compaction.c 46.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 38 39 40 41 42 43
#ifdef CONFIG_TRACEPOINTS
static const char *const compaction_status_string[] = {
	"deferred",
	"skipped",
	"continue",
	"partial",
	"complete",
44 45
	"no_suitable_page",
	"not_suitable_zone",
46 47
};
#endif
48

49 50 51
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

52 53 54
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
55
	unsigned long high_pfn = 0;
56 57

	list_for_each_entry_safe(page, next, freelist, lru) {
58
		unsigned long pfn = page_to_pfn(page);
59 60
		list_del(&page->lru);
		__free_page(page);
61 62
		if (pfn > high_pfn)
			high_pfn = pfn;
63 64
	}

65
	return high_pfn;
66 67
}

68 69 70 71 72 73 74 75 76 77
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

78 79 80 81 82
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

126
#ifdef CONFIG_COMPACTION
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
213
static void __reset_isolation_suitable(struct zone *zone)
214 215
{
	unsigned long start_pfn = zone->zone_start_pfn;
216
	unsigned long end_pfn = zone_end_pfn(zone);
217 218
	unsigned long pfn;

219 220
	zone->compact_cached_migrate_pfn[0] = start_pfn;
	zone->compact_cached_migrate_pfn[1] = start_pfn;
221
	zone->compact_cached_free_pfn = end_pfn;
222
	zone->compact_blockskip_flush = false;
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

256 257
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
258
 * future. The information is later cleared by __reset_isolation_suitable().
259
 */
260 261
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
262
			bool migrate_scanner)
263
{
264
	struct zone *zone = cc->zone;
265
	unsigned long pfn;
266 267 268 269

	if (cc->ignore_skip_hint)
		return;

270 271 272
	if (!page)
		return;

273 274 275
	if (nr_isolated)
		return;

276
	set_pageblock_skip(page);
277

278 279 280 281 282 283
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
284 285
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
286 287 288 289
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
290
	}
291 292 293 294 295 296 297 298
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

299 300
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
301
			bool migrate_scanner)
302 303 304 305
{
}
#endif /* CONFIG_COMPACTION */

306 307 308 309 310 311 312 313 314 315
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
316
{
317 318 319 320 321 322 323 324
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
325

326
	return true;
327 328
}

329 330
/*
 * Compaction requires the taking of some coarse locks that are potentially
331 332 333 334 335 336 337
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
338
 *
339 340 341 342
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
343
 */
344 345
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
346
{
347 348 349 350
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
351

352 353 354 355
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
356

357
	if (need_resched()) {
358
		if (cc->mode == MIGRATE_ASYNC) {
359 360
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
361 362 363 364
		}
		cond_resched();
	}

365
	return false;
366 367
}

368 369 370
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
371
 * compaction. This is similar to what compact_unlock_should_abort() does, but
372 373 374 375 376 377 378 379 380 381
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
382
			cc->contended = COMPACT_CONTENDED_SCHED;
383 384 385 386 387 388 389 390 391
			return true;
		}

		cond_resched();
	}

	return false;
}

392 393 394
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
395
	/* If the page is a large free page, then disallow migration */
396 397 398 399 400 401 402 403 404
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}
405 406

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
407
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
408 409 410 411 412 413
		return true;

	/* Otherwise skip the block */
	return false;
}

414
/*
415 416 417
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
418
 */
419
static unsigned long isolate_freepages_block(struct compact_control *cc,
420
				unsigned long *start_pfn,
421 422 423
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
424
{
425
	int nr_scanned = 0, total_isolated = 0;
426
	struct page *cursor, *valid_page = NULL;
427
	unsigned long flags = 0;
428
	bool locked = false;
429
	unsigned long blockpfn = *start_pfn;
430 431 432

	cursor = pfn_to_page(blockpfn);

433
	/* Isolate free pages. */
434 435 436 437
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

438 439 440 441 442 443 444 445 446 447
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

448
		nr_scanned++;
449
		if (!pfn_valid_within(blockpfn))
450 451
			goto isolate_fail;

452 453
		if (!valid_page)
			valid_page = page;
454
		if (!PageBuddy(page))
455
			goto isolate_fail;
456 457

		/*
458 459 460 461 462
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
463
		 */
464 465 466 467 468 469 470 471 472
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
473 474
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
475 476
			if (!locked)
				break;
477

478 479 480 481
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
482 483 484 485 486 487 488 489 490 491 492 493 494

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
495
			continue;
496
		}
497 498 499 500 501 502 503

isolate_fail:
		if (strict)
			break;
		else
			continue;

504 505
	}

506 507 508
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

509 510 511
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

512 513 514 515 516
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
517
	if (strict && blockpfn < end_pfn)
518 519 520 521 522
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

523 524
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
525
		update_pageblock_skip(cc, valid_page, total_isolated, false);
526

