compaction.c 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36 37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

38 39 40
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

55 56 57 58 59 60 61 62 63 64
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

65 66 67 68 69
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
86
static void __reset_isolation_suitable(struct zone *zone)
87 88
{
	unsigned long start_pfn = zone->zone_start_pfn;
89
	unsigned long end_pfn = zone_end_pfn(zone);
90 91
	unsigned long pfn;

92 93
	zone->compact_cached_migrate_pfn = start_pfn;
	zone->compact_cached_free_pfn = end_pfn;
94
	zone->compact_blockskip_flush = false;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

128 129
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
130
 * future. The information is later cleared by __reset_isolation_suitable().
131
 */
132 133 134
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
135
{
136
	struct zone *zone = cc->zone;
137 138 139 140

	if (cc->ignore_skip_hint)
		return;

141 142 143
	if (!page)
		return;

144 145
	if (!nr_isolated) {
		unsigned long pfn = page_to_pfn(page);
146
		set_pageblock_skip(page);
147 148 149 150 151 152 153 154 155 156 157 158

		/* Update where compaction should restart */
		if (migrate_scanner) {
			if (!cc->finished_update_migrate &&
			    pfn > zone->compact_cached_migrate_pfn)
				zone->compact_cached_migrate_pfn = pfn;
		} else {
			if (!cc->finished_update_free &&
			    pfn < zone->compact_cached_free_pfn)
				zone->compact_cached_free_pfn = pfn;
		}
	}
159 160 161 162 163 164 165 166
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

167 168 169
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
170 171 172 173
{
}
#endif /* CONFIG_COMPACTION */

174 175 176 177 178
static inline bool should_release_lock(spinlock_t *lock)
{
	return need_resched() || spin_is_contended(lock);
}

179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
191
	if (should_release_lock(lock)) {
192 193 194 195 196 197 198
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
199
			cc->contended = true;
200 201 202 203 204 205 206 207 208 209 210
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

211 212 213
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
214
	/* If the page is a large free page, then disallow migration */
215
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
216
		return false;
217 218

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
219
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
220 221 222 223 224 225
		return true;

	/* Otherwise skip the block */
	return false;
}

226
/*
227 228 229
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
230
 */
231 232
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
233 234 235
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
236
{
237
	int nr_scanned = 0, total_isolated = 0;
238
	struct page *cursor, *valid_page = NULL;
239 240
	unsigned long flags;
	bool locked = false;
241
	bool checked_pageblock = false;
242 243 244

	cursor = pfn_to_page(blockpfn);

245
	/* Isolate free pages. */
246 247 248 249
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

250
		nr_scanned++;
251
		if (!pfn_valid_within(blockpfn))
252 253
			goto isolate_fail;

254 255
		if (!valid_page)
			valid_page = page;
256
		if (!PageBuddy(page))
257
			goto isolate_fail;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a suitable migration target under lock */
273 274 275 276 277 278 279 280 281 282
		if (!strict && !checked_pageblock) {
			/*
			 * We need to check suitability of pageblock only once
			 * and this isolate_freepages_block() is called with
			 * pageblock range, so just check once is sufficient.
			 */
			checked_pageblock = true;
			if (!suitable_migration_target(page))
				break;
		}
283

284 285
		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
286
			goto isolate_fail;
287 288 289 290 291 292 293 294 295 296 297 298 299

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
300
			continue;
301
		}
302 303 304 305 306 307 308

isolate_fail:
		if (strict)
			break;
		else
			continue;

309 310
	}

311
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
312 313 314 315 316 317

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
318
	if (strict && blockpfn < end_pfn)
319 320 321 322 323
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

324 325
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
326
		update_pageblock_skip(cc, valid_page, total_isolated, false);
327

328
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
329
	if (total_isolated)
330
		count_compact_events(COMPACTISOLATED, total_isolated);
331 332 333
	return total_isolated;
}

334 335 336 337 338 339 340 341 342 343 344 345 346
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
347
unsigned long
348 349
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
350
{
351
	unsigned long isolated, pfn, block_end_pfn;
352 353 354
	LIST_HEAD(freelist);

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
355
		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
356 357 358 359 360 361 362 363 364
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

365
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

396
/* Update the number of anon and file isolated pages in the zone */
397
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
398 399
{
	struct page *page;
400
	unsigned int count[2] = { 0, };
401

