nfp_net_common.c 85.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

67
#include <net/pkt_cls.h>
68 69
#include <net/vxlan.h>

70
#include "nfpcore/nfp_nsp_eth.h"
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#include "nfp_net_ctrl.h"
#include "nfp_net.h"

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

88
static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
89
{
90
	return dma_map_single(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
91
			      dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
92
			      dp->rx_dma_dir);
93 94
}

95
static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
96
{
97
	dma_unmap_single(dp->dev, dma_addr,
98 99
			 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
			 dp->rx_dma_dir);
100 101
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
225 226 227
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
228 229 230

	spin_lock_bh(&nn->reconfig_lock);

231
	nn->reconfig_sync_present = true;
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
250 251
	}

252 253 254 255 256 257 258 259 260 261
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

262
	spin_unlock_bh(&nn->reconfig_lock);
263

264 265 266 267 268 269 270 271 272 273 274
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
275
 * Clear the ICR for the IRQ entry.
276 277 278 279 280 281 282 283
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
284 285 286 287 288
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
289
 *
290
 * Return: Number of irqs obtained or 0 on error.
291
 */
292 293 294
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
295
{
296 297
	unsigned int i;
	int got_irqs;
298

299 300
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
301

302 303 304 305 306
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
307 308 309
		return 0;
	}

310 311 312 313 314
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
315 316 317
}

/**
318 319 320 321
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
322
 *
323 324
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
325
 */
326 327 328
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
329
{
330 331
	struct nfp_net_dp *dp = &nn->dp;

332
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
333
	dp->num_r_vecs = nn->max_r_vecs;
334

335
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
336

337 338
	if (dp->num_rx_rings > dp->num_r_vecs ||
	    dp->num_tx_rings > dp->num_r_vecs)
339 340 341
		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
			 dp->num_rx_rings, dp->num_tx_rings,
			 dp->num_r_vecs);
342

343 344 345
	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
	dp->num_stack_tx_rings = dp->num_tx_rings;
346 347 348 349
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
350
 * @pdev:        PCI device structure
351 352 353
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
354
void nfp_net_irqs_disable(struct pci_dev *pdev)
355
{
356
	pci_disable_msix(pdev);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;

	if (nn->link_up) {
400 401
		netif_carrier_on(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
402
	} else {
403 404
		netif_carrier_off(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
420 421 422
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
423 424 425

	nfp_net_read_link_status(nn);

426
	nfp_net_irq_unmask(nn, entry->entry);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
450 451
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
452
 */
453 454 455
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
456 457 458
{
	struct nfp_net *nn = r_vec->nfp_net;

459 460 461
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;

462 463 464 465 466 467 468
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
469 470
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
471
 */
472 473 474
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
475 476 477
{
	struct nfp_net *nn = r_vec->nfp_net;

478 479 480
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

481 482 483 484 485
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
}

/**
486
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
487 488
 * @netdev:   netdev structure
 */
489
static void nfp_net_vecs_init(struct net_device *netdev)
490 491 492 493 494 495 496 497
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

498
	for (r = 0; r < nn->max_r_vecs; r++) {
499 500 501 502
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

503 504 505
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
506 507
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

533
	snprintf(name, name_sz, format, netdev_name(nn->dp.netdev));
534 535 536 537 538 539
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
540
	nn_writeb(nn, ctrl_offset, entry->entry);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
582
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
628
static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

	if (!skb->encapsulation)
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
	else
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
	txd->l4_offset = hdrlen;
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
659
 * @dp:  NFP Net data path struct
660 661 662 663 664 665 666 667
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
668 669
static void nfp_net_tx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
670 671 672 673 674 675 676
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

677
	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
696
		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
697 698 699 700 701 702 703 704 705 706 707
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
708
		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
709 710 711 712 713 714 715 716 717 718 719
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

720 721 722 723 724 725 726
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

727 728 729 730 731 732 733 734 735 736 737 738 739
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_ring *tx_ring;
740 741
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_buf *txbuf;
742
	struct netdev_queue *nd_q;
743
	struct nfp_net_dp *dp;
744 745 746 747 748 749
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

750
	dp = &nn->dp;
751
	qidx = skb_get_queue_mapping(skb);
752
	tx_ring = &dp->tx_rings[qidx];
753
	r_vec = tx_ring->r_vec;
754
	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
755 756 757 758

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
759 760
		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
			   qidx, tx_ring->wr_p, tx_ring->rd_p);
761
		netif_tx_stop_queue(nd_q);
762
		nfp_net_tx_xmit_more_flush(tx_ring);
763 764 765 766 767 768 769
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
770
	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
771
				  DMA_TO_DEVICE);
772
	if (dma_mapping_error(dp->dev, dma_addr))
773 774
		goto err_free;

775
	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

796
	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
797

798
	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
799

800
	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
801 802 803 804 805 806 807 808 809 810 811 812 813
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

814
			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
815
						    fsize, DMA_TO_DEVICE);
816
			if (dma_mapping_error(dp->dev, dma_addr))
817 818
				goto err_unmap;

819
			wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
844 845
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
846 847 848 849 850 851 852 853 854

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
855
		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
856 857 858 859 860 861 862 863
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
864
	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
865 866 867 868 869
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
870
	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
871
	nfp_net_tx_xmit_more_flush(tx_ring);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
888
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
910
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
911 912 913 914 915 916 917 918 919 920 921
		tx_ring->rd_p++;

