f_fs.c 87.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
 * f_fs.c -- user mode file system API for USB composite function controllers
4 5
 *
 * Copyright (C) 2010 Samsung Electronics
6
 * Author: Michal Nazarewicz <mina86@mina86.com>
7
 *
8
 * Based on inode.c (GadgetFS) which was:
9 10 11 12 13 14 15 16 17
 * Copyright (C) 2003-2004 David Brownell
 * Copyright (C) 2003 Agilent Technologies
 */


/* #define DEBUG */
/* #define VERBOSE_DEBUG */

#include <linux/blkdev.h>
18
#include <linux/pagemap.h>
19
#include <linux/export.h>
20
#include <linux/hid.h>
21
#include <linux/module.h>
22
#include <linux/sched/signal.h>
23
#include <linux/uio.h>
24 25
#include <asm/unaligned.h>

26
#include <linux/usb/ccid.h>
27 28 29
#include <linux/usb/composite.h>
#include <linux/usb/functionfs.h>

30 31
#include <linux/aio.h>
#include <linux/mmu_context.h>
32
#include <linux/poll.h>
33
#include <linux/eventfd.h>
34

35
#include "u_fs.h"
36
#include "u_f.h"
37
#include "u_os_desc.h"
38
#include "configfs.h"
39 40 41 42 43 44 45

#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */

/* Reference counter handling */
static void ffs_data_get(struct ffs_data *ffs);
static void ffs_data_put(struct ffs_data *ffs);
/* Creates new ffs_data object. */
46 47
static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
	__attribute__((malloc));
48 49 50 51 52

/* Opened counter handling. */
static void ffs_data_opened(struct ffs_data *ffs);
static void ffs_data_closed(struct ffs_data *ffs);

53
/* Called with ffs->mutex held; take over ownership of data. */
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int __must_check
__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
static int __must_check
__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);


/* The function structure ***************************************************/

struct ffs_ep;

struct ffs_function {
	struct usb_configuration	*conf;
	struct usb_gadget		*gadget;
	struct ffs_data			*ffs;

	struct ffs_ep			*eps;
	u8				eps_revmap[16];
	short				*interfaces_nums;

	struct usb_function		function;
};


static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
{
	return container_of(f, struct ffs_function, function);
}


83 84 85 86 87 88 89 90
static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
{
	return (enum ffs_setup_state)
		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
}


91 92 93 94 95 96 97 98 99
static void ffs_func_eps_disable(struct ffs_function *func);
static int __must_check ffs_func_eps_enable(struct ffs_function *func);

static int ffs_func_bind(struct usb_configuration *,
			 struct usb_function *);
static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
static void ffs_func_disable(struct usb_function *);
static int ffs_func_setup(struct usb_function *,
			  const struct usb_ctrlrequest *);
100
static bool ffs_func_req_match(struct usb_function *,
101 102
			       const struct usb_ctrlrequest *,
			       bool config0);
103 104 105 106 107 108 109 110 111 112 113 114 115 116
static void ffs_func_suspend(struct usb_function *);
static void ffs_func_resume(struct usb_function *);


static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);


/* The endpoints structures *************************************************/

struct ffs_ep {
	struct usb_ep			*ep;	/* P: ffs->eps_lock */
	struct usb_request		*req;	/* P: epfile->mutex */

117 118
	/* [0]: full speed, [1]: high speed, [2]: super speed */
	struct usb_endpoint_descriptor	*descs[3];
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

	u8				num;

	int				status;	/* P: epfile->mutex */
};

struct ffs_epfile {
	/* Protects ep->ep and ep->req. */
	struct mutex			mutex;

	struct ffs_data			*ffs;
	struct ffs_ep			*ep;	/* P: ffs->eps_lock */

	struct dentry			*dentry;

134 135 136
	/*
	 * Buffer for holding data from partial reads which may happen since
	 * we’re rounding user read requests to a multiple of a max packet size.
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	 *
	 * The pointer is initialised with NULL value and may be set by
	 * __ffs_epfile_read_data function to point to a temporary buffer.
	 *
	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
	 * data from said buffer and eventually free it.  Importantly, while the
	 * function is using the buffer, it sets the pointer to NULL.  This is
	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
	 * can never run concurrently (they are synchronised by epfile->mutex)
	 * so the latter will not assign a new value to the pointer.
	 *
	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
	 * value is crux of the synchronisation between ffs_func_eps_disable and
	 * __ffs_epfile_read_data.
	 *
	 * Once __ffs_epfile_read_data is about to finish it will try to set the
	 * pointer back to its old value (as described above), but seeing as the
	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
	 * the buffer.
	 *
	 * == State transitions ==
	 *
	 * • ptr == NULL:  (initial state)
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    nop
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == DROP:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == buf:
	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
	 *                                    is always called first
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == NULL and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes and …
	 *     … all data read:               free buf, go to ptr == NULL
	 *     … otherwise:                   go to ptr == buf and reading
	 * • ptr == DROP and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes:              free buf, go to ptr == DROP
188
	 */
189 190
	struct ffs_buffer		*read_buffer;
#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
191

192 193 194 195 196 197 198 199
	char				name[5];

	unsigned char			in;	/* P: ffs->eps_lock */
	unsigned char			isoc;	/* P: ffs->eps_lock */

	unsigned char			_pad;
};

200 201 202 203 204 205
struct ffs_buffer {
	size_t length;
	char *data;
	char storage[];
};

206 207 208 209 210 211 212
/*  ffs_io_data structure ***************************************************/

struct ffs_io_data {
	bool aio;
	bool read;

	struct kiocb *kiocb;
213 214 215
	struct iov_iter data;
	const void *to_free;
	char *buf;
216 217 218 219 220 221

	struct mm_struct *mm;
	struct work_struct work;

	struct usb_ep *ep;
	struct usb_request *req;
222 223

	struct ffs_data *ffs;
224 225
};

226 227 228 229 230 231
struct ffs_desc_helper {
	struct ffs_data *ffs;
	unsigned interfaces_count;
	unsigned eps_count;
};

232 233 234
static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);

A
Al Viro 已提交
235
static struct dentry *
236
ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
A
Al Viro 已提交
237
		   const struct file_operations *fops);
238

239 240 241
/* Devices management *******************************************************/

DEFINE_MUTEX(ffs_lock);
242
EXPORT_SYMBOL_GPL(ffs_lock);
243

244 245 246
static struct ffs_dev *_ffs_find_dev(const char *name);
static struct ffs_dev *_ffs_alloc_dev(void);
static void _ffs_free_dev(struct ffs_dev *dev);
247 248 249 250
static void *ffs_acquire_dev(const char *dev_name);
static void ffs_release_dev(struct ffs_data *ffs_data);
static int ffs_ready(struct ffs_data *ffs);
static void ffs_closed(struct ffs_data *ffs);
251 252 253 254 255

/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
	__attribute__((warn_unused_result, nonnull));
A
Al Viro 已提交
256
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
257 258 259 260 261 262 263 264 265
	__attribute__((warn_unused_result, nonnull));


/* Control file aka ep0 *****************************************************/

static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
{
	struct ffs_data *ffs = req->context;

266
	complete(&ffs->ep0req_completion);
267 268 269
}

static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
270
	__releases(&ffs->ev.waitq.lock)
271 272 273 274 275 276 277 278 279 280 281
{
	struct usb_request *req = ffs->ep0req;
	int ret;

	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);

	spin_unlock_irq(&ffs->ev.waitq.lock);

	req->buf      = data;
	req->length   = len;

282 283 284 285 286 287 288 289
	/*
	 * UDC layer requires to provide a buffer even for ZLP, but should
	 * not use it at all. Let's provide some poisoned pointer to catch
	 * possible bug in the driver.
	 */
	if (req->buf == NULL)
		req->buf = (void *)0xDEADBABE;

290
	reinit_completion(&ffs->ep0req_completion);
291 292 293 294 295 296 297 298 299 300 301 302

	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
	if (unlikely(ret)) {
		usb_ep_dequeue(ffs->gadget->ep0, req);
		return -EINTR;
	}

	ffs->setup_state = FFS_NO_SETUP;
303
	return req->status ? req->status : req->actual;
304 305 306 307 308
}

static int __ffs_ep0_stall(struct ffs_data *ffs)
{
	if (ffs->ev.can_stall) {
309
		pr_vdebug("ep0 stall\n");
310 311 312 313
		usb_ep_set_halt(ffs->gadget->ep0);
		ffs->setup_state = FFS_NO_SETUP;
		return -EL2HLT;
	} else {
314
		pr_debug("bogus ep0 stall!\n");
315 316 317 318 319 320 321 322 323 324 325 326 327 328
		return -ESRCH;
	}
}

static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
			     size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	ssize_t ret;
	char *data;

	ENTER();

	/* Fast check if setup was canceled */
329
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		/* Copy data */
		if (unlikely(len < 16)) {
			ret = -EINVAL;
			break;
		}

		data = ffs_prepare_buffer(buf, len);
348
		if (IS_ERR(data)) {
349 350 351 352 353 354
			ret = PTR_ERR(data);
			break;
		}

		/* Handle data */
		if (ffs->state == FFS_READ_DESCRIPTORS) {
355
			pr_info("read descriptors\n");
356 357 358 359 360 361 362
			ret = __ffs_data_got_descs(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ffs->state = FFS_READ_STRINGS;
			ret = len;
		} else {
363
			pr_info("read strings\n");
364 365 366 367 368 369 370 371 372 373 374 375 376
			ret = __ffs_data_got_strings(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ret = ffs_epfiles_create(ffs);
			if (unlikely(ret)) {
				ffs->state = FFS_CLOSING;
				break;
			}

			ffs->state = FFS_ACTIVE;
			mutex_unlock(&ffs->mutex);

377
			ret = ffs_ready(ffs);
378 379 380 381 382 383 384 385 386 387 388
			if (unlikely(ret < 0)) {
				ffs->state = FFS_CLOSING;
				return ret;
			}

			return len;
		}
		break;

	case FFS_ACTIVE:
		data = NULL;
389 390 391 392
		/*
		 * We're called from user space, we can use _irq
		 * rather then _irqsave
		 */
393
		spin_lock_irq(&ffs->ev.waitq.lock);
394
		switch (ffs_setup_state_clear_cancelled(ffs)) {
395
		case FFS_SETUP_CANCELLED:
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
			ret = -EIDRM;
			goto done_spin;

		case FFS_NO_SETUP:
			ret = -ESRCH;
			goto done_spin;

		case FFS_SETUP_PENDING:
			break;
		}

		/* FFS_SETUP_PENDING */
		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			break;
		}

		/* FFS_SETUP_PENDING and not stall */
		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		data = ffs_prepare_buffer(buf, len);
420
		if (IS_ERR(data)) {
421 422 423 424 425 426
			ret = PTR_ERR(data);
			break;
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

427 428
		/*
		 * We are guaranteed to be still in FFS_ACTIVE state
429
		 * but the state of setup could have changed from
430
		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
431
		 * to check for that.  If that happened we copied data
432 433 434
		 * from user space in vain but it's unlikely.
		 *
		 * For sure we are not in FFS_NO_SETUP since this is
435 436
		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
		 * transition can be performed and it's protected by
437 438
		 * mutex.
		 */
439 440
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
			ret = -EIDRM;
done_spin:
			spin_unlock_irq(&ffs->ev.waitq.lock);
		} else {
			/* unlocks spinlock */
			ret = __ffs_ep0_queue_wait(ffs, data, len);
		}
		kfree(data);
		break;

	default:
		ret = -EBADFD;
		break;
	}

	mutex_unlock(&ffs->mutex);
	return ret;
}

460
/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
461 462
static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
				     size_t n)
463
	__releases(&ffs->ev.waitq.lock)
464
{
465
	/*
466 467 468
	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
	 * size of ffs->ev.types array (which is four) so that's how much space
	 * we reserve.
469
	 */
470 471
	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
	const size_t size = n * sizeof *events;
472 473
	unsigned i = 0;

474
	memset(events, 0, size);
475 476 477 478 479 480 481 482 483

	do {
		events[i].type = ffs->ev.types[i];
		if (events[i].type == FUNCTIONFS_SETUP) {
			events[i].u.setup = ffs->ev.setup;
			ffs->setup_state = FFS_SETUP_PENDING;
		}
	} while (++i < n);

484 485
	ffs->ev.count -= n;
	if (ffs->ev.count)
486 487 488 489 490 491
		memmove(ffs->ev.types, ffs->ev.types + n,
			ffs->ev.count * sizeof *ffs->ev.types);

	spin_unlock_irq(&ffs->ev.waitq.lock);
	mutex_unlock(&ffs->mutex);

