compaction.c 47.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19
#include <linux/kasan.h>
20 21
#include "internal.h"

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 39 40 41 42 43 44
#ifdef CONFIG_TRACEPOINTS
static const char *const compaction_status_string[] = {
	"deferred",
	"skipped",
	"continue",
	"partial",
	"complete",
45 46
	"no_suitable_page",
	"not_suitable_zone",
47 48
};
#endif
49

50 51 52
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

53 54 55
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
56
	unsigned long high_pfn = 0;
57 58

	list_for_each_entry_safe(page, next, freelist, lru) {
59
		unsigned long pfn = page_to_pfn(page);
60 61
		list_del(&page->lru);
		__free_page(page);
62 63
		if (pfn > high_pfn)
			high_pfn = pfn;
64 65
	}

66
	return high_pfn;
67 68
}

69 70 71 72 73 74 75
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
76
		kasan_alloc_pages(page, 0);
77 78 79
	}
}

80 81 82 83 84
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

128
#ifdef CONFIG_COMPACTION
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
215
static void __reset_isolation_suitable(struct zone *zone)
216 217
{
	unsigned long start_pfn = zone->zone_start_pfn;
218
	unsigned long end_pfn = zone_end_pfn(zone);
219 220
	unsigned long pfn;

221 222
	zone->compact_cached_migrate_pfn[0] = start_pfn;
	zone->compact_cached_migrate_pfn[1] = start_pfn;
223
	zone->compact_cached_free_pfn = end_pfn;
224
	zone->compact_blockskip_flush = false;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

258 259
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
260
 * future. The information is later cleared by __reset_isolation_suitable().
261
 */
262 263
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
264
			bool migrate_scanner)
265
{
266
	struct zone *zone = cc->zone;
267
	unsigned long pfn;
268 269 270 271

	if (cc->ignore_skip_hint)
		return;

272 273 274
	if (!page)
		return;

275 276 277
	if (nr_isolated)
		return;

278
	set_pageblock_skip(page);
279

280 281 282 283 284 285
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
286 287
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
288 289 290 291
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
292
	}
293 294 295 296 297 298 299 300
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

301 302
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
303
			bool migrate_scanner)
304 305 306 307
{
}
#endif /* CONFIG_COMPACTION */

308 309 310 311 312 313 314 315 316 317
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
318
{
319 320 321 322 323 324 325 326
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
327

328
	return true;
329 330
}

331 332
/*
 * Compaction requires the taking of some coarse locks that are potentially
333 334 335 336 337 338 339
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
340
 *
341 342 343 344
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
345
 */
346 347
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
348
{
349 350 351 352
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
353

354 355 356 357
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
358

359
	if (need_resched()) {
360
		if (cc->mode == MIGRATE_ASYNC) {
361 362
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
363 364 365 366
		}
		cond_resched();
	}

367
	return false;
368 369
}

370 371 372
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
373
 * compaction. This is similar to what compact_unlock_should_abort() does, but
374 375 376 377 378 379 380 381 382 383
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
384
			cc->contended = COMPACT_CONTENDED_SCHED;
385 386 387 388 389 390 391 392 393
			return true;
		}

		cond_resched();
	}

	return false;
}

394 395 396
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
397
	/* If the page is a large free page, then disallow migration */
398 399 400 401 402 403 404 405 406
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}
407 408

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
409
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
410 411 412 413 414 415
		return true;

	/* Otherwise skip the block */
	return false;
}

416
/*
417 418 419
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
420
 */
421
static unsigned long isolate_freepages_block(struct compact_control *cc,
422
				unsigned long *start_pfn,
423 424 425
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
426
{
427
	int nr_scanned = 0, total_isolated = 0;
428
	struct page *cursor, *valid_page = NULL;
429
	unsigned long flags = 0;
430
	bool locked = false;
431
	unsigned long blockpfn = *start_pfn;
432 433 434

	cursor = pfn_to_page(blockpfn);

435
	/* Isolate free pages. */
436 437 438 439
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

440 441 442 443 444 445 446 447 448 449
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

450
		nr_scanned++;
451
		if (!pfn_valid_within(blockpfn))
452 453
			goto isolate_fail;

454 455
		if (!valid_page)
			valid_page = page;
456
		if (!PageBuddy(page))
457
			goto isolate_fail;
458 459

		/*
460 461 462 463 464
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
465
		 */
466 467 468 469 470 471 472 473 474
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
475 476
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
477 478
			if (!locked)
				break;
479