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
922
			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
923 924 925 926 927 928 929
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
930
			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

950
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
951 952 953 954 955 956 957 958 959 960 961 962 963 964
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

965 966 967
static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
968
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	u32 done_pkts = 0, done_bytes = 0;
	int idx, todo;
	u32 qcp_rd_p;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
		tx_ring->rd_p++;

		if (!tx_ring->txbufs[idx].frag)
			continue;

991
		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[idx].dma_addr);
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		__free_page(virt_to_page(tx_ring->txbufs[idx].frag));

		done_pkts++;
		done_bytes += tx_ring->txbufs[idx].real_len;

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].frag = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1014
/**
1015
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1016
 * @dp:		NFP Net data path struct
1017
 * @tx_ring:	TX ring structure
1018 1019 1020
 *
 * Assumes that the device is stopped
 */
1021
static void
1022
nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1023
{
1024
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1025
	const struct skb_frag_struct *frag;
1026
	struct netdev_queue *nd_q;
1027 1028

	while (tx_ring->rd_p != tx_ring->wr_p) {
1029 1030
		struct nfp_net_tx_buf *tx_buf;
		int idx;
1031

1032
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
1033
		tx_buf = &tx_ring->txbufs[idx];
1034

1035
		if (tx_ring == r_vec->xdp_ring) {
1036
			nfp_net_dma_unmap_rx(dp, tx_buf->dma_addr);
1037
			__free_page(virt_to_page(tx_ring->txbufs[idx].frag));
1038
		} else {
1039 1040 1041 1042 1043
			struct sk_buff *skb = tx_ring->txbufs[idx].skb;
			int nr_frags = skb_shinfo(skb)->nr_frags;

			if (tx_buf->fidx == -1) {
				/* unmap head */
1044
				dma_unmap_single(dp->dev, tx_buf->dma_addr,
1045 1046 1047 1048 1049
						 skb_headlen(skb),
						 DMA_TO_DEVICE);
			} else {
				/* unmap fragment */
				frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1050
				dma_unmap_page(dp->dev, tx_buf->dma_addr,
1051 1052 1053
					       skb_frag_size(frag),
					       DMA_TO_DEVICE);
			}
1054

1055 1056 1057 1058
			/* check for last gather fragment */
			if (tx_buf->fidx == nr_frags - 1)
				dev_kfree_skb_any(skb);
		}
1059

1060 1061 1062
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1063 1064 1065 1066 1067

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1068 1069 1070 1071 1072 1073
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1074 1075 1076
	if (tx_ring == r_vec->xdp_ring)
		return;

1077
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1078 1079 1080 1081 1082 1083 1084 1085
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1086
	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1087 1088 1089 1090 1091 1092 1093 1094 1095
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1096
static unsigned int
1097
nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1098 1099 1100
{
	unsigned int fl_bufsz;

1101
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1102
	fl_bufsz += dp->rx_dma_off;
1103
	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1104
		fl_bufsz += NFP_NET_MAX_PREPEND;
1105
	else
1106
		fl_bufsz += dp->rx_offset;
1107
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1108

1109 1110 1111
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1112 1113
	return fl_bufsz;
}
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1124
/**
1125
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1126
 * @dp:		NFP Net data path struct
1127 1128 1129
 * @rx_ring:	RX ring structure of the skb
 * @dma_addr:	Pointer to storage for DMA address (output param)
 *
1130
 * This function will allcate a new page frag, map it for DMA.
1131
 *
1132
 * Return: allocated page frag or NULL on failure.
1133
 */
1134
static void *
1135 1136
nfp_net_rx_alloc_one(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
		     dma_addr_t *dma_addr)
1137
{
1138
	void *frag;
1139

1140
	if (!dp->xdp_prog)
1141
		frag = netdev_alloc_frag(dp->fl_bufsz);
1142 1143
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1144
	if (!frag) {
1145
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1146 1147 1148
		return NULL;
	}

1149
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1150
	if (dma_mapping_error(dp->dev, *dma_addr)) {
1151
		nfp_net_free_frag(frag, dp->xdp_prog);
1152
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1153 1154 1155
		return NULL;
	}

1156
	return frag;
1157 1158
}

1159
static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1160 1161 1162
{
	void *frag;

1163 1164
	if (!dp->xdp_prog)
		frag = napi_alloc_frag(dp->fl_bufsz);
1165 1166
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1167
	if (!frag) {
1168
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1169 1170 1171
		return NULL;
	}

1172
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1173 1174 1175
	if (dma_mapping_error(dp->dev, *dma_addr)) {
		nfp_net_free_frag(frag, dp->xdp_prog);
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1176 1177 1178 1179 1180 1181
		return NULL;
	}

	return frag;
}

1182 1183
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1184
 * @dp:		NFP Net data path struct
1185
 * @rx_ring:	RX ring structure
1186
 * @frag:	page fragment buffer
1187 1188
 * @dma_addr:	DMA address of skb mapping
 */
1189 1190
static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
				struct nfp_net_rx_ring *rx_ring,
1191
				void *frag, dma_addr_t dma_addr)
1192 1193 1194
{
	unsigned int wr_idx;

