3807 3808
done:
	ffs_dev_unlock();
}

3809 3810 3811 3812 3813 3814 3815 3816 3817
/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
{
	return nonblock
		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
		: mutex_lock_interruptible(mutex);
}

A
Al Viro 已提交
3818
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
{
	char *data;

	if (unlikely(!len))
		return NULL;

	data = kmalloc(len, GFP_KERNEL);
	if (unlikely(!data))
		return ERR_PTR(-ENOMEM);

3829
	if (unlikely(copy_from_user(data, buf, len))) {
3830 3831 3832 3833
		kfree(data);
		return ERR_PTR(-EFAULT);
	}

3834
	pr_vdebug("Buffer from user space:\n");
3835 3836 3837 3838
	ffs_dump_mem("", data, len);

	return data;
}
3839 3840 3841 3842

DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Nazarewicz");