480 481 482 483
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
484 485 486 487 488 489 490 491 492 493 494

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
495 496 497 498 499 500 501
			cc->nr_freepages += isolated;
			if (!strict &&
				cc->nr_migratepages <= cc->nr_freepages) {
				blockpfn += isolated;
				break;
			}

502 503
			blockpfn += isolated - 1;
			cursor += isolated - 1;
504
			continue;
505
		}
506 507 508 509 510 511 512

isolate_fail:
		if (strict)
			break;
		else
			continue;

513 514
	}

515 516 517
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

518 519 520
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

521 522 523 524 525
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
526
	if (strict && blockpfn < end_pfn)
527 528 529 530 531
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

532 533
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
534
		update_pageblock_skip(cc, valid_page, total_isolated, false);
535

536
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
537
	if (total_isolated)
538
		count_compact_events(COMPACTISOLATED, total_isolated);
539 540 541
	return total_isolated;
}

542 543 544 545 546 547 548 549 550 551 552 553 554
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
555
unsigned long
556 557
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
558
{
559
	unsigned long isolated, pfn, block_end_pfn;
560 561
	LIST_HEAD(freelist);

562 563 564 565 566
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn += isolated,
				block_end_pfn += pageblock_nr_pages) {
567 568
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
569 570 571

		block_end_pfn = min(block_end_pfn, end_pfn);

572 573 574 575 576 577 578 579 580 581
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

582 583 584
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
			break;

585 586
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

616
/* Update the number of anon and file isolated pages in the zone */
617
static void acct_isolated(struct zone *zone, struct compact_control *cc)
618 619
{
	struct page *page;
620
	unsigned int count[2] = { 0, };
621

622 623 624
	if (list_empty(&cc->migratepages))
		return;

625 626
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
627

628 629
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
630 631 632 633 634
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
635
	unsigned long active, inactive, isolated;
636 637 638

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
639 640
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
641 642 643
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

644
	return isolated > (inactive + active) / 2;
645 646
}

647
/**
648 649
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
650
 * @cc:		Compaction control structure.
651 652 653
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
654 655
 *
 * Isolate all pages that can be migrated from the range specified by
656 657 658 659
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
660
 *
661 662 663
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
664
 */
665 666 667
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
668
{
669
	struct zone *zone = cc->zone;
670
	unsigned long nr_scanned = 0, nr_isolated = 0;
671
	struct list_head *migratelist = &cc->migratepages;
672
	struct lruvec *lruvec;
673
	unsigned long flags = 0;
674
	bool locked = false;
675
	struct page *page = NULL, *valid_page = NULL;
676
	unsigned long start_pfn = low_pfn;
677 678 679 680 681 682 683

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
684
		/* async migration should just abort */
685
		if (cc->mode == MIGRATE_ASYNC)
686
			return 0;
687

688 689 690
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
691
			return 0;
692 693
	}

694 695
	if (compact_should_abort(cc))
		return 0;
696

697 698
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
699 700 701 702 703 704 705 706 707
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
708

709 710
		if (!pfn_valid_within(low_pfn))
			continue;
711
		nr_scanned++;
712 713

		page = pfn_to_page(low_pfn);
714

715 716 717
		if (!valid_page)
			valid_page = page;

718
		/*
719 720 721 722
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
723
		 */
724 725 726 727 728 729 730 731 732 733
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
734
			continue;
735
		}
736

737 738 739 740 741 742 743
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
744
				if (balloon_page_isolate(page)) {
745
					/* Successfully isolated */
746
					goto isolate_success;
747 748
				}
			}
749
			continue;
750
		}
751 752

		/*
753 754 755 756 757 758 759 760
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
761
		 */
762 763
		if (PageTransHuge(page)) {
			if (!locked)
764 765 766 767 768
				low_pfn = ALIGN(low_pfn + 1,
						pageblock_nr_pages) - 1;
			else
				low_pfn += (1 << compound_order(page)) - 1;

769 770 771
			continue;
		}

772 773 774 775 776 777 778 779 780
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

781 782
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
783 784
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
785 786
			if (!locked)
				break;
787

788 789 790 791 792 793 794
			/* Recheck PageLRU and PageTransHuge under lock */
			if (!PageLRU(page))
				continue;
			if (PageTransHuge(page)) {
				low_pfn += (1 << compound_order(page)) - 1;
				continue;
			}
795 796
		}