1195
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1196 1197

	/* Stash SKB and DMA address away */
1198
	rx_ring->rxbufs[wr_idx].frag = frag;
1199 1200 1201 1202 1203
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1204 1205
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
			      dma_addr + dp->rx_dma_off);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1220 1221
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1222
 *
1223 1224
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1225
 */
1226
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1227
{
1228
	unsigned int wr_idx, last_idx;
1229

1230
	/* Move the empty entry to the end of the list */
1231
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1232 1233
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1234
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1235
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1236
	rx_ring->rxbufs[last_idx].frag = NULL;
1237

1238 1239 1240 1241 1242
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1243

1244 1245
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1246
 * @dp:		NFP Net data path struct
1247 1248 1249 1250 1251 1252 1253
 * @rx_ring:	RX ring to remove buffers from
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1254
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1255
			  struct nfp_net_rx_ring *rx_ring)
1256 1257
{
	unsigned int i;
1258

1259 1260 1261 1262 1263
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1264
		if (!rx_ring->rxbufs[i].frag)
1265 1266
			continue;

1267
		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1268
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1269
		rx_ring->rxbufs[i].dma_addr = 0;
1270
		rx_ring->rxbufs[i].frag = NULL;
1271 1272 1273 1274
	}
}

/**
1275
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1276
 * @dp:		NFP Net data path struct
1277
 * @rx_ring:	RX ring to remove buffers from
1278
 */
1279
static int
1280
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1281
			   struct nfp_net_rx_ring *rx_ring)
1282
{
1283 1284 1285 1286
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1287

1288
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1289
		rxbufs[i].frag =
1290
			nfp_net_rx_alloc_one(dp, rx_ring, &rxbufs[i].dma_addr);
1291
		if (!rxbufs[i].frag) {
1292
			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1293 1294 1295 1296 1297 1298 1299
			return -ENOMEM;
		}
	}

	return 0;
}

1300 1301
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1302
 * @dp:	     NFP Net data path struct
1303 1304
 * @rx_ring: RX ring to fill
 */
1305 1306 1307
static void
nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
			      struct nfp_net_rx_ring *rx_ring)
1308 1309 1310 1311
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1312
		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1313 1314 1315
				    rx_ring->rxbufs[i].dma_addr);
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1332
 * @dp:  NFP Net data path struct
1333 1334 1335 1336
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
 * @skb: Pointer to SKB
 */
1337 1338
static void nfp_net_rx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
1339 1340 1341 1342
			    struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

1343
	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		return;

	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1375
			     unsigned int type, __be32 *hash)
1376
{
1377
	if (!(netdev->features & NETIF_F_RXHASH))
1378 1379
		return;

1380
	switch (type) {
1381 1382 1383
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1384
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3);
1385 1386
		break;
	default:
1387
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4);
1388 1389 1390 1391
		break;
	}
}

1392 1393
static void
nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb,
1394
		      void *data, struct nfp_net_rx_desc *rxd)
1395
{
1396
	struct nfp_net_rx_hash *rx_hash = data;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

	nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type),
			 &rx_hash->hash);
}

static void *
nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb,
1407
		   void *data, int meta_len)
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
{
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
			nfp_net_set_hash(netdev, skb,
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
			skb->mark = get_unaligned_be32(data);
			data += 4;
			break;
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1437
static void
1438 1439 1440
nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
		struct sk_buff *skb)
1441 1442 1443 1444 1445
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1446 1447 1448 1449 1450
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1451
	if (rxbuf)
1452
		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1453 1454 1455 1456
	if (skb)
		dev_kfree_skb_any(skb);
}

1457
static bool
1458
nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1459
		   struct nfp_net_tx_ring *tx_ring,
1460
		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1461 1462 1463 1464 1465 1466 1467 1468 1469
		   unsigned int pkt_len)
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	dma_addr_t new_dma_addr;
	void *new_frag;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1470
		nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, NULL);
1471
		return false;
1472 1473
	}

1474
	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1475
	if (unlikely(!new_frag)) {
1476
		nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, NULL);
1477
		return false;
1478
	}
1479
	nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

1491
	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1492
				   pkt_len, DMA_BIDIRECTIONAL);
1493 1494 1495 1496 1497

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
1498
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1499 1500 1501 1502 1503 1504 1505 1506
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1507
	return true;
1508 1509
}

1510 1511
static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
			   unsigned int *off, unsigned int *len)
1512 1513
{
	struct xdp_buff xdp;
1514 1515 1516 1517 1518 1519
	void *orig_data;
	int ret;

	xdp.data_hard_start = hard_start;
	xdp.data = data + *off;
	xdp.data_end = data + *off + *len;
1520

1521 1522
	orig_data = xdp.data;
	ret = bpf_prog_run_xdp(prog, &xdp);
1523

1524 1525 1526 1527
	*len -= xdp.data - orig_data;
	*off += xdp.data - orig_data;

	return ret;
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1544
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1545 1546 1547
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
	unsigned int true_bufsz;
1548
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1549
	int pkts_polled = 0;
1550 1551
	int idx;

1552
	rcu_read_lock();
1553 1554
	xdp_prog = READ_ONCE(dp->xdp_prog);
	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1555 1556
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1557
	while (pkts_polled < budget) {
1558
		unsigned int meta_len, data_len, data_off, pkt_len;
1559
		u8 meta_prepend[NFP_NET_MAX_PREPEND];
1560 1561 1562 1563
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
		dma_addr_t new_dma_addr;
		void *new_frag;
1564
		u8 *meta;
1565

