f_fs.c 89.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
 * f_fs.c -- user mode file system API for USB composite function controllers
4 5
 *
 * Copyright (C) 2010 Samsung Electronics
6
 * Author: Michal Nazarewicz <mina86@mina86.com>
7
 *
8
 * Based on inode.c (GadgetFS) which was:
9 10 11 12 13 14 15 16 17
 * Copyright (C) 2003-2004 David Brownell
 * Copyright (C) 2003 Agilent Technologies
 */


/* #define DEBUG */
/* #define VERBOSE_DEBUG */

#include <linux/blkdev.h>
18
#include <linux/pagemap.h>
19
#include <linux/export.h>
20
#include <linux/hid.h>
21
#include <linux/mm.h>
22
#include <linux/module.h>
23
#include <linux/scatterlist.h>
24
#include <linux/sched/signal.h>
25
#include <linux/uio.h>
26
#include <linux/vmalloc.h>
27 28
#include <asm/unaligned.h>

29
#include <linux/usb/ccid.h>
30 31 32
#include <linux/usb/composite.h>
#include <linux/usb/functionfs.h>

33 34
#include <linux/aio.h>
#include <linux/mmu_context.h>
35
#include <linux/poll.h>
36
#include <linux/eventfd.h>
37

38
#include "u_fs.h"
39
#include "u_f.h"
40
#include "u_os_desc.h"
41
#include "configfs.h"
42 43 44 45 46 47 48

#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */

/* Reference counter handling */
static void ffs_data_get(struct ffs_data *ffs);
static void ffs_data_put(struct ffs_data *ffs);
/* Creates new ffs_data object. */
49 50
static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
	__attribute__((malloc));
51 52 53 54 55

/* Opened counter handling. */
static void ffs_data_opened(struct ffs_data *ffs);
static void ffs_data_closed(struct ffs_data *ffs);

56
/* Called with ffs->mutex held; take over ownership of data. */
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int __must_check
__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
static int __must_check
__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);


/* The function structure ***************************************************/

struct ffs_ep;

struct ffs_function {
	struct usb_configuration	*conf;
	struct usb_gadget		*gadget;
	struct ffs_data			*ffs;

	struct ffs_ep			*eps;
	u8				eps_revmap[16];
	short				*interfaces_nums;

	struct usb_function		function;
};


static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
{
	return container_of(f, struct ffs_function, function);
}


86 87 88 89 90 91 92 93
static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
{
	return (enum ffs_setup_state)
		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
}


94 95 96 97 98 99 100 101 102
static void ffs_func_eps_disable(struct ffs_function *func);
static int __must_check ffs_func_eps_enable(struct ffs_function *func);

static int ffs_func_bind(struct usb_configuration *,
			 struct usb_function *);
static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
static void ffs_func_disable(struct usb_function *);
static int ffs_func_setup(struct usb_function *,
			  const struct usb_ctrlrequest *);
103
static bool ffs_func_req_match(struct usb_function *,
104 105
			       const struct usb_ctrlrequest *,
			       bool config0);
106 107 108 109 110 111 112 113 114 115 116 117 118 119
static void ffs_func_suspend(struct usb_function *);
static void ffs_func_resume(struct usb_function *);


static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);


/* The endpoints structures *************************************************/

struct ffs_ep {
	struct usb_ep			*ep;	/* P: ffs->eps_lock */
	struct usb_request		*req;	/* P: epfile->mutex */

120 121
	/* [0]: full speed, [1]: high speed, [2]: super speed */
	struct usb_endpoint_descriptor	*descs[3];
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

	u8				num;

	int				status;	/* P: epfile->mutex */
};

struct ffs_epfile {
	/* Protects ep->ep and ep->req. */
	struct mutex			mutex;

	struct ffs_data			*ffs;
	struct ffs_ep			*ep;	/* P: ffs->eps_lock */

	struct dentry			*dentry;

137 138 139
	/*
	 * Buffer for holding data from partial reads which may happen since
	 * we’re rounding user read requests to a multiple of a max packet size.
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	 *
	 * The pointer is initialised with NULL value and may be set by
	 * __ffs_epfile_read_data function to point to a temporary buffer.
	 *
	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
	 * data from said buffer and eventually free it.  Importantly, while the
	 * function is using the buffer, it sets the pointer to NULL.  This is
	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
	 * can never run concurrently (they are synchronised by epfile->mutex)
	 * so the latter will not assign a new value to the pointer.
	 *
	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
	 * value is crux of the synchronisation between ffs_func_eps_disable and
	 * __ffs_epfile_read_data.
	 *
	 * Once __ffs_epfile_read_data is about to finish it will try to set the
	 * pointer back to its old value (as described above), but seeing as the
	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
	 * the buffer.
	 *
	 * == State transitions ==
	 *
	 * • ptr == NULL:  (initial state)
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    nop
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == DROP:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == buf:
	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
	 *                                    is always called first
	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
	 * • ptr == NULL and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes and …
	 *     … all data read:               free buf, go to ptr == NULL
	 *     … otherwise:                   go to ptr == buf and reading
	 * • ptr == DROP and reading:
	 *   ◦ __ffs_epfile_read_buffer_free: nop
	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
	 *   ◦ reading finishes:              free buf, go to ptr == DROP
191
	 */
192 193
	struct ffs_buffer		*read_buffer;
#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194

195 196 197 198 199 200 201 202
	char				name[5];

	unsigned char			in;	/* P: ffs->eps_lock */
	unsigned char			isoc;	/* P: ffs->eps_lock */

	unsigned char			_pad;
};

203 204 205 206 207 208
struct ffs_buffer {
	size_t length;
	char *data;
	char storage[];
};

209 210 211 212 213 214 215
/*  ffs_io_data structure ***************************************************/

struct ffs_io_data {
	bool aio;
	bool read;

	struct kiocb *kiocb;
216 217 218
	struct iov_iter data;
	const void *to_free;
	char *buf;
219 220 221 222 223 224

	struct mm_struct *mm;
	struct work_struct work;

	struct usb_ep *ep;
	struct usb_request *req;
225 226
	struct sg_table sgt;
	bool use_sg;
227 228

	struct ffs_data *ffs;
229 230
};

231 232 233 234 235 236
struct ffs_desc_helper {
	struct ffs_data *ffs;
	unsigned interfaces_count;
	unsigned eps_count;
};

237 238 239
static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);

A
Al Viro 已提交
240
static struct dentry *
241
ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
A
Al Viro 已提交
242
		   const struct file_operations *fops);
243

244 245 246
/* Devices management *******************************************************/

DEFINE_MUTEX(ffs_lock);
247
EXPORT_SYMBOL_GPL(ffs_lock);
248

249 250 251
static struct ffs_dev *_ffs_find_dev(const char *name);
static struct ffs_dev *_ffs_alloc_dev(void);
static void _ffs_free_dev(struct ffs_dev *dev);
252 253 254 255
static void *ffs_acquire_dev(const char *dev_name);
static void ffs_release_dev(struct ffs_data *ffs_data);
static int ffs_ready(struct ffs_data *ffs);
static void ffs_closed(struct ffs_data *ffs);
256 257 258 259 260

/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
	__attribute__((warn_unused_result, nonnull));
A
Al Viro 已提交
261
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
262 263 264 265 266 267 268 269 270
	__attribute__((warn_unused_result, nonnull));


/* Control file aka ep0 *****************************************************/

static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
{
	struct ffs_data *ffs = req->context;

271
	complete(&ffs->ep0req_completion);
272 273 274
}

static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
275
	__releases(&ffs->ev.waitq.lock)
276 277 278 279 280 281 282 283 284 285 286
{
	struct usb_request *req = ffs->ep0req;
	int ret;

	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);

	spin_unlock_irq(&ffs->ev.waitq.lock);

	req->buf      = data;
	req->length   = len;

287 288 289 290 291 292 293 294
	/*
	 * UDC layer requires to provide a buffer even for ZLP, but should
	 * not use it at all. Let's provide some poisoned pointer to catch
	 * possible bug in the driver.
	 */
	if (req->buf == NULL)
		req->buf = (void *)0xDEADBABE;

295
	reinit_completion(&ffs->ep0req_completion);
296 297 298 299 300 301 302 303 304 305 306 307

	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
	if (unlikely(ret)) {
		usb_ep_dequeue(ffs->gadget->ep0, req);
		return -EINTR;
	}

	ffs->setup_state = FFS_NO_SETUP;
308
	return req->status ? req->status : req->actual;
309 310 311 312 313
}

static int __ffs_ep0_stall(struct ffs_data *ffs)
{
	if (ffs->ev.can_stall) {
314
		pr_vdebug("ep0 stall\n");
315 316 317 318
		usb_ep_set_halt(ffs->gadget->ep0);
		ffs->setup_state = FFS_NO_SETUP;
		return -EL2HLT;
	} else {
319
		pr_debug("bogus ep0 stall!\n");
320 321 322 323 324 325 326 327 328 329 330 331 332 333
		return -ESRCH;
	}
}

static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
			     size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	ssize_t ret;
	char *data;

	ENTER();

	/* Fast check if setup was canceled */
334
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
		/* Copy data */
		if (unlikely(len < 16)) {
			ret = -EINVAL;
			break;
		}

		data = ffs_prepare_buffer(buf, len);
353
		if (IS_ERR(data)) {
354 355 356 357 358 359
			ret = PTR_ERR(data);
			break;
		}

		/* Handle data */
		if (ffs->state == FFS_READ_DESCRIPTORS) {
360
			pr_info("read descriptors\n");
361 362 363 364 365 366 367
			ret = __ffs_data_got_descs(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ffs->state = FFS_READ_STRINGS;
			ret = len;
		} else {
368
			pr_info("read strings\n");
369 370 371 372 373 374 375 376 377 378 379 380 381
			ret = __ffs_data_got_strings(ffs, data, len);
			if (unlikely(ret < 0))
				break;

			ret = ffs_epfiles_create(ffs);
			if (unlikely(ret)) {
				ffs->state = FFS_CLOSING;
				break;
			}

			ffs->state = FFS_ACTIVE;
			mutex_unlock(&ffs->mutex);

382
			ret = ffs_ready(ffs);
383 384 385 386 387 388 389 390 391 392 393
			if (unlikely(ret < 0)) {
				ffs->state = FFS_CLOSING;
				return ret;
			}

			return len;
		}
		break;

	case FFS_ACTIVE:
		data = NULL;
394 395 396 397
		/*
		 * We're called from user space, we can use _irq
		 * rather then _irqsave
		 */
398
		spin_lock_irq(&ffs->ev.waitq.lock);
399
		switch (ffs_setup_state_clear_cancelled(ffs)) {
400
		case FFS_SETUP_CANCELLED:
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
			ret = -EIDRM;
			goto done_spin;

		case FFS_NO_SETUP:
			ret = -ESRCH;
			goto done_spin;

		case FFS_SETUP_PENDING:
			break;
		}

		/* FFS_SETUP_PENDING */
		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			break;
		}

		/* FFS_SETUP_PENDING and not stall */
		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		data = ffs_prepare_buffer(buf, len);
425
		if (IS_ERR(data)) {
426 427 428 429 430 431
			ret = PTR_ERR(data);
			break;
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

432 433
		/*
		 * We are guaranteed to be still in FFS_ACTIVE state
434
		 * but the state of setup could have changed from
435
		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
436
		 * to check for that.  If that happened we copied data
437 438 439
		 * from user space in vain but it's unlikely.
		 *
		 * For sure we are not in FFS_NO_SETUP since this is
440 441
		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
		 * transition can be performed and it's protected by
442 443
		 * mutex.
		 */
444 445
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
			ret = -EIDRM;
done_spin:
			spin_unlock_irq(&ffs->ev.waitq.lock);
		} else {
			/* unlocks spinlock */
			ret = __ffs_ep0_queue_wait(ffs, data, len);
		}
		kfree(data);
		break;

	default:
		ret = -EBADFD;
		break;
	}

	mutex_unlock(&ffs->mutex);
	return ret;
}

465
/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
466 467
static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
				     size_t n)
468
	__releases(&ffs->ev.waitq.lock)
469
{
470
	/*
471 472 473
	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
	 * size of ffs->ev.types array (which is four) so that's how much space
	 * we reserve.
474
	 */
475 476
	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
	const size_t size = n * sizeof *events;
477 478
	unsigned i = 0;

479
	memset(events, 0, size);
480 481 482 483 484 485 486 487 488

	do {
		events[i].type = ffs->ev.types[i];
		if (events[i].type == FUNCTIONFS_SETUP) {
			events[i].u.setup = ffs->ev.setup;
			ffs->setup_state = FFS_SETUP_PENDING;
		}
	} while (++i < n);

489 490
	ffs->ev.count -= n;
	if (ffs->ev.count)
491 492 493 494 495 496
		memmove(ffs->ev.types, ffs->ev.types + n,
			ffs->ev.count * sizeof *ffs->ev.types);

	spin_unlock_irq(&ffs->ev.waitq.lock);
	mutex_unlock(&ffs->mutex);

497
	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
498 499 500 501 502 503 504 505 506 507 508 509 510
}

static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
			    size_t len, loff_t *ptr)
{
	struct ffs_data *ffs = file->private_data;
	char *data = NULL;
	size_t n;
	int ret;