492
	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
493 494 495 496 497 498 499 500 501 502 503 504 505
}

static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
			    size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	char *data = NULL;
	size_t n;
	int ret;

	ENTER();

	/* Fast check if setup was canceled */
506
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
507 508 509 510 511 512 513 514 515 516 517 518 519
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	if (ffs->state != FFS_ACTIVE) {
		ret = -EBADFD;
		goto done_mutex;
	}

520 521 522 523
	/*
	 * We're called from user space, we can use _irq rather then
	 * _irqsave
	 */
524 525
	spin_lock_irq(&ffs->ev.waitq.lock);

526
	switch (ffs_setup_state_clear_cancelled(ffs)) {
527
	case FFS_SETUP_CANCELLED:
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		ret = -EIDRM;
		break;

	case FFS_NO_SETUP:
		n = len / sizeof(struct usb_functionfs_event);
		if (unlikely(!n)) {
			ret = -EINVAL;
			break;
		}

		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
			ret = -EAGAIN;
			break;
		}

543 544
		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
							ffs->ev.count)) {
545 546 547 548
			ret = -EINTR;
			break;
		}

549
		/* unlocks spinlock */
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
		return __ffs_ep0_read_events(ffs, buf,
					     min(n, (size_t)ffs->ev.count));

	case FFS_SETUP_PENDING:
		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			goto done_mutex;
		}

		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		if (likely(len)) {
			data = kmalloc(len, GFP_KERNEL);
			if (unlikely(!data)) {
				ret = -ENOMEM;
				goto done_mutex;
			}
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

		/* See ffs_ep0_write() */
575 576
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
577 578 579 580 581 582
			ret = -EIDRM;
			break;
		}

		/* unlocks spinlock */
		ret = __ffs_ep0_queue_wait(ffs, data, len);
583
		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
			ret = -EFAULT;
		goto done_mutex;

	default:
		ret = -EBADFD;
		break;
	}

	spin_unlock_irq(&ffs->ev.waitq.lock);
done_mutex:
	mutex_unlock(&ffs->mutex);
	kfree(data);
	return ret;
}

static int ffs_ep0_open(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = inode->i_private;

	ENTER();

	if (unlikely(ffs->state == FFS_CLOSING))
		return -EBUSY;

	file->private_data = ffs;
	ffs_data_opened(ffs);

	return 0;
}

static int ffs_ep0_release(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = file->private_data;

	ENTER();

	ffs_data_closed(ffs);

	return 0;
}

static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
{
	struct ffs_data *ffs = file->private_data;
	struct usb_gadget *gadget = ffs->gadget;
	long ret;

	ENTER();

	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
		struct ffs_function *func = ffs->func;
		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636
	} else if (gadget && gadget->ops->ioctl) {
637 638 639 640 641 642 643 644
		ret = gadget->ops->ioctl(gadget, code, value);
	} else {
		ret = -ENOTTY;
	}

	return ret;
}

645
static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
646 647
{
	struct ffs_data *ffs = file->private_data;
648
	__poll_t mask = EPOLLWRNORM;
649 650 651 652 653 654 655 656 657 658 659
	int ret;

	poll_wait(file, &ffs->ev.waitq, wait);

	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return mask;

	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
660
		mask |= EPOLLOUT;
661 662 663 664 665 666
		break;

	case FFS_ACTIVE:
		switch (ffs->setup_state) {
		case FFS_NO_SETUP:
			if (ffs->ev.count)
667
				mask |= EPOLLIN;
668 669 670 671
			break;

		case FFS_SETUP_PENDING:
		case FFS_SETUP_CANCELLED:
672
			mask |= (EPOLLIN | EPOLLOUT);
673 674 675 676
			break;
		}
	case FFS_CLOSING:
		break;
677 678
	case FFS_DEACTIVATED:
		break;
679 680 681 682 683 684 685
	}

	mutex_unlock(&ffs->mutex);

	return mask;
}

686 687 688 689 690 691 692 693
static const struct file_operations ffs_ep0_operations = {
	.llseek =	no_llseek,

	.open =		ffs_ep0_open,
	.write =	ffs_ep0_write,
	.read =		ffs_ep0_read,
	.release =	ffs_ep0_release,
	.unlocked_ioctl =	ffs_ep0_ioctl,
694
	.poll =		ffs_ep0_poll,
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
};


/* "Normal" endpoints operations ********************************************/

static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
{
	ENTER();
	if (likely(req->context)) {
		struct ffs_ep *ep = _ep->driver_data;
		ep->status = req->status ? req->status : req->actual;
		complete(req->context);
	}
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
{
	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(ret == data_len))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/*
	 * Dear user space developer!
	 *
	 * TL;DR: To stop getting below error message in your kernel log, change
	 * user space code using functionfs to align read buffers to a max
	 * packet size.
	 *
	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
	 * packet size.  When unaligned buffer is passed to functionfs, it
	 * internally uses a larger, aligned buffer so that such UDCs are happy.
	 *
	 * Unfortunately, this means that host may send more data than was
	 * requested in read(2) system call.  f_fs doesn’t know what to do with
	 * that excess data so it simply drops it.
	 *
	 * Was the buffer aligned in the first place, no such problem would
	 * happen.
	 *
737 738 739 740 741
	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
	 * by splitting a request into multiple parts.  This splitting may still
	 * be a problem though so it’s likely best to align the buffer
	 * regardless of it being AIO or not..
	 *
742 743 744 745 746 747 748 749 750 751 752
	 * This only affects OUT endpoints, i.e. reading data with a read(2),
	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
	 * affected.
	 */
	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
	       "Align read buffer size to max packet size to avoid the problem.\n",
	       data_len, ret);

	return ret;
}

753 754 755 756 757 758
static void ffs_user_copy_worker(struct work_struct *work)
{
	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
						   work);
	int ret = io_data->req->status ? io_data->req->status :
					 io_data->req->actual;
759
	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760 761

	if (io_data->read && ret > 0) {
762 763 764
		mm_segment_t oldfs = get_fs();

		set_fs(USER_DS);
765
		use_mm(io_data->mm);
766
		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
767
		unuse_mm(io_data->mm);
768
		set_fs(oldfs);
769 770
	}

771
	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
772

773
	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
774 775
		eventfd_signal(io_data->ffs->ffs_eventfd, 1);

776 777 778
	usb_ep_free_request(io_data->ep, io_data->req);

	if (io_data->read)
779
		kfree(io_data->to_free);
780 781 782 783 784 785 786 787
	kfree(io_data->buf);
	kfree(io_data);
}

static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
					 struct usb_request *req)
{
	struct ffs_io_data *io_data = req->context;
788
	struct ffs_data *ffs = io_data->ffs;
789 790 791 792

	ENTER();

	INIT_WORK(&io_data->work, ffs_user_copy_worker);
793
	queue_work(ffs->io_completion_wq, &io_data->work);
794 795
}

796 797 798 799 800 801 802 803 804 805 806
static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
{
	/*
	 * See comment in struct ffs_epfile for full read_buffer pointer
	 * synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
	if (buf && buf != READ_BUFFER_DROP)
		kfree(buf);
}

807 808 809 810
/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
					  struct iov_iter *iter)
{
811 812 813 814 815 816
	/*
	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
	 * the buffer while we are using it.  See comment in struct ffs_epfile
	 * for full read_buffer pointer synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
817
	ssize_t ret;
818
	if (!buf || buf == READ_BUFFER_DROP)
819 820 821 822 823
		return 0;

	ret = copy_to_iter(buf->data, buf->length, iter);
	if (buf->length == ret) {
		kfree(buf);
824 825 826 827
		return ret;
	}

	if (unlikely(iov_iter_count(iter))) {
828 829 830 831 832
		ret = -EFAULT;
	} else {
		buf->length -= ret;
		buf->data += ret;
	}
833 834 835 836

	if (cmpxchg(&epfile->read_buffer, NULL, buf))
		kfree(buf);

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	return ret;
}

/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
				      void *data, int data_len,
				      struct iov_iter *iter)
{
	struct ffs_buffer *buf;

	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(data_len == ret))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/* See ffs_copy_to_iter for more context. */
	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
		data_len, ret);

	data_len -= ret;
	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
860 861
	if (!buf)
		return -ENOMEM;
862 863 864
	buf->length = data_len;
	buf->data = buf->storage;
	memcpy(buf->storage, data + ret, data_len);
865 866 867 868 869 870 871 872 873

	/*
	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
	 * in struct ffs_epfile for full read_buffer pointer synchronisation
	 * story.
	 */
	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
		kfree(buf);
874 875 876 877

	return ret;
}

878
static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
879 880
{
	struct ffs_epfile *epfile = file->private_data;
881
	struct usb_request *req;
882 883
	struct ffs_ep *ep;
	char *data = NULL;
884
	ssize_t ret, data_len = -EINVAL;
885 886
	int halt;

887
	/* Are we still active? */
888 889
	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;
890

891 892 893
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
894 895
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;
896

897 898
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
899 900
		if (ret)
			return -EINTR;
901
	}
902

903
	/* Do we halt? */
904
	halt = (!io_data->read == !epfile->in);
905 906
	if (halt && epfile->isoc)
		return -EINVAL;
907

908 909 910 911 912
	/* We will be using request and read_buffer */
	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret))
		goto error;

913 914
	/* Allocate & copy */
	if (!halt) {
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
		struct usb_gadget *gadget;

		/*
		 * Do we have buffered data from previous partial read?  Check
		 * that for synchronous case only because we do not have
		 * facility to ‘wake up’ a pending asynchronous read and push
		 * buffered data to it which we would need to make things behave
		 * consistently.
		 */
		if (!io_data->aio && io_data->read) {
			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
			if (ret)
				goto error_mutex;
		}

930 931
		/*
		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
932 933
		 * before the waiting completes, so do not assign to 'gadget'
		 * earlier
934
		 */
935
		gadget = epfile->ffs->gadget;
936

937 938 939
		spin_lock_irq(&epfile->ffs->eps_lock);
		/* In the meantime, endpoint got disabled or changed. */
		if (epfile->ep != ep) {
940 941
			ret = -ESHUTDOWN;
			goto error_lock;
942
		}
943
		data_len = iov_iter_count(&io_data->data);
944 945 946 947
		/*
		 * Controller may require buffer size to be aligned to
		 * maxpacketsize of an out endpoint.
		 */
948 949
		if (io_data->read)
			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
950
		spin_unlock_irq(&epfile->ffs->eps_lock);
951 952

		data = kmalloc(data_len, GFP_KERNEL);
953 954 955 956 957
		if (unlikely(!data)) {
			ret = -ENOMEM;
			goto error_mutex;
		}
		if (!io_data->read &&
958
		    !copy_from_iter_full(data, data_len, &io_data->data)) {
959 960
			ret = -EFAULT;
			goto error_mutex;
961 962
		}
	}
963

964
	spin_lock_irq(&epfile->ffs->eps_lock);
965

966 967 968 969
	if (epfile->ep != ep) {
		/* In the meantime, endpoint got disabled or changed. */
		ret = -ESHUTDOWN;
	} else if (halt) {
970 971 972
		ret = usb_ep_set_halt(ep->ep);
		if (!ret)
			ret = -EBADMSG;
973
	} else if (unlikely(data_len == -EINVAL)) {
974 975 976 977 978 979 980 981 982 983 984
		/*
		 * Sanity Check: even though data_len can't be used
		 * uninitialized at the time I write this comment, some
		 * compilers complain about this situation.
		 * In order to keep the code clean from warnings, data_len is
		 * being initialized to -EINVAL during its declaration, which
		 * means we can't rely on compiler anymore to warn no future
		 * changes won't result in data_len being used uninitialized.
		 * For such reason, we're adding this redundant sanity check
		 * here.
		 */
985 986 987 988
		WARN(1, "%s: data_len == -EINVAL\n", __func__);
		ret = -EINVAL;
	} else if (!io_data->aio) {
		DECLARE_COMPLETION_ONSTACK(done);
989
		bool interrupted = false;
990

991 992 993
		req = ep->req;
		req->buf      = data;
		req->length   = data_len;
994

995 996
		req->context  = &done;
		req->complete = ffs_epfile_io_complete;
997

998 999 1000
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret < 0))
			goto error_lock;
1001