1566
		idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1567 1568

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1569
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1570
			break;
J
Jakub Kicinski 已提交
1571

1572 1573 1574 1575 1576 1577 1578 1579
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

		rx_ring->rd_p++;
		pkts_polled++;

1580
		rxbuf =	&rx_ring->rxbufs[idx];
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1593 1594
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1595
		pkt_len = data_len - meta_len;
1596

1597
		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1598
			data_off = NFP_NET_RX_BUF_HEADROOM + meta_len;
1599
		else
1600
			data_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_offset;
1601
		data_off += dp->rx_dma_off;
1602 1603 1604 1605

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1606
		r_vec->rx_bytes += pkt_len;
1607 1608
		u64_stats_update_end(&r_vec->rx_sync);

1609 1610 1611 1612 1613 1614 1615
		/* Pointer to start of metadata */
		meta = rxbuf->frag + data_off - meta_len;

		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
			     (dp->rx_offset && meta_len > dp->rx_offset))) {
			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
				   meta_len);
1616
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1617 1618 1619
			continue;
		}

1620
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1621
				  dp->bpf_offload_xdp)) {
1622
			unsigned int dma_off;
1623
			void *hard_start;
1624 1625
			int act;

1626
			hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1627
			dma_off = data_off - NFP_NET_RX_BUF_HEADROOM;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
			dma_sync_single_for_cpu(dp->dev, rxbuf->dma_addr,
						dma_off + pkt_len,
						DMA_BIDIRECTIONAL);

			/* Move prepend out of the way */
			if (xdp_prog->xdp_adjust_head) {
				memcpy(meta_prepend, meta, meta_len);
				meta = meta_prepend;
			}

			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
					      &data_off, &pkt_len);
1640 1641 1642 1643
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1644
				dma_off = data_off - NFP_NET_RX_BUF_HEADROOM;
1645
				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1646
								 tx_ring, rxbuf,
1647
								 dma_off,
1648 1649 1650
								 pkt_len)))
					trace_xdp_exception(dp->netdev,
							    xdp_prog, act);
1651 1652 1653 1654
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
			case XDP_ABORTED:
1655
				trace_xdp_exception(dp->netdev, xdp_prog, act);
1656
			case XDP_DROP:
1657
				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1658 1659 1660 1661 1662 1663
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1664
		if (unlikely(!skb)) {
1665
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1666 1667
			continue;
		}
1668
		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1669
		if (unlikely(!new_frag)) {
1670
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1671 1672 1673
			continue;
		}

1674
		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1675

1676
		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1677 1678 1679 1680

		skb_reserve(skb, data_off);
		skb_put(skb, pkt_len);

1681
		if (!dp->chained_metadata_format) {
1682
			nfp_net_set_hash_desc(dp->netdev, skb, meta, rxd);
1683 1684 1685
		} else if (meta_len) {
			void *end;

1686 1687 1688
			end = nfp_net_parse_meta(dp->netdev, skb, meta,
						 meta_len);
			if (unlikely(end != meta + meta_len)) {
1689
				nn_dp_warn(dp, "invalid RX packet metadata\n");
1690
				nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1691 1692 1693 1694
				continue;
			}
		}

1695
		skb_record_rx_queue(skb, rx_ring->idx);
1696
		skb->protocol = eth_type_trans(skb, dp->netdev);
1697

1698
		nfp_net_rx_csum(dp, r_vec, rxd, skb);
1699 1700 1701 1702 1703 1704 1705 1706

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1707 1708 1709 1710
	if (xdp_prog && tx_ring->wr_ptr_add)
		nfp_net_tx_xmit_more_flush(tx_ring);
	rcu_read_unlock();

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1725
	unsigned int pkts_polled = 0;
1726

1727 1728
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1729
	if (r_vec->rx_ring) {
1730
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1731 1732 1733
		if (r_vec->xdp_ring)
			nfp_net_xdp_complete(r_vec->xdp_ring);
	}
1734

1735 1736 1737
	if (pkts_polled < budget)
		if (napi_complete_done(napi, pkts_polled))
			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1752
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1753 1754 1755 1756

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
1757
		dma_free_coherent(dp->dev, tx_ring->size,
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1769
 * @dp:        NFP Net data path struct
1770
 * @tx_ring:   TX Ring structure to allocate
1771
 * @is_xdp:    True if ring will be used for XDP
1772 1773 1774
 *
 * Return: 0 on success, negative errno otherwise.
 */
1775
static int
1776 1777
nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring,
		      bool is_xdp)
1778 1779 1780 1781
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	int sz;

1782
	tx_ring->cnt = dp->txd_cnt;
1783 1784

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1785
	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
1786 1787 1788 1789 1790 1791 1792 1793 1794
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1795
	if (!is_xdp)
1796
		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
1797
				    tx_ring->idx);
1798 1799 1800 1801 1802 1803 1804 1805

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1806
static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1807 1808 1809
{
	unsigned int r;

1810 1811 1812 1813
	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
			       GFP_KERNEL);
	if (!dp->tx_rings)
		return -ENOMEM;
1814

1815
	for (r = 0; r < dp->num_tx_rings; r++) {
1816 1817
		int bias = 0;

1818 1819
		if (r >= dp->num_stack_tx_rings)
			bias = dp->num_stack_tx_rings;
1820

1821 1822
		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
				     r);
1823

1824
		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r], bias))
1825 1826 1827
			goto err_free_prev;
	}