	ENTER();

	/* Fast check if setup was canceled */
511
	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
512 513 514 515 516 517 518 519 520 521 522 523 524
		return -EIDRM;

	/* Acquire mutex */
	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return ret;

	/* Check state */
	if (ffs->state != FFS_ACTIVE) {
		ret = -EBADFD;
		goto done_mutex;
	}

525 526 527 528
	/*
	 * We're called from user space, we can use _irq rather then
	 * _irqsave
	 */
529 530
	spin_lock_irq(&ffs->ev.waitq.lock);

531
	switch (ffs_setup_state_clear_cancelled(ffs)) {
532
	case FFS_SETUP_CANCELLED:
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
		ret = -EIDRM;
		break;

	case FFS_NO_SETUP:
		n = len / sizeof(struct usb_functionfs_event);
		if (unlikely(!n)) {
			ret = -EINVAL;
			break;
		}

		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
			ret = -EAGAIN;
			break;
		}

548 549
		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
							ffs->ev.count)) {
550 551 552 553
			ret = -EINTR;
			break;
		}

554
		/* unlocks spinlock */
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		return __ffs_ep0_read_events(ffs, buf,
					     min(n, (size_t)ffs->ev.count));

	case FFS_SETUP_PENDING:
		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
			spin_unlock_irq(&ffs->ev.waitq.lock);
			ret = __ffs_ep0_stall(ffs);
			goto done_mutex;
		}

		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));

		spin_unlock_irq(&ffs->ev.waitq.lock);

		if (likely(len)) {
			data = kmalloc(len, GFP_KERNEL);
			if (unlikely(!data)) {
				ret = -ENOMEM;
				goto done_mutex;
			}
		}

		spin_lock_irq(&ffs->ev.waitq.lock);

		/* See ffs_ep0_write() */
580 581
		if (ffs_setup_state_clear_cancelled(ffs) ==
		    FFS_SETUP_CANCELLED) {
582 583 584 585 586 587
			ret = -EIDRM;
			break;
		}

		/* unlocks spinlock */
		ret = __ffs_ep0_queue_wait(ffs, data, len);
588
		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
			ret = -EFAULT;
		goto done_mutex;

	default:
		ret = -EBADFD;
		break;
	}

	spin_unlock_irq(&ffs->ev.waitq.lock);
done_mutex:
	mutex_unlock(&ffs->mutex);
	kfree(data);
	return ret;
}

static int ffs_ep0_open(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = inode->i_private;

	ENTER();

	if (unlikely(ffs->state == FFS_CLOSING))
		return -EBUSY;

	file->private_data = ffs;
	ffs_data_opened(ffs);

	return 0;
}

static int ffs_ep0_release(struct inode *inode, struct file *file)
{
	struct ffs_data *ffs = file->private_data;

	ENTER();

	ffs_data_closed(ffs);

	return 0;
}

static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
{
	struct ffs_data *ffs = file->private_data;
	struct usb_gadget *gadget = ffs->gadget;
	long ret;

	ENTER();

	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
		struct ffs_function *func = ffs->func;
		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
641
	} else if (gadget && gadget->ops->ioctl) {
642 643 644 645 646 647 648 649
		ret = gadget->ops->ioctl(gadget, code, value);
	} else {
		ret = -ENOTTY;
	}

	return ret;
}

650
static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
651 652
{
	struct ffs_data *ffs = file->private_data;
653
	__poll_t mask = EPOLLWRNORM;
654 655 656 657 658 659 660 661 662 663 664
	int ret;

	poll_wait(file, &ffs->ev.waitq, wait);

	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret < 0))
		return mask;

	switch (ffs->state) {
	case FFS_READ_DESCRIPTORS:
	case FFS_READ_STRINGS:
665
		mask |= EPOLLOUT;
666 667 668 669 670 671
		break;

	case FFS_ACTIVE:
		switch (ffs->setup_state) {
		case FFS_NO_SETUP:
			if (ffs->ev.count)
672
				mask |= EPOLLIN;
673 674 675 676
			break;

		case FFS_SETUP_PENDING:
		case FFS_SETUP_CANCELLED:
677
			mask |= (EPOLLIN | EPOLLOUT);
678 679 680 681
			break;
		}
	case FFS_CLOSING:
		break;
682 683
	case FFS_DEACTIVATED:
		break;
684 685 686 687 688 689 690
	}

	mutex_unlock(&ffs->mutex);

	return mask;
}

691 692 693 694 695 696 697 698
static const struct file_operations ffs_ep0_operations = {
	.llseek =	no_llseek,

	.open =		ffs_ep0_open,
	.write =	ffs_ep0_write,
	.read =		ffs_ep0_read,
	.release =	ffs_ep0_release,
	.unlocked_ioctl =	ffs_ep0_ioctl,
699
	.poll =		ffs_ep0_poll,
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
};


/* "Normal" endpoints operations ********************************************/

static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
{
	ENTER();
	if (likely(req->context)) {
		struct ffs_ep *ep = _ep->driver_data;
		ep->status = req->status ? req->status : req->actual;
		complete(req->context);
	}
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
{
	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(ret == data_len))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/*
	 * Dear user space developer!
	 *
	 * TL;DR: To stop getting below error message in your kernel log, change
	 * user space code using functionfs to align read buffers to a max
	 * packet size.
	 *
	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
	 * packet size.  When unaligned buffer is passed to functionfs, it
	 * internally uses a larger, aligned buffer so that such UDCs are happy.
	 *
	 * Unfortunately, this means that host may send more data than was
	 * requested in read(2) system call.  f_fs doesn’t know what to do with
	 * that excess data so it simply drops it.
	 *
	 * Was the buffer aligned in the first place, no such problem would
	 * happen.
	 *
742 743 744 745 746
	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
	 * by splitting a request into multiple parts.  This splitting may still
	 * be a problem though so it’s likely best to align the buffer
	 * regardless of it being AIO or not..
	 *
747 748 749 750 751 752 753 754 755 756 757
	 * This only affects OUT endpoints, i.e. reading data with a read(2),
	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
	 * affected.
	 */
	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
	       "Align read buffer size to max packet size to avoid the problem.\n",
	       data_len, ret);

	return ret;
}

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * allocate a virtually contiguous buffer and create a scatterlist describing it
 * @sg_table	- pointer to a place to be filled with sg_table contents
 * @size	- required buffer size
 */
static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
{
	struct page **pages;
	void *vaddr, *ptr;
	unsigned int n_pages;
	int i;

	vaddr = vmalloc(sz);
	if (!vaddr)
		return NULL;

	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
	if (!pages) {
		vfree(vaddr);

		return NULL;
	}
	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
		pages[i] = vmalloc_to_page(ptr);

	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
		kvfree(pages);
		vfree(vaddr);

		return NULL;
	}
	kvfree(pages);

	return vaddr;
}

static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
	size_t data_len)
{
	if (io_data->use_sg)
		return ffs_build_sg_list(&io_data->sgt, data_len);

	return kmalloc(data_len, GFP_KERNEL);
}

static inline void ffs_free_buffer(struct ffs_io_data *io_data)
{
	if (!io_data->buf)
		return;

	if (io_data->use_sg) {
		sg_free_table(&io_data->sgt);
		vfree(io_data->buf);
	} else {
		kfree(io_data->buf);
	}
}

817 818 819 820 821 822
static void ffs_user_copy_worker(struct work_struct *work)
{
	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
						   work);
	int ret = io_data->req->status ? io_data->req->status :
					 io_data->req->actual;
823
	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
824 825

	if (io_data->read && ret > 0) {
826 827 828
		mm_segment_t oldfs = get_fs();

		set_fs(USER_DS);
829
		use_mm(io_data->mm);
830
		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
831
		unuse_mm(io_data->mm);
832
		set_fs(oldfs);
833 834
	}

835
	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
836

837
	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
838 839
		eventfd_signal(io_data->ffs->ffs_eventfd, 1);

840 841 842
	usb_ep_free_request(io_data->ep, io_data->req);

	if (io_data->read)
843
		kfree(io_data->to_free);
844
	ffs_free_buffer(io_data);
845 846 847 848 849 850 851
	kfree(io_data);
}

static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
					 struct usb_request *req)
{
	struct ffs_io_data *io_data = req->context;
852
	struct ffs_data *ffs = io_data->ffs;
853 854 855 856

	ENTER();

	INIT_WORK(&io_data->work, ffs_user_copy_worker);
857
	queue_work(ffs->io_completion_wq, &io_data->work);
858 859
}

860 861 862 863 864 865 866 867 868 869 870
static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
{
	/*
	 * See comment in struct ffs_epfile for full read_buffer pointer
	 * synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
	if (buf && buf != READ_BUFFER_DROP)
		kfree(buf);
}

871 872 873 874
/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
					  struct iov_iter *iter)
{
875 876 877 878 879 880
	/*
	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
	 * the buffer while we are using it.  See comment in struct ffs_epfile
	 * for full read_buffer pointer synchronisation story.
	 */
	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
881
	ssize_t ret;
882
	if (!buf || buf == READ_BUFFER_DROP)
883 884 885 886 887
		return 0;

	ret = copy_to_iter(buf->data, buf->length, iter);
	if (buf->length == ret) {
		kfree(buf);
888 889 890 891
		return ret;
	}

	if (unlikely(iov_iter_count(iter))) {
892 893 894 895 896
		ret = -EFAULT;
	} else {
		buf->length -= ret;
		buf->data += ret;
	}
897 898 899 900

	if (cmpxchg(&epfile->read_buffer, NULL, buf))
		kfree(buf);

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	return ret;
}

/* Assumes epfile->mutex is held. */
static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
				      void *data, int data_len,
				      struct iov_iter *iter)
{
	struct ffs_buffer *buf;

	ssize_t ret = copy_to_iter(data, data_len, iter);
	if (likely(data_len == ret))
		return ret;

	if (unlikely(iov_iter_count(iter)))
		return -EFAULT;

	/* See ffs_copy_to_iter for more context. */
	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
		data_len, ret);

	data_len -= ret;
	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
924 925
	if (!buf)
		return -ENOMEM;
926 927 928
	buf->length = data_len;
	buf->data = buf->storage;
	memcpy(buf->storage, data + ret, data_len);
929 930 931 932 933 934 935 936 937

	/*
	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
	 * in struct ffs_epfile for full read_buffer pointer synchronisation
	 * story.
	 */
	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
		kfree(buf);
938 939 940 941

	return ret;
}

942
static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
943 944
{
	struct ffs_epfile *epfile = file->private_data;
945
	struct usb_request *req;
946 947
	struct ffs_ep *ep;
	char *data = NULL;
948
	ssize_t ret, data_len = -EINVAL;
949 950
	int halt;

951
	/* Are we still active? */
952 953
	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;
954

955 956 957
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
958 959
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;
960

961 962
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
963 964
		if (ret)
			return -EINTR;
965
	}
966

967
	/* Do we halt? */
968
	halt = (!io_data->read == !epfile->in);
969 970
	if (halt && epfile->isoc)
		return -EINVAL;
971

972 973 974 975 976
	/* We will be using request and read_buffer */
	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
	if (unlikely(ret))
		goto error;

977 978
	/* Allocate & copy */
	if (!halt) {
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
		struct usb_gadget *gadget;

		/*
		 * Do we have buffered data from previous partial read?  Check
		 * that for synchronous case only because we do not have
		 * facility to ‘wake up’ a pending asynchronous read and push
		 * buffered data to it which we would need to make things behave
		 * consistently.
		 */
		if (!io_data->aio && io_data->read) {
			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
			if (ret)
				goto error_mutex;
		}

994 995
		/*
		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
996 997
		 * before the waiting completes, so do not assign to 'gadget'
		 * earlier
998
		 */
999
		gadget = epfile->ffs->gadget;
1000
		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1001

1002 1003 1004
		spin_lock_irq(&epfile->ffs->eps_lock);
		/* In the meantime, endpoint got disabled or changed. */
		if (epfile->ep != ep) {
1005 1006
			ret = -ESHUTDOWN;
			goto error_lock;
1007
		}
1008
		data_len = iov_iter_count(&io_data->data);
1009 1010 1011 1012
		/*
		 * Controller may require buffer size to be aligned to
		 * maxpacketsize of an out endpoint.
		 */
1013 1014
		if (io_data->read)
			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1015
		spin_unlock_irq(&epfile->ffs->eps_lock);
1016

1017
		data = ffs_alloc_buffer(io_data, data_len);
1018 1019 1020 1021 1022
		if (unlikely(!data)) {
			ret = -ENOMEM;
			goto error_mutex;
		}
		if (!io_data->read &&
1023
		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1024 1025
			ret = -EFAULT;
			goto error_mutex;
1026 1027
		}
	}
1028