1002
		spin_unlock_irq(&epfile->ffs->eps_lock);
1003

1004
		if (unlikely(wait_for_completion_interruptible(&done))) {
1005 1006 1007 1008 1009 1010
			/*
			 * To avoid race condition with ffs_epfile_io_complete,
			 * dequeue the request first then check
			 * status. usb_ep_dequeue API should guarantee no race
			 * condition with req->complete callback.
			 */
1011
			usb_ep_dequeue(ep->ep, req);
1012
			interrupted = ep->status < 0;
1013
		}
1014

1015 1016 1017
		if (interrupted)
			ret = -EINTR;
		else if (io_data->read && ep->status > 0)
1018 1019
			ret = __ffs_epfile_read_data(epfile, data, ep->status,
						     &io_data->data);
1020 1021
		else
			ret = ep->status;
1022
		goto error_mutex;
1023
	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1024 1025 1026 1027
		ret = -ENOMEM;
	} else {
		req->buf      = data;
		req->length   = data_len;
1028

1029 1030 1031 1032
		io_data->buf = data;
		io_data->ep = ep->ep;
		io_data->req = req;
		io_data->ffs = epfile->ffs;
1033

1034 1035
		req->context  = io_data;
		req->complete = ffs_epfile_async_io_complete;
1036

1037 1038 1039 1040
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret)) {
			usb_ep_free_request(ep->ep, req);
			goto error_lock;
1041 1042
		}

1043 1044 1045 1046 1047 1048 1049
		ret = -EIOCBQUEUED;
		/*
		 * Do not kfree the buffer in this function.  It will be freed
		 * by ffs_user_copy_worker.
		 */
		data = NULL;
	}
1050 1051 1052

error_lock:
	spin_unlock_irq(&epfile->ffs->eps_lock);
1053
error_mutex:
1054
	mutex_unlock(&epfile->mutex);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
error:
	kfree(data);
	return ret;
}

static int
ffs_epfile_open(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

	file->private_data = epfile;
	ffs_data_opened(epfile->ffs);

	return 0;
}

1076 1077 1078
static int ffs_aio_cancel(struct kiocb *kiocb)
{
	struct ffs_io_data *io_data = kiocb->private;
1079
	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1080 1081 1082 1083
	int value;

	ENTER();

1084 1085 1086 1087 1088
	spin_lock_irq(&epfile->ffs->eps_lock);

	if (likely(io_data && io_data->ep && io_data->req))
		value = usb_ep_dequeue(io_data->ep, io_data->req);
	else
1089
		value = -EINVAL;
1090 1091

	spin_unlock_irq(&epfile->ffs->eps_lock);
1092 1093 1094 1095

	return value;
}

1096
static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1097
{
1098
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1099
	ssize_t res;
1100 1101 1102

	ENTER();

1103 1104 1105 1106 1107 1108 1109 1110
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
	}
1111

1112 1113 1114 1115
	p->read = false;
	p->kiocb = kiocb;
	p->data = *from;
	p->mm = current->mm;
1116

1117
	kiocb->private = p;
1118

1119 1120
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1121

1122 1123 1124 1125 1126 1127 1128
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;
	if (p->aio)
		kfree(p);
	else
		*from = p->data;
A
Al Viro 已提交
1129
	return res;
1130 1131
}

1132
static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1133
{
1134
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1135
	ssize_t res;
1136 1137 1138

	ENTER();

1139 1140 1141 1142 1143 1144 1145
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
1146 1147
	}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	p->read = true;
	p->kiocb = kiocb;
	if (p->aio) {
		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
		if (!p->to_free) {
			kfree(p);
			return -ENOMEM;
		}
	} else {
		p->data = *to;
		p->to_free = NULL;
	}
	p->mm = current->mm;
1161

1162
	kiocb->private = p;
1163

1164 1165
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1166

1167 1168 1169 1170 1171 1172 1173 1174 1175
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;

	if (p->aio) {
		kfree(p->to_free);
		kfree(p);
	} else {
		*to = p->data;
A
Al Viro 已提交
1176 1177
	}
	return res;
1178 1179
}

1180 1181 1182 1183 1184 1185 1186
static int
ffs_epfile_release(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

1187
	__ffs_epfile_read_buffer_free(epfile);
1188 1189 1190 1191 1192 1193 1194 1195 1196
	ffs_data_closed(epfile->ffs);

	return 0;
}

static long ffs_epfile_ioctl(struct file *file, unsigned code,
			     unsigned long value)
{
	struct ffs_epfile *epfile = file->private_data;
1197
	struct ffs_ep *ep;
1198 1199 1200 1201 1202 1203 1204
	int ret;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

1205 1206 1207 1208 1209 1210
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;

1211 1212
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
1213 1214 1215 1216
		if (ret)
			return -EINTR;
	}

1217
	spin_lock_irq(&epfile->ffs->eps_lock);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

	/* In the meantime, endpoint got disabled or changed. */
	if (epfile->ep != ep) {
		spin_unlock_irq(&epfile->ffs->eps_lock);
		return -ESHUTDOWN;
	}

	switch (code) {
	case FUNCTIONFS_FIFO_STATUS:
		ret = usb_ep_fifo_status(epfile->ep->ep);
		break;
	case FUNCTIONFS_FIFO_FLUSH:
		usb_ep_fifo_flush(epfile->ep->ep);
		ret = 0;
		break;
	case FUNCTIONFS_CLEAR_HALT:
		ret = usb_ep_clear_halt(epfile->ep->ep);
		break;
	case FUNCTIONFS_ENDPOINT_REVMAP:
		ret = epfile->ep->num;
		break;
	case FUNCTIONFS_ENDPOINT_DESC:
	{
		int desc_idx;
		struct usb_endpoint_descriptor *desc;

		switch (epfile->ffs->gadget->speed) {
		case USB_SPEED_SUPER:
			desc_idx = 2;
1247
			break;
1248 1249
		case USB_SPEED_HIGH:
			desc_idx = 1;
1250 1251
			break;
		default:
1252
			desc_idx = 0;
1253
		}
1254 1255 1256
		desc = epfile->ep->descs[desc_idx];

		spin_unlock_irq(&epfile->ffs->eps_lock);
1257
		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1258 1259 1260 1261 1262 1263
		if (ret)
			ret = -EFAULT;
		return ret;
	}
	default:
		ret = -ENOTTY;
1264 1265 1266 1267 1268 1269
	}
	spin_unlock_irq(&epfile->ffs->eps_lock);

	return ret;
}

1270 1271 1272 1273 1274 1275 1276 1277
#ifdef CONFIG_COMPAT
static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
		unsigned long value)
{
	return ffs_epfile_ioctl(file, code, value);
}
#endif

1278 1279 1280 1281
static const struct file_operations ffs_epfile_operations = {
	.llseek =	no_llseek,

	.open =		ffs_epfile_open,
1282 1283
	.write_iter =	ffs_epfile_write_iter,
	.read_iter =	ffs_epfile_read_iter,
1284 1285
	.release =	ffs_epfile_release,
	.unlocked_ioctl =	ffs_epfile_ioctl,
1286 1287 1288
#ifdef CONFIG_COMPAT
	.compat_ioctl = ffs_epfile_compat_ioctl,
#endif
1289 1290 1291 1292 1293 1294
};


/* File system and super block operations ***********************************/

/*
1295
 * Mounting the file system creates a controller file, used first for
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
 * function configuration then later for event monitoring.
 */

static struct inode *__must_check
ffs_sb_make_inode(struct super_block *sb, void *data,
		  const struct file_operations *fops,
		  const struct inode_operations *iops,
		  struct ffs_file_perms *perms)
{
	struct inode *inode;

	ENTER();

	inode = new_inode(sb);

	if (likely(inode)) {
1312
		struct timespec64 ts = current_time(inode);
1313

1314
		inode->i_ino	 = get_next_ino();
1315 1316 1317
		inode->i_mode    = perms->mode;
		inode->i_uid     = perms->uid;
		inode->i_gid     = perms->gid;
1318 1319 1320
		inode->i_atime   = ts;
		inode->i_mtime   = ts;
		inode->i_ctime   = ts;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		inode->i_private = data;
		if (fops)
			inode->i_fop = fops;
		if (iops)
			inode->i_op  = iops;
	}

	return inode;
}

/* Create "regular" file */
A
Al Viro 已提交
1332
static struct dentry *ffs_sb_create_file(struct super_block *sb,
1333
					const char *name, void *data,
A
Al Viro 已提交
1334
					const struct file_operations *fops)
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
{
	struct ffs_data	*ffs = sb->s_fs_info;
	struct dentry	*dentry;
	struct inode	*inode;

	ENTER();

	dentry = d_alloc_name(sb->s_root, name);
	if (unlikely(!dentry))
		return NULL;

	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
	if (unlikely(!inode)) {
		dput(dentry);
		return NULL;
	}

	d_add(dentry, inode);
A
Al Viro 已提交
1353
	return dentry;
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
}

/* Super block */
static const struct super_operations ffs_sb_operations = {
	.statfs =	simple_statfs,
	.drop_inode =	generic_delete_inode,
};

struct ffs_sb_fill_data {
	struct ffs_file_perms perms;
	umode_t root_mode;
	const char *dev_name;
1366
	bool no_disconnect;
A
Al Viro 已提交
1367
	struct ffs_data *ffs_data;
1368 1369 1370 1371 1372 1373
};

static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
{
	struct ffs_sb_fill_data *data = _data;
	struct inode	*inode;
A
Al Viro 已提交
1374
	struct ffs_data	*ffs = data->ffs_data;
1375 1376 1377 1378

	ENTER();

	ffs->sb              = sb;
A
Al Viro 已提交
1379
	data->ffs_data       = NULL;
1380
	sb->s_fs_info        = ffs;
1381 1382
	sb->s_blocksize      = PAGE_SIZE;
	sb->s_blocksize_bits = PAGE_SHIFT;
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	sb->s_magic          = FUNCTIONFS_MAGIC;
	sb->s_op             = &ffs_sb_operations;
	sb->s_time_gran      = 1;

	/* Root inode */
	data->perms.mode = data->root_mode;
	inode = ffs_sb_make_inode(sb, NULL,
				  &simple_dir_operations,
				  &simple_dir_inode_operations,
				  &data->perms);
1393 1394
	sb->s_root = d_make_root(inode);
	if (unlikely(!sb->s_root))
A
Al Viro 已提交
1395
		return -ENOMEM;
1396 1397 1398

	/* EP0 file */
	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
A
Al Viro 已提交
1399
					 &ffs_ep0_operations)))
A
Al Viro 已提交
1400
		return -ENOMEM;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	return 0;
}

static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
{
	ENTER();

	if (!opts || !*opts)
		return 0;

	for (;;) {
		unsigned long value;
1414
		char *eq, *comma;
1415 1416 1417 1418 1419 1420 1421 1422 1423

		/* Option limit */
		comma = strchr(opts, ',');
		if (comma)
			*comma = 0;

		/* Value limit */
		eq = strchr(opts, '=');
		if (unlikely(!eq)) {
1424
			pr_err("'=' missing in %s\n", opts);
1425 1426 1427 1428 1429
			return -EINVAL;
		}
		*eq = 0;

		/* Parse value */
1430
		if (kstrtoul(eq + 1, 0, &value)) {
1431
			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1432 1433 1434 1435 1436
			return -EINVAL;
		}

		/* Interpret option */
		switch (eq - opts) {
1437 1438 1439 1440 1441 1442
		case 13:
			if (!memcmp(opts, "no_disconnect", 13))
				data->no_disconnect = !!value;
			else
				goto invalid;
			break;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		case 5:
			if (!memcmp(opts, "rmode", 5))
				data->root_mode  = (value & 0555) | S_IFDIR;
			else if (!memcmp(opts, "fmode", 5))
				data->perms.mode = (value & 0666) | S_IFREG;
			else
				goto invalid;
			break;

		case 4:
			if (!memcmp(opts, "mode", 4)) {
				data->root_mode  = (value & 0555) | S_IFDIR;
				data->perms.mode = (value & 0666) | S_IFREG;
			} else {
				goto invalid;
			}
			break;

		case 3:
1462 1463 1464 1465 1466 1467
			if (!memcmp(opts, "uid", 3)) {
				data->perms.uid = make_kuid(current_user_ns(), value);
				if (!uid_valid(data->perms.uid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1468
			} else if (!memcmp(opts, "gid", 3)) {
1469 1470 1471 1472 1473
				data->perms.gid = make_kgid(current_user_ns(), value);
				if (!gid_valid(data->perms.gid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1474
			} else {
1475
				goto invalid;
1476
			}
1477 1478 1479 1480
			break;

		default:
invalid:
1481
			pr_err("%s: invalid option\n", opts);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
			return -EINVAL;
		}

