compaction.c 33.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36 37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

38 39 40
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

55 56 57 58 59 60 61 62 63 64
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

65 66 67 68 69
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
86
static void __reset_isolation_suitable(struct zone *zone)
87 88
{
	unsigned long start_pfn = zone->zone_start_pfn;
89
	unsigned long end_pfn = zone_end_pfn(zone);
90 91
	unsigned long pfn;

92 93
	zone->compact_cached_migrate_pfn = start_pfn;
	zone->compact_cached_free_pfn = end_pfn;
94
	zone->compact_blockskip_flush = false;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

128 129
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
130
 * future. The information is later cleared by __reset_isolation_suitable().
131
 */
132 133 134
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
135
{
136
	struct zone *zone = cc->zone;
137 138 139 140

	if (cc->ignore_skip_hint)
		return;

141 142 143
	if (!page)
		return;

144 145
	if (!nr_isolated) {
		unsigned long pfn = page_to_pfn(page);
146
		set_pageblock_skip(page);
147 148 149 150 151 152 153 154 155 156 157 158

		/* Update where compaction should restart */
		if (migrate_scanner) {
			if (!cc->finished_update_migrate &&
			    pfn > zone->compact_cached_migrate_pfn)
				zone->compact_cached_migrate_pfn = pfn;
		} else {
			if (!cc->finished_update_free &&
			    pfn < zone->compact_cached_free_pfn)
				zone->compact_cached_free_pfn = pfn;
		}
	}
159 160 161 162 163 164 165 166
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

167 168 169
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
170 171 172 173
{
}
#endif /* CONFIG_COMPACTION */

174 175 176 177 178
static inline bool should_release_lock(spinlock_t *lock)
{
	return need_resched() || spin_is_contended(lock);
}

179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
191
	if (should_release_lock(lock)) {
192 193 194 195 196 197 198
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
199
			cc->contended = true;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

static inline bool compact_trylock_irqsave(spinlock_t *lock,
			unsigned long *flags, struct compact_control *cc)
{
	return compact_checklock_irqsave(lock, flags, false, cc);
}

217 218 219 220 221 222
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
223 224 225 226
	if (migratetype == MIGRATE_RESERVE)
		return false;

	if (is_migrate_isolate(migratetype))
227 228 229 230 231 232 233 234 235 236 237 238 239 240
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(migratetype))
		return true;

	/* Otherwise skip the block */
	return false;
}

241
/*
242 243 244
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
245
 */
246 247
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
248 249 250
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
251
{
252
	int nr_scanned = 0, total_isolated = 0;
253
	struct page *cursor, *valid_page = NULL;
254 255
	unsigned long flags;
	bool locked = false;
256 257 258

	cursor = pfn_to_page(blockpfn);

259
	/* Isolate free pages. */
260 261 262 263
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

264
		nr_scanned++;
265
		if (!pfn_valid_within(blockpfn))
266 267
			goto isolate_fail;

268 269
		if (!valid_page)
			valid_page = page;
270
		if (!PageBuddy(page))
271
			goto isolate_fail;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a suitable migration target under lock */
		if (!strict && !suitable_migration_target(page))
			break;
289

290 291
		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
292
			goto isolate_fail;
293 294 295 296 297 298 299 300 301 302 303 304 305

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
306
			continue;
307
		}
308 309 310 311 312 313 314

isolate_fail:
		if (strict)
			break;
		else
			continue;

315 316
	}

317
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
318 319 320 321 322 323

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
324
	if (strict && blockpfn < end_pfn)
325 326 327 328 329
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

330 331
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
332
		update_pageblock_skip(cc, valid_page, total_isolated, false);
333

334
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
335
	if (total_isolated)
336
		count_compact_events(COMPACTISOLATED, total_isolated);
337 338 339
	return total_isolated;
}

340 341 342 343 344 345 346 347 348 349 350 351 352
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
353
unsigned long
354 355
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
356
{
357
	unsigned long isolated, pfn, block_end_pfn;
358 359 360
	LIST_HEAD(freelist);

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
361
		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
362 363 364 365 366 367 368 369 370
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