1029
	spin_lock_irq(&epfile->ffs->eps_lock);
1030

1031 1032 1033 1034
	if (epfile->ep != ep) {
		/* In the meantime, endpoint got disabled or changed. */
		ret = -ESHUTDOWN;
	} else if (halt) {
1035 1036 1037
		ret = usb_ep_set_halt(ep->ep);
		if (!ret)
			ret = -EBADMSG;
1038
	} else if (unlikely(data_len == -EINVAL)) {
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		/*
		 * Sanity Check: even though data_len can't be used
		 * uninitialized at the time I write this comment, some
		 * compilers complain about this situation.
		 * In order to keep the code clean from warnings, data_len is
		 * being initialized to -EINVAL during its declaration, which
		 * means we can't rely on compiler anymore to warn no future
		 * changes won't result in data_len being used uninitialized.
		 * For such reason, we're adding this redundant sanity check
		 * here.
		 */
1050 1051 1052 1053
		WARN(1, "%s: data_len == -EINVAL\n", __func__);
		ret = -EINVAL;
	} else if (!io_data->aio) {
		DECLARE_COMPLETION_ONSTACK(done);
1054
		bool interrupted = false;
1055

1056
		req = ep->req;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
		if (io_data->use_sg) {
			req->buf = NULL;
			req->sg	= io_data->sgt.sgl;
			req->num_sgs = io_data->sgt.nents;
		} else {
			req->buf = data;
		}
		req->length = data_len;

		io_data->buf = data;
1067

1068 1069
		req->context  = &done;
		req->complete = ffs_epfile_io_complete;
1070

1071 1072 1073
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret < 0))
			goto error_lock;
1074

1075
		spin_unlock_irq(&epfile->ffs->eps_lock);
1076

1077
		if (unlikely(wait_for_completion_interruptible(&done))) {
1078 1079 1080 1081 1082 1083
			/*
			 * To avoid race condition with ffs_epfile_io_complete,
			 * dequeue the request first then check
			 * status. usb_ep_dequeue API should guarantee no race
			 * condition with req->complete callback.
			 */
1084
			usb_ep_dequeue(ep->ep, req);
1085
			wait_for_completion(&done);
1086
			interrupted = ep->status < 0;
1087
		}
1088

1089 1090 1091
		if (interrupted)
			ret = -EINTR;
		else if (io_data->read && ep->status > 0)
1092 1093
			ret = __ffs_epfile_read_data(epfile, data, ep->status,
						     &io_data->data);
1094 1095
		else
			ret = ep->status;
1096
		goto error_mutex;
1097
	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1098 1099
		ret = -ENOMEM;
	} else {
1100 1101 1102 1103 1104 1105 1106 1107
		if (io_data->use_sg) {
			req->buf = NULL;
			req->sg	= io_data->sgt.sgl;
			req->num_sgs = io_data->sgt.nents;
		} else {
			req->buf = data;
		}
		req->length = data_len;
1108

1109 1110 1111 1112
		io_data->buf = data;
		io_data->ep = ep->ep;
		io_data->req = req;
		io_data->ffs = epfile->ffs;
1113

1114 1115
		req->context  = io_data;
		req->complete = ffs_epfile_async_io_complete;
1116

1117 1118 1119 1120
		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
		if (unlikely(ret)) {
			usb_ep_free_request(ep->ep, req);
			goto error_lock;
1121 1122
		}

1123 1124 1125 1126 1127 1128 1129
		ret = -EIOCBQUEUED;
		/*
		 * Do not kfree the buffer in this function.  It will be freed
		 * by ffs_user_copy_worker.
		 */
		data = NULL;
	}
1130 1131 1132

error_lock:
	spin_unlock_irq(&epfile->ffs->eps_lock);
1133
error_mutex:
1134
	mutex_unlock(&epfile->mutex);
1135
error:
1136
	ffs_free_buffer(io_data);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	return ret;
}

static int
ffs_epfile_open(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

	file->private_data = epfile;
	ffs_data_opened(epfile->ffs);

	return 0;
}

1156 1157 1158
static int ffs_aio_cancel(struct kiocb *kiocb)
{
	struct ffs_io_data *io_data = kiocb->private;
1159
	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1160 1161 1162 1163
	int value;

	ENTER();

1164 1165 1166 1167 1168
	spin_lock_irq(&epfile->ffs->eps_lock);

	if (likely(io_data && io_data->ep && io_data->req))
		value = usb_ep_dequeue(io_data->ep, io_data->req);
	else
1169
		value = -EINVAL;
1170 1171

	spin_unlock_irq(&epfile->ffs->eps_lock);
1172 1173 1174 1175

	return value;
}

1176
static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1177
{
1178
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1179
	ssize_t res;
1180 1181 1182

	ENTER();

1183 1184 1185 1186 1187 1188 1189 1190
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
	}
1191

1192 1193 1194 1195
	p->read = false;
	p->kiocb = kiocb;
	p->data = *from;
	p->mm = current->mm;
1196

1197
	kiocb->private = p;
1198

1199 1200
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1201

1202 1203 1204 1205 1206 1207 1208
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;
	if (p->aio)
		kfree(p);
	else
		*from = p->data;
A
Al Viro 已提交
1209
	return res;
1210 1211
}

1212
static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1213
{
1214
	struct ffs_io_data io_data, *p = &io_data;
A
Al Viro 已提交
1215
	ssize_t res;
1216 1217 1218

	ENTER();

1219 1220 1221 1222 1223 1224 1225
	if (!is_sync_kiocb(kiocb)) {
		p = kmalloc(sizeof(io_data), GFP_KERNEL);
		if (unlikely(!p))
			return -ENOMEM;
		p->aio = true;
	} else {
		p->aio = false;
1226 1227
	}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	p->read = true;
	p->kiocb = kiocb;
	if (p->aio) {
		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
		if (!p->to_free) {
			kfree(p);
			return -ENOMEM;
		}
	} else {
		p->data = *to;
		p->to_free = NULL;
	}
	p->mm = current->mm;
1241

1242
	kiocb->private = p;
1243

1244 1245
	if (p->aio)
		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255
	res = ffs_epfile_io(kiocb->ki_filp, p);
	if (res == -EIOCBQUEUED)
		return res;

	if (p->aio) {
		kfree(p->to_free);
		kfree(p);
	} else {
		*to = p->data;
A
Al Viro 已提交
1256 1257
	}
	return res;
1258 1259
}

1260 1261 1262 1263 1264 1265 1266
static int
ffs_epfile_release(struct inode *inode, struct file *file)
{
	struct ffs_epfile *epfile = inode->i_private;

	ENTER();

1267
	__ffs_epfile_read_buffer_free(epfile);
1268 1269 1270 1271 1272 1273 1274 1275 1276
	ffs_data_closed(epfile->ffs);

	return 0;
}

static long ffs_epfile_ioctl(struct file *file, unsigned code,
			     unsigned long value)
{
	struct ffs_epfile *epfile = file->private_data;
1277
	struct ffs_ep *ep;
1278 1279 1280 1281 1282 1283 1284
	int ret;

	ENTER();

	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
		return -ENODEV;

1285 1286 1287 1288 1289 1290
	/* Wait for endpoint to be enabled */
	ep = epfile->ep;
	if (!ep) {
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;

1291 1292
		ret = wait_event_interruptible(
				epfile->ffs->wait, (ep = epfile->ep));
1293 1294 1295 1296
		if (ret)
			return -EINTR;
	}

1297
	spin_lock_irq(&epfile->ffs->eps_lock);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

	/* In the meantime, endpoint got disabled or changed. */
	if (epfile->ep != ep) {
		spin_unlock_irq(&epfile->ffs->eps_lock);
		return -ESHUTDOWN;
	}

	switch (code) {
	case FUNCTIONFS_FIFO_STATUS:
		ret = usb_ep_fifo_status(epfile->ep->ep);
		break;
	case FUNCTIONFS_FIFO_FLUSH:
		usb_ep_fifo_flush(epfile->ep->ep);
		ret = 0;
		break;
	case FUNCTIONFS_CLEAR_HALT:
		ret = usb_ep_clear_halt(epfile->ep->ep);
		break;
	case FUNCTIONFS_ENDPOINT_REVMAP:
		ret = epfile->ep->num;
		break;
	case FUNCTIONFS_ENDPOINT_DESC:
	{
		int desc_idx;
		struct usb_endpoint_descriptor *desc;

		switch (epfile->ffs->gadget->speed) {
		case USB_SPEED_SUPER:
			desc_idx = 2;
1327
			break;
1328 1329
		case USB_SPEED_HIGH:
			desc_idx = 1;
1330 1331
			break;
		default:
1332
			desc_idx = 0;
1333
		}
1334 1335 1336
		desc = epfile->ep->descs[desc_idx];

		spin_unlock_irq(&epfile->ffs->eps_lock);
1337
		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1338 1339 1340 1341 1342 1343
		if (ret)
			ret = -EFAULT;
		return ret;
	}
	default:
		ret = -ENOTTY;
1344 1345 1346 1347 1348 1349
	}
	spin_unlock_irq(&epfile->ffs->eps_lock);

	return ret;
}

1350 1351 1352 1353 1354 1355 1356 1357
#ifdef CONFIG_COMPAT
static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
		unsigned long value)
{
	return ffs_epfile_ioctl(file, code, value);
}
#endif

1358 1359 1360 1361
static const struct file_operations ffs_epfile_operations = {
	.llseek =	no_llseek,

	.open =		ffs_epfile_open,
1362 1363
	.write_iter =	ffs_epfile_write_iter,
	.read_iter =	ffs_epfile_read_iter,
1364 1365
	.release =	ffs_epfile_release,
	.unlocked_ioctl =	ffs_epfile_ioctl,
1366 1367 1368
#ifdef CONFIG_COMPAT
	.compat_ioctl = ffs_epfile_compat_ioctl,
#endif
1369 1370 1371 1372 1373 1374
};


/* File system and super block operations ***********************************/

/*
1375
 * Mounting the file system creates a controller file, used first for
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
 * function configuration then later for event monitoring.
 */

static struct inode *__must_check
ffs_sb_make_inode(struct super_block *sb, void *data,
		  const struct file_operations *fops,
		  const struct inode_operations *iops,
		  struct ffs_file_perms *perms)
{
	struct inode *inode;

	ENTER();

	inode = new_inode(sb);

	if (likely(inode)) {
1392
		struct timespec64 ts = current_time(inode);
1393

1394
		inode->i_ino	 = get_next_ino();
1395 1396 1397
		inode->i_mode    = perms->mode;
		inode->i_uid     = perms->uid;
		inode->i_gid     = perms->gid;
1398 1399 1400
		inode->i_atime   = ts;
		inode->i_mtime   = ts;
		inode->i_ctime   = ts;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		inode->i_private = data;
		if (fops)
			inode->i_fop = fops;
		if (iops)
			inode->i_op  = iops;
	}

	return inode;
}

/* Create "regular" file */
A
Al Viro 已提交
1412
static struct dentry *ffs_sb_create_file(struct super_block *sb,
1413
					const char *name, void *data,
A
Al Viro 已提交
1414
					const struct file_operations *fops)
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
{
	struct ffs_data	*ffs = sb->s_fs_info;
	struct dentry	*dentry;
	struct inode	*inode;

	ENTER();

	dentry = d_alloc_name(sb->s_root, name);
	if (unlikely(!dentry))
		return NULL;

	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
	if (unlikely(!inode)) {
		dput(dentry);
		return NULL;
	}

	d_add(dentry, inode);
A
Al Viro 已提交
1433
	return dentry;
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
}

/* Super block */
static const struct super_operations ffs_sb_operations = {
	.statfs =	simple_statfs,
	.drop_inode =	generic_delete_inode,
};

struct ffs_sb_fill_data {
	struct ffs_file_perms perms;
	umode_t root_mode;
	const char *dev_name;
1446
	bool no_disconnect;
A
Al Viro 已提交
1447
	struct ffs_data *ffs_data;
1448 1449 1450 1451 1452 1453
};

static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
{
	struct ffs_sb_fill_data *data = _data;
	struct inode	*inode;
A
Al Viro 已提交
1454
	struct ffs_data	*ffs = data->ffs_data;
1455 1456 1457 1458

	ENTER();

	ffs->sb              = sb;
A
Al Viro 已提交
1459
	data->ffs_data       = NULL;
1460
	sb->s_fs_info        = ffs;
1461 1462
	sb->s_blocksize      = PAGE_SIZE;
	sb->s_blocksize_bits = PAGE_SHIFT;
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	sb->s_magic          = FUNCTIONFS_MAGIC;
	sb->s_op             = &ffs_sb_operations;
	sb->s_time_gran      = 1;

	/* Root inode */
	data->perms.mode = data->root_mode;
	inode = ffs_sb_make_inode(sb, NULL,
				  &simple_dir_operations,
				  &simple_dir_inode_operations,
				  &data->perms);
1473 1474
	sb->s_root = d_make_root(inode);
	if (unlikely(!sb->s_root))
A
Al Viro 已提交
1475
		return -ENOMEM;
1476 1477 1478

	/* EP0 file */
	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
A
Al Viro 已提交
1479
					 &ffs_ep0_operations)))
A
Al Viro 已提交
1480
		return -ENOMEM;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	return 0;
}

static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
{
	ENTER();

	if (!opts || !*opts)
		return 0;

	for (;;) {
		unsigned long value;
1494
		char *eq, *comma;
1495 1496 1497 1498 1499 1500 1501 1502 1503

		/* Option limit */
		comma = strchr(opts, ',');
		if (comma)
			*comma = 0;

		/* Value limit */
		eq = strchr(opts, '=');
		if (unlikely(!eq)) {
1504
			pr_err("'=' missing in %s\n", opts);
1505 1506 1507 1508 1509
			return -EINVAL;
		}
		*eq = 0;