		/* Next iteration */
		if (!comma)
			break;
		opts = comma + 1;
	}

	return 0;
}

/* "mount -t functionfs dev_name /dev/function" ends up here */

A
Al Viro 已提交
1496 1497 1498
static struct dentry *
ffs_fs_mount(struct file_system_type *t, int flags,
	      const char *dev_name, void *opts)
1499 1500 1501 1502
{
	struct ffs_sb_fill_data data = {
		.perms = {
			.mode = S_IFREG | 0600,
1503 1504
			.uid = GLOBAL_ROOT_UID,
			.gid = GLOBAL_ROOT_GID,
1505 1506
		},
		.root_mode = S_IFDIR | 0500,
1507
		.no_disconnect = false,
1508
	};
1509
	struct dentry *rv;
1510
	int ret;
1511
	void *ffs_dev;
A
Al Viro 已提交
1512
	struct ffs_data	*ffs;
1513 1514 1515 1516 1517

	ENTER();

	ret = ffs_fs_parse_opts(&data, opts);
	if (unlikely(ret < 0))
A
Al Viro 已提交
1518
		return ERR_PTR(ret);
1519

1520
	ffs = ffs_data_new(dev_name);
A
Al Viro 已提交
1521 1522 1523
	if (unlikely(!ffs))
		return ERR_PTR(-ENOMEM);
	ffs->file_perms = data.perms;
1524
	ffs->no_disconnect = data.no_disconnect;
A
Al Viro 已提交
1525 1526 1527 1528 1529 1530 1531

	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
	if (unlikely(!ffs->dev_name)) {
		ffs_data_put(ffs);
		return ERR_PTR(-ENOMEM);
	}

1532
	ffs_dev = ffs_acquire_dev(dev_name);
A
Al Viro 已提交
1533 1534 1535 1536 1537 1538
	if (IS_ERR(ffs_dev)) {
		ffs_data_put(ffs);
		return ERR_CAST(ffs_dev);
	}
	ffs->private_data = ffs_dev;
	data.ffs_data = ffs;
1539 1540

	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
A
Al Viro 已提交
1541
	if (IS_ERR(rv) && data.ffs_data) {
1542
		ffs_release_dev(data.ffs_data);
A
Al Viro 已提交
1543 1544
		ffs_data_put(data.ffs_data);
	}
1545
	return rv;
1546 1547 1548 1549 1550 1551 1552 1553
}

static void
ffs_fs_kill_sb(struct super_block *sb)
{
	ENTER();

	kill_litter_super(sb);
1554
	if (sb->s_fs_info) {
1555
		ffs_release_dev(sb->s_fs_info);
1556
		ffs_data_closed(sb->s_fs_info);
1557
	}
1558 1559 1560 1561 1562
}

static struct file_system_type ffs_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "functionfs",
A
Al Viro 已提交
1563
	.mount		= ffs_fs_mount,
1564 1565
	.kill_sb	= ffs_fs_kill_sb,
};
1566
MODULE_ALIAS_FS("functionfs");
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578


/* Driver's main init/cleanup functions *************************************/

static int functionfs_init(void)
{
	int ret;

	ENTER();

	ret = register_filesystem(&ffs_fs_type);
	if (likely(!ret))
1579
		pr_info("file system registered\n");
1580
	else
1581
		pr_err("failed registering file system (%d)\n", ret);
1582 1583 1584 1585 1586 1587 1588 1589

	return ret;
}

static void functionfs_cleanup(void)
{
	ENTER();

1590
	pr_info("unloading\n");
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	unregister_filesystem(&ffs_fs_type);
}


/* ffs_data and ffs_function construction and destruction code **************/

static void ffs_data_clear(struct ffs_data *ffs);
static void ffs_data_reset(struct ffs_data *ffs);

static void ffs_data_get(struct ffs_data *ffs)
{
	ENTER();

1604
	refcount_inc(&ffs->ref);
1605 1606 1607 1608 1609 1610
}

static void ffs_data_opened(struct ffs_data *ffs)
{
	ENTER();

1611
	refcount_inc(&ffs->ref);
1612 1613 1614 1615 1616
	if (atomic_add_return(1, &ffs->opened) == 1 &&
			ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}
1617 1618 1619 1620 1621 1622
}

static void ffs_data_put(struct ffs_data *ffs)
{
	ENTER();

1623
	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1624
		pr_info("%s(): freeing\n", __func__);
1625
		ffs_data_clear(ffs);
1626
		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1627 1628
		       waitqueue_active(&ffs->ep0req_completion.wait) ||
		       waitqueue_active(&ffs->wait));
1629
		destroy_workqueue(ffs->io_completion_wq);
1630
		kfree(ffs->dev_name);
1631 1632 1633 1634 1635 1636 1637 1638 1639
		kfree(ffs);
	}
}

static void ffs_data_closed(struct ffs_data *ffs)
{
	ENTER();

	if (atomic_dec_and_test(&ffs->opened)) {
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		if (ffs->no_disconnect) {
			ffs->state = FFS_DEACTIVATED;
			if (ffs->epfiles) {
				ffs_epfiles_destroy(ffs->epfiles,
						   ffs->eps_count);
				ffs->epfiles = NULL;
			}
			if (ffs->setup_state == FFS_SETUP_PENDING)
				__ffs_ep0_stall(ffs);
		} else {
			ffs->state = FFS_CLOSING;
			ffs_data_reset(ffs);
		}
	}
	if (atomic_read(&ffs->opened) < 0) {
1655 1656 1657 1658 1659 1660 1661
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}

	ffs_data_put(ffs);
}

1662
static struct ffs_data *ffs_data_new(const char *dev_name)
1663 1664 1665
{
	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
	if (unlikely(!ffs))
1666
		return NULL;
1667 1668 1669

	ENTER();

1670 1671 1672 1673 1674 1675
	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
	if (!ffs->io_completion_wq) {
		kfree(ffs);
		return NULL;
	}

1676
	refcount_set(&ffs->ref, 1);
1677 1678 1679 1680 1681
	atomic_set(&ffs->opened, 0);
	ffs->state = FFS_READ_DESCRIPTORS;
	mutex_init(&ffs->mutex);
	spin_lock_init(&ffs->eps_lock);
	init_waitqueue_head(&ffs->ev.waitq);
1682
	init_waitqueue_head(&ffs->wait);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	init_completion(&ffs->ep0req_completion);

	/* XXX REVISIT need to update it in some places, or do we? */
	ffs->ev.can_stall = 1;

	return ffs;
}

static void ffs_data_clear(struct ffs_data *ffs)
{
	ENTER();

1695
	ffs_closed(ffs);
1696 1697 1698 1699 1700 1701

	BUG_ON(ffs->gadget);

	if (ffs->epfiles)
		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);

1702 1703 1704
	if (ffs->ffs_eventfd)
		eventfd_ctx_put(ffs->ffs_eventfd);

1705
	kfree(ffs->raw_descs_data);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	kfree(ffs->raw_strings);
	kfree(ffs->stringtabs);
}

static void ffs_data_reset(struct ffs_data *ffs)
{
	ENTER();

	ffs_data_clear(ffs);

	ffs->epfiles = NULL;
1717
	ffs->raw_descs_data = NULL;
1718 1719 1720 1721 1722 1723 1724
	ffs->raw_descs = NULL;
	ffs->raw_strings = NULL;
	ffs->stringtabs = NULL;

	ffs->raw_descs_length = 0;
	ffs->fs_descs_count = 0;
	ffs->hs_descs_count = 0;
1725
	ffs->ss_descs_count = 0;
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

	ffs->strings_count = 0;
	ffs->interfaces_count = 0;
	ffs->eps_count = 0;

	ffs->ev.count = 0;

	ffs->state = FFS_READ_DESCRIPTORS;
	ffs->setup_state = FFS_NO_SETUP;
	ffs->flags = 0;
}


static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
{
1741 1742
	struct usb_gadget_strings **lang;
	int first_id;
1743 1744 1745 1746 1747 1748 1749

	ENTER();

	if (WARN_ON(ffs->state != FFS_ACTIVE
		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
		return -EBADFD;

1750 1751 1752
	first_id = usb_string_ids_n(cdev, ffs->strings_count);
	if (unlikely(first_id < 0))
		return first_id;
1753 1754 1755 1756 1757 1758 1759

	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
	if (unlikely(!ffs->ep0req))
		return -ENOMEM;
	ffs->ep0req->complete = ffs_ep0_complete;
	ffs->ep0req->context = ffs;

1760
	lang = ffs->stringtabs;
1761 1762 1763 1764 1765 1766 1767
	if (lang) {
		for (; *lang; ++lang) {
			struct usb_string *str = (*lang)->strings;
			int id = first_id;
			for (; str->s; ++id, ++str)
				str->id = id;
		}
1768 1769 1770
	}

	ffs->gadget = cdev->gadget;
1771
	ffs_data_get(ffs);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	return 0;
}

static void functionfs_unbind(struct ffs_data *ffs)
{
	ENTER();

	if (!WARN_ON(!ffs->gadget)) {
		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
		ffs->ep0req = NULL;
		ffs->gadget = NULL;
1783
		clear_bit(FFS_FL_BOUND, &ffs->flags);
1784
		ffs_data_put(ffs);
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	}
}

static int ffs_epfiles_create(struct ffs_data *ffs)
{
	struct ffs_epfile *epfile, *epfiles;
	unsigned i, count;

	ENTER();

	count = ffs->eps_count;
1796
	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1797 1798 1799 1800 1801 1802 1803
	if (!epfiles)
		return -ENOMEM;

	epfile = epfiles;
	for (i = 1; i <= count; ++i, ++epfile) {
		epfile->ffs = ffs;
		mutex_init(&epfile->mutex);
1804
		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1805
			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1806
		else
1807 1808
			sprintf(epfile->name, "ep%u", i);
		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
A
Al Viro 已提交
1809 1810 1811
						 epfile,
						 &ffs_epfile_operations);
		if (unlikely(!epfile->dentry)) {
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
			ffs_epfiles_destroy(epfiles, i - 1);
			return -ENOMEM;
		}
	}

	ffs->epfiles = epfiles;
	return 0;
}

static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
{
	struct ffs_epfile *epfile = epfiles;

	ENTER();

	for (; count; --count, ++epfile) {
1828
		BUG_ON(mutex_is_locked(&epfile->mutex));
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		if (epfile->dentry) {
			d_delete(epfile->dentry);
			dput(epfile->dentry);
			epfile->dentry = NULL;
		}
	}

	kfree(epfiles);
}

static void ffs_func_eps_disable(struct ffs_function *func)
{
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = func->ffs->epfiles;
	unsigned count            = func->ffs->eps_count;
	unsigned long flags;

1846
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1847
	while (count--) {
1848 1849 1850 1851
		/* pending requests get nuked */
		if (likely(ep->ep))
			usb_ep_disable(ep->ep);
		++ep;
1852 1853

		if (epfile) {
1854 1855
			epfile->ep = NULL;
			__ffs_epfile_read_buffer_free(epfile);
1856 1857
			++epfile;
		}
1858
	}
1859
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
}

static int ffs_func_eps_enable(struct ffs_function *func)
{
	struct ffs_data *ffs      = func->ffs;
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = ffs->epfiles;
	unsigned count            = ffs->eps_count;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1872
	while(count--) {
1873
		ep->ep->driver_data = ep;
1874

1875 1876 1877 1878 1879
		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
		if (ret) {
			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
					__func__, ep->ep->name, ret);
			break;
1880
		}
1881

1882
		ret = usb_ep_enable(ep->ep);
1883 1884
		if (likely(!ret)) {
			epfile->ep = ep;
1885 1886
			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1887 1888 1889 1890 1891 1892
		} else {
			break;
		}

		++ep;
		++epfile;
1893
	}
1894 1895

	wake_up_interruptible(&ffs->wait);
1896 1897 1898 1899 1900 1901 1902 1903
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);

	return ret;
}


/* Parsing and building descriptors and strings *****************************/

1904 1905
/*
 * This validates if data pointed by data is a valid USB descriptor as
1906
 * well as record how many interfaces, endpoints and strings are
1907 1908 1909
 * required by given configuration.  Returns address after the
 * descriptor or NULL if data is invalid.
 */
1910 1911 1912 1913 1914

enum ffs_entity_type {
	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
};