1828
	return 0;
1829 1830 1831

err_free_prev:
	while (r--)
1832 1833 1834
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
	kfree(dp->tx_rings);
	return -ENOMEM;
1835 1836
}

1837
static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
1838 1839 1840
{
	unsigned int r;

1841 1842
	for (r = 0; r < dp->num_tx_rings; r++)
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1843

1844
	kfree(dp->tx_rings);
1845 1846
}

1847 1848 1849 1850 1851 1852 1853
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1854
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1855 1856 1857 1858

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
1859
		dma_free_coherent(dp->dev, rx_ring->size,
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1871
 * @dp:	      NFP Net data path struct
1872 1873 1874 1875
 * @rx_ring:  RX ring to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1876
static int
1877
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
1878 1879 1880
{
	int sz;

1881
	rx_ring->cnt = dp->rxd_cnt;
1882
	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1883
	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1900
static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1901 1902 1903
{
	unsigned int r;

1904 1905 1906 1907
	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
			       GFP_KERNEL);
	if (!dp->rx_rings)
		return -ENOMEM;
1908

1909 1910
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
1911

1912
		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
1913 1914
			goto err_free_prev;

1915
		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
1916 1917 1918
			goto err_free_ring;
	}

1919
	return 0;
1920 1921 1922

err_free_prev:
	while (r--) {
1923
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
1924
err_free_ring:
1925
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
1926
	}
1927 1928
	kfree(dp->rx_rings);
	return -ENOMEM;
1929 1930
}

1931
static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
1932 1933 1934
{
	unsigned int r;

1935 1936 1937
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
1938 1939
	}

1940
	kfree(dp->rx_rings);
1941 1942
}

1943
static void
1944 1945
nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec, int idx)
1946
{
1947
	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
1948
	r_vec->tx_ring =
1949
		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
1950

1951 1952
	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
1953 1954
}

1955 1956 1957
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
1958
{
1959
	int err;
1960

1961
	/* Setup NAPI */
1962
	netif_napi_add(nn->dp.netdev, &r_vec->napi,
1963 1964
		       nfp_net_poll, NAPI_POLL_WEIGHT);

1965
	snprintf(r_vec->name, sizeof(r_vec->name),
1966
		 "%s-rxtx-%d", nn->dp.netdev->name, idx);
1967 1968
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
1969
	if (err) {
1970
		netif_napi_del(&r_vec->napi);
1971
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
1972 1973
		return err;
	}
1974
	disable_irq(r_vec->irq_vector);
1975

1976
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
1977

1978 1979
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
1980

1981
	return 0;
1982 1983
}

1984 1985
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
1986
{
1987
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
1988
	netif_napi_del(&r_vec->napi);
1989
	free_irq(r_vec->irq_vector, r_vec);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

2013
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2037
	for (i = 0; i < nn->dp.num_rx_rings; i++)
2038 2039 2040 2041 2042
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2043
	for (i = 0; i < nn->dp.num_tx_rings; i++)
2044 2045 2046 2047
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2048
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2049 2050
 * @nn:      NFP Net device to reconfigure
 *
2051 2052 2053
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2054
 */
2055
static void nfp_net_write_mac_addr(struct nfp_net *nn)
2056 2057
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
2058
		  get_unaligned_be32(nn->dp.netdev->dev_addr));
J
Jakub Kicinski 已提交
2059
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
2060
		  get_unaligned_be16(nn->dp.netdev->dev_addr + 4));
2061 2062
}

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2074 2075 2076 2077 2078 2079 2080
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2081
	unsigned int r;
2082 2083
	int err;

2084
	new_ctrl = nn->dp.ctrl;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2098
	if (err)
2099 2100
		nn_err(nn, "Could not disable device: %d\n", err);

2101 2102 2103 2104 2105
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2106 2107
		nfp_net_vec_clear_ring_data(nn, r);

2108
	nn->dp.ctrl = new_ctrl;
2109 2110
}

2111
static void
2112 2113
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2114 2115
{
	/* Write the DMA address, size and MSI-X info to the device */
2116 2117
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2118
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2119
}
2120

2121 2122 2123 2124 2125 2126
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2127
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2128 2129
}

2130 2131 2132 2133 2134
/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2135 2136 2137 2138 2139
{
	u32 new_ctrl, update = 0;
	unsigned int r;
	int err;

2140
	new_ctrl = nn->dp.ctrl;
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_coalesce_write_cfg(nn);

		new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2156 2157 2158 2159
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2160

2161 2162
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2163

2164 2165
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2166

2167
	nfp_net_write_mac_addr(nn);
2168

2169
	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu);
2170
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ,
2171
		  nn->dp.fl_bufsz - NFP_NET_RX_BUF_NON_DATA);
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2183 2184 2185 2186
	if (err) {
		nfp_net_clear_config_and_disable(nn);
		return err;
	}
2187

2188
	nn->dp.ctrl = new_ctrl;
2189

2190
	for (r = 0; r < nn->dp.num_rx_rings; r++)
2191
		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2192

2193 2194 2195
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
2196
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2197 2198
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2199
		udp_tunnel_get_rx_info(nn->dp.netdev);
2200 2201
	}

2202
	return 0;
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2213
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2214
		napi_enable(&nn->r_vecs[r].napi);
2215
		enable_irq(nn->r_vecs[r].irq_vector);
2216
	}
2217