		/* Parse value */
1510
		if (kstrtoul(eq + 1, 0, &value)) {
1511
			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1512 1513 1514 1515 1516
			return -EINVAL;
		}

		/* Interpret option */
		switch (eq - opts) {
1517 1518 1519 1520 1521 1522
		case 13:
			if (!memcmp(opts, "no_disconnect", 13))
				data->no_disconnect = !!value;
			else
				goto invalid;
			break;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		case 5:
			if (!memcmp(opts, "rmode", 5))
				data->root_mode  = (value & 0555) | S_IFDIR;
			else if (!memcmp(opts, "fmode", 5))
				data->perms.mode = (value & 0666) | S_IFREG;
			else
				goto invalid;
			break;

		case 4:
			if (!memcmp(opts, "mode", 4)) {
				data->root_mode  = (value & 0555) | S_IFDIR;
				data->perms.mode = (value & 0666) | S_IFREG;
			} else {
				goto invalid;
			}
			break;

		case 3:
1542 1543 1544 1545 1546 1547
			if (!memcmp(opts, "uid", 3)) {
				data->perms.uid = make_kuid(current_user_ns(), value);
				if (!uid_valid(data->perms.uid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1548
			} else if (!memcmp(opts, "gid", 3)) {
1549 1550 1551 1552 1553
				data->perms.gid = make_kgid(current_user_ns(), value);
				if (!gid_valid(data->perms.gid)) {
					pr_err("%s: unmapped value: %lu\n", opts, value);
					return -EINVAL;
				}
1554
			} else {
1555
				goto invalid;
1556
			}
1557 1558 1559 1560
			break;

		default:
invalid:
1561
			pr_err("%s: invalid option\n", opts);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
			return -EINVAL;
		}

		/* Next iteration */
		if (!comma)
			break;
		opts = comma + 1;
	}

	return 0;
}

/* "mount -t functionfs dev_name /dev/function" ends up here */

A
Al Viro 已提交
1576 1577 1578
static struct dentry *
ffs_fs_mount(struct file_system_type *t, int flags,
	      const char *dev_name, void *opts)
1579 1580 1581 1582
{
	struct ffs_sb_fill_data data = {
		.perms = {
			.mode = S_IFREG | 0600,
1583 1584
			.uid = GLOBAL_ROOT_UID,
			.gid = GLOBAL_ROOT_GID,
1585 1586
		},
		.root_mode = S_IFDIR | 0500,
1587
		.no_disconnect = false,
1588
	};
1589
	struct dentry *rv;
1590
	int ret;
1591
	void *ffs_dev;
A
Al Viro 已提交
1592
	struct ffs_data	*ffs;
1593 1594 1595 1596 1597

	ENTER();

	ret = ffs_fs_parse_opts(&data, opts);
	if (unlikely(ret < 0))
A
Al Viro 已提交
1598
		return ERR_PTR(ret);
1599

1600
	ffs = ffs_data_new(dev_name);
A
Al Viro 已提交
1601 1602 1603
	if (unlikely(!ffs))
		return ERR_PTR(-ENOMEM);
	ffs->file_perms = data.perms;
1604
	ffs->no_disconnect = data.no_disconnect;
A
Al Viro 已提交
1605 1606 1607 1608 1609 1610 1611

	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
	if (unlikely(!ffs->dev_name)) {
		ffs_data_put(ffs);
		return ERR_PTR(-ENOMEM);
	}

1612
	ffs_dev = ffs_acquire_dev(dev_name);
A
Al Viro 已提交
1613 1614 1615 1616 1617 1618
	if (IS_ERR(ffs_dev)) {
		ffs_data_put(ffs);
		return ERR_CAST(ffs_dev);
	}
	ffs->private_data = ffs_dev;
	data.ffs_data = ffs;
1619 1620

	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
A
Al Viro 已提交
1621
	if (IS_ERR(rv) && data.ffs_data) {
1622
		ffs_release_dev(data.ffs_data);
A
Al Viro 已提交
1623 1624
		ffs_data_put(data.ffs_data);
	}
1625
	return rv;
1626 1627 1628 1629 1630 1631 1632 1633
}

static void
ffs_fs_kill_sb(struct super_block *sb)
{
	ENTER();

	kill_litter_super(sb);
1634
	if (sb->s_fs_info) {
1635
		ffs_release_dev(sb->s_fs_info);
1636
		ffs_data_closed(sb->s_fs_info);
1637
	}
1638 1639 1640 1641 1642
}

static struct file_system_type ffs_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "functionfs",
A
Al Viro 已提交
1643
	.mount		= ffs_fs_mount,
1644 1645
	.kill_sb	= ffs_fs_kill_sb,
};
1646
MODULE_ALIAS_FS("functionfs");
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658


/* Driver's main init/cleanup functions *************************************/

static int functionfs_init(void)
{
	int ret;

	ENTER();

	ret = register_filesystem(&ffs_fs_type);
	if (likely(!ret))
1659
		pr_info("file system registered\n");
1660
	else
1661
		pr_err("failed registering file system (%d)\n", ret);
1662 1663 1664 1665 1666 1667 1668 1669

	return ret;
}

static void functionfs_cleanup(void)
{
	ENTER();

1670
	pr_info("unloading\n");
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	unregister_filesystem(&ffs_fs_type);
}


/* ffs_data and ffs_function construction and destruction code **************/

static void ffs_data_clear(struct ffs_data *ffs);
static void ffs_data_reset(struct ffs_data *ffs);

static void ffs_data_get(struct ffs_data *ffs)
{
	ENTER();

1684
	refcount_inc(&ffs->ref);
1685 1686 1687 1688 1689 1690
}

static void ffs_data_opened(struct ffs_data *ffs)
{
	ENTER();

1691
	refcount_inc(&ffs->ref);
1692 1693 1694 1695 1696
	if (atomic_add_return(1, &ffs->opened) == 1 &&
			ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}
1697 1698 1699 1700 1701 1702
}

static void ffs_data_put(struct ffs_data *ffs)
{
	ENTER();

1703
	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1704
		pr_info("%s(): freeing\n", __func__);
1705
		ffs_data_clear(ffs);
1706
		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1707 1708
		       waitqueue_active(&ffs->ep0req_completion.wait) ||
		       waitqueue_active(&ffs->wait));
1709
		destroy_workqueue(ffs->io_completion_wq);
1710
		kfree(ffs->dev_name);
1711 1712 1713 1714 1715 1716 1717 1718 1719
		kfree(ffs);
	}
}

static void ffs_data_closed(struct ffs_data *ffs)
{
	ENTER();

	if (atomic_dec_and_test(&ffs->opened)) {
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		if (ffs->no_disconnect) {
			ffs->state = FFS_DEACTIVATED;
			if (ffs->epfiles) {
				ffs_epfiles_destroy(ffs->epfiles,
						   ffs->eps_count);
				ffs->epfiles = NULL;
			}
			if (ffs->setup_state == FFS_SETUP_PENDING)
				__ffs_ep0_stall(ffs);
		} else {
			ffs->state = FFS_CLOSING;
			ffs_data_reset(ffs);
		}
	}
	if (atomic_read(&ffs->opened) < 0) {
1735 1736 1737 1738 1739 1740 1741
		ffs->state = FFS_CLOSING;
		ffs_data_reset(ffs);
	}

	ffs_data_put(ffs);
}

1742
static struct ffs_data *ffs_data_new(const char *dev_name)
1743 1744 1745
{
	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
	if (unlikely(!ffs))
1746
		return NULL;
1747 1748 1749

	ENTER();

1750 1751 1752 1753 1754 1755
	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
	if (!ffs->io_completion_wq) {
		kfree(ffs);
		return NULL;
	}

1756
	refcount_set(&ffs->ref, 1);
1757 1758 1759 1760 1761
	atomic_set(&ffs->opened, 0);
	ffs->state = FFS_READ_DESCRIPTORS;
	mutex_init(&ffs->mutex);
	spin_lock_init(&ffs->eps_lock);
	init_waitqueue_head(&ffs->ev.waitq);
1762
	init_waitqueue_head(&ffs->wait);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	init_completion(&ffs->ep0req_completion);

	/* XXX REVISIT need to update it in some places, or do we? */
	ffs->ev.can_stall = 1;

	return ffs;
}

static void ffs_data_clear(struct ffs_data *ffs)
{
	ENTER();

1775
	ffs_closed(ffs);
1776 1777 1778 1779 1780 1781

	BUG_ON(ffs->gadget);

	if (ffs->epfiles)
		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);

1782 1783 1784
	if (ffs->ffs_eventfd)
		eventfd_ctx_put(ffs->ffs_eventfd);

1785
	kfree(ffs->raw_descs_data);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	kfree(ffs->raw_strings);
	kfree(ffs->stringtabs);
}

static void ffs_data_reset(struct ffs_data *ffs)
{
	ENTER();

	ffs_data_clear(ffs);

	ffs->epfiles = NULL;
1797
	ffs->raw_descs_data = NULL;
1798 1799 1800 1801 1802 1803 1804
	ffs->raw_descs = NULL;
	ffs->raw_strings = NULL;
	ffs->stringtabs = NULL;

	ffs->raw_descs_length = 0;
	ffs->fs_descs_count = 0;
	ffs->hs_descs_count = 0;
1805
	ffs->ss_descs_count = 0;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

	ffs->strings_count = 0;
	ffs->interfaces_count = 0;
	ffs->eps_count = 0;

	ffs->ev.count = 0;

	ffs->state = FFS_READ_DESCRIPTORS;
	ffs->setup_state = FFS_NO_SETUP;
	ffs->flags = 0;
}


static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
{
1821 1822
	struct usb_gadget_strings **lang;
	int first_id;
1823 1824 1825 1826 1827 1828 1829

	ENTER();

	if (WARN_ON(ffs->state != FFS_ACTIVE
		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
		return -EBADFD;

1830 1831 1832
	first_id = usb_string_ids_n(cdev, ffs->strings_count);
	if (unlikely(first_id < 0))
		return first_id;
1833 1834 1835 1836 1837 1838 1839

	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
	if (unlikely(!ffs->ep0req))
		return -ENOMEM;
	ffs->ep0req->complete = ffs_ep0_complete;
	ffs->ep0req->context = ffs;

1840
	lang = ffs->stringtabs;
1841 1842 1843 1844 1845 1846 1847
	if (lang) {
		for (; *lang; ++lang) {
			struct usb_string *str = (*lang)->strings;
			int id = first_id;
			for (; str->s; ++id, ++str)
				str->id = id;
		}
1848 1849 1850
	}

	ffs->gadget = cdev->gadget;
1851
	ffs_data_get(ffs);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	return 0;
}

static void functionfs_unbind(struct ffs_data *ffs)
{
	ENTER();

	if (!WARN_ON(!ffs->gadget)) {
		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
		ffs->ep0req = NULL;
		ffs->gadget = NULL;
1863
		clear_bit(FFS_FL_BOUND, &ffs->flags);
1864
		ffs_data_put(ffs);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	}
}

static int ffs_epfiles_create(struct ffs_data *ffs)
{
	struct ffs_epfile *epfile, *epfiles;
	unsigned i, count;

	ENTER();

	count = ffs->eps_count;
1876
	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1877 1878 1879 1880 1881 1882 1883
	if (!epfiles)
		return -ENOMEM;

	epfile = epfiles;
	for (i = 1; i <= count; ++i, ++epfile) {
		epfile->ffs = ffs;
		mutex_init(&epfile->mutex);
1884
		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1885
			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1886
		else
1887 1888
			sprintf(epfile->name, "ep%u", i);
		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
A
Al Viro 已提交
1889 1890 1891
						 epfile,
						 &ffs_epfile_operations);
		if (unlikely(!epfile->dentry)) {
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
			ffs_epfiles_destroy(epfiles, i - 1);
			return -ENOMEM;
		}
	}

	ffs->epfiles = epfiles;
	return 0;
}

static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
{
	struct ffs_epfile *epfile = epfiles;

	ENTER();

	for (; count; --count, ++epfile) {
1908
		BUG_ON(mutex_is_locked(&epfile->mutex));
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		if (epfile->dentry) {
			d_delete(epfile->dentry);
			dput(epfile->dentry);
			epfile->dentry = NULL;
		}
	}

	kfree(epfiles);
}

static void ffs_func_eps_disable(struct ffs_function *func)
{
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = func->ffs->epfiles;
	unsigned count            = func->ffs->eps_count;
	unsigned long flags;

1926
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1927
	while (count--) {
1928 1929 1930 1931
		/* pending requests get nuked */
		if (likely(ep->ep))
			usb_ep_disable(ep->ep);
		++ep;
1932 1933

		if (epfile) {
1934 1935
			epfile->ep = NULL;
			__ffs_epfile_read_buffer_free(epfile);
1936 1937
			++epfile;
		}
1938
	}
1939
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
}

static int ffs_func_eps_enable(struct ffs_function *func)
{
	struct ffs_data *ffs      = func->ffs;
	struct ffs_ep *ep         = func->eps;
	struct ffs_epfile *epfile = ffs->epfiles;
	unsigned count            = ffs->eps_count;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1952
	while(count--) {
1953
		ep->ep->driver_data = ep;
1954