797 798
		lruvec = mem_cgroup_page_lruvec(page, zone);

799
		/* Try isolate the page */
800
		if (__isolate_lru_page(page, isolate_mode) != 0)
801 802
			continue;

803
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
804

805
		/* Successfully isolated */
806
		del_page_from_lru_list(page, lruvec, page_lru(page));
807 808

isolate_success:
809 810
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
811
		nr_isolated++;
812 813

		/* Avoid isolating too much */
814 815
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
816
			break;
817
		}
818 819
	}

820 821 822 823 824 825 826
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

827 828
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
829

830 831 832 833
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
834
	if (low_pfn == end_pfn)
835
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
836

837 838
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
839

840
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
841
	if (nr_isolated)
842
		count_compact_events(COMPACTISOLATED, nr_isolated);
843

844 845 846
	return low_pfn;
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
	unsigned long pfn, block_end_pfn;

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn = block_end_pfn,
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

872
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

		/*
		 * In case of fatal failure, release everything that might
		 * have been isolated in the previous iteration, and signal
		 * the failure back to caller.
		 */
		if (!pfn) {
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			break;
		}
888 889 890

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
891 892 893 894 895 896
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

897 898
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
899
/*
900 901
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
902
 */
903
static void isolate_freepages(struct compact_control *cc)
904
{
905
	struct zone *zone = cc->zone;
906
	struct page *page;
907
	unsigned long block_start_pfn;	/* start of current pageblock */
908
	unsigned long isolate_start_pfn; /* exact pfn we start at */
909 910
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
911
	struct list_head *freelist = &cc->freepages;
912

913 914
	/*
	 * Initialise the free scanner. The starting point is where we last
915
	 * successfully isolated from, zone-cached value, or the end of the
916 917
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
918 919 920
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
921 922
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
923
	 */
924
	isolate_start_pfn = cc->free_pfn;
925 926 927
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
928
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
929

930 931 932 933 934
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
935 936
	for (; block_start_pfn >= low_pfn &&
			cc->nr_migratepages > cc->nr_freepages;
937
				block_end_pfn = block_start_pfn,
938 939
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
940

941 942 943
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
944
		 * to schedule, or even abort async compaction.
945
		 */
946 947 948
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
949

950 951 952
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
953 954 955
			continue;

		/* Check the block is suitable for migration */
956
		if (!suitable_migration_target(page))
957
			continue;
958

959 960 961 962
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

963
		/* Found a block suitable for isolating free pages from. */
964
		isolate_freepages_block(cc, &isolate_start_pfn,
965
					block_end_pfn, freelist, false);
966

967 968 969 970 971 972 973 974 975 976 977 978 979
		/*
		 * Remember where the free scanner should restart next time,
		 * which is where isolate_freepages_block() left off.
		 * But if it scanned the whole pageblock, isolate_start_pfn
		 * now points at block_end_pfn, which is the start of the next
		 * pageblock.
		 * In that case we will however want to restart at the start
		 * of the previous pageblock.
		 */
		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
				isolate_start_pfn :
				block_start_pfn - pageblock_nr_pages;

980 981 982 983 984 985
		/*
		 * isolate_freepages_block() might have aborted due to async
		 * compaction being contended
		 */
		if (cc->contended)
			break;
986 987 988 989 990
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

991 992 993 994
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
995
	if (block_start_pfn < low_pfn)
996
		cc->free_pfn = cc->migrate_pfn;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1010 1011 1012 1013
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1014
	if (list_empty(&cc->freepages)) {
1015
		if (!cc->contended)
1016
			isolate_freepages(cc);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1042 1043 1044 1045 1046 1047 1048
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1049 1050 1051 1052 1053 1054
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1055
/*
1056 1057 1058
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1059 1060 1061 1062 1063
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
1064 1065
	struct page *page;
	const isolate_mode_t isolate_mode =
1066
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1067
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1068

1069 1070 1071 1072 1073
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1074 1075

	/* Only scan within a pageblock boundary */
1076
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1077

1078 1079 1080 1081 1082 1083
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
	for (; end_pfn <= cc->free_pfn;
			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1084

1085 1086 1087 1088 1089 1090 1091 1092
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1093

1094 1095
		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
		if (!page)
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
								isolate_mode);

1115 1116
		if (!low_pfn || cc->contended) {
			acct_isolated(zone, cc);
1117
			return ISOLATE_ABORT;
1118
		}
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1129 1130 1131 1132 1133 1134
	/*
	 * Record where migration scanner will be restarted. If we end up in
	 * the same pageblock as the free scanner, make the scanners fully
	 * meet so that compact_finished() terminates compaction.
	 */
	cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1135