527
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
528
	if (total_isolated)
529
		count_compact_events(COMPACTISOLATED, total_isolated);
530 531 532
	return total_isolated;
}

533 534 535 536 537 538 539 540 541 542 543 544 545
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
546
unsigned long
547 548
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
549
{
550
	unsigned long isolated, pfn, block_end_pfn;
551 552
	LIST_HEAD(freelist);

553 554 555 556 557
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn += isolated,
				block_end_pfn += pageblock_nr_pages) {
558 559
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
560 561 562

		block_end_pfn = min(block_end_pfn, end_pfn);

563 564 565 566 567 568 569 570 571 572
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

573 574 575
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
			break;

576 577
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

607
/* Update the number of anon and file isolated pages in the zone */
608
static void acct_isolated(struct zone *zone, struct compact_control *cc)
609 610
{
	struct page *page;
611
	unsigned int count[2] = { 0, };
612

613 614 615
	if (list_empty(&cc->migratepages))
		return;

616 617
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
618

619 620
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
621 622 623 624 625
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
626
	unsigned long active, inactive, isolated;
627 628 629

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
630 631
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
632 633 634
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

635
	return isolated > (inactive + active) / 2;
636 637
}

638
/**
639 640
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
641
 * @cc:		Compaction control structure.
642 643 644
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
645 646
 *
 * Isolate all pages that can be migrated from the range specified by
647 648 649 650
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
651
 *
652 653 654
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
655
 */
656 657 658
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
659
{
660
	struct zone *zone = cc->zone;
661
	unsigned long nr_scanned = 0, nr_isolated = 0;
662
	struct list_head *migratelist = &cc->migratepages;
663
	struct lruvec *lruvec;
664
	unsigned long flags = 0;
665
	bool locked = false;
666
	struct page *page = NULL, *valid_page = NULL;
667
	unsigned long start_pfn = low_pfn;
668 669 670 671 672 673 674

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
675
		/* async migration should just abort */
676
		if (cc->mode == MIGRATE_ASYNC)
677
			return 0;
678

679 680 681
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
682
			return 0;
683 684
	}

685 686
	if (compact_should_abort(cc))
		return 0;
687

688 689
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
690 691 692 693 694 695 696 697 698
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
699

700 701
		if (!pfn_valid_within(low_pfn))
			continue;
702
		nr_scanned++;
703 704

		page = pfn_to_page(low_pfn);
705

706 707 708
		if (!valid_page)
			valid_page = page;

709
		/*
710 711 712 713
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
714
		 */
715 716 717 718 719 720 721 722 723 724
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
725
			continue;
726
		}
727

728 729 730 731 732 733 734
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
735
				if (balloon_page_isolate(page)) {
736
					/* Successfully isolated */
737
					goto isolate_success;
738 739
				}
			}
740
			continue;
741
		}
742 743

		/*
744 745 746 747 748 749 750 751
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
752
		 */
753 754
		if (PageTransHuge(page)) {
			if (!locked)
755 756 757 758 759
				low_pfn = ALIGN(low_pfn + 1,
						pageblock_nr_pages) - 1;
			else
				low_pfn += (1 << compound_order(page)) - 1;

760 761 762
			continue;
		}

763 764 765 766 767 768 769 770 771
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

772 773
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
774 775
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
776 777
			if (!locked)
				break;
778

779 780 781 782 783 784 785
			/* Recheck PageLRU and PageTransHuge under lock */
			if (!PageLRU(page))
				continue;
			if (PageTransHuge(page)) {
				low_pfn += (1 << compound_order(page)) - 1;
				continue;
			}
786 787
		}

788 789
		lruvec = mem_cgroup_page_lruvec(page, zone);

790
		/* Try isolate the page */
791
		if (__isolate_lru_page(page, isolate_mode) != 0)
792 793
			continue;

794
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
795

796
		/* Successfully isolated */
797
		del_page_from_lru_list(page, lruvec, page_lru(page));
798 799

isolate_success:
800 801
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
802
		nr_isolated++;
803 804

		/* Avoid isolating too much */
805 806
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
807
			break;
808
		}
809 810
	}

811 812 813 814 815 816 817
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

818 819
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
820

821 822 823 824
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
825
	if (low_pfn == end_pfn)
826
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
827

828 829
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
830

831
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
832
	if (nr_isolated)
833
		count_compact_events(COMPACTISOLATED, nr_isolated);
834

835 836 837
	return low_pfn;
}

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
	unsigned long pfn, block_end_pfn;

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn = block_end_pfn,
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

863
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

		/*
		 * In case of fatal failure, release everything that might
		 * have been isolated in the previous iteration, and signal
		 * the failure back to caller.
		 */
		if (!pfn) {
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			break;
		}
879 880 881