1915 1916 1917 1918
enum ffs_os_desc_type {
	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
};

1919 1920 1921 1922 1923
typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
				   u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv);

1924 1925 1926 1927
typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
				    struct usb_os_desc_header *h, void *data,
				    unsigned len, void *priv);

1928 1929
static int __must_check ffs_do_single_desc(char *data, unsigned len,
					   ffs_entity_callback entity,
1930
					   void *priv, int *current_class)
1931 1932 1933 1934 1935 1936 1937 1938 1939
{
	struct usb_descriptor_header *_ds = (void *)data;
	u8 length;
	int ret;

	ENTER();

	/* At least two bytes are required: length and type */
	if (len < 2) {
1940
		pr_vdebug("descriptor too short\n");
1941 1942 1943 1944 1945 1946
		return -EINVAL;
	}

	/* If we have at least as many bytes as the descriptor takes? */
	length = _ds->bLength;
	if (len < length) {
1947
		pr_vdebug("descriptor longer then available data\n");
1948 1949 1950 1951 1952 1953 1954
		return -EINVAL;
	}

#define __entity_check_INTERFACE(val)  1
#define __entity_check_STRING(val)     (val)
#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
#define __entity(type, val) do {					\
1955
		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1956
		if (unlikely(!__entity_check_ ##type(val))) {		\
1957
			pr_vdebug("invalid entity's value\n");		\
1958 1959 1960 1961
			return -EINVAL;					\
		}							\
		ret = entity(FFS_ ##type, &val, _ds, priv);		\
		if (unlikely(ret < 0)) {				\
1962
			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1963
				 (val), ret);				\
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
			return ret;					\
		}							\
	} while (0)

	/* Parse descriptor depending on type. */
	switch (_ds->bDescriptorType) {
	case USB_DT_DEVICE:
	case USB_DT_CONFIG:
	case USB_DT_STRING:
	case USB_DT_DEVICE_QUALIFIER:
		/* function can't have any of those */
1975
		pr_vdebug("descriptor reserved for gadget: %d\n",
1976
		      _ds->bDescriptorType);
1977 1978 1979 1980
		return -EINVAL;

	case USB_DT_INTERFACE: {
		struct usb_interface_descriptor *ds = (void *)_ds;
1981
		pr_vdebug("interface descriptor\n");
1982 1983 1984 1985 1986 1987
		if (length != sizeof *ds)
			goto inv_length;

		__entity(INTERFACE, ds->bInterfaceNumber);
		if (ds->iInterface)
			__entity(STRING, ds->iInterface);
1988
		*current_class = ds->bInterfaceClass;
1989 1990 1991 1992 1993
	}
		break;

	case USB_DT_ENDPOINT: {
		struct usb_endpoint_descriptor *ds = (void *)_ds;
1994
		pr_vdebug("endpoint descriptor\n");
1995 1996 1997 1998 1999 2000 2001
		if (length != USB_DT_ENDPOINT_SIZE &&
		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
			goto inv_length;
		__entity(ENDPOINT, ds->bEndpointAddress);
	}
		break;

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	case USB_TYPE_CLASS | 0x01:
                if (*current_class == USB_INTERFACE_CLASS_HID) {
			pr_vdebug("hid descriptor\n");
			if (length != sizeof(struct hid_descriptor))
				goto inv_length;
			break;
		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
			pr_vdebug("ccid descriptor\n");
			if (length != sizeof(struct ccid_descriptor))
				goto inv_length;
			break;
		} else {
			pr_vdebug("unknown descriptor: %d for class %d\n",
			      _ds->bDescriptorType, *current_class);
			return -EINVAL;
		}
2018

2019 2020 2021 2022 2023 2024 2025
	case USB_DT_OTG:
		if (length != sizeof(struct usb_otg_descriptor))
			goto inv_length;
		break;

	case USB_DT_INTERFACE_ASSOCIATION: {
		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2026
		pr_vdebug("interface association descriptor\n");
2027 2028 2029 2030 2031 2032 2033
		if (length != sizeof *ds)
			goto inv_length;
		if (ds->iFunction)
			__entity(STRING, ds->iFunction);
	}
		break;

2034 2035 2036 2037 2038 2039
	case USB_DT_SS_ENDPOINT_COMP:
		pr_vdebug("EP SS companion descriptor\n");
		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
			goto inv_length;
		break;

2040 2041 2042 2043 2044 2045
	case USB_DT_OTHER_SPEED_CONFIG:
	case USB_DT_INTERFACE_POWER:
	case USB_DT_DEBUG:
	case USB_DT_SECURITY:
	case USB_DT_CS_RADIO_CONTROL:
		/* TODO */
2046
		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2047 2048 2049 2050
		return -EINVAL;

	default:
		/* We should never be here */
2051
		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2052 2053
		return -EINVAL;

2054
inv_length:
2055
		pr_vdebug("invalid length: %d (descriptor %d)\n",
2056
			  _ds->bLength, _ds->bDescriptorType);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
		return -EINVAL;
	}

#undef __entity
#undef __entity_check_DESCRIPTOR
#undef __entity_check_INTERFACE
#undef __entity_check_STRING
#undef __entity_check_ENDPOINT

	return length;
}

static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
				     ffs_entity_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;
2074
	int current_class = -1;
2075 2076 2077 2078 2079 2080 2081 2082 2083

	ENTER();

	for (;;) {
		int ret;

		if (num == count)
			data = NULL;

2084
		/* Record "descriptor" entity */
2085 2086
		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
		if (unlikely(ret < 0)) {
2087
			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2088
				 num, ret);
2089 2090 2091 2092 2093 2094
			return ret;
		}

		if (!data)
			return _len - len;

2095 2096
		ret = ffs_do_single_desc(data, len, entity, priv,
			&current_class);
2097
		if (unlikely(ret < 0)) {
2098
			pr_debug("%s returns %d\n", __func__, ret);
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
			return ret;
		}

		len -= ret;
		data += ret;
		++num;
	}
}

static int __ffs_data_do_entity(enum ffs_entity_type type,
				u8 *valuep, struct usb_descriptor_header *desc,
				void *priv)
{
2112 2113
	struct ffs_desc_helper *helper = priv;
	struct usb_endpoint_descriptor *d;
2114 2115 2116 2117 2118 2119 2120 2121

	ENTER();

	switch (type) {
	case FFS_DESCRIPTOR:
		break;

	case FFS_INTERFACE:
2122 2123
		/*
		 * Interfaces are indexed from zero so if we
2124
		 * encountered interface "n" then there are at least
2125 2126
		 * "n+1" interfaces.
		 */
2127 2128
		if (*valuep >= helper->interfaces_count)
			helper->interfaces_count = *valuep + 1;
2129 2130 2131
		break;

	case FFS_STRING:
2132
		/*
2133 2134
		 * Strings are indexed from 1 (0 is reserved
		 * for languages list)
2135
		 */
2136 2137
		if (*valuep > helper->ffs->strings_count)
			helper->ffs->strings_count = *valuep;
2138 2139 2140
		break;

	case FFS_ENDPOINT:
2141 2142
		d = (void *)desc;
		helper->eps_count++;
2143
		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2144 2145 2146 2147 2148 2149 2150 2151
			return -EINVAL;
		/* Check if descriptors for any speed were already parsed */
		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
			helper->ffs->eps_addrmap[helper->eps_count] =
				d->bEndpointAddress;
		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
				d->bEndpointAddress)
			return -EINVAL;
2152 2153 2154 2155 2156 2157
		break;
	}

	return 0;
}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
				   struct usb_os_desc_header *desc)
{
	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
	u16 w_index = le16_to_cpu(desc->wIndex);

	if (bcd_version != 1) {
		pr_vdebug("unsupported os descriptors version: %d",
			  bcd_version);
		return -EINVAL;
	}
	switch (w_index) {
	case 0x4:
		*next_type = FFS_OS_DESC_EXT_COMPAT;
		break;
	case 0x5:
		*next_type = FFS_OS_DESC_EXT_PROP;
		break;
	default:
		pr_vdebug("unsupported os descriptor type: %d", w_index);
		return -EINVAL;
	}

	return sizeof(*desc);
}

/*
 * Process all extended compatibility/extended property descriptors
 * of a feature descriptor
 */
static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
					      enum ffs_os_desc_type type,
					      u16 feature_count,
					      ffs_os_desc_callback entity,
					      void *priv,
					      struct usb_os_desc_header *h)
{
	int ret;
	const unsigned _len = len;

	ENTER();

	/* loop over all ext compat/ext prop descriptors */
	while (feature_count--) {
		ret = entity(type, h, data, len, priv);
		if (unlikely(ret < 0)) {
			pr_debug("bad OS descriptor, type: %d\n", type);
			return ret;
		}
		data += ret;
		len -= ret;
	}
	return _len - len;
}

/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
static int __must_check ffs_do_os_descs(unsigned count,
					char *data, unsigned len,
					ffs_os_desc_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (num = 0; num < count; ++num) {
		int ret;
		enum ffs_os_desc_type type;
		u16 feature_count;
		struct usb_os_desc_header *desc = (void *)data;

		if (len < sizeof(*desc))
			return -EINVAL;

		/*
		 * Record "descriptor" entity.
		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
		 * Move the data pointer to the beginning of extended
		 * compatibilities proper or extended properties proper
		 * portions of the data
		 */
		if (le32_to_cpu(desc->dwLength) > len)
			return -EINVAL;

		ret = __ffs_do_os_desc_header(&type, desc);
		if (unlikely(ret < 0)) {
			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
				 num, ret);
			return ret;
		}
		/*
		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
		 */
		feature_count = le16_to_cpu(desc->wCount);
		if (type == FFS_OS_DESC_EXT_COMPAT &&
		    (feature_count > 255 || desc->Reserved))
				return -EINVAL;
		len -= ret;
		data += ret;

		/*
		 * Process all function/property descriptors
		 * of this Feature Descriptor
		 */
		ret = ffs_do_single_os_desc(data, len, type,
					    feature_count, entity, priv, desc);
		if (unlikely(ret < 0)) {
			pr_debug("%s returns %d\n", __func__, ret);
			return ret;
		}

		len -= ret;
		data += ret;
	}
	return _len - len;
}

/**
 * Validate contents of the buffer from userspace related to OS descriptors.
 */
static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
				 struct usb_os_desc_header *h, void *data,
				 unsigned len, void *priv)
{
	struct ffs_data *ffs = priv;
	u8 length;

	ENTER();

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *d = data;
		int i;

		if (len < sizeof(*d) ||
2293
		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2294
			return -EINVAL;
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		if (d->Reserved1 != 1) {
			/*
			 * According to the spec, Reserved1 must be set to 1
			 * but older kernels incorrectly rejected non-zero
			 * values.  We fix it here to avoid returning EINVAL
			 * in response to values we used to accept.
			 */
			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
			d->Reserved1 = 1;
		}
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
			if (d->Reserved2[i])
				return -EINVAL;

		length = sizeof(struct usb_ext_compat_desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *d = data;
		u32 type, pdl;
		u16 pnl;

		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
			return -EINVAL;
		length = le32_to_cpu(d->dwSize);
2320 2321
		if (len < length)
			return -EINVAL;
2322 2323 2324 2325 2326 2327 2328 2329
		type = le32_to_cpu(d->dwPropertyDataType);
		if (type < USB_EXT_PROP_UNICODE ||
		    type > USB_EXT_PROP_UNICODE_MULTI) {
			pr_vdebug("unsupported os descriptor property type: %d",
				  type);
			return -EINVAL;
		}
		pnl = le16_to_cpu(d->wPropertyNameLength);
2330 2331 2332 2333 2334
		if (length < 14 + pnl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
				  length, pnl, type);
			return -EINVAL;
		}
2335
		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		if (length != 14 + pnl + pdl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
				  length, pnl, pdl, type);
			return -EINVAL;
		}
		++ffs->ms_os_descs_ext_prop_count;
		/* property name reported to the host as "WCHAR"s */
		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
		ffs->ms_os_descs_ext_prop_data_len += pdl;
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
		return -EINVAL;
	}
	return length;
}

2354 2355 2356
static int __ffs_data_got_descs(struct ffs_data *ffs,
				char *const _data, size_t len)
{
2357
	char *data = _data, *raw_descs;
2358
	unsigned os_descs_count = 0, counts[3], flags;
2359
	int ret = -EINVAL, i;
2360
	struct ffs_desc_helper helper;
2361 2362 2363

	ENTER();

2364
	if (get_unaligned_le32(data + 4) != len)
2365 2366
		goto error;