2218
	netif_tx_wake_all_queues(nn->dp.netdev);
2219

2220
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2221 2222 2223
	nfp_net_read_link_status(nn);
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err, r;

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2239 2240 2241 2242 2243
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2244
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2245

2246
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2247 2248
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2249 2250
			goto err_cleanup_vec_p;
	}
2251

2252 2253
	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
	if (err)
2254
		goto err_cleanup_vec;
2255

2256 2257
	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
	if (err)
2258
		goto err_free_rx_rings;
2259

2260
	for (r = 0; r < nn->max_r_vecs; r++)
2261
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2262

2263
	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2264 2265 2266
	if (err)
		goto err_free_rings;

2267
	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2278
	err = nfp_net_set_config_and_enable(nn);
2279
	if (err)
2280
		goto err_free_rings;
2281 2282 2283 2284 2285 2286 2287

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2288
	nfp_net_open_stack(nn);
2289 2290 2291 2292

	return 0;

err_free_rings:
2293
	nfp_net_tx_rings_free(&nn->dp);
2294
err_free_rx_rings:
2295
	nfp_net_rx_rings_free(&nn->dp);
2296
err_cleanup_vec:
2297
	r = nn->dp.num_r_vecs;
2298
err_cleanup_vec_p:
2299
	while (r--)
2300
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2301
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2302 2303 2304 2305 2306 2307
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2308 2309
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2310
 */
2311
static void nfp_net_close_stack(struct nfp_net *nn)
2312
{
2313
	unsigned int r;
2314

2315
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2316
	netif_carrier_off(nn->dp.netdev);
2317 2318
	nn->link_up = false;

2319
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2320
		disable_irq(nn->r_vecs[r].irq_vector);
2321
		napi_disable(&nn->r_vecs[r].napi);
2322
	}
2323

2324
	netif_tx_disable(nn->dp.netdev);
2325
}
2326

2327 2328 2329 2330 2331 2332 2333
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2334

2335
	for (r = 0; r < nn->dp.num_rx_rings; r++) {
2336
		nfp_net_rx_ring_bufs_free(&nn->dp, &nn->dp.rx_rings[r]);
2337
		nfp_net_rx_ring_free(&nn->dp.rx_rings[r]);
2338
	}
2339 2340 2341
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_free(&nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2342
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2343

2344 2345
	kfree(nn->dp.rx_rings);
	kfree(nn->dp.tx_rings);
2346

2347
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2348
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

2380
	new_ctrl = nn->dp.ctrl;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

2391
	if (new_ctrl == nn->dp.ctrl)
2392 2393 2394
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2395
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2396

2397
	nn->dp.ctrl = new_ctrl;
2398 2399
}

2400 2401 2402 2403 2404 2405
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
2406
			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2407 2408
}

2409 2410 2411 2412 2413 2414
static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
{
	struct nfp_net_dp new_dp = *dp;

	*dp = nn->dp;
	nn->dp = new_dp;
2415 2416

	nn->dp.netdev->mtu = new_dp.mtu;
2417 2418 2419

	if (!netif_is_rxfh_configured(nn->dp.netdev))
		nfp_net_rss_init_itbl(nn);
2420 2421
}

2422
static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2423
{
2424
	unsigned int r;
2425
	int err;
2426

2427
	nfp_net_dp_swap(nn, dp);
2428

2429
	for (r = 0; r <	nn->max_r_vecs; r++)
2430
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2431

2432
	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2433 2434
	if (err)
		return err;
2435

2436 2437 2438
	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
		err = netif_set_real_num_tx_queues(nn->dp.netdev,
						   nn->dp.num_stack_tx_rings);
2439 2440 2441 2442
		if (err)
			return err;
	}

2443
	return nfp_net_set_config_and_enable(nn);
2444
}
2445

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
{
	struct nfp_net_dp *new;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return NULL;

	*new = nn->dp;

	/* Clear things which need to be recomputed */
	new->fl_bufsz = 0;
	new->tx_rings = NULL;
	new->rx_rings = NULL;
	new->num_r_vecs = 0;
	new->num_stack_tx_rings = 0;

	return new;
}

2466
static int nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp)
2467 2468
{
	/* XDP-enabled tests */
2469
	if (!dp->xdp_prog)
2470
		return 0;
2471
	if (dp->fl_bufsz > PAGE_SIZE) {
2472 2473 2474
		nn_warn(nn, "MTU too large w/ XDP enabled\n");
		return -EINVAL;
	}
2475
	if (dp->num_tx_rings > nn->max_tx_rings) {
2476 2477 2478 2479 2480 2481 2482
		nn_warn(nn, "Insufficient number of TX rings w/ XDP enabled\n");
		return -EINVAL;
	}

	return 0;
}

2483
int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp)
2484
{
2485
	int r, err;
2486

2487
	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2488

2489
	dp->num_stack_tx_rings = dp->num_tx_rings;
2490
	if (dp->xdp_prog)
2491
		dp->num_stack_tx_rings -= dp->num_rx_rings;
2492

2493
	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2494

2495
	err = nfp_net_check_config(nn, dp);
2496
	if (err)
2497
		goto exit_free_dp;
2498

2499
	if (!netif_running(dp->netdev)) {
2500
		nfp_net_dp_swap(nn, dp);
2501 2502
		err = 0;
		goto exit_free_dp;
2503 2504 2505
	}