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
882 883 884 885 886 887
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

888 889
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
890
/*
891 892
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
893
 */
894
static void isolate_freepages(struct compact_control *cc)
895
{
896
	struct zone *zone = cc->zone;
897
	struct page *page;
898
	unsigned long block_start_pfn;	/* start of current pageblock */
899
	unsigned long isolate_start_pfn; /* exact pfn we start at */
900 901
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
902 903
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
904

905 906
	/*
	 * Initialise the free scanner. The starting point is where we last
907
	 * successfully isolated from, zone-cached value, or the end of the
908 909
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
910 911 912
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
913 914
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
915
	 */
916
	isolate_start_pfn = cc->free_pfn;
917 918 919
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
920
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
921

922 923 924 925 926
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
927 928
	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
				block_end_pfn = block_start_pfn,
929 930
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
931
		unsigned long isolated;
932

933 934 935
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
936
		 * to schedule, or even abort async compaction.
937
		 */
938 939 940
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
941

942 943 944
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
945 946 947
			continue;

		/* Check the block is suitable for migration */
948
		if (!suitable_migration_target(page))
949
			continue;
950

951 952 953 954
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

955 956
		/* Found a block suitable for isolating free pages from. */
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
957
					block_end_pfn, freelist, false);
958
		nr_freepages += isolated;
959

960 961 962 963 964 965 966 967 968 969 970 971 972
		/*
		 * Remember where the free scanner should restart next time,
		 * which is where isolate_freepages_block() left off.
		 * But if it scanned the whole pageblock, isolate_start_pfn
		 * now points at block_end_pfn, which is the start of the next
		 * pageblock.
		 * In that case we will however want to restart at the start
		 * of the previous pageblock.
		 */
		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
				isolate_start_pfn :
				block_start_pfn - pageblock_nr_pages;

973 974 975 976 977 978
		/*
		 * isolate_freepages_block() might have aborted due to async
		 * compaction being contended
		 */
		if (cc->contended)
			break;
979 980 981 982 983
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

984 985 986 987
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
988
	if (block_start_pfn < low_pfn)
989
		cc->free_pfn = cc->migrate_pfn;
990

991
	cc->nr_freepages = nr_freepages;
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1005 1006 1007 1008
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1009
	if (list_empty(&cc->freepages)) {
1010
		if (!cc->contended)
1011
			isolate_freepages(cc);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1037 1038 1039 1040 1041 1042 1043 1044
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
1045 1046 1047
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1048 1049 1050 1051 1052
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
1053 1054 1055
	struct page *page;
	const isolate_mode_t isolate_mode =
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1056

1057 1058 1059 1060 1061
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1062 1063

	/* Only scan within a pageblock boundary */
1064
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1065

1066 1067 1068 1069 1070 1071
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
	for (; end_pfn <= cc->free_pfn;
			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1072

1073 1074 1075 1076 1077 1078 1079 1080
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1081

1082 1083
		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
		if (!page)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
								isolate_mode);

		if (!low_pfn || cc->contended)
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1115 1116 1117 1118 1119 1120
	/*
	 * Record where migration scanner will be restarted. If we end up in
	 * the same pageblock as the free scanner, make the scanners fully
	 * meet so that compact_finished() terminates compaction.
	 */
	cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1121

1122
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1123 1124
}

1125
static int __compact_finished(struct zone *zone, struct compact_control *cc,
1126
			    const int migratetype)
1127
{
1128
	unsigned int order;
1129
	unsigned long watermark;
1130

1131
	if (cc->contended || fatal_signal_pending(current))
1132 1133
		return COMPACT_PARTIAL;

1134
	/* Compaction run completes if the migrate and free scanner meet */
1135
	if (cc->free_pfn <= cc->migrate_pfn) {
1136
		/* Let the next compaction start anew. */
1137 1138
		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1139 1140
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

1141 1142 1143 1144 1145 1146 1147 1148 1149
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

1150
		return COMPACT_COMPLETE;
1151
	}
1152

1153 1154 1155 1156
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
1157 1158 1159
	if (cc->order == -1)
		return COMPACT_CONTINUE;

1160 1161 1162
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1163 1164
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1165 1166
		return COMPACT_CONTINUE;

1167
	/* Direct compactor: Is a suitable page free? */
1168 1169 1170 1171
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
1172
		if (!list_empty(&area->free_list[migratetype]))
1173 1174 1175
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
1176
		if (order >= pageblock_order && area->nr_free)
1177 1178 1179
			return COMPACT_PARTIAL;
	}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	return COMPACT_NO_SUITABLE_PAGE;
}

static int compact_finished(struct zone *zone, struct compact_control *cc,
			    const int migratetype)
{
	int ret;

	ret = __compact_finished(zone, cc, migratetype);
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1194 1195
}