2367 2368 2369 2370 2371 2372 2373 2374
	switch (get_unaligned_le32(data)) {
	case FUNCTIONFS_DESCRIPTORS_MAGIC:
		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
		data += 8;
		len  -= 8;
		break;
	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
		flags = get_unaligned_le32(data + 8);
2375
		ffs->user_flags = flags;
2376 2377
		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
			      FUNCTIONFS_HAS_HS_DESC |
2378
			      FUNCTIONFS_HAS_SS_DESC |
2379
			      FUNCTIONFS_HAS_MS_OS_DESC |
2380
			      FUNCTIONFS_VIRTUAL_ADDR |
2381
			      FUNCTIONFS_EVENTFD |
2382 2383
			      FUNCTIONFS_ALL_CTRL_RECIP |
			      FUNCTIONFS_CONFIG0_SETUP)) {
2384
			ret = -ENOSYS;
2385 2386
			goto error;
		}
2387 2388 2389 2390 2391
		data += 12;
		len  -= 12;
		break;
	default:
		goto error;
2392 2393
	}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	if (flags & FUNCTIONFS_EVENTFD) {
		if (len < 4)
			goto error;
		ffs->ffs_eventfd =
			eventfd_ctx_fdget((int)get_unaligned_le32(data));
		if (IS_ERR(ffs->ffs_eventfd)) {
			ret = PTR_ERR(ffs->ffs_eventfd);
			ffs->ffs_eventfd = NULL;
			goto error;
		}
		data += 4;
		len  -= 4;
	}

2408 2409 2410 2411 2412
	/* Read fs_count, hs_count and ss_count (if present) */
	for (i = 0; i < 3; ++i) {
		if (!(flags & (1 << i))) {
			counts[i] = 0;
		} else if (len < 4) {
2413
			goto error;
2414 2415 2416 2417
		} else {
			counts[i] = get_unaligned_le32(data);
			data += 4;
			len  -= 4;
2418
		}
2419
	}
2420
	if (flags & (1 << i)) {
2421 2422 2423
		if (len < 4) {
			goto error;
		}
2424 2425 2426 2427
		os_descs_count = get_unaligned_le32(data);
		data += 4;
		len -= 4;
	};
2428

2429 2430
	/* Read descriptors */
	raw_descs = data;
2431
	helper.ffs = ffs;
2432 2433 2434
	for (i = 0; i < 3; ++i) {
		if (!counts[i])
			continue;
2435 2436
		helper.interfaces_count = 0;
		helper.eps_count = 0;
2437
		ret = ffs_do_descs(counts[i], data, len,
2438
				   __ffs_data_do_entity, &helper);
2439
		if (ret < 0)
2440
			goto error;
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
		if (!ffs->eps_count && !ffs->interfaces_count) {
			ffs->eps_count = helper.eps_count;
			ffs->interfaces_count = helper.interfaces_count;
		} else {
			if (ffs->eps_count != helper.eps_count) {
				ret = -EINVAL;
				goto error;
			}
			if (ffs->interfaces_count != helper.interfaces_count) {
				ret = -EINVAL;
				goto error;
			}
		}
2454 2455
		data += ret;
		len  -= ret;
2456
	}
2457 2458 2459 2460 2461 2462 2463 2464
	if (os_descs_count) {
		ret = ffs_do_os_descs(os_descs_count, data, len,
				      __ffs_data_do_os_desc, ffs);
		if (ret < 0)
			goto error;
		data += ret;
		len -= ret;
	}
2465

2466 2467 2468 2469
	if (raw_descs == data || len) {
		ret = -EINVAL;
		goto error;
	}
2470

2471 2472 2473 2474 2475 2476
	ffs->raw_descs_data	= _data;
	ffs->raw_descs		= raw_descs;
	ffs->raw_descs_length	= data - raw_descs;
	ffs->fs_descs_count	= counts[0];
	ffs->hs_descs_count	= counts[1];
	ffs->ss_descs_count	= counts[2];
2477
	ffs->ms_os_descs_count	= os_descs_count;
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491

	return 0;

error:
	kfree(_data);
	return ret;
}

static int __ffs_data_got_strings(struct ffs_data *ffs,
				  char *const _data, size_t len)
{
	u32 str_count, needed_count, lang_count;
	struct usb_gadget_strings **stringtabs, *t;
	const char *data = _data;
2492
	struct usb_string *s;
2493 2494 2495

	ENTER();

2496 2497
	if (unlikely(len < 16 ||
		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
		     get_unaligned_le32(data + 4) != len))
		goto error;
	str_count  = get_unaligned_le32(data + 8);
	lang_count = get_unaligned_le32(data + 12);

	/* if one is zero the other must be zero */
	if (unlikely(!str_count != !lang_count))
		goto error;

	/* Do we have at least as many strings as descriptors need? */
	needed_count = ffs->strings_count;
	if (unlikely(str_count < needed_count))
		goto error;

2512 2513 2514 2515
	/*
	 * If we don't need any strings just return and free all
	 * memory.
	 */
2516 2517 2518 2519 2520
	if (!needed_count) {
		kfree(_data);
		return 0;
	}

2521
	/* Allocate everything in one chunk so there's less maintenance. */
2522 2523
	{
		unsigned i = 0;
2524 2525 2526 2527 2528 2529
		vla_group(d);
		vla_item(d, struct usb_gadget_strings *, stringtabs,
			lang_count + 1);
		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
		vla_item(d, struct usb_string, strings,
			lang_count*(needed_count+1));
2530

2531 2532 2533
		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);

		if (unlikely(!vlabuf)) {
2534 2535 2536 2537
			kfree(_data);
			return -ENOMEM;
		}

2538 2539 2540
		/* Initialize the VLA pointers */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
2541 2542 2543 2544 2545 2546
		i = lang_count;
		do {
			*stringtabs++ = t++;
		} while (--i);
		*stringtabs = NULL;

2547 2548 2549 2550
		/* stringtabs = vlabuf = d_stringtabs for later kfree */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
		s = vla_ptr(vlabuf, d, strings);
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	}

	/* For each language */
	data += 16;
	len -= 16;

	do { /* lang_count > 0 so we can use do-while */
		unsigned needed = needed_count;

		if (unlikely(len < 3))
			goto error_free;
		t->language = get_unaligned_le16(data);
		t->strings  = s;
		++t;

		data += 2;
		len -= 2;

		/* For each string */
		do { /* str_count > 0 so we can use do-while */
			size_t length = strnlen(data, len);

			if (unlikely(length == len))
				goto error_free;

2576 2577 2578 2579 2580
			/*
			 * User may provide more strings then we need,
			 * if that's the case we simply ignore the
			 * rest
			 */
2581
			if (likely(needed)) {
2582 2583
				/*
				 * s->id will be set while adding
2584
				 * function to configuration so for
2585 2586
				 * now just leave garbage here.
				 */
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
				s->s = data;
				--needed;
				++s;
			}

			data += length + 1;
			len -= length + 1;
		} while (--str_count);

		s->id = 0;   /* terminator */
		s->s = NULL;
		++s;

	} while (--lang_count);

	/* Some garbage left? */
	if (unlikely(len))
		goto error_free;

	/* Done! */
	ffs->stringtabs = stringtabs;
	ffs->raw_strings = _data;

	return 0;

error_free:
	kfree(stringtabs);
error:
	kfree(_data);
	return -EINVAL;
}


/* Events handling and management *******************************************/

static void __ffs_event_add(struct ffs_data *ffs,
			    enum usb_functionfs_event_type type)
{
	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
	int neg = 0;

2628 2629 2630 2631
	/*
	 * Abort any unhandled setup
	 *
	 * We do not need to worry about some cmpxchg() changing value
2632 2633
	 * of ffs->setup_state without holding the lock because when
	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2634 2635
	 * the source does nothing.
	 */
2636
	if (ffs->setup_state == FFS_SETUP_PENDING)
2637
		ffs->setup_state = FFS_SETUP_CANCELLED;
2638

2639 2640 2641 2642 2643 2644 2645
	/*
	 * Logic of this function guarantees that there are at most four pending
	 * evens on ffs->ev.types queue.  This is important because the queue
	 * has space for four elements only and __ffs_ep0_read_events function
	 * depends on that limit as well.  If more event types are added, those
	 * limits have to be revisited or guaranteed to still hold.
	 */
2646 2647 2648
	switch (type) {
	case FUNCTIONFS_RESUME:
		rem_type2 = FUNCTIONFS_SUSPEND;
2649
		/* FALL THROUGH */
2650 2651 2652
	case FUNCTIONFS_SUSPEND:
	case FUNCTIONFS_SETUP:
		rem_type1 = type;
2653
		/* Discard all similar events */
2654 2655 2656 2657 2658 2659
		break;

	case FUNCTIONFS_BIND:
	case FUNCTIONFS_UNBIND:
	case FUNCTIONFS_DISABLE:
	case FUNCTIONFS_ENABLE:
2660
		/* Discard everything other then power management. */
2661 2662 2663 2664 2665 2666
		rem_type1 = FUNCTIONFS_SUSPEND;
		rem_type2 = FUNCTIONFS_RESUME;
		neg = 1;
		break;

	default:
2667 2668
		WARN(1, "%d: unknown event, this should not happen\n", type);
		return;
2669 2670 2671 2672 2673 2674 2675 2676 2677
	}

	{
		u8 *ev  = ffs->ev.types, *out = ev;
		unsigned n = ffs->ev.count;
		for (; n; --n, ++ev)
			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
				*out++ = *ev;
			else
2678
				pr_vdebug("purging event %d\n", *ev);
2679 2680 2681
		ffs->ev.count = out - ffs->ev.types;
	}

2682
	pr_vdebug("adding event %d\n", type);
2683 2684
	ffs->ev.types[ffs->ev.count++] = type;
	wake_up_locked(&ffs->ev.waitq);
2685 2686
	if (ffs->ffs_eventfd)
		eventfd_signal(ffs->ffs_eventfd, 1);
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
}

static void ffs_event_add(struct ffs_data *ffs,
			  enum usb_functionfs_event_type type)
{
	unsigned long flags;
	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	__ffs_event_add(ffs, type);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
}

/* Bind/unbind USB function hooks *******************************************/

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
		if (ffs->eps_addrmap[i] == endpoint_address)
			return i;
	return -ENOENT;
}

2710 2711 2712 2713 2714 2715 2716
static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
				    struct usb_descriptor_header *desc,
				    void *priv)
{
	struct usb_endpoint_descriptor *ds = (void *)desc;
	struct ffs_function *func = priv;
	struct ffs_ep *ffs_ep;
2717 2718
	unsigned ep_desc_id;
	int idx;
2719
	static const char *speed_names[] = { "full", "high", "super" };
2720 2721 2722 2723

	if (type != FFS_DESCRIPTOR)
		return 0;

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	/*
	 * If ss_descriptors is not NULL, we are reading super speed
	 * descriptors; if hs_descriptors is not NULL, we are reading high
	 * speed descriptors; otherwise, we are reading full speed
	 * descriptors.
	 */
	if (func->function.ss_descriptors) {
		ep_desc_id = 2;
		func->function.ss_descriptors[(long)valuep] = desc;
	} else if (func->function.hs_descriptors) {
		ep_desc_id = 1;
2735
		func->function.hs_descriptors[(long)valuep] = desc;
2736 2737
	} else {
		ep_desc_id = 0;
2738
		func->function.fs_descriptors[(long)valuep]    = desc;
2739
	}
2740 2741 2742 2743

	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
		return 0;

2744 2745 2746 2747
	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
	if (idx < 0)
		return idx;

2748 2749
	ffs_ep = func->eps + idx;

2750 2751 2752
	if (unlikely(ffs_ep->descs[ep_desc_id])) {
		pr_err("two %sspeed descriptors for EP %d\n",
			  speed_names[ep_desc_id],
2753
			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2754 2755
		return -EINVAL;
	}
2756
	ffs_ep->descs[ep_desc_id] = ds;
2757 2758 2759 2760 2761 2762 2763 2764 2765

	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
	if (ffs_ep->ep) {
		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
		if (!ds->wMaxPacketSize)
			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
	} else {
		struct usb_request *req;
		struct usb_ep *ep;
2766
		u8 bEndpointAddress;
2767