	/* Prepare new rings */
2506
	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2507 2508
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
2509
			dp->num_r_vecs = r;
2510 2511 2512
			goto err_cleanup_vecs;
		}
	}
2513 2514 2515 2516 2517 2518 2519 2520

	err = nfp_net_rx_rings_prepare(nn, dp);
	if (err)
		goto err_cleanup_vecs;

	err = nfp_net_tx_rings_prepare(nn, dp);
	if (err)
		goto err_free_rx;
2521 2522 2523 2524 2525

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2526
	err = nfp_net_dp_swap_enable(nn, dp);
2527
	if (err) {
2528
		int err2;
2529

2530
		nfp_net_clear_config_and_disable(nn);
2531

2532
		/* Try with old configuration and old rings */
2533
		err2 = nfp_net_dp_swap_enable(nn, dp);
2534
		if (err2)
2535
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2536
			       err, err2);
2537
	}
2538
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2539
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2540

2541 2542
	nfp_net_rx_rings_free(dp);
	nfp_net_tx_rings_free(dp);
2543 2544

	nfp_net_open_stack(nn);
2545 2546
exit_free_dp:
	kfree(dp);
2547 2548

	return err;
2549 2550

err_free_rx:
2551
	nfp_net_rx_rings_free(dp);
2552
err_cleanup_vecs:
2553
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2554
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2555
	kfree(dp);
2556 2557 2558 2559 2560 2561
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
2562 2563 2564 2565 2566
	struct nfp_net_dp *dp;

	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;
2567

2568 2569
	dp->mtu = new_mtu;

2570
	return nfp_net_ring_reconfig(nn, dp);
2571 2572
}

2573 2574
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2575 2576 2577 2578
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

2579
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
		return -ENOTSUPP;
	if (proto != htons(ETH_P_ALL))
		return -ENOTSUPP;

2625
	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
2626
		if (!nn->dp.bpf_offload_xdp)
2627 2628 2629 2630
			return nfp_net_bpf_offload(nn, tc->cls_bpf);
		else
			return -EBUSY;
	}
2631 2632 2633 2634

	return -EINVAL;
}

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

2645
	new_ctrl = nn->dp.ctrl;
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
			new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
			new_ctrl |= NFP_NET_CFG_CTRL_LSO;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2689
	if (changed & NETIF_F_HW_TC && nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
2690 2691 2692 2693
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2694 2695 2696
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

2697
	if (new_ctrl == nn->dp.ctrl)
2698 2699
		return 0;

2700
	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
2701 2702 2703 2704 2705
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

2706
	nn->dp.ctrl = new_ctrl;
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2743
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2744 2745 2746 2747 2748 2749 2750 2751
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2752
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2753 2754 2755 2756

	return features;
}

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
static int
nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	if (!nn->eth_port)
		return -EOPNOTSUPP;

	if (!nn->eth_port->is_split)
		err = snprintf(name, len, "p%d", nn->eth_port->label_port);
	else
		err = snprintf(name, len, "p%ds%d", nn->eth_port->label_port,
			       nn->eth_port->label_subport);
	if (err >= len)
		return -EINVAL;

	return 0;
}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

2789
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
2790 2791 2792 2793 2794 2795 2796 2797
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2798
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2825
				   struct udp_tunnel_info *ti)
2826 2827 2828 2829
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2830 2831 2832 2833
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2834 2835 2836 2837
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2838
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2839 2840 2841
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2842
				   struct udp_tunnel_info *ti)
2843 2844 2845 2846
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2847 2848 2849 2850
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2851
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2852 2853 2854 2855 2856 2857
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct tc_cls_bpf_offload cmd = {
		.prog = prog,
	};
	int ret;

	if (!nfp_net_ebpf_capable(nn))
		return -EINVAL;

2868 2869
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
		if (!nn->dp.bpf_offload_xdp)
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
			return prog ? -EBUSY : 0;
		cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
	} else {
		if (!prog)
			return 0;
		cmd.command = TC_CLSBPF_ADD;
	}

	ret = nfp_net_bpf_offload(nn, &cmd);
	/* Stop offload if replace not possible */
	if (ret && cmd.command == TC_CLSBPF_REPLACE)
		nfp_net_xdp_offload(nn, NULL);
2882
	nn->dp.bpf_offload_xdp = prog && !ret;
2883 2884 2885
	return ret;
}

2886 2887
static int nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog)
{
2888
	struct bpf_prog *old_prog = nn->dp.xdp_prog;
2889
	struct nfp_net_dp *dp;
2890 2891
	int err;

2892
	if (!prog && !nn->dp.xdp_prog)
2893
		return 0;
2894 2895
	if (prog && nn->dp.xdp_prog) {
		prog = xchg(&nn->dp.xdp_prog, prog);
2896
		bpf_prog_put(prog);
2897
		nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2898 2899 2900
		return 0;
	}

2901 2902 2903 2904
	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;

2905
	dp->xdp_prog = prog;
2906
	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
2907
	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2908 2909 2910 2911 2912
	if (prog)
		dp->rx_dma_off = XDP_PACKET_HEADROOM -
			(nn->dp.rx_offset ?: NFP_NET_MAX_PREPEND);
	else
		dp->rx_dma_off = 0;
2913 2914

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
2915
	err = nfp_net_ring_reconfig(nn, dp);
2916 2917 2918
	if (err)
		return err;