1955 1956 1957 1958 1959
		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
		if (ret) {
			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
					__func__, ep->ep->name, ret);
			break;
1960
		}
1961

1962
		ret = usb_ep_enable(ep->ep);
1963 1964
		if (likely(!ret)) {
			epfile->ep = ep;
1965 1966
			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1967 1968 1969 1970 1971 1972
		} else {
			break;
		}

		++ep;
		++epfile;
1973
	}
1974 1975

	wake_up_interruptible(&ffs->wait);
1976 1977 1978 1979 1980 1981 1982 1983
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);

	return ret;
}


/* Parsing and building descriptors and strings *****************************/

1984 1985
/*
 * This validates if data pointed by data is a valid USB descriptor as
1986
 * well as record how many interfaces, endpoints and strings are
1987 1988 1989
 * required by given configuration.  Returns address after the
 * descriptor or NULL if data is invalid.
 */
1990 1991 1992 1993 1994

enum ffs_entity_type {
	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
};

1995 1996 1997 1998
enum ffs_os_desc_type {
	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
};

1999 2000 2001 2002 2003
typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
				   u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv);

2004 2005 2006 2007
typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
				    struct usb_os_desc_header *h, void *data,
				    unsigned len, void *priv);

2008 2009
static int __must_check ffs_do_single_desc(char *data, unsigned len,
					   ffs_entity_callback entity,
2010
					   void *priv, int *current_class)
2011 2012 2013 2014 2015 2016 2017 2018 2019
{
	struct usb_descriptor_header *_ds = (void *)data;
	u8 length;
	int ret;

	ENTER();

	/* At least two bytes are required: length and type */
	if (len < 2) {
2020
		pr_vdebug("descriptor too short\n");
2021 2022 2023 2024 2025 2026
		return -EINVAL;
	}

	/* If we have at least as many bytes as the descriptor takes? */
	length = _ds->bLength;
	if (len < length) {
2027
		pr_vdebug("descriptor longer then available data\n");
2028 2029 2030 2031 2032 2033 2034
		return -EINVAL;
	}

#define __entity_check_INTERFACE(val)  1
#define __entity_check_STRING(val)     (val)
#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
#define __entity(type, val) do {					\
2035
		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2036
		if (unlikely(!__entity_check_ ##type(val))) {		\
2037
			pr_vdebug("invalid entity's value\n");		\
2038 2039 2040 2041
			return -EINVAL;					\
		}							\
		ret = entity(FFS_ ##type, &val, _ds, priv);		\
		if (unlikely(ret < 0)) {				\
2042
			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2043
				 (val), ret);				\
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
			return ret;					\
		}							\
	} while (0)

	/* Parse descriptor depending on type. */
	switch (_ds->bDescriptorType) {
	case USB_DT_DEVICE:
	case USB_DT_CONFIG:
	case USB_DT_STRING:
	case USB_DT_DEVICE_QUALIFIER:
		/* function can't have any of those */
2055
		pr_vdebug("descriptor reserved for gadget: %d\n",
2056
		      _ds->bDescriptorType);
2057 2058 2059 2060
		return -EINVAL;

	case USB_DT_INTERFACE: {
		struct usb_interface_descriptor *ds = (void *)_ds;
2061
		pr_vdebug("interface descriptor\n");
2062 2063 2064 2065 2066 2067
		if (length != sizeof *ds)
			goto inv_length;

		__entity(INTERFACE, ds->bInterfaceNumber);
		if (ds->iInterface)
			__entity(STRING, ds->iInterface);
2068
		*current_class = ds->bInterfaceClass;
2069 2070 2071 2072 2073
	}
		break;

	case USB_DT_ENDPOINT: {
		struct usb_endpoint_descriptor *ds = (void *)_ds;
2074
		pr_vdebug("endpoint descriptor\n");
2075 2076 2077 2078 2079 2080 2081
		if (length != USB_DT_ENDPOINT_SIZE &&
		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
			goto inv_length;
		__entity(ENDPOINT, ds->bEndpointAddress);
	}
		break;

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	case USB_TYPE_CLASS | 0x01:
                if (*current_class == USB_INTERFACE_CLASS_HID) {
			pr_vdebug("hid descriptor\n");
			if (length != sizeof(struct hid_descriptor))
				goto inv_length;
			break;
		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
			pr_vdebug("ccid descriptor\n");
			if (length != sizeof(struct ccid_descriptor))
				goto inv_length;
			break;
		} else {
			pr_vdebug("unknown descriptor: %d for class %d\n",
			      _ds->bDescriptorType, *current_class);
			return -EINVAL;
		}
2098

2099 2100 2101 2102 2103 2104 2105
	case USB_DT_OTG:
		if (length != sizeof(struct usb_otg_descriptor))
			goto inv_length;
		break;

	case USB_DT_INTERFACE_ASSOCIATION: {
		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2106
		pr_vdebug("interface association descriptor\n");
2107 2108 2109 2110 2111 2112 2113
		if (length != sizeof *ds)
			goto inv_length;
		if (ds->iFunction)
			__entity(STRING, ds->iFunction);
	}
		break;

2114 2115 2116 2117 2118 2119
	case USB_DT_SS_ENDPOINT_COMP:
		pr_vdebug("EP SS companion descriptor\n");
		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
			goto inv_length;
		break;

2120 2121 2122 2123 2124 2125
	case USB_DT_OTHER_SPEED_CONFIG:
	case USB_DT_INTERFACE_POWER:
	case USB_DT_DEBUG:
	case USB_DT_SECURITY:
	case USB_DT_CS_RADIO_CONTROL:
		/* TODO */
2126
		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2127 2128 2129 2130
		return -EINVAL;

	default:
		/* We should never be here */
2131
		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2132 2133
		return -EINVAL;

2134
inv_length:
2135
		pr_vdebug("invalid length: %d (descriptor %d)\n",
2136
			  _ds->bLength, _ds->bDescriptorType);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
		return -EINVAL;
	}

#undef __entity
#undef __entity_check_DESCRIPTOR
#undef __entity_check_INTERFACE
#undef __entity_check_STRING
#undef __entity_check_ENDPOINT

	return length;
}

static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
				     ffs_entity_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;
2154
	int current_class = -1;
2155 2156 2157 2158 2159 2160 2161 2162 2163

	ENTER();

	for (;;) {
		int ret;

		if (num == count)
			data = NULL;

2164
		/* Record "descriptor" entity */
2165 2166
		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
		if (unlikely(ret < 0)) {
2167
			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2168
				 num, ret);
2169 2170 2171 2172 2173 2174
			return ret;
		}

		if (!data)
			return _len - len;

2175 2176
		ret = ffs_do_single_desc(data, len, entity, priv,
			&current_class);
2177
		if (unlikely(ret < 0)) {
2178
			pr_debug("%s returns %d\n", __func__, ret);
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
			return ret;
		}

		len -= ret;
		data += ret;
		++num;
	}
}

static int __ffs_data_do_entity(enum ffs_entity_type type,
				u8 *valuep, struct usb_descriptor_header *desc,
				void *priv)
{
2192 2193
	struct ffs_desc_helper *helper = priv;
	struct usb_endpoint_descriptor *d;
2194 2195 2196 2197 2198 2199 2200 2201

	ENTER();

	switch (type) {
	case FFS_DESCRIPTOR:
		break;

	case FFS_INTERFACE:
2202 2203
		/*
		 * Interfaces are indexed from zero so if we
2204
		 * encountered interface "n" then there are at least
2205 2206
		 * "n+1" interfaces.
		 */
2207 2208
		if (*valuep >= helper->interfaces_count)
			helper->interfaces_count = *valuep + 1;
2209 2210 2211
		break;

	case FFS_STRING:
2212
		/*
2213 2214
		 * Strings are indexed from 1 (0 is reserved
		 * for languages list)
2215
		 */
2216 2217
		if (*valuep > helper->ffs->strings_count)
			helper->ffs->strings_count = *valuep;
2218 2219 2220
		break;

	case FFS_ENDPOINT:
2221 2222
		d = (void *)desc;
		helper->eps_count++;
2223
		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2224 2225 2226 2227 2228 2229 2230 2231
			return -EINVAL;
		/* Check if descriptors for any speed were already parsed */
		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
			helper->ffs->eps_addrmap[helper->eps_count] =
				d->bEndpointAddress;
		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
				d->bEndpointAddress)
			return -EINVAL;
2232 2233 2234 2235 2236 2237
		break;
	}

	return 0;
}

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
				   struct usb_os_desc_header *desc)
{
	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
	u16 w_index = le16_to_cpu(desc->wIndex);

	if (bcd_version != 1) {
		pr_vdebug("unsupported os descriptors version: %d",
			  bcd_version);
		return -EINVAL;
	}
	switch (w_index) {
	case 0x4:
		*next_type = FFS_OS_DESC_EXT_COMPAT;
		break;
	case 0x5:
		*next_type = FFS_OS_DESC_EXT_PROP;
		break;
	default:
		pr_vdebug("unsupported os descriptor type: %d", w_index);
		return -EINVAL;
	}

	return sizeof(*desc);
}

/*
 * Process all extended compatibility/extended property descriptors
 * of a feature descriptor
 */
static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
					      enum ffs_os_desc_type type,
					      u16 feature_count,
					      ffs_os_desc_callback entity,
					      void *priv,
					      struct usb_os_desc_header *h)
{
	int ret;
	const unsigned _len = len;

	ENTER();

	/* loop over all ext compat/ext prop descriptors */
	while (feature_count--) {
		ret = entity(type, h, data, len, priv);
		if (unlikely(ret < 0)) {
			pr_debug("bad OS descriptor, type: %d\n", type);
			return ret;
		}
		data += ret;
		len -= ret;
	}
	return _len - len;
}

/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
static int __must_check ffs_do_os_descs(unsigned count,
					char *data, unsigned len,
					ffs_os_desc_callback entity, void *priv)
{
	const unsigned _len = len;
	unsigned long num = 0;

	ENTER();

	for (num = 0; num < count; ++num) {
		int ret;
		enum ffs_os_desc_type type;
		u16 feature_count;
		struct usb_os_desc_header *desc = (void *)data;

		if (len < sizeof(*desc))
			return -EINVAL;

		/*
		 * Record "descriptor" entity.
		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
		 * Move the data pointer to the beginning of extended
		 * compatibilities proper or extended properties proper
		 * portions of the data
		 */
		if (le32_to_cpu(desc->dwLength) > len)
			return -EINVAL;

		ret = __ffs_do_os_desc_header(&type, desc);
		if (unlikely(ret < 0)) {
			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
				 num, ret);
			return ret;
		}
		/*
		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
		 */
		feature_count = le16_to_cpu(desc->wCount);
		if (type == FFS_OS_DESC_EXT_COMPAT &&
		    (feature_count > 255 || desc->Reserved))
				return -EINVAL;
		len -= ret;
		data += ret;

		/*
		 * Process all function/property descriptors
		 * of this Feature Descriptor
		 */
		ret = ffs_do_single_os_desc(data, len, type,
					    feature_count, entity, priv, desc);
		if (unlikely(ret < 0)) {
			pr_debug("%s returns %d\n", __func__, ret);
			return ret;
		}

		len -= ret;
		data += ret;
	}
	return _len - len;
}

/**
 * Validate contents of the buffer from userspace related to OS descriptors.
 */
static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
				 struct usb_os_desc_header *h, void *data,
				 unsigned len, void *priv)
{
	struct ffs_data *ffs = priv;
	u8 length;

	ENTER();

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *d = data;
		int i;

		if (len < sizeof(*d) ||
2373
		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2374
			return -EINVAL;
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		if (d->Reserved1 != 1) {
			/*
			 * According to the spec, Reserved1 must be set to 1
			 * but older kernels incorrectly rejected non-zero
			 * values.  We fix it here to avoid returning EINVAL
			 * in response to values we used to accept.
			 */
			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
			d->Reserved1 = 1;
		}
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
			if (d->Reserved2[i])
				return -EINVAL;

		length = sizeof(struct usb_ext_compat_desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *d = data;
		u32 type, pdl;
		u16 pnl;

		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
			return -EINVAL;
		length = le32_to_cpu(d->dwSize);
2400 2401
		if (len < length)
			return -EINVAL;
2402 2403 2404 2405 2406 2407 2408 2409
		type = le32_to_cpu(d->dwPropertyDataType);
		if (type < USB_EXT_PROP_UNICODE ||
		    type > USB_EXT_PROP_UNICODE_MULTI) {
			pr_vdebug("unsupported os descriptor property type: %d",
				  type);
			return -EINVAL;
		}
		pnl = le16_to_cpu(d->wPropertyNameLength);
2410 2411 2412 2413 2414
		if (length < 14 + pnl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
				  length, pnl, type);
			return -EINVAL;
		}
2415
		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
		if (length != 14 + pnl + pdl) {
			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
				  length, pnl, pdl, type);
			return -EINVAL;
		}
		++ffs->ms_os_descs_ext_prop_count;
		/* property name reported to the host as "WCHAR"s */
		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
		ffs->ms_os_descs_ext_prop_data_len += pdl;
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
		return -EINVAL;
	}
	return length;
}