2768 2769 2770 2771 2772
		/*
		 * We back up bEndpointAddress because autoconfig overwrites
		 * it with physical endpoint address.
		 */
		bEndpointAddress = ds->bEndpointAddress;
2773
		pr_vdebug("autoconfig\n");
2774 2775 2776
		ep = usb_ep_autoconfig(func->gadget, ds);
		if (unlikely(!ep))
			return -ENOTSUPP;
2777
		ep->driver_data = func->eps + idx;
2778 2779 2780 2781 2782 2783 2784 2785 2786

		req = usb_ep_alloc_request(ep, GFP_KERNEL);
		if (unlikely(!req))
			return -ENOMEM;

		ffs_ep->ep  = ep;
		ffs_ep->req = req;
		func->eps_revmap[ds->bEndpointAddress &
				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2787 2788 2789 2790 2791 2792
		/*
		 * If we use virtual address mapping, we restore
		 * original bEndpointAddress value.
		 */
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ds->bEndpointAddress = bEndpointAddress;
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	}
	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);

	return 0;
}

static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv)
{
	struct ffs_function *func = priv;
	unsigned idx;
	u8 newValue;

	switch (type) {
	default:
	case FFS_DESCRIPTOR:
		/* Handled in previous pass by __ffs_func_bind_do_descs() */
		return 0;

	case FFS_INTERFACE:
		idx = *valuep;
		if (func->interfaces_nums[idx] < 0) {
			int id = usb_interface_id(func->conf, &func->function);
			if (unlikely(id < 0))
				return id;
			func->interfaces_nums[idx] = id;
		}
		newValue = func->interfaces_nums[idx];
		break;

	case FFS_STRING:
		/* String' IDs are allocated when fsf_data is bound to cdev */
		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
		break;

	case FFS_ENDPOINT:
2830 2831 2832 2833
		/*
		 * USB_DT_ENDPOINT are handled in
		 * __ffs_func_bind_do_descs().
		 */
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		if (desc->bDescriptorType == USB_DT_ENDPOINT)
			return 0;

		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
		if (unlikely(!func->eps[idx].ep))
			return -EINVAL;

		{
			struct usb_endpoint_descriptor **descs;
			descs = func->eps[idx].descs;
			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
		}
		break;
	}

2849
	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2850 2851 2852 2853
	*valuep = newValue;
	return 0;
}

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
				      struct usb_os_desc_header *h, void *data,
				      unsigned len, void *priv)
{
	struct ffs_function *func = priv;
	u8 length = 0;

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *desc = data;
		struct usb_os_desc_table *t;

		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
		       ARRAY_SIZE(desc->CompatibleID) +
		       ARRAY_SIZE(desc->SubCompatibleID));
		length = sizeof(*desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *desc = data;
		struct usb_os_desc_table *t;
		struct usb_os_desc_ext_prop *ext_prop;
		char *ext_prop_name;
		char *ext_prop_data;

		t = &func->function.os_desc_table[h->interface];
		t->if_id = func->interfaces_nums[h->interface];

		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);

		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2889
		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
		length = ext_prop->name_len + ext_prop->data_len + 14;

		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
		func->ffs->ms_os_descs_ext_prop_name_avail +=
			ext_prop->name_len;

		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
		func->ffs->ms_os_descs_ext_prop_data_avail +=
			ext_prop->data_len;
		memcpy(ext_prop_data,
		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
		       ext_prop->data_len);
		/* unicode data reported to the host as "WCHAR"s */
		switch (ext_prop->type) {
		case USB_EXT_PROP_UNICODE:
		case USB_EXT_PROP_UNICODE_ENV:
		case USB_EXT_PROP_UNICODE_LINK:
		case USB_EXT_PROP_UNICODE_MULTI:
			ext_prop->data_len *= 2;
			break;
		}
		ext_prop->data = ext_prop_data;

		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
		       ext_prop->name_len);
		/* property name reported to the host as "WCHAR"s */
		ext_prop->name_len *= 2;
		ext_prop->name = ext_prop_name;

		t->os_desc->ext_prop_len +=
			ext_prop->name_len + ext_prop->data_len + 14;
		++t->os_desc->ext_prop_count;
		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
	}

	return length;
}

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
						struct usb_configuration *c)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct f_fs_opts *ffs_opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	int ret;

	ENTER();

	/*
	 * Legacy gadget triggers binding in functionfs_ready_callback,
	 * which already uses locking; taking the same lock here would
	 * cause a deadlock.
	 *
	 * Configfs-enabled gadgets however do need ffs_dev_lock.
	 */
	if (!ffs_opts->no_configfs)
		ffs_dev_lock();
	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
	func->ffs = ffs_opts->dev->ffs_data;
	if (!ffs_opts->no_configfs)
		ffs_dev_unlock();
	if (ret)
		return ERR_PTR(ret);

	func->conf = c;
	func->gadget = c->cdev->gadget;

	/*
	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
	 * configurations are bound in sequence with list_for_each_entry,
	 * in each configuration its functions are bound in sequence
	 * with list_for_each_entry, so we assume no race condition
	 * with regard to ffs_opts->bound access
	 */
	if (!ffs_opts->refcnt) {
		ret = functionfs_bind(func->ffs, c->cdev);
		if (ret)
			return ERR_PTR(ret);
	}
	ffs_opts->refcnt++;
	func->function.strings = func->ffs->stringtabs;

	return ffs_opts;
}

static int _ffs_func_bind(struct usb_configuration *c,
			  struct usb_function *f)
2982 2983 2984 2985 2986
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;

	const int full = !!func->ffs->fs_descs_count;
2987 2988
	const int high = !!func->ffs->hs_descs_count;
	const int super = !!func->ffs->ss_descs_count;
2989

2990
	int fs_len, hs_len, ss_len, ret, i;
2991
	struct ffs_ep *eps_ptr;
2992 2993

	/* Make it a single chunk, less management later on */
2994 2995 2996 2997 2998 2999
	vla_group(d);
	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
		full ? ffs->fs_descs_count + 1 : 0);
	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
		high ? ffs->hs_descs_count + 1 : 0);
3000 3001
	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
		super ? ffs->ss_descs_count + 1 : 0);
3002
	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, char[16], ext_compat,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc, os_desc,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
			 ffs->ms_os_descs_ext_prop_count);
	vla_item_with_sz(d, char, ext_prop_name,
			 ffs->ms_os_descs_ext_prop_name_len);
	vla_item_with_sz(d, char, ext_prop_data,
			 ffs->ms_os_descs_ext_prop_data_len);
3015
	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3016
	char *vlabuf;
3017 3018 3019

	ENTER();

3020 3021
	/* Has descriptors only for speeds gadget does not support */
	if (unlikely(!(full | high | super)))
3022 3023
		return -ENOTSUPP;

3024
	/* Allocate a single chunk, less management later on */
3025
	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3026
	if (unlikely(!vlabuf))
3027 3028
		return -ENOMEM;

3029 3030 3031 3032 3033 3034
	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
	ffs->ms_os_descs_ext_prop_name_avail =
		vla_ptr(vlabuf, d, ext_prop_name);
	ffs->ms_os_descs_ext_prop_data_avail =
		vla_ptr(vlabuf, d, ext_prop_data);

3035 3036 3037
	/* Copy descriptors  */
	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
	       ffs->raw_descs_length);
3038

3039
	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3040 3041 3042
	eps_ptr = vla_ptr(vlabuf, d, eps);
	for (i = 0; i < ffs->eps_count; i++)
		eps_ptr[i].num = -1;
3043

3044 3045 3046 3047 3048
	/* Save pointers
	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
	*/
	func->eps             = vla_ptr(vlabuf, d, eps);
	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3049

3050 3051
	/*
	 * Go through all the endpoint descriptors and allocate
3052
	 * endpoints first, so that later we can rewrite the endpoint
3053 3054
	 * numbers without worrying that it may be described later on.
	 */
3055
	if (likely(full)) {
3056
		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3057 3058 3059 3060 3061 3062
		fs_len = ffs_do_descs(ffs->fs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs),
				      d_raw_descs__sz,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(fs_len < 0)) {
			ret = fs_len;
3063
			goto error;
3064
		}
3065
	} else {
3066
		fs_len = 0;
3067 3068 3069
	}

	if (likely(high)) {
3070
		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		hs_len = ffs_do_descs(ffs->hs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
				      d_raw_descs__sz - fs_len,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(hs_len < 0)) {
			ret = hs_len;
			goto error;
		}
	} else {
		hs_len = 0;
	}

	if (likely(super)) {
		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3085
		ss_len = ffs_do_descs(ffs->ss_descs_count,
3086 3087 3088
				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
				d_raw_descs__sz - fs_len - hs_len,
				__ffs_func_bind_do_descs, func);
3089 3090
		if (unlikely(ss_len < 0)) {
			ret = ss_len;
3091
			goto error;
3092 3093 3094
		}
	} else {
		ss_len = 0;
3095 3096
	}

3097 3098 3099 3100 3101
	/*
	 * Now handle interface numbers allocation and interface and
	 * endpoint numbers rewriting.  We can do that in one go
	 * now.
	 */
3102
	ret = ffs_do_descs(ffs->fs_descs_count +
3103 3104
			   (high ? ffs->hs_descs_count : 0) +
			   (super ? ffs->ss_descs_count : 0),
3105
			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3106 3107 3108 3109
			   __ffs_func_bind_do_nums, func);
	if (unlikely(ret < 0))
		goto error;

3110
	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3111
	if (c->cdev->use_os_string) {
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
		for (i = 0; i < ffs->interfaces_count; ++i) {
			struct usb_os_desc *desc;

			desc = func->function.os_desc_table[i].os_desc =
				vla_ptr(vlabuf, d, os_desc) +
				i * sizeof(struct usb_os_desc);
			desc->ext_compat_id =
				vla_ptr(vlabuf, d, ext_compat) + i * 16;
			INIT_LIST_HEAD(&desc->ext_prop);
		}
3122 3123 3124 3125 3126 3127 3128 3129 3130
		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) +
				      fs_len + hs_len + ss_len,
				      d_raw_descs__sz - fs_len - hs_len -
				      ss_len,
				      __ffs_func_bind_do_os_desc, func);
		if (unlikely(ret < 0))
			goto error;
	}
3131 3132 3133
	func->function.os_desc_n =
		c->cdev->use_os_string ? ffs->interfaces_count : 0;

3134 3135 3136 3137 3138 3139 3140 3141 3142
	/* And we're done */
	ffs_event_add(ffs, FUNCTIONFS_BIND);
	return 0;

error:
	/* XXX Do we need to release all claimed endpoints here? */
	return ret;
}

3143 3144 3145 3146
static int ffs_func_bind(struct usb_configuration *c,
			 struct usb_function *f)
{
	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3147 3148
	struct ffs_function *func = ffs_func_from_usb(f);
	int ret;
3149 3150 3151 3152

	if (IS_ERR(ffs_opts))
		return PTR_ERR(ffs_opts);

3153 3154 3155 3156 3157
	ret = _ffs_func_bind(c, f);
	if (ret && !--ffs_opts->refcnt)
		functionfs_unbind(func->ffs);

	return ret;
3158 3159
}

3160 3161 3162

/* Other USB function hooks *************************************************/

3163 3164 3165 3166 3167 3168 3169
static void ffs_reset_work(struct work_struct *work)
{
	struct ffs_data *ffs = container_of(work,
		struct ffs_data, reset_work);
	ffs_data_reset(ffs);
}

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
static int ffs_func_set_alt(struct usb_function *f,
			    unsigned interface, unsigned alt)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	int ret = 0, intf;

	if (alt != (unsigned)-1) {
		intf = ffs_func_revmap_intf(func, interface);
		if (unlikely(intf < 0))
			return intf;
	}

	if (ffs->func)
		ffs_func_eps_disable(ffs->func);

3186 3187 3188 3189 3190 3191 3192
	if (ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		INIT_WORK(&ffs->reset_work, ffs_reset_work);
		schedule_work(&ffs->reset_work);
		return -ENODEV;
	}

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	if (alt == (unsigned)-1) {
		ffs->func = NULL;
		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
		return 0;
	}

	ffs->func = func;
	ret = ffs_func_eps_enable(func);
	if (likely(ret >= 0))
		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
	return ret;
}

static void ffs_func_disable(struct usb_function *f)
{
	ffs_func_set_alt(f, 0, (unsigned)-1);
}

static int ffs_func_setup(struct usb_function *f,
			  const struct usb_ctrlrequest *creq)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	unsigned long flags;
	int ret;

	ENTER();

3224 3225 3226 3227 3228
	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3229