371
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

402
/* Update the number of anon and file isolated pages in the zone */
403
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
404 405
{
	struct page *page;
406
	unsigned int count[2] = { 0, };
407

408 409
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
410

411 412 413 414 415 416 417 418
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
419 420 421 422 423
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
424
	unsigned long active, inactive, isolated;
425 426 427

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
428 429
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
430 431 432
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

433
	return isolated > (inactive + active) / 2;
434 435
}

436 437 438 439 440 441
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
M
Minchan Kim 已提交
442
 * @unevictable: true if it allows to isolate unevictable pages
443 444 445 446 447 448 449 450 451 452 453 454
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
455
 */
456
unsigned long
457
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
M
Minchan Kim 已提交
458
		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
459
{
460
	unsigned long last_pageblock_nr = 0, pageblock_nr;
461
	unsigned long nr_scanned = 0, nr_isolated = 0;
462
	struct list_head *migratelist = &cc->migratepages;
463
	isolate_mode_t mode = 0;
464
	struct lruvec *lruvec;
465
	unsigned long flags;
466
	bool locked = false;
467
	struct page *page = NULL, *valid_page = NULL;
468
	bool skipped_async_unsuitable = false;
469 470 471 472 473 474 475

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
476
		/* async migration should just abort */
477
		if (!cc->sync)
478
			return 0;
479

480 481 482
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
483
			return 0;
484 485 486
	}

	/* Time to isolate some pages for migration */
487
	cond_resched();
488
	for (; low_pfn < end_pfn; low_pfn++) {
489
		/* give a chance to irqs before checking need_resched() */
490 491 492 493 494
		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
495
		}
496

497 498 499 500 501 502 503 504 505 506 507 508 509
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

510 511
		if (!pfn_valid_within(low_pfn))
			continue;
512
		nr_scanned++;
513

514 515 516 517 518 519
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
520
		page = pfn_to_page(low_pfn);
521 522 523
		if (page_zone(page) != zone)
			continue;

524 525 526 527 528 529 530 531
		if (!valid_page)
			valid_page = page;

		/* If isolation recently failed, do not retry */
		pageblock_nr = low_pfn >> pageblock_order;
		if (!isolation_suitable(cc, page))
			goto next_pageblock;

532 533 534 535
		/*
		 * Skip if free. page_order cannot be used without zone->lock
		 * as nothing prevents parallel allocations or buddy merging.
		 */
536 537 538
		if (PageBuddy(page))
			continue;

539 540 541 542 543
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
544
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
545
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
546
			cc->finished_update_migrate = true;
547
			skipped_async_unsuitable = true;
548
			goto next_pageblock;
549 550
		}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
					cc->finished_update_migrate = true;
					list_add(&page->lru, migratelist);
					cc->nr_migratepages++;
					nr_isolated++;
					goto check_compact_cluster;
				}
			}
567
			continue;
568
		}
569 570

		/*
571 572 573 574 575 576 577 578
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
579
		 */
580 581 582 583 584 585 586
		if (PageTransHuge(page)) {
			if (!locked)
				goto next_pageblock;
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

587 588 589 590 591 592 593 594 595
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

596 597 598 599 600 601 602 603 604
		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
605 606 607 608 609
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

610
		if (!cc->sync)
611 612
			mode |= ISOLATE_ASYNC_MIGRATE;

M
Minchan Kim 已提交
613 614 615
		if (unevictable)
			mode |= ISOLATE_UNEVICTABLE;

616 617
		lruvec = mem_cgroup_page_lruvec(page, zone);

618
		/* Try isolate the page */
619
		if (__isolate_lru_page(page, mode) != 0)
620 621
			continue;

622
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
623

624
		/* Successfully isolated */
625
		cc->finished_update_migrate = true;
626
		del_page_from_lru_list(page, lruvec, page_lru(page));
627 628
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
629
		nr_isolated++;
630

631
check_compact_cluster:
632
		/* Avoid isolating too much */
633 634
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
635
			break;
636
		}
637 638 639 640

		continue;

next_pageblock:
641
		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
642
		last_pageblock_nr = pageblock_nr;
643 644
	}