2434 2435 2436
static int __ffs_data_got_descs(struct ffs_data *ffs,
				char *const _data, size_t len)
{
2437
	char *data = _data, *raw_descs;
2438
	unsigned os_descs_count = 0, counts[3], flags;
2439
	int ret = -EINVAL, i;
2440
	struct ffs_desc_helper helper;
2441 2442 2443

	ENTER();

2444
	if (get_unaligned_le32(data + 4) != len)
2445 2446
		goto error;

2447 2448 2449 2450 2451 2452 2453 2454
	switch (get_unaligned_le32(data)) {
	case FUNCTIONFS_DESCRIPTORS_MAGIC:
		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
		data += 8;
		len  -= 8;
		break;
	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
		flags = get_unaligned_le32(data + 8);
2455
		ffs->user_flags = flags;
2456 2457
		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
			      FUNCTIONFS_HAS_HS_DESC |
2458
			      FUNCTIONFS_HAS_SS_DESC |
2459
			      FUNCTIONFS_HAS_MS_OS_DESC |
2460
			      FUNCTIONFS_VIRTUAL_ADDR |
2461
			      FUNCTIONFS_EVENTFD |
2462 2463
			      FUNCTIONFS_ALL_CTRL_RECIP |
			      FUNCTIONFS_CONFIG0_SETUP)) {
2464
			ret = -ENOSYS;
2465 2466
			goto error;
		}
2467 2468 2469 2470 2471
		data += 12;
		len  -= 12;
		break;
	default:
		goto error;
2472 2473
	}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	if (flags & FUNCTIONFS_EVENTFD) {
		if (len < 4)
			goto error;
		ffs->ffs_eventfd =
			eventfd_ctx_fdget((int)get_unaligned_le32(data));
		if (IS_ERR(ffs->ffs_eventfd)) {
			ret = PTR_ERR(ffs->ffs_eventfd);
			ffs->ffs_eventfd = NULL;
			goto error;
		}
		data += 4;
		len  -= 4;
	}

2488 2489 2490 2491 2492
	/* Read fs_count, hs_count and ss_count (if present) */
	for (i = 0; i < 3; ++i) {
		if (!(flags & (1 << i))) {
			counts[i] = 0;
		} else if (len < 4) {
2493
			goto error;
2494 2495 2496 2497
		} else {
			counts[i] = get_unaligned_le32(data);
			data += 4;
			len  -= 4;
2498
		}
2499
	}
2500
	if (flags & (1 << i)) {
2501 2502 2503
		if (len < 4) {
			goto error;
		}
2504 2505 2506 2507
		os_descs_count = get_unaligned_le32(data);
		data += 4;
		len -= 4;
	};
2508

2509 2510
	/* Read descriptors */
	raw_descs = data;
2511
	helper.ffs = ffs;
2512 2513 2514
	for (i = 0; i < 3; ++i) {
		if (!counts[i])
			continue;
2515 2516
		helper.interfaces_count = 0;
		helper.eps_count = 0;
2517
		ret = ffs_do_descs(counts[i], data, len,
2518
				   __ffs_data_do_entity, &helper);
2519
		if (ret < 0)
2520
			goto error;
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
		if (!ffs->eps_count && !ffs->interfaces_count) {
			ffs->eps_count = helper.eps_count;
			ffs->interfaces_count = helper.interfaces_count;
		} else {
			if (ffs->eps_count != helper.eps_count) {
				ret = -EINVAL;
				goto error;
			}
			if (ffs->interfaces_count != helper.interfaces_count) {
				ret = -EINVAL;
				goto error;
			}
		}
2534 2535
		data += ret;
		len  -= ret;
2536
	}
2537 2538 2539 2540 2541 2542 2543 2544
	if (os_descs_count) {
		ret = ffs_do_os_descs(os_descs_count, data, len,
				      __ffs_data_do_os_desc, ffs);
		if (ret < 0)
			goto error;
		data += ret;
		len -= ret;
	}
2545

2546 2547 2548 2549
	if (raw_descs == data || len) {
		ret = -EINVAL;
		goto error;
	}
2550

2551 2552 2553 2554 2555 2556
	ffs->raw_descs_data	= _data;
	ffs->raw_descs		= raw_descs;
	ffs->raw_descs_length	= data - raw_descs;
	ffs->fs_descs_count	= counts[0];
	ffs->hs_descs_count	= counts[1];
	ffs->ss_descs_count	= counts[2];
2557
	ffs->ms_os_descs_count	= os_descs_count;
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

	return 0;

error:
	kfree(_data);
	return ret;
}

static int __ffs_data_got_strings(struct ffs_data *ffs,
				  char *const _data, size_t len)
{
	u32 str_count, needed_count, lang_count;
	struct usb_gadget_strings **stringtabs, *t;
	const char *data = _data;
2572
	struct usb_string *s;
2573 2574 2575

	ENTER();

2576 2577
	if (unlikely(len < 16 ||
		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
		     get_unaligned_le32(data + 4) != len))
		goto error;
	str_count  = get_unaligned_le32(data + 8);
	lang_count = get_unaligned_le32(data + 12);

	/* if one is zero the other must be zero */
	if (unlikely(!str_count != !lang_count))
		goto error;

	/* Do we have at least as many strings as descriptors need? */
	needed_count = ffs->strings_count;
	if (unlikely(str_count < needed_count))
		goto error;

2592 2593 2594 2595
	/*
	 * If we don't need any strings just return and free all
	 * memory.
	 */
2596 2597 2598 2599 2600
	if (!needed_count) {
		kfree(_data);
		return 0;
	}

2601
	/* Allocate everything in one chunk so there's less maintenance. */
2602 2603
	{
		unsigned i = 0;
2604 2605 2606 2607 2608 2609
		vla_group(d);
		vla_item(d, struct usb_gadget_strings *, stringtabs,
			lang_count + 1);
		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
		vla_item(d, struct usb_string, strings,
			lang_count*(needed_count+1));
2610

2611 2612 2613
		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);

		if (unlikely(!vlabuf)) {
2614 2615 2616 2617
			kfree(_data);
			return -ENOMEM;
		}

2618 2619 2620
		/* Initialize the VLA pointers */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
2621 2622 2623 2624 2625 2626
		i = lang_count;
		do {
			*stringtabs++ = t++;
		} while (--i);
		*stringtabs = NULL;

2627 2628 2629 2630
		/* stringtabs = vlabuf = d_stringtabs for later kfree */
		stringtabs = vla_ptr(vlabuf, d, stringtabs);
		t = vla_ptr(vlabuf, d, stringtab);
		s = vla_ptr(vlabuf, d, strings);
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	}

	/* For each language */
	data += 16;
	len -= 16;

	do { /* lang_count > 0 so we can use do-while */
		unsigned needed = needed_count;

		if (unlikely(len < 3))
			goto error_free;
		t->language = get_unaligned_le16(data);
		t->strings  = s;
		++t;

		data += 2;
		len -= 2;

		/* For each string */
		do { /* str_count > 0 so we can use do-while */
			size_t length = strnlen(data, len);

			if (unlikely(length == len))
				goto error_free;

2656 2657 2658 2659 2660
			/*
			 * User may provide more strings then we need,
			 * if that's the case we simply ignore the
			 * rest
			 */
2661
			if (likely(needed)) {
2662 2663
				/*
				 * s->id will be set while adding
2664
				 * function to configuration so for
2665 2666
				 * now just leave garbage here.
				 */
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
				s->s = data;
				--needed;
				++s;
			}

			data += length + 1;
			len -= length + 1;
		} while (--str_count);

		s->id = 0;   /* terminator */
		s->s = NULL;
		++s;

	} while (--lang_count);

	/* Some garbage left? */
	if (unlikely(len))
		goto error_free;

	/* Done! */
	ffs->stringtabs = stringtabs;
	ffs->raw_strings = _data;

	return 0;

error_free:
	kfree(stringtabs);
error:
	kfree(_data);
	return -EINVAL;
}


/* Events handling and management *******************************************/

static void __ffs_event_add(struct ffs_data *ffs,
			    enum usb_functionfs_event_type type)
{
	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
	int neg = 0;

2708 2709 2710 2711
	/*
	 * Abort any unhandled setup
	 *
	 * We do not need to worry about some cmpxchg() changing value
2712 2713
	 * of ffs->setup_state without holding the lock because when
	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2714 2715
	 * the source does nothing.
	 */
2716
	if (ffs->setup_state == FFS_SETUP_PENDING)
2717
		ffs->setup_state = FFS_SETUP_CANCELLED;
2718

2719 2720 2721 2722 2723 2724 2725
	/*
	 * Logic of this function guarantees that there are at most four pending
	 * evens on ffs->ev.types queue.  This is important because the queue
	 * has space for four elements only and __ffs_ep0_read_events function
	 * depends on that limit as well.  If more event types are added, those
	 * limits have to be revisited or guaranteed to still hold.
	 */
2726 2727 2728
	switch (type) {
	case FUNCTIONFS_RESUME:
		rem_type2 = FUNCTIONFS_SUSPEND;
2729
		/* FALL THROUGH */
2730 2731 2732
	case FUNCTIONFS_SUSPEND:
	case FUNCTIONFS_SETUP:
		rem_type1 = type;
2733
		/* Discard all similar events */
2734 2735 2736 2737 2738 2739
		break;

	case FUNCTIONFS_BIND:
	case FUNCTIONFS_UNBIND:
	case FUNCTIONFS_DISABLE:
	case FUNCTIONFS_ENABLE:
2740
		/* Discard everything other then power management. */
2741 2742 2743 2744 2745 2746
		rem_type1 = FUNCTIONFS_SUSPEND;
		rem_type2 = FUNCTIONFS_RESUME;
		neg = 1;
		break;

	default:
2747 2748
		WARN(1, "%d: unknown event, this should not happen\n", type);
		return;
2749 2750 2751 2752 2753 2754 2755 2756 2757
	}

	{
		u8 *ev  = ffs->ev.types, *out = ev;
		unsigned n = ffs->ev.count;
		for (; n; --n, ++ev)
			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
				*out++ = *ev;
			else
2758
				pr_vdebug("purging event %d\n", *ev);
2759 2760 2761
		ffs->ev.count = out - ffs->ev.types;
	}

2762
	pr_vdebug("adding event %d\n", type);
2763 2764
	ffs->ev.types[ffs->ev.count++] = type;
	wake_up_locked(&ffs->ev.waitq);
2765 2766
	if (ffs->ffs_eventfd)
		eventfd_signal(ffs->ffs_eventfd, 1);
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
}

static void ffs_event_add(struct ffs_data *ffs,
			  enum usb_functionfs_event_type type)
{
	unsigned long flags;
	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	__ffs_event_add(ffs, type);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
}

/* Bind/unbind USB function hooks *******************************************/

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
		if (ffs->eps_addrmap[i] == endpoint_address)
			return i;
	return -ENOENT;
}

2790 2791 2792 2793 2794 2795 2796
static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
				    struct usb_descriptor_header *desc,
				    void *priv)
{
	struct usb_endpoint_descriptor *ds = (void *)desc;
	struct ffs_function *func = priv;
	struct ffs_ep *ffs_ep;
2797 2798
	unsigned ep_desc_id;
	int idx;
2799
	static const char *speed_names[] = { "full", "high", "super" };
2800 2801 2802 2803

	if (type != FFS_DESCRIPTOR)
		return 0;

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	/*
	 * If ss_descriptors is not NULL, we are reading super speed
	 * descriptors; if hs_descriptors is not NULL, we are reading high
	 * speed descriptors; otherwise, we are reading full speed
	 * descriptors.
	 */
	if (func->function.ss_descriptors) {
		ep_desc_id = 2;
		func->function.ss_descriptors[(long)valuep] = desc;
	} else if (func->function.hs_descriptors) {
		ep_desc_id = 1;
2815
		func->function.hs_descriptors[(long)valuep] = desc;
2816 2817
	} else {
		ep_desc_id = 0;
2818
		func->function.fs_descriptors[(long)valuep]    = desc;
2819
	}
2820 2821 2822 2823

	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
		return 0;

2824 2825 2826 2827
	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
	if (idx < 0)
		return idx;

2828 2829
	ffs_ep = func->eps + idx;

2830 2831 2832
	if (unlikely(ffs_ep->descs[ep_desc_id])) {
		pr_err("two %sspeed descriptors for EP %d\n",
			  speed_names[ep_desc_id],
2833
			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2834 2835
		return -EINVAL;
	}
2836
	ffs_ep->descs[ep_desc_id] = ds;
2837 2838 2839 2840 2841 2842 2843 2844 2845

	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
	if (ffs_ep->ep) {
		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
		if (!ds->wMaxPacketSize)
			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
	} else {
		struct usb_request *req;
		struct usb_ep *ep;
2846
		u8 bEndpointAddress;
2847
		u16 wMaxPacketSize;
2848