1136
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1137 1138
}

1139
static int __compact_finished(struct zone *zone, struct compact_control *cc,
1140
			    const int migratetype)
1141
{
1142
	unsigned int order;
1143
	unsigned long watermark;
1144

1145
	if (cc->contended || fatal_signal_pending(current))
1146 1147
		return COMPACT_PARTIAL;

1148
	/* Compaction run completes if the migrate and free scanner meet */
1149
	if (cc->free_pfn <= cc->migrate_pfn) {
1150
		/* Let the next compaction start anew. */
1151 1152
		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1153 1154
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

1155 1156 1157 1158 1159 1160 1161 1162 1163
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

1164
		return COMPACT_COMPLETE;
1165
	}
1166

1167 1168 1169 1170
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
1171 1172 1173
	if (cc->order == -1)
		return COMPACT_CONTINUE;

1174 1175 1176
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1177 1178
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1179 1180
		return COMPACT_CONTINUE;

1181
	/* Direct compactor: Is a suitable page free? */
1182 1183
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1184
		bool can_steal;
1185 1186

		/* Job done if page is free of the right migratetype */
1187
		if (!list_empty(&area->free_list[migratetype]))
1188 1189
			return COMPACT_PARTIAL;

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
			return COMPACT_PARTIAL;
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
						true, &can_steal) != -1)
1202 1203 1204
			return COMPACT_PARTIAL;
	}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	return COMPACT_NO_SUITABLE_PAGE;
}

static int compact_finished(struct zone *zone, struct compact_control *cc,
			    const int migratetype)
{
	int ret;

	ret = __compact_finished(zone, cc, migratetype);
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1219 1220
}

1221 1222 1223 1224 1225 1226 1227
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1228
static unsigned long __compaction_suitable(struct zone *zone, int order,
1229
					int alloc_flags, int classzone_idx)
1230 1231 1232 1233
{
	int fragindex;
	unsigned long watermark;

1234 1235 1236 1237 1238 1239 1240
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

1241 1242 1243 1244 1245 1246 1247 1248 1249
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1250 1251 1252 1253 1254
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1255 1256
	watermark += (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1257 1258 1259 1260 1261 1262
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1263 1264
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1265 1266 1267 1268 1269 1270 1271
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1272
		return COMPACT_NOT_SUITABLE_ZONE;
1273 1274 1275 1276

	return COMPACT_CONTINUE;
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
unsigned long compaction_suitable(struct zone *zone, int order,
					int alloc_flags, int classzone_idx)
{
	unsigned long ret;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1290 1291 1292
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
1293
	unsigned long start_pfn = zone->zone_start_pfn;
1294
	unsigned long end_pfn = zone_end_pfn(zone);
1295
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1296
	const bool sync = cc->mode != MIGRATE_ASYNC;
1297
	unsigned long last_migrated_pfn = 0;
1298

1299 1300
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1311 1312 1313 1314 1315 1316 1317 1318
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1319 1320 1321 1322 1323
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1324
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1325 1326 1327 1328 1329 1330 1331
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
1332 1333
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1334
	}
1335

1336 1337
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1338

1339 1340
	migrate_prep_local();

1341 1342
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1343
		int err;
1344
		unsigned long isolate_start_pfn = cc->migrate_pfn;
1345

1346 1347 1348
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1349
			putback_movable_pages(&cc->migratepages);
1350
			cc->nr_migratepages = 0;
1351 1352
			goto out;
		case ISOLATE_NONE:
1353 1354 1355 1356 1357 1358
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1359 1360 1361
		case ISOLATE_SUCCESS:
			;
		}
1362

1363
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1364
				compaction_free, (unsigned long)cc, cc->mode,
1365
				MR_COMPACTION);
1366

1367 1368
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1369

1370 1371
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1372
		if (err) {
1373
			putback_movable_pages(&cc->migratepages);
1374 1375 1376 1377 1378
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1379 1380 1381
				ret = COMPACT_PARTIAL;
				goto out;
			}
1382
		}
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator. We use the pfn that
		 * isolate_migratepages() started from in this loop iteration
		 * - this is the lowest page that could have been isolated and
		 * then freed by migration.
		 */
		if (!last_migrated_pfn)
			last_migrated_pfn = isolate_start_pfn;