402 403
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
404

405 406 407 408 409 410 411 412
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
413 414 415 416 417
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
418
	unsigned long active, inactive, isolated;
419 420 421

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
422 423
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
424 425 426
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

427
	return isolated > (inactive + active) / 2;
428 429
}

430 431 432 433 434 435
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
M
Minchan Kim 已提交
436
 * @unevictable: true if it allows to isolate unevictable pages
437 438 439 440 441 442 443 444 445 446 447 448
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
449
 */
450
unsigned long
451
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
M
Minchan Kim 已提交
452
		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
453
{
454
	unsigned long last_pageblock_nr = 0, pageblock_nr;
455
	unsigned long nr_scanned = 0, nr_isolated = 0;
456
	struct list_head *migratelist = &cc->migratepages;
457
	struct lruvec *lruvec;
458
	unsigned long flags;
459
	bool locked = false;
460
	struct page *page = NULL, *valid_page = NULL;
461
	bool skipped_async_unsuitable = false;
462 463
	const isolate_mode_t mode = (!cc->sync ? ISOLATE_ASYNC_MIGRATE : 0) |
				    (unevictable ? ISOLATE_UNEVICTABLE : 0);
464 465 466 467 468 469 470

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
471
		/* async migration should just abort */
472
		if (!cc->sync)
473
			return 0;
474

475 476 477
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
478
			return 0;
479 480 481
	}

	/* Time to isolate some pages for migration */
482
	cond_resched();
483
	for (; low_pfn < end_pfn; low_pfn++) {
484
		/* give a chance to irqs before checking need_resched() */
485
		if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
486 487 488 489
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
490
		}
491

492 493 494 495 496 497 498 499 500 501 502 503 504
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

505 506
		if (!pfn_valid_within(low_pfn))
			continue;
507
		nr_scanned++;
508

509 510 511 512 513 514
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
515
		page = pfn_to_page(low_pfn);
516 517 518
		if (page_zone(page) != zone)
			continue;

519 520 521 522 523
		if (!valid_page)
			valid_page = page;

		/* If isolation recently failed, do not retry */
		pageblock_nr = low_pfn >> pageblock_order;
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		if (last_pageblock_nr != pageblock_nr) {
			int mt;

			last_pageblock_nr = pageblock_nr;
			if (!isolation_suitable(cc, page))
				goto next_pageblock;

			/*
			 * For async migration, also only scan in MOVABLE
			 * blocks. Async migration is optimistic to see if
			 * the minimum amount of work satisfies the allocation
			 */
			mt = get_pageblock_migratetype(page);
			if (!cc->sync && !migrate_async_suitable(mt)) {
				cc->finished_update_migrate = true;
				skipped_async_unsuitable = true;
				goto next_pageblock;
			}
		}
543

544 545 546 547
		/*
		 * Skip if free. page_order cannot be used without zone->lock
		 * as nothing prevents parallel allocations or buddy merging.
		 */
548 549 550
		if (PageBuddy(page))
			continue;

551 552 553 554 555 556 557 558 559
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
560
					goto isolate_success;
561 562
				}
			}
563
			continue;
564
		}
565 566

		/*
567 568 569 570 571 572 573 574
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
575
		 */
576 577 578 579 580 581 582
		if (PageTransHuge(page)) {
			if (!locked)
				goto next_pageblock;
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

583 584 585 586 587 588 589 590 591
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

592 593 594 595 596 597 598 599 600
		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
601 602 603 604 605
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

606 607
		lruvec = mem_cgroup_page_lruvec(page, zone);

608
		/* Try isolate the page */
609
		if (__isolate_lru_page(page, mode) != 0)
610 611
			continue;

612
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
613

614
		/* Successfully isolated */
615
		del_page_from_lru_list(page, lruvec, page_lru(page));
616 617 618

isolate_success:
		cc->finished_update_migrate = true;
619 620
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
621
		nr_isolated++;
622 623

		/* Avoid isolating too much */
624 625
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
626
			break;
627
		}
628 629 630 631

		continue;

next_pageblock:
632
		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
633 634
	}