645
	acct_isolated(zone, locked, cc);
646

647 648
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
649

650 651 652 653 654 655 656
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 * This is not done when pageblock was skipped due to being unsuitable
	 * for async compaction, so that eventual sync compaction can try.
	 */
	if (low_pfn == end_pfn && !skipped_async_unsuitable)
657
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
658

659 660
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

661
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
662
	if (nr_isolated)
663
		count_compact_events(COMPACTISOLATED, nr_isolated);
664

665 666 667
	return low_pfn;
}

668 669
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
670
/*
671 672
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
673
 */
674 675
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
676
{
677
	struct page *page;
678
	unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
679 680
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
681

682 683 684 685 686 687
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
688
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
689

690 691 692 693 694 695
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
696

697
	z_end_pfn = zone_end_pfn(zone);
698

699 700 701 702 703
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
704
	for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
705 706
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
707

708 709 710 711 712 713 714
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
		 * to schedule.
		 */
		cond_resched();

715 716
		if (!pfn_valid(pfn))
			continue;
717

718 719 720 721 722 723 724 725 726 727 728 729
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
730
		if (!suitable_migration_target(page))
731
			continue;
732

733 734 735 736
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

737
		/* Found a block suitable for isolating free pages from */
738
		isolated = 0;
739 740 741 742 743 744 745 746

		/*
		 * As pfn may not start aligned, pfn+pageblock_nr_page
		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
		 * a pfn_valid check. Ensure isolate_freepages_block()
		 * only scans within a pageblock
		 */
		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
747
		end_pfn = min(end_pfn, z_end_pfn);
748 749 750
		isolated = isolate_freepages_block(cc, pfn, end_pfn,
						   freelist, false);
		nr_freepages += isolated;
751 752 753 754 755 756

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
757 758
		if (isolated) {
			cc->finished_update_free = true;
759
			high_pfn = max(high_pfn, pfn);
760
		}
761 762 763 764 765
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

766 767 768 769 770 771 772 773
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
	if (pfn < low_pfn)
		cc->free_pfn = max(pfn, zone->zone_start_pfn);
	else
		cc->free_pfn = high_pfn;
774
	cc->nr_freepages = nr_freepages;
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
843
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
844 845 846 847 848 849 850 851

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
M
Minchan Kim 已提交
852
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
853
	if (!low_pfn || cc->contended)
854 855 856 857 858 859 860
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

861
static int compact_finished(struct zone *zone,
862
			    struct compact_control *cc)
863
{
864
	unsigned int order;
865
	unsigned long watermark;
866

867 868 869
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

870
	/* Compaction run completes if the migrate and free scanner meet */
871
	if (cc->free_pfn <= cc->migrate_pfn) {
872 873 874 875
		/* Let the next compaction start anew. */
		zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

876 877 878 879 880 881 882 883 884
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

885
		return COMPACT_COMPLETE;
886
	}
887

888 889 890 891
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
892 893 894
	if (cc->order == -1)
		return COMPACT_CONTINUE;

895 896 897 898 899 900 901
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

902
	/* Direct compactor: Is a suitable page free? */
903 904 905 906 907 908 909 910 911
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
		if (!list_empty(&area->free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
912 913 914
			return COMPACT_PARTIAL;
	}

915 916 917
	return COMPACT_CONTINUE;
}

918 919 920 921 922 923 924 925 926 927 928 929
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

930 931 932 933 934 935 936
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

937 938 939 940 941 942 943 944 945 946 947 948 949
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
950 951
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
952 953 954 955 956 957 958 959 960
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

961 962
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
963 964 965 966 967
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

968 969 970
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
971
	unsigned long start_pfn = zone->zone_start_pfn;
972
	unsigned long end_pfn = zone_end_pfn(zone);
973

974 975 976 977 978 979 980 981 982 983 984
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

985 986 987 988 989 990 991 992
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
	}
1008

1009 1010
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);

1011 1012 1013 1014
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
1015
		int err;
1016

1017 1018 1019
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1020
			putback_movable_pages(&cc->migratepages);
1021
			cc->nr_migratepages = 0;
1022 1023
			goto out;
		case ISOLATE_NONE:
1024
			continue;
1025 1026 1027
		case ISOLATE_SUCCESS:
			;
		}
1028 1029

		nr_migrate = cc->nr_migratepages;
1030
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1031
				(unsigned long)cc,
1032 1033
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
				MR_COMPACTION);
1034 1035 1036
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