2849 2850 2851 2852 2853
		/*
		 * We back up bEndpointAddress because autoconfig overwrites
		 * it with physical endpoint address.
		 */
		bEndpointAddress = ds->bEndpointAddress;
2854 2855 2856 2857 2858
		/*
		 * We back up wMaxPacketSize because autoconfig treats
		 * endpoint descriptors as if they were full speed.
		 */
		wMaxPacketSize = ds->wMaxPacketSize;
2859
		pr_vdebug("autoconfig\n");
2860 2861 2862
		ep = usb_ep_autoconfig(func->gadget, ds);
		if (unlikely(!ep))
			return -ENOTSUPP;
2863
		ep->driver_data = func->eps + idx;
2864 2865 2866 2867 2868 2869 2870 2871 2872

		req = usb_ep_alloc_request(ep, GFP_KERNEL);
		if (unlikely(!req))
			return -ENOMEM;

		ffs_ep->ep  = ep;
		ffs_ep->req = req;
		func->eps_revmap[ds->bEndpointAddress &
				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2873 2874 2875 2876 2877 2878
		/*
		 * If we use virtual address mapping, we restore
		 * original bEndpointAddress value.
		 */
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ds->bEndpointAddress = bEndpointAddress;
2879 2880 2881 2882 2883
		/*
		 * Restore wMaxPacketSize which was potentially
		 * overwritten by autoconfig.
		 */
		ds->wMaxPacketSize = wMaxPacketSize;
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	}
	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);

	return 0;
}

static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
				   struct usb_descriptor_header *desc,
				   void *priv)
{
	struct ffs_function *func = priv;
	unsigned idx;
	u8 newValue;

	switch (type) {
	default:
	case FFS_DESCRIPTOR:
		/* Handled in previous pass by __ffs_func_bind_do_descs() */
		return 0;

	case FFS_INTERFACE:
		idx = *valuep;
		if (func->interfaces_nums[idx] < 0) {
			int id = usb_interface_id(func->conf, &func->function);
			if (unlikely(id < 0))
				return id;
			func->interfaces_nums[idx] = id;
		}
		newValue = func->interfaces_nums[idx];
		break;

	case FFS_STRING:
		/* String' IDs are allocated when fsf_data is bound to cdev */
		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
		break;

	case FFS_ENDPOINT:
2921 2922 2923 2924
		/*
		 * USB_DT_ENDPOINT are handled in
		 * __ffs_func_bind_do_descs().
		 */
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
		if (desc->bDescriptorType == USB_DT_ENDPOINT)
			return 0;

		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
		if (unlikely(!func->eps[idx].ep))
			return -EINVAL;

		{
			struct usb_endpoint_descriptor **descs;
			descs = func->eps[idx].descs;
			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
		}
		break;
	}

2940
	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2941 2942 2943 2944
	*valuep = newValue;
	return 0;
}

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
				      struct usb_os_desc_header *h, void *data,
				      unsigned len, void *priv)
{
	struct ffs_function *func = priv;
	u8 length = 0;

	switch (type) {
	case FFS_OS_DESC_EXT_COMPAT: {
		struct usb_ext_compat_desc *desc = data;
		struct usb_os_desc_table *t;

		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
		       ARRAY_SIZE(desc->CompatibleID) +
		       ARRAY_SIZE(desc->SubCompatibleID));
		length = sizeof(*desc);
	}
		break;
	case FFS_OS_DESC_EXT_PROP: {
		struct usb_ext_prop_desc *desc = data;
		struct usb_os_desc_table *t;
		struct usb_os_desc_ext_prop *ext_prop;
		char *ext_prop_name;
		char *ext_prop_data;

		t = &func->function.os_desc_table[h->interface];
		t->if_id = func->interfaces_nums[h->interface];

		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);

		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2980
		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
		length = ext_prop->name_len + ext_prop->data_len + 14;

		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
		func->ffs->ms_os_descs_ext_prop_name_avail +=
			ext_prop->name_len;

		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
		func->ffs->ms_os_descs_ext_prop_data_avail +=
			ext_prop->data_len;
		memcpy(ext_prop_data,
		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
		       ext_prop->data_len);
		/* unicode data reported to the host as "WCHAR"s */
		switch (ext_prop->type) {
		case USB_EXT_PROP_UNICODE:
		case USB_EXT_PROP_UNICODE_ENV:
		case USB_EXT_PROP_UNICODE_LINK:
		case USB_EXT_PROP_UNICODE_MULTI:
			ext_prop->data_len *= 2;
			break;
		}
		ext_prop->data = ext_prop_data;

		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
		       ext_prop->name_len);
		/* property name reported to the host as "WCHAR"s */
		ext_prop->name_len *= 2;
		ext_prop->name = ext_prop_name;

		t->os_desc->ext_prop_len +=
			ext_prop->name_len + ext_prop->data_len + 14;
		++t->os_desc->ext_prop_count;
		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
	}
		break;
	default:
		pr_vdebug("unknown descriptor: %d\n", type);
	}

	return length;
}

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
						struct usb_configuration *c)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct f_fs_opts *ffs_opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	int ret;

	ENTER();

	/*
	 * Legacy gadget triggers binding in functionfs_ready_callback,
	 * which already uses locking; taking the same lock here would
	 * cause a deadlock.
	 *
	 * Configfs-enabled gadgets however do need ffs_dev_lock.
	 */
	if (!ffs_opts->no_configfs)
		ffs_dev_lock();
	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
	func->ffs = ffs_opts->dev->ffs_data;
	if (!ffs_opts->no_configfs)
		ffs_dev_unlock();
	if (ret)
		return ERR_PTR(ret);

	func->conf = c;
	func->gadget = c->cdev->gadget;

	/*
	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
	 * configurations are bound in sequence with list_for_each_entry,
	 * in each configuration its functions are bound in sequence
	 * with list_for_each_entry, so we assume no race condition
	 * with regard to ffs_opts->bound access
	 */
	if (!ffs_opts->refcnt) {
		ret = functionfs_bind(func->ffs, c->cdev);
		if (ret)
			return ERR_PTR(ret);
	}
	ffs_opts->refcnt++;
	func->function.strings = func->ffs->stringtabs;

	return ffs_opts;
}

static int _ffs_func_bind(struct usb_configuration *c,
			  struct usb_function *f)
3073 3074 3075 3076 3077
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;

	const int full = !!func->ffs->fs_descs_count;
3078 3079
	const int high = !!func->ffs->hs_descs_count;
	const int super = !!func->ffs->ss_descs_count;
3080

3081
	int fs_len, hs_len, ss_len, ret, i;
3082
	struct ffs_ep *eps_ptr;
3083 3084

	/* Make it a single chunk, less management later on */
3085 3086 3087 3088 3089 3090
	vla_group(d);
	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
		full ? ffs->fs_descs_count + 1 : 0);
	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
		high ? ffs->hs_descs_count + 1 : 0);
3091 3092
	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
		super ? ffs->ss_descs_count + 1 : 0);
3093
	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, char[16], ext_compat,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc, os_desc,
			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
			 ffs->ms_os_descs_ext_prop_count);
	vla_item_with_sz(d, char, ext_prop_name,
			 ffs->ms_os_descs_ext_prop_name_len);
	vla_item_with_sz(d, char, ext_prop_data,
			 ffs->ms_os_descs_ext_prop_data_len);
3106
	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3107
	char *vlabuf;
3108 3109 3110

	ENTER();

3111 3112
	/* Has descriptors only for speeds gadget does not support */
	if (unlikely(!(full | high | super)))
3113 3114
		return -ENOTSUPP;

3115
	/* Allocate a single chunk, less management later on */
3116
	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3117
	if (unlikely(!vlabuf))
3118 3119
		return -ENOMEM;

3120 3121 3122 3123 3124 3125
	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
	ffs->ms_os_descs_ext_prop_name_avail =
		vla_ptr(vlabuf, d, ext_prop_name);
	ffs->ms_os_descs_ext_prop_data_avail =
		vla_ptr(vlabuf, d, ext_prop_data);

3126 3127 3128
	/* Copy descriptors  */
	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
	       ffs->raw_descs_length);
3129

3130
	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3131 3132 3133
	eps_ptr = vla_ptr(vlabuf, d, eps);
	for (i = 0; i < ffs->eps_count; i++)
		eps_ptr[i].num = -1;
3134

3135 3136 3137 3138 3139
	/* Save pointers
	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
	*/
	func->eps             = vla_ptr(vlabuf, d, eps);
	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3140

3141 3142
	/*
	 * Go through all the endpoint descriptors and allocate
3143
	 * endpoints first, so that later we can rewrite the endpoint
3144 3145
	 * numbers without worrying that it may be described later on.
	 */
3146
	if (likely(full)) {
3147
		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3148 3149 3150 3151 3152 3153
		fs_len = ffs_do_descs(ffs->fs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs),
				      d_raw_descs__sz,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(fs_len < 0)) {
			ret = fs_len;
3154
			goto error;
3155
		}
3156
	} else {
3157
		fs_len = 0;
3158 3159 3160
	}

	if (likely(high)) {
3161
		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
		hs_len = ffs_do_descs(ffs->hs_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
				      d_raw_descs__sz - fs_len,
				      __ffs_func_bind_do_descs, func);
		if (unlikely(hs_len < 0)) {
			ret = hs_len;
			goto error;
		}
	} else {
		hs_len = 0;
	}

	if (likely(super)) {
		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3176
		ss_len = ffs_do_descs(ffs->ss_descs_count,
3177 3178 3179
				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
				d_raw_descs__sz - fs_len - hs_len,
				__ffs_func_bind_do_descs, func);
3180 3181
		if (unlikely(ss_len < 0)) {
			ret = ss_len;
3182
			goto error;
3183 3184 3185
		}
	} else {
		ss_len = 0;
3186 3187
	}

3188 3189 3190 3191 3192
	/*
	 * Now handle interface numbers allocation and interface and
	 * endpoint numbers rewriting.  We can do that in one go
	 * now.
	 */
3193
	ret = ffs_do_descs(ffs->fs_descs_count +
3194 3195
			   (high ? ffs->hs_descs_count : 0) +
			   (super ? ffs->ss_descs_count : 0),
3196
			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3197 3198 3199 3200
			   __ffs_func_bind_do_nums, func);
	if (unlikely(ret < 0))
		goto error;

3201
	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3202
	if (c->cdev->use_os_string) {
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
		for (i = 0; i < ffs->interfaces_count; ++i) {
			struct usb_os_desc *desc;

			desc = func->function.os_desc_table[i].os_desc =
				vla_ptr(vlabuf, d, os_desc) +
				i * sizeof(struct usb_os_desc);
			desc->ext_compat_id =
				vla_ptr(vlabuf, d, ext_compat) + i * 16;
			INIT_LIST_HEAD(&desc->ext_prop);
		}
3213 3214 3215 3216 3217 3218 3219 3220 3221
		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
				      vla_ptr(vlabuf, d, raw_descs) +
				      fs_len + hs_len + ss_len,
				      d_raw_descs__sz - fs_len - hs_len -
				      ss_len,
				      __ffs_func_bind_do_os_desc, func);
		if (unlikely(ret < 0))
			goto error;
	}
3222 3223 3224
	func->function.os_desc_n =
		c->cdev->use_os_string ? ffs->interfaces_count : 0;

3225 3226 3227 3228 3229 3230 3231 3232 3233
	/* And we're done */
	ffs_event_add(ffs, FUNCTIONFS_BIND);
	return 0;

error:
	/* XXX Do we need to release all claimed endpoints here? */
	return ret;
}

3234 3235 3236 3237
static int ffs_func_bind(struct usb_configuration *c,
			 struct usb_function *f)
{
	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3238 3239
	struct ffs_function *func = ffs_func_from_usb(f);
	int ret;
3240 3241 3242 3243

	if (IS_ERR(ffs_opts))
		return PTR_ERR(ffs_opts);

3244 3245 3246 3247 3248
	ret = _ffs_func_bind(c, f);
	if (ret && !--ffs_opts->refcnt)
		functionfs_unbind(func->ffs);

	return ret;
3249 3250
}

3251 3252 3253

/* Other USB function hooks *************************************************/

3254 3255 3256 3257 3258 3259 3260
static void ffs_reset_work(struct work_struct *work)
{
	struct ffs_data *ffs = container_of(work,
		struct ffs_data, reset_work);
	ffs_data_reset(ffs);
}

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
static int ffs_func_set_alt(struct usb_function *f,
			    unsigned interface, unsigned alt)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	int ret = 0, intf;

	if (alt != (unsigned)-1) {
		intf = ffs_func_revmap_intf(func, interface);
		if (unlikely(intf < 0))
			return intf;
	}

	if (ffs->func)
		ffs_func_eps_disable(ffs->func);

3277 3278 3279 3280 3281 3282 3283
	if (ffs->state == FFS_DEACTIVATED) {
		ffs->state = FFS_CLOSING;
		INIT_WORK(&ffs->reset_work, ffs_reset_work);
		schedule_work(&ffs->reset_work);
		return -ENODEV;
	}

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	if (alt == (unsigned)-1) {
		ffs->func = NULL;
		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
		return 0;
	}

	ffs->func = func;
	ret = ffs_func_eps_enable(func);
	if (likely(ret >= 0))
		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
	return ret;
}

static void ffs_func_disable(struct usb_function *f)
{
	ffs_func_set_alt(f, 0, (unsigned)-1);
}

static int ffs_func_setup(struct usb_function *f,
			  const struct usb_ctrlrequest *creq)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	unsigned long flags;
	int ret;

	ENTER();

3315 3316 3317 3318 3319
	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3320