635
	acct_isolated(zone, locked, cc);
636

637 638
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
639

640 641 642 643 644 645 646
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 * This is not done when pageblock was skipped due to being unsuitable
	 * for async compaction, so that eventual sync compaction can try.
	 */
	if (low_pfn == end_pfn && !skipped_async_unsuitable)
647
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
648

649 650
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

651
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
652
	if (nr_isolated)
653
		count_compact_events(COMPACTISOLATED, nr_isolated);
654

655 656 657
	return low_pfn;
}

658 659
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
660
/*
661 662
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
663
 */
664 665
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
666
{
667
	struct page *page;
668
	unsigned long high_pfn, low_pfn, pfn, z_end_pfn;
669 670
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
671

672 673
	/*
	 * Initialise the free scanner. The starting point is where we last
674 675 676 677 678 679
	 * successfully isolated from, zone-cached value, or the end of the
	 * zone when isolating for the first time. We need this aligned to
	 * the pageblock boundary, because we do pfn -= pageblock_nr_pages
	 * in the for loop.
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
680
	 */
681
	pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
682
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
683

684 685 686 687 688 689
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
690

691
	z_end_pfn = zone_end_pfn(zone);
692

693 694 695 696 697
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
698
	for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
699 700
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
701
		unsigned long end_pfn;
702

703 704 705 706 707 708 709
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
		 * to schedule.
		 */
		cond_resched();

710 711
		if (!pfn_valid(pfn))
			continue;
712

713 714 715 716 717 718 719 720 721 722 723 724
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
725
		if (!suitable_migration_target(page))
726
			continue;
727

728 729 730 731
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

732
		/* Found a block suitable for isolating free pages from */
733 734

		/*
735 736
		 * Take care when isolating in last pageblock of a zone which
		 * ends in the middle of a pageblock.
737
		 */
738
		end_pfn = min(pfn + pageblock_nr_pages, z_end_pfn);
739 740 741
		isolated = isolate_freepages_block(cc, pfn, end_pfn,
						   freelist, false);
		nr_freepages += isolated;
742 743 744 745 746 747

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
748 749
		if (isolated) {
			cc->finished_update_free = true;
750
			high_pfn = max(high_pfn, pfn);
751
		}
752 753 754 755 756
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

757 758 759 760 761 762 763 764
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
	if (pfn < low_pfn)
		cc->free_pfn = max(pfn, zone->zone_start_pfn);
	else
		cc->free_pfn = high_pfn;
765
	cc->nr_freepages = nr_freepages;
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
834
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
835 836 837 838 839 840 841 842

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
M
Minchan Kim 已提交
843
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
844
	if (!low_pfn || cc->contended)
845 846 847 848 849 850 851
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

852
static int compact_finished(struct zone *zone,
853
			    struct compact_control *cc)
854
{
855
	unsigned int order;
856
	unsigned long watermark;
857

858 859 860
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

861
	/* Compaction run completes if the migrate and free scanner meet */
862
	if (cc->free_pfn <= cc->migrate_pfn) {
863 864 865 866
		/* Let the next compaction start anew. */
		zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

867 868 869 870 871 872 873 874 875
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

876
		return COMPACT_COMPLETE;
877
	}
878

879 880 881 882
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
883 884 885
	if (cc->order == -1)
		return COMPACT_CONTINUE;

886 887 888 889 890 891 892
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

893
	/* Direct compactor: Is a suitable page free? */
894 895 896 897 898 899 900 901 902
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
		if (!list_empty(&area->free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
903 904 905
			return COMPACT_PARTIAL;
	}

906 907 908
	return COMPACT_CONTINUE;
}

909 910 911 912 913 914 915 916 917 918 919 920
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

921 922 923 924 925 926 927
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

928 929 930 931 932 933 934 935 936 937 938 939 940
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
941 942
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
943 944 945 946 947 948 949 950 951
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

952 953
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
954 955 956 957 958
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

959 960 961
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
962
	unsigned long start_pfn = zone->zone_start_pfn;
963
	unsigned long end_pfn = zone_end_pfn(zone);
964

965 966 967 968 969 970 971 972 973 974 975
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

976 977 978 979 980 981 982 983
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
	}
999

1000 1001
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);

1002 1003 1004 1005
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
1006
		int err;
1007