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
		if (cc->order > 0 && last_migrated_pfn) {
			int cpu;
			unsigned long current_block_start =
				cc->migrate_pfn & ~((1UL << cc->order) - 1);

			if (last_migrated_pfn < current_block_start) {
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
				last_migrated_pfn = 0;
			}
		}

1417 1418
	}

1419
out:
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
		free_pfn &= ~(pageblock_nr_pages-1);
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1438

1439 1440
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1441

1442 1443
	return ret;
}
1444

1445
static unsigned long compact_zone_order(struct zone *zone, int order,
1446 1447
		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
		int alloc_flags, int classzone_idx)
1448
{
1449
	unsigned long ret;
1450 1451 1452 1453
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1454
		.gfp_mask = gfp_mask,
1455
		.zone = zone,
1456
		.mode = mode,
1457 1458
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1459 1460 1461 1462
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1463 1464 1465 1466 1467 1468 1469
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1470 1471
}

1472 1473
int sysctl_extfrag_threshold = 500;

1474 1475 1476
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1477 1478 1479
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1480
 * @mode: The migration mode for async, sync light, or sync migration
1481 1482
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1483 1484 1485
 *
 * This is the main entry point for direct page compaction.
 */
1486 1487 1488
unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
			int alloc_flags, const struct alloc_context *ac,
			enum migrate_mode mode, int *contended)
1489 1490 1491 1492 1493
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1494
	int rc = COMPACT_DEFERRED;
1495 1496 1497
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1498

1499
	/* Check if the GFP flags allow compaction */
1500
	if (!order || !may_enter_fs || !may_perform_io)
1501
		return COMPACT_SKIPPED;
1502

1503 1504
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);

1505
	/* Compact each zone in the list */
1506 1507
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1508
		int status;
1509
		int zone_contended;
1510

1511 1512 1513
		if (compaction_deferred(zone, order))
			continue;

1514
		status = compact_zone_order(zone, order, gfp_mask, mode,
1515 1516
				&zone_contended, alloc_flags,
				ac->classzone_idx);
1517
		rc = max(status, rc);
1518 1519 1520 1521 1522
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1523

1524
		/* If a normal allocation would succeed, stop compacting */
1525
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1526
					ac->classzone_idx, alloc_flags)) {
1527 1528 1529 1530 1531 1532 1533
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

1548
		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1549 1550 1551 1552 1553 1554 1555
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1577 1578
	}

1579 1580 1581 1582 1583 1584 1585
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1586 1587 1588 1589
	return rc;
}


1590
/* Compact all zones within a node */
1591
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1602 1603 1604 1605 1606
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1607

1608
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1609
			compact_zone(zone, cc);
1610

1611
		if (cc->order > 0) {
1612 1613 1614
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1615 1616
		}

1617 1618
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1619 1620 1621
	}
}

1622
void compact_pgdat(pg_data_t *pgdat, int order)
1623 1624 1625
{
	struct compact_control cc = {
		.order = order,
1626
		.mode = MIGRATE_ASYNC,
1627 1628
	};

1629 1630 1631
	if (!order)
		return;

1632
	__compact_pgdat(pgdat, &cc);
1633 1634
}

1635
static void compact_node(int nid)
1636 1637 1638
{
	struct compact_control cc = {
		.order = -1,
1639
		.mode = MIGRATE_SYNC,
1640
		.ignore_skip_hint = true,
1641 1642
	};

1643
	__compact_pgdat(NODE_DATA(nid), &cc);
1644 1645
}

1646
/* Compact all nodes in the system */
1647
static void compact_nodes(void)
1648 1649 1650
{
	int nid;

1651 1652 1653
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1666
		compact_nodes();
1667 1668 1669

	return 0;
}
1670

1671 1672 1673 1674 1675 1676 1677 1678
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1679
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1680
static ssize_t sysfs_compact_node(struct device *dev,
1681
			struct device_attribute *attr,
1682 1683
			const char *buf, size_t count)
{
1684 1685 1686 1687 1688 1689 1690 1691
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1692 1693 1694

	return count;
}
1695
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1696 1697 1698

int compaction_register_node(struct node *node)
{
1699
	return device_create_file(&node->dev, &dev_attr_compact);
1700 1701 1702 1703
}

void compaction_unregister_node(struct node *node)
{
1704
	return device_remove_file(&node->dev, &dev_attr_compact);
1705 1706
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1707 1708

#endif /* CONFIG_COMPACTION */