2919 2920
	if (old_prog)
		bpf_prog_put(old_prog);
2921

2922
	nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
		return nfp_net_xdp_setup(nn, xdp->prog);
	case XDP_QUERY_PROG:
2935
		xdp->prog_attached = !!nn->dp.xdp_prog;
2936 2937 2938 2939 2940 2941
		return 0;
	default:
		return -EINVAL;
	}
}

2942 2943 2944 2945 2946
static const struct net_device_ops nfp_net_netdev_ops = {
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
2947
	.ndo_setup_tc		= nfp_net_setup_tc,
2948 2949 2950 2951 2952 2953
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
2954
	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
2955 2956
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
2957
	.ndo_xdp		= nfp_net_xdp,
2958 2959 2960 2961 2962 2963 2964 2965
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
2966
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
2967 2968 2969
		nn->dp.is_vf ? "VF " : "",
		nn->dp.num_tx_rings, nn->max_tx_rings,
		nn->dp.num_rx_rings, nn->max_rx_rings);
2970 2971 2972 2973
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
2974
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO "      : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS "      : "",
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
2991 2992
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "");
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
}

/**
 * nfp_net_netdev_alloc() - Allocate netdev and related structure
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
3007 3008
				     unsigned int max_tx_rings,
				     unsigned int max_rx_rings)
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

3021 3022
	nn->dp.netdev = netdev;
	nn->dp.dev = &pdev->dev;
3023 3024 3025 3026 3027
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3028 3029 3030
	nn->dp.num_tx_rings = min_t(unsigned int,
				    max_tx_rings, num_online_cpus());
	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3031
				 netif_get_num_default_rss_queues());
3032

3033 3034 3035
	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
	nn->dp.num_r_vecs = min_t(unsigned int,
				  nn->dp.num_r_vecs, num_online_cpus());
J
Jakub Kicinski 已提交
3036

3037 3038
	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3039 3040

	spin_lock_init(&nn->reconfig_lock);
3041
	spin_lock_init(&nn->rx_filter_lock);
3042 3043
	spin_lock_init(&nn->link_status_lock);

3044 3045
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3046 3047
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3048

3049 3050 3051 3052 3053 3054 3055 3056 3057
	return nn;
}

/**
 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_netdev_free(struct nfp_net *nn)
{
3058
	free_netdev(nn->dp.netdev);
3059 3060
}

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3082 3083 3084 3085 3086 3087
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3100
		dev_warn(nn->dp.dev,
3101 3102 3103 3104 3105 3106
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3107

3108
	nfp_net_rss_init_itbl(nn);
3109 3110 3111 3112

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3113
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
 * @netdev:      netdev structure
 *
 * Return: 0 on success or negative errno on error.
 */
int nfp_net_netdev_init(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

3140 3141 3142 3143 3144 3145 3146
	/* XDP calls for 256 byte packet headroom which wouldn't fit in a u8.
	 * We, however, reuse the metadata prepend space for XDP buffers which
	 * is at least 1 byte long and as long as XDP headroom doesn't increase
	 * above 256 the *extra* XDP headroom will fit on 8 bits.
	 */
	BUILD_BUG_ON(XDP_PACKET_HEADROOM > 256);

3147
	nn->dp.chained_metadata_format = nn->fw_ver.major > 3;
J
Jakub Kicinski 已提交
3148

3149 3150
	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;

3151 3152 3153 3154
	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3155
	nfp_net_write_mac_addr(nn);
3156

3157
	/* Determine RX packet/metadata boundary offset */
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	if (nn->fw_ver.major >= 2) {
		u32 reg;

		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
		if (reg > NFP_NET_MAX_PREPEND) {
			nn_err(nn, "Invalid rx offset: %d\n", reg);
			return -EINVAL;
		}
		nn->dp.rx_offset = reg;
	} else {
3168
		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3169
	}
3170

3171 3172 3173 3174 3175
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3176 3177
	nn->dp.mtu = netdev->mtu;
	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
		netdev->hw_features |= NETIF_F_RXCSUM;
3188
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
3189 3190 3191
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3192
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3193 3194 3195
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
3196
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3197 3198 3199
	}
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3200
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_LSO;
3201 3202 3203 3204
	}
	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
3205
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RSS;
3206 3207 3208 3209 3210 3211
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
3212
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3213 3214 3215 3216 3217 3218 3219 3220

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3221
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3222 3223 3224
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3225
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3226 3227 3228 3229
	}

	netdev->features = netdev->hw_features;

3230 3231 3232
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3233 3234 3235 3236 3237
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3238
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3239
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3240
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3241 3242 3243 3244

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
3245
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3263 3264 3265 3266 3267

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3268
	netif_carrier_off(netdev);
3269 3270

	nfp_net_set_ethtool_ops(netdev);
3271
	nfp_net_vecs_init(netdev);
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281

	return register_netdev(netdev);
}

/**
 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
 * @netdev:      netdev structure
 */
void nfp_net_netdev_clean(struct net_device *netdev)
{
3282 3283
	struct nfp_net *nn = netdev_priv(netdev);

3284 3285 3286
	if (nn->dp.xdp_prog)
		bpf_prog_put(nn->dp.xdp_prog);
	if (nn->dp.bpf_offload_xdp)
3287
		nfp_net_xdp_offload(nn, NULL);
3288
	unregister_netdev(nn->dp.netdev);
3289
}