3230 3231
	/*
	 * Most requests directed to interface go through here
3232 3233 3234 3235
	 * (notable exceptions are set/get interface) so we need to
	 * handle them.  All other either handled by composite or
	 * passed to usb_configuration->setup() (if one is set).  No
	 * matter, we will handle requests directed to endpoint here
3236 3237 3238
	 * as well (as it's straightforward).  Other request recipient
	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
	 * is being used.
3239
	 */
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
		break;

	case USB_RECIP_ENDPOINT:
		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
3254 3255
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ret = func->ffs->eps_addrmap[ret];
3256 3257 3258
		break;

	default:
3259 3260 3261 3262
		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
			ret = le16_to_cpu(creq->wIndex);
		else
			return -EOPNOTSUPP;
3263 3264 3265 3266 3267 3268 3269 3270
	}

	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	ffs->ev.setup = *creq;
	ffs->ev.setup.wIndex = cpu_to_le16(ret);
	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);

3271
	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3272 3273
}

3274
static bool ffs_func_req_match(struct usb_function *f,
3275 3276
			       const struct usb_ctrlrequest *creq,
			       bool config0)
3277 3278 3279
{
	struct ffs_function *func = ffs_func_from_usb(f);

3280
	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3281 3282
		return false;

3283 3284
	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
3285 3286
		return (ffs_func_revmap_intf(func,
					     le16_to_cpu(creq->wIndex)) >= 0);
3287
	case USB_RECIP_ENDPOINT:
3288 3289
		return (ffs_func_revmap_ep(func,
					   le16_to_cpu(creq->wIndex)) >= 0);
3290 3291 3292 3293 3294 3295
	default:
		return (bool) (func->ffs->user_flags &
			       FUNCTIONFS_ALL_CTRL_RECIP);
	}
}

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
static void ffs_func_suspend(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
}

static void ffs_func_resume(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
}


3309
/* Endpoint and interface numbers reverse mapping ***************************/
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
{
	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
	return num ? num : -EDOM;
}

static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
{
	short *nums = func->interfaces_nums;
	unsigned count = func->ffs->interfaces_count;

	for (; count; --count, ++nums) {
		if (*nums >= 0 && *nums == intf)
			return nums - func->interfaces_nums;
	}

	return -EDOM;
}


3331 3332 3333 3334
/* Devices management *******************************************************/

static LIST_HEAD(ffs_devices);

3335
static struct ffs_dev *_ffs_do_find_dev(const char *name)
3336 3337 3338
{
	struct ffs_dev *dev;

3339 3340 3341
	if (!name)
		return NULL;

3342 3343 3344 3345
	list_for_each_entry(dev, &ffs_devices, entry) {
		if (strcmp(dev->name, name) == 0)
			return dev;
	}
3346

3347 3348 3349 3350 3351 3352
	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3353
static struct ffs_dev *_ffs_get_single_dev(void)
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
{
	struct ffs_dev *dev;

	if (list_is_singular(&ffs_devices)) {
		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
		if (dev->single)
			return dev;
	}

	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3369
static struct ffs_dev *_ffs_find_dev(const char *name)
3370 3371 3372
{
	struct ffs_dev *dev;

3373
	dev = _ffs_get_single_dev();
3374 3375 3376
	if (dev)
		return dev;

3377
	return _ffs_do_find_dev(name);
3378 3379
}

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
/* Configfs support *********************************************************/

static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
{
	return container_of(to_config_group(item), struct f_fs_opts,
			    func_inst.group);
}

static void ffs_attr_release(struct config_item *item)
{
	struct f_fs_opts *opts = to_ffs_opts(item);

	usb_put_function_instance(&opts->func_inst);
}

static struct configfs_item_operations ffs_item_ops = {
	.release	= ffs_attr_release,
};

3399
static const struct config_item_type ffs_func_type = {
3400 3401 3402 3403 3404
	.ct_item_ops	= &ffs_item_ops,
	.ct_owner	= THIS_MODULE,
};


3405 3406 3407 3408 3409 3410 3411 3412
/* Function registration interface ******************************************/

static void ffs_free_inst(struct usb_function_instance *f)
{
	struct f_fs_opts *opts;

	opts = to_f_fs_opts(f);
	ffs_dev_lock();
3413
	_ffs_free_dev(opts->dev);
3414 3415 3416 3417
	ffs_dev_unlock();
	kfree(opts);
}

3418 3419
static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
{
3420
	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3421
		return -ENAMETOOLONG;
3422
	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3423 3424
}

3425 3426 3427 3428 3429 3430 3431 3432 3433
static struct usb_function_instance *ffs_alloc_inst(void)
{
	struct f_fs_opts *opts;
	struct ffs_dev *dev;

	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
	if (!opts)
		return ERR_PTR(-ENOMEM);

3434
	opts->func_inst.set_inst_name = ffs_set_inst_name;
3435 3436
	opts->func_inst.free_func_inst = ffs_free_inst;
	ffs_dev_lock();
3437
	dev = _ffs_alloc_dev();
3438 3439 3440 3441 3442 3443
	ffs_dev_unlock();
	if (IS_ERR(dev)) {
		kfree(opts);
		return ERR_CAST(dev);
	}
	opts->dev = dev;
3444
	dev->opts = opts;
3445

3446 3447
	config_group_init_type_name(&opts->func_inst.group, "",
				    &ffs_func_type);
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
	return &opts->func_inst;
}

static void ffs_free(struct usb_function *f)
{
	kfree(ffs_func_from_usb(f));
}

static void ffs_func_unbind(struct usb_configuration *c,
			    struct usb_function *f)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	struct f_fs_opts *opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	struct ffs_ep *ep = func->eps;
	unsigned count = ffs->eps_count;
	unsigned long flags;

	ENTER();
	if (ffs->func == func) {
		ffs_func_eps_disable(func);
		ffs->func = NULL;
	}

	if (!--opts->refcnt)
		functionfs_unbind(ffs);

	/* cleanup after autoconfig */
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3478
	while (count--) {
3479 3480 3481 3482
		if (ep->ep && ep->req)
			usb_ep_free_request(ep->ep, ep->req);
		ep->req = NULL;
		++ep;
3483
	}
3484 3485 3486 3487 3488 3489 3490 3491 3492
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
	kfree(func->eps);
	func->eps = NULL;
	/*
	 * eps, descriptors and interfaces_nums are allocated in the
	 * same chunk so only one free is required.
	 */
	func->function.fs_descriptors = NULL;
	func->function.hs_descriptors = NULL;
3493
	func->function.ss_descriptors = NULL;
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	func->interfaces_nums = NULL;

	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
}

static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
{
	struct ffs_function *func;

	ENTER();

	func = kzalloc(sizeof(*func), GFP_KERNEL);
	if (unlikely(!func))
		return ERR_PTR(-ENOMEM);

	func->function.name    = "Function FS Gadget";

	func->function.bind    = ffs_func_bind;
	func->function.unbind  = ffs_func_unbind;
	func->function.set_alt = ffs_func_set_alt;
	func->function.disable = ffs_func_disable;
	func->function.setup   = ffs_func_setup;
3516
	func->function.req_match = ffs_func_req_match;
3517 3518 3519 3520 3521 3522 3523
	func->function.suspend = ffs_func_suspend;
	func->function.resume  = ffs_func_resume;
	func->function.free_func = ffs_free;

	return &func->function;
}

3524 3525 3526
/*
 * ffs_lock must be taken by the caller of this function
 */
3527
static struct ffs_dev *_ffs_alloc_dev(void)
3528 3529 3530 3531
{
	struct ffs_dev *dev;
	int ret;

3532
	if (_ffs_get_single_dev())
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
			return ERR_PTR(-EBUSY);

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return ERR_PTR(-ENOMEM);

	if (list_empty(&ffs_devices)) {
		ret = functionfs_init();
		if (ret) {
			kfree(dev);
			return ERR_PTR(ret);
		}
	}

	list_add(&dev->entry, &ffs_devices);

	return dev;
}

3552
int ffs_name_dev(struct ffs_dev *dev, const char *name)
3553 3554
{
	struct ffs_dev *existing;
3555
	int ret = 0;
3556

3557
	ffs_dev_lock();
3558

3559 3560 3561 3562 3563
	existing = _ffs_do_find_dev(name);
	if (!existing)
		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
	else if (existing != dev)
		ret = -EBUSY;
3564 3565 3566 3567 3568

	ffs_dev_unlock();

	return ret;
}
3569
EXPORT_SYMBOL_GPL(ffs_name_dev);
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585

int ffs_single_dev(struct ffs_dev *dev)
{
	int ret;

	ret = 0;
	ffs_dev_lock();

	if (!list_is_singular(&ffs_devices))
		ret = -EBUSY;
	else
		dev->single = true;

	ffs_dev_unlock();
	return ret;
}
3586
EXPORT_SYMBOL_GPL(ffs_single_dev);
3587 3588 3589 3590

/*
 * ffs_lock must be taken by the caller of this function
 */
3591
static void _ffs_free_dev(struct ffs_dev *dev)
3592 3593
{
	list_del(&dev->entry);
3594 3595 3596 3597 3598

	/* Clear the private_data pointer to stop incorrect dev access */
	if (dev->ffs_data)
		dev->ffs_data->private_data = NULL;

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	kfree(dev);
	if (list_empty(&ffs_devices))
		functionfs_cleanup();
}

static void *ffs_acquire_dev(const char *dev_name)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

3611
	ffs_dev = _ffs_find_dev(dev_name);
3612
	if (!ffs_dev)
3613
		ffs_dev = ERR_PTR(-ENOENT);
3614 3615
	else if (ffs_dev->mounted)
		ffs_dev = ERR_PTR(-EBUSY);
3616 3617
	else if (ffs_dev->ffs_acquire_dev_callback &&
	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3618
		ffs_dev = ERR_PTR(-ENOENT);
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	else
		ffs_dev->mounted = true;

	ffs_dev_unlock();
	return ffs_dev;
}

static void ffs_release_dev(struct ffs_data *ffs_data)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

	ffs_dev = ffs_data->private_data;
3634
	if (ffs_dev) {
3635
		ffs_dev->mounted = false;
3636 3637 3638 3639

		if (ffs_dev->ffs_release_dev_callback)
			ffs_dev->ffs_release_dev_callback(ffs_dev);
	}
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664

	ffs_dev_unlock();
}

static int ffs_ready(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
	int ret = 0;

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj) {
		ret = -EINVAL;
		goto done;
	}
	if (WARN_ON(ffs_obj->desc_ready)) {
		ret = -EBUSY;
		goto done;
	}

	ffs_obj->desc_ready = true;
	ffs_obj->ffs_data = ffs;

3665
	if (ffs_obj->ffs_ready_callback) {
3666
		ret = ffs_obj->ffs_ready_callback(ffs);
3667 3668 3669
		if (ret)
			goto done;
	}
3670

3671
	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3672 3673 3674 3675 3676 3677 3678 3679
done:
	ffs_dev_unlock();
	return ret;
}

static void ffs_closed(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
3680
	struct f_fs_opts *opts;
3681
	struct config_item *ci;
3682 3683 3684 3685 3686 3687 3688 3689 3690

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj)
		goto done;

	ffs_obj->desc_ready = false;
3691
	ffs_obj->ffs_data = NULL;
3692

3693 3694
	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
	    ffs_obj->ffs_closed_callback)
3695
		ffs_obj->ffs_closed_callback(ffs);
3696

3697 3698 3699 3700 3701 3702
	if (ffs_obj->opts)
		opts = ffs_obj->opts;
	else
		goto done;

	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3703
	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3704 3705
		goto done;

3706 3707 3708
	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
	ffs_dev_unlock();

3709 3710
	if (test_bit(FFS_FL_BOUND, &ffs->flags))
		unregister_gadget_item(ci);
3711
	return;
3712 3713 3714 3715
done:
	ffs_dev_unlock();
}

3716 3717 3718 3719 3720 3721 3722 3723 3724
/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
{
	return nonblock
		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
		: mutex_lock_interruptible(mutex);
}

A
Al Viro 已提交
3725
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
{
	char *data;

	if (unlikely(!len))
		return NULL;

	data = kmalloc(len, GFP_KERNEL);
	if (unlikely(!data))
		return ERR_PTR(-ENOMEM);

3736
	if (unlikely(copy_from_user(data, buf, len))) {
3737 3738 3739 3740
		kfree(data);
		return ERR_PTR(-EFAULT);
	}

3741
	pr_vdebug("Buffer from user space:\n");
3742 3743 3744 3745
	ffs_dump_mem("", data, len);

	return data;
}
3746 3747 3748 3749

DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Nazarewicz");