1037 1038
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
1039

1040
		/* Release isolated pages not migrated */
1041
		if (err) {
1042
			putback_movable_pages(&cc->migratepages);
1043
			cc->nr_migratepages = 0;
1044 1045 1046 1047 1048
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1049 1050 1051
				ret = COMPACT_PARTIAL;
				goto out;
			}
1052 1053 1054
		}
	}

1055
out:
1056 1057 1058 1059
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

1060 1061
	trace_mm_compaction_end(ret);

1062 1063
	return ret;
}
1064

1065
static unsigned long compact_zone_order(struct zone *zone,
1066
				 int order, gfp_t gfp_mask,
1067
				 bool sync, bool *contended)
1068
{
1069
	unsigned long ret;
1070 1071 1072 1073 1074 1075
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1076
		.sync = sync,
1077 1078 1079 1080
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1081 1082 1083 1084 1085 1086 1087
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1088 1089
}

1090 1091
int sysctl_extfrag_threshold = 500;

1092 1093 1094 1095 1096 1097
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1098
 * @sync: Whether migration is synchronous or not
1099 1100
 * @contended: Return value that is true if compaction was aborted due to lock contention
 * @page: Optionally capture a free page of the requested order during compaction
1101 1102 1103 1104
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1105
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1106
			bool sync, bool *contended)
1107 1108 1109 1110 1111 1112 1113
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;
1114
	int alloc_flags = 0;
1115

1116
	/* Check if the GFP flags allow compaction */
1117
	if (!order || !may_enter_fs || !may_perform_io)
1118 1119
		return rc;

1120
	count_compact_event(COMPACTSTALL);
1121

1122 1123 1124 1125
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1126 1127 1128 1129 1130
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

1131
		status = compact_zone_order(zone, order, gfp_mask, sync,
1132
						contended);
1133 1134
		rc = max(status, rc);

1135
		/* If a normal allocation would succeed, stop compacting */
1136 1137
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
				      alloc_flags))
1138 1139 1140 1141 1142 1143 1144
			break;
	}

	return rc;
}


1145
/* Compact all zones within a node */
1146
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1157 1158 1159 1160 1161
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1162

1163
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1164
			compact_zone(zone, cc);
1165

1166
		if (cc->order > 0) {
1167 1168 1169
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1170
			/* Currently async compaction is never deferred. */
1171
			else if (cc->sync)
1172 1173 1174
				defer_compaction(zone, cc->order);
		}

1175 1176
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1177 1178 1179
	}
}

1180
void compact_pgdat(pg_data_t *pgdat, int order)
1181 1182 1183
{
	struct compact_control cc = {
		.order = order,
1184
		.sync = false,
1185 1186
	};

1187 1188 1189
	if (!order)
		return;

1190
	__compact_pgdat(pgdat, &cc);
1191 1192
}

1193
static void compact_node(int nid)
1194 1195 1196
{
	struct compact_control cc = {
		.order = -1,
1197
		.sync = true,
1198
		.ignore_skip_hint = true,
1199 1200
	};

1201
	__compact_pgdat(NODE_DATA(nid), &cc);
1202 1203
}

1204
/* Compact all nodes in the system */
1205
static void compact_nodes(void)
1206 1207 1208
{
	int nid;

1209 1210 1211
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1224
		compact_nodes();
1225 1226 1227

	return 0;
}
1228

1229 1230 1231 1232 1233 1234 1235 1236
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1237
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1238 1239
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
1240 1241
			const char *buf, size_t count)
{
1242 1243 1244 1245 1246 1247 1248 1249
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1250 1251 1252

	return count;
}
1253
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1254 1255 1256

int compaction_register_node(struct node *node)
{
1257
	return device_create_file(&node->dev, &dev_attr_compact);
1258 1259 1260 1261
}

void compaction_unregister_node(struct node *node)
{
1262
	return device_remove_file(&node->dev, &dev_attr_compact);
1263 1264
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1265 1266

#endif /* CONFIG_COMPACTION */