3321 3322
	/*
	 * Most requests directed to interface go through here
3323 3324 3325 3326
	 * (notable exceptions are set/get interface) so we need to
	 * handle them.  All other either handled by composite or
	 * passed to usb_configuration->setup() (if one is set).  No
	 * matter, we will handle requests directed to endpoint here
3327 3328 3329
	 * as well (as it's straightforward).  Other request recipient
	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
	 * is being used.
3330
	 */
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	if (ffs->state != FFS_ACTIVE)
		return -ENODEV;

	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
		break;

	case USB_RECIP_ENDPOINT:
		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
		if (unlikely(ret < 0))
			return ret;
3345 3346
		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
			ret = func->ffs->eps_addrmap[ret];
3347 3348 3349
		break;

	default:
3350 3351 3352 3353
		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
			ret = le16_to_cpu(creq->wIndex);
		else
			return -EOPNOTSUPP;
3354 3355 3356 3357 3358 3359 3360 3361
	}

	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
	ffs->ev.setup = *creq;
	ffs->ev.setup.wIndex = cpu_to_le16(ret);
	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);

3362
	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3363 3364
}

3365
static bool ffs_func_req_match(struct usb_function *f,
3366 3367
			       const struct usb_ctrlrequest *creq,
			       bool config0)
3368 3369 3370
{
	struct ffs_function *func = ffs_func_from_usb(f);

3371
	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3372 3373
		return false;

3374 3375
	switch (creq->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_INTERFACE:
3376 3377
		return (ffs_func_revmap_intf(func,
					     le16_to_cpu(creq->wIndex)) >= 0);
3378
	case USB_RECIP_ENDPOINT:
3379 3380
		return (ffs_func_revmap_ep(func,
					   le16_to_cpu(creq->wIndex)) >= 0);
3381 3382 3383 3384 3385 3386
	default:
		return (bool) (func->ffs->user_flags &
			       FUNCTIONFS_ALL_CTRL_RECIP);
	}
}

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
static void ffs_func_suspend(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
}

static void ffs_func_resume(struct usb_function *f)
{
	ENTER();
	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
}


3400
/* Endpoint and interface numbers reverse mapping ***************************/
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421

static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
{
	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
	return num ? num : -EDOM;
}

static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
{
	short *nums = func->interfaces_nums;
	unsigned count = func->ffs->interfaces_count;

	for (; count; --count, ++nums) {
		if (*nums >= 0 && *nums == intf)
			return nums - func->interfaces_nums;
	}

	return -EDOM;
}


3422 3423 3424 3425
/* Devices management *******************************************************/

static LIST_HEAD(ffs_devices);

3426
static struct ffs_dev *_ffs_do_find_dev(const char *name)
3427 3428 3429
{
	struct ffs_dev *dev;

3430 3431 3432
	if (!name)
		return NULL;

3433 3434 3435 3436
	list_for_each_entry(dev, &ffs_devices, entry) {
		if (strcmp(dev->name, name) == 0)
			return dev;
	}
3437

3438 3439 3440 3441 3442 3443
	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3444
static struct ffs_dev *_ffs_get_single_dev(void)
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
{
	struct ffs_dev *dev;

	if (list_is_singular(&ffs_devices)) {
		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
		if (dev->single)
			return dev;
	}

	return NULL;
}

/*
 * ffs_lock must be taken by the caller of this function
 */
3460
static struct ffs_dev *_ffs_find_dev(const char *name)
3461 3462 3463
{
	struct ffs_dev *dev;

3464
	dev = _ffs_get_single_dev();
3465 3466 3467
	if (dev)
		return dev;

3468
	return _ffs_do_find_dev(name);
3469 3470
}

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
/* Configfs support *********************************************************/

static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
{
	return container_of(to_config_group(item), struct f_fs_opts,
			    func_inst.group);
}

static void ffs_attr_release(struct config_item *item)
{
	struct f_fs_opts *opts = to_ffs_opts(item);

	usb_put_function_instance(&opts->func_inst);
}

static struct configfs_item_operations ffs_item_ops = {
	.release	= ffs_attr_release,
};

3490
static const struct config_item_type ffs_func_type = {
3491 3492 3493 3494 3495
	.ct_item_ops	= &ffs_item_ops,
	.ct_owner	= THIS_MODULE,
};


3496 3497 3498 3499 3500 3501 3502 3503
/* Function registration interface ******************************************/

static void ffs_free_inst(struct usb_function_instance *f)
{
	struct f_fs_opts *opts;

	opts = to_f_fs_opts(f);
	ffs_dev_lock();
3504
	_ffs_free_dev(opts->dev);
3505 3506 3507 3508
	ffs_dev_unlock();
	kfree(opts);
}

3509 3510
static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
{
3511
	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3512
		return -ENAMETOOLONG;
3513
	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3514 3515
}

3516 3517 3518 3519 3520 3521 3522 3523 3524
static struct usb_function_instance *ffs_alloc_inst(void)
{
	struct f_fs_opts *opts;
	struct ffs_dev *dev;

	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
	if (!opts)
		return ERR_PTR(-ENOMEM);

3525
	opts->func_inst.set_inst_name = ffs_set_inst_name;
3526 3527
	opts->func_inst.free_func_inst = ffs_free_inst;
	ffs_dev_lock();
3528
	dev = _ffs_alloc_dev();
3529 3530 3531 3532 3533 3534
	ffs_dev_unlock();
	if (IS_ERR(dev)) {
		kfree(opts);
		return ERR_CAST(dev);
	}
	opts->dev = dev;
3535
	dev->opts = opts;
3536

3537 3538
	config_group_init_type_name(&opts->func_inst.group, "",
				    &ffs_func_type);
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
	return &opts->func_inst;
}

static void ffs_free(struct usb_function *f)
{
	kfree(ffs_func_from_usb(f));
}

static void ffs_func_unbind(struct usb_configuration *c,
			    struct usb_function *f)
{
	struct ffs_function *func = ffs_func_from_usb(f);
	struct ffs_data *ffs = func->ffs;
	struct f_fs_opts *opts =
		container_of(f->fi, struct f_fs_opts, func_inst);
	struct ffs_ep *ep = func->eps;
	unsigned count = ffs->eps_count;
	unsigned long flags;

	ENTER();
	if (ffs->func == func) {
		ffs_func_eps_disable(func);
		ffs->func = NULL;
	}

	if (!--opts->refcnt)
		functionfs_unbind(ffs);

	/* cleanup after autoconfig */
	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3569
	while (count--) {
3570 3571 3572 3573
		if (ep->ep && ep->req)
			usb_ep_free_request(ep->ep, ep->req);
		ep->req = NULL;
		++ep;
3574
	}
3575 3576 3577 3578 3579 3580 3581 3582 3583
	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
	kfree(func->eps);
	func->eps = NULL;
	/*
	 * eps, descriptors and interfaces_nums are allocated in the
	 * same chunk so only one free is required.
	 */
	func->function.fs_descriptors = NULL;
	func->function.hs_descriptors = NULL;
3584
	func->function.ss_descriptors = NULL;
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	func->interfaces_nums = NULL;

	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
}

static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
{
	struct ffs_function *func;

	ENTER();

	func = kzalloc(sizeof(*func), GFP_KERNEL);
	if (unlikely(!func))
		return ERR_PTR(-ENOMEM);

	func->function.name    = "Function FS Gadget";

	func->function.bind    = ffs_func_bind;
	func->function.unbind  = ffs_func_unbind;
	func->function.set_alt = ffs_func_set_alt;
	func->function.disable = ffs_func_disable;
	func->function.setup   = ffs_func_setup;
3607
	func->function.req_match = ffs_func_req_match;
3608 3609 3610 3611 3612 3613 3614
	func->function.suspend = ffs_func_suspend;
	func->function.resume  = ffs_func_resume;
	func->function.free_func = ffs_free;

	return &func->function;
}

3615 3616 3617
/*
 * ffs_lock must be taken by the caller of this function
 */
3618
static struct ffs_dev *_ffs_alloc_dev(void)
3619 3620 3621 3622
{
	struct ffs_dev *dev;
	int ret;

3623
	if (_ffs_get_single_dev())
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
			return ERR_PTR(-EBUSY);

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return ERR_PTR(-ENOMEM);

	if (list_empty(&ffs_devices)) {
		ret = functionfs_init();
		if (ret) {
			kfree(dev);
			return ERR_PTR(ret);
		}
	}

	list_add(&dev->entry, &ffs_devices);

	return dev;
}

3643
int ffs_name_dev(struct ffs_dev *dev, const char *name)
3644 3645
{
	struct ffs_dev *existing;
3646
	int ret = 0;
3647

3648
	ffs_dev_lock();
3649

3650 3651 3652 3653 3654
	existing = _ffs_do_find_dev(name);
	if (!existing)
		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
	else if (existing != dev)
		ret = -EBUSY;
3655 3656 3657 3658 3659

	ffs_dev_unlock();

	return ret;
}
3660
EXPORT_SYMBOL_GPL(ffs_name_dev);
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676

int ffs_single_dev(struct ffs_dev *dev)
{
	int ret;

	ret = 0;
	ffs_dev_lock();

	if (!list_is_singular(&ffs_devices))
		ret = -EBUSY;
	else
		dev->single = true;

	ffs_dev_unlock();
	return ret;
}
3677
EXPORT_SYMBOL_GPL(ffs_single_dev);
3678 3679 3680 3681

/*
 * ffs_lock must be taken by the caller of this function
 */
3682
static void _ffs_free_dev(struct ffs_dev *dev)
3683 3684
{
	list_del(&dev->entry);
3685 3686 3687 3688 3689

	/* Clear the private_data pointer to stop incorrect dev access */
	if (dev->ffs_data)
		dev->ffs_data->private_data = NULL;

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	kfree(dev);
	if (list_empty(&ffs_devices))
		functionfs_cleanup();
}

static void *ffs_acquire_dev(const char *dev_name)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

3702
	ffs_dev = _ffs_find_dev(dev_name);
3703
	if (!ffs_dev)
3704
		ffs_dev = ERR_PTR(-ENOENT);
3705 3706
	else if (ffs_dev->mounted)
		ffs_dev = ERR_PTR(-EBUSY);
3707 3708
	else if (ffs_dev->ffs_acquire_dev_callback &&
	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3709
		ffs_dev = ERR_PTR(-ENOENT);
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
	else
		ffs_dev->mounted = true;

	ffs_dev_unlock();
	return ffs_dev;
}

static void ffs_release_dev(struct ffs_data *ffs_data)
{
	struct ffs_dev *ffs_dev;

	ENTER();
	ffs_dev_lock();

	ffs_dev = ffs_data->private_data;
3725
	if (ffs_dev) {
3726
		ffs_dev->mounted = false;
3727 3728 3729 3730

		if (ffs_dev->ffs_release_dev_callback)
			ffs_dev->ffs_release_dev_callback(ffs_dev);
	}
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755

	ffs_dev_unlock();
}

static int ffs_ready(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
	int ret = 0;

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj) {
		ret = -EINVAL;
		goto done;
	}
	if (WARN_ON(ffs_obj->desc_ready)) {
		ret = -EBUSY;
		goto done;
	}

	ffs_obj->desc_ready = true;
	ffs_obj->ffs_data = ffs;

3756
	if (ffs_obj->ffs_ready_callback) {
3757
		ret = ffs_obj->ffs_ready_callback(ffs);
3758 3759 3760
		if (ret)
			goto done;
	}
3761

3762
	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3763 3764 3765 3766 3767 3768 3769 3770
done:
	ffs_dev_unlock();
	return ret;
}

static void ffs_closed(struct ffs_data *ffs)
{
	struct ffs_dev *ffs_obj;
3771
	struct f_fs_opts *opts;
3772
	struct config_item *ci;
3773 3774 3775 3776 3777 3778 3779 3780 3781

	ENTER();
	ffs_dev_lock();

	ffs_obj = ffs->private_data;
	if (!ffs_obj)
		goto done;

	ffs_obj->desc_ready = false;
3782
	ffs_obj->ffs_data = NULL;
3783

3784 3785
	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
	    ffs_obj->ffs_closed_callback)
3786
		ffs_obj->ffs_closed_callback(ffs);
3787

3788 3789 3790 3791 3792 3793
	if (ffs_obj->opts)
		opts = ffs_obj->opts;
	else
		goto done;

	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3794
	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3795 3796
		goto done;

3797 3798 3799
	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
	ffs_dev_unlock();

3800 3801
	if (test_bit(FFS_FL_BOUND, &ffs->flags))
		unregister_gadget_item(ci);
3802
	return;
3803 3804 3805 3806
done:
	ffs_dev_unlock();
}

3807 3808 3809 3810 3811 3812 3813 3814 3815
/* Misc helper functions ****************************************************/

static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
{
	return nonblock
		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
		: mutex_lock_interruptible(mutex);
}

A
Al Viro 已提交
3816
static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
{
	char *data;

	if (unlikely(!len))
		return NULL;

	data = kmalloc(len, GFP_KERNEL);
	if (unlikely(!data))
		return ERR_PTR(-ENOMEM);

3827
	if (unlikely(copy_from_user(data, buf, len))) {
3828 3829 3830 3831
		kfree(data);
		return ERR_PTR(-EFAULT);
	}

3832
	pr_vdebug("Buffer from user space:\n");
3833 3834 3835 3836
	ffs_dump_mem("", data, len);

	return data;
}
3837 3838 3839 3840

DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Nazarewicz");