1008 1009 1010
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1011
			putback_movable_pages(&cc->migratepages);
1012
			cc->nr_migratepages = 0;
1013 1014
			goto out;
		case ISOLATE_NONE:
1015
			continue;
1016 1017 1018
		case ISOLATE_SUCCESS:
			;
		}
1019 1020

		nr_migrate = cc->nr_migratepages;
1021
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1022
				(unsigned long)cc,
1023 1024
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
				MR_COMPACTION);
1025 1026 1027
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

1028 1029
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
1030

1031
		/* Release isolated pages not migrated */
1032
		if (err) {
1033
			putback_movable_pages(&cc->migratepages);
1034
			cc->nr_migratepages = 0;
1035 1036 1037 1038 1039
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1040 1041 1042
				ret = COMPACT_PARTIAL;
				goto out;
			}
1043 1044 1045
		}
	}

1046
out:
1047 1048 1049 1050
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

1051 1052
	trace_mm_compaction_end(ret);

1053 1054
	return ret;
}
1055

1056
static unsigned long compact_zone_order(struct zone *zone,
1057
				 int order, gfp_t gfp_mask,
1058
				 bool sync, bool *contended)
1059
{
1060
	unsigned long ret;
1061 1062 1063 1064 1065 1066
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1067
		.sync = sync,
1068 1069 1070 1071
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1072 1073 1074 1075 1076 1077 1078
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1079 1080
}

1081 1082
int sysctl_extfrag_threshold = 500;

1083 1084 1085 1086 1087 1088
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1089
 * @sync: Whether migration is synchronous or not
1090 1091
 * @contended: Return value that is true if compaction was aborted due to lock contention
 * @page: Optionally capture a free page of the requested order during compaction
1092 1093 1094 1095
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1096
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1097
			bool sync, bool *contended)
1098 1099 1100 1101 1102 1103 1104
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;
1105
	int alloc_flags = 0;
1106

1107
	/* Check if the GFP flags allow compaction */
1108
	if (!order || !may_enter_fs || !may_perform_io)
1109 1110
		return rc;

1111
	count_compact_event(COMPACTSTALL);
1112

1113 1114 1115 1116
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1117 1118 1119 1120 1121
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

1122
		status = compact_zone_order(zone, order, gfp_mask, sync,
1123
						contended);
1124 1125
		rc = max(status, rc);

1126
		/* If a normal allocation would succeed, stop compacting */
1127 1128
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
				      alloc_flags))
1129 1130 1131 1132 1133 1134 1135
			break;
	}

	return rc;
}


1136
/* Compact all zones within a node */
1137
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1148 1149 1150 1151 1152
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1153

1154
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1155
			compact_zone(zone, cc);
1156

1157
		if (cc->order > 0) {
1158 1159 1160
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1161 1162
		}

1163 1164
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1165 1166 1167
	}
}

1168
void compact_pgdat(pg_data_t *pgdat, int order)
1169 1170 1171
{
	struct compact_control cc = {
		.order = order,
1172
		.sync = false,
1173 1174
	};

1175 1176 1177
	if (!order)
		return;

1178
	__compact_pgdat(pgdat, &cc);
1179 1180
}

1181
static void compact_node(int nid)
1182 1183 1184
{
	struct compact_control cc = {
		.order = -1,
1185
		.sync = true,
1186
		.ignore_skip_hint = true,
1187 1188
	};

1189
	__compact_pgdat(NODE_DATA(nid), &cc);
1190 1191
}

1192
/* Compact all nodes in the system */
1193
static void compact_nodes(void)
1194 1195 1196
{
	int nid;

1197 1198 1199
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1212
		compact_nodes();
1213 1214 1215

	return 0;
}
1216

1217 1218 1219 1220 1221 1222 1223 1224
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1225
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1226
static ssize_t sysfs_compact_node(struct device *dev,
1227
			struct device_attribute *attr,
1228 1229
			const char *buf, size_t count)
{
1230 1231 1232 1233 1234 1235 1236 1237
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1238 1239 1240

	return count;
}
1241
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1242 1243 1244

int compaction_register_node(struct node *node)
{
1245
	return device_create_file(&node->dev, &dev_attr_compact);
1246 1247 1248 1249
}

void compaction_unregister_node(struct node *node)
{
1250
	return device_remove_file(&node->dev, &dev_attr_compact);
1251 1252
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1253 1254

#endif /* CONFIG_COMPACTION */