1196 1197 1198 1199 1200 1201 1202
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1203
static unsigned long __compaction_suitable(struct zone *zone, int order,
1204
					int alloc_flags, int classzone_idx)
1205 1206 1207 1208
{
	int fragindex;
	unsigned long watermark;

1209 1210 1211 1212 1213 1214 1215
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

1216 1217 1218 1219 1220 1221 1222 1223 1224
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1225 1226 1227 1228 1229
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1230 1231
	watermark += (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1232 1233 1234 1235 1236 1237
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1238 1239
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1240 1241 1242 1243 1244 1245 1246
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1247
		return COMPACT_NOT_SUITABLE_ZONE;
1248 1249 1250 1251

	return COMPACT_CONTINUE;
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
unsigned long compaction_suitable(struct zone *zone, int order,
					int alloc_flags, int classzone_idx)
{
	unsigned long ret;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1265 1266 1267
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
1268
	unsigned long start_pfn = zone->zone_start_pfn;
1269
	unsigned long end_pfn = zone_end_pfn(zone);
1270
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1271
	const bool sync = cc->mode != MIGRATE_ASYNC;
1272
	unsigned long last_migrated_pfn = 0;
1273

1274 1275
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1286 1287 1288 1289 1290 1291 1292 1293
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1294 1295 1296 1297 1298
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1299
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1300 1301 1302 1303 1304 1305 1306
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
1307 1308
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1309
	}
1310

1311 1312
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1313

1314 1315
	migrate_prep_local();

1316 1317
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1318
		int err;
1319
		unsigned long isolate_start_pfn = cc->migrate_pfn;
1320

1321 1322 1323
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1324
			putback_movable_pages(&cc->migratepages);
1325
			cc->nr_migratepages = 0;
1326 1327
			goto out;
		case ISOLATE_NONE:
1328 1329 1330 1331 1332 1333
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1334 1335 1336
		case ISOLATE_SUCCESS:
			;
		}
1337

1338
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1339
				compaction_free, (unsigned long)cc, cc->mode,
1340
				MR_COMPACTION);
1341

1342 1343
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1344

1345 1346
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1347
		if (err) {
1348
			putback_movable_pages(&cc->migratepages);
1349 1350 1351 1352 1353
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1354 1355 1356
				ret = COMPACT_PARTIAL;
				goto out;
			}
1357
		}
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator. We use the pfn that
		 * isolate_migratepages() started from in this loop iteration
		 * - this is the lowest page that could have been isolated and
		 * then freed by migration.
		 */
		if (!last_migrated_pfn)
			last_migrated_pfn = isolate_start_pfn;

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
		if (cc->order > 0 && last_migrated_pfn) {
			int cpu;
			unsigned long current_block_start =
				cc->migrate_pfn & ~((1UL << cc->order) - 1);

			if (last_migrated_pfn < current_block_start) {
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
				last_migrated_pfn = 0;
			}
		}

1392 1393
	}

1394
out:
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
		free_pfn &= ~(pageblock_nr_pages-1);
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1413

1414 1415
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1416

1417 1418
	return ret;
}
1419

1420
static unsigned long compact_zone_order(struct zone *zone, int order,
1421 1422
		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
		int alloc_flags, int classzone_idx)
1423
{
1424
	unsigned long ret;
1425 1426 1427 1428
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1429
		.gfp_mask = gfp_mask,
1430
		.zone = zone,
1431
		.mode = mode,
1432 1433
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1434 1435 1436 1437
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1438 1439 1440 1441 1442 1443 1444
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1445 1446
}

1447 1448
int sysctl_extfrag_threshold = 500;

1449 1450 1451
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1452 1453 1454
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1455
 * @mode: The migration mode for async, sync light, or sync migration
1456 1457
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1458 1459 1460
 *
 * This is the main entry point for direct page compaction.
 */
1461 1462 1463
unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
			int alloc_flags, const struct alloc_context *ac,
			enum migrate_mode mode, int *contended)
1464 1465 1466 1467 1468
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1469
	int rc = COMPACT_DEFERRED;
1470 1471 1472
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1473

1474
	/* Check if the GFP flags allow compaction */
1475
	if (!order || !may_enter_fs || !may_perform_io)
1476
		return COMPACT_SKIPPED;
1477

1478 1479
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);

1480
	/* Compact each zone in the list */
1481 1482
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1483
		int status;
1484
		int zone_contended;
1485

1486 1487 1488
		if (compaction_deferred(zone, order))
			continue;

1489
		status = compact_zone_order(zone, order, gfp_mask, mode,
1490 1491
				&zone_contended, alloc_flags,
				ac->classzone_idx);
1492
		rc = max(status, rc);
1493 1494 1495 1496 1497
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1498

1499
		/* If a normal allocation would succeed, stop compacting */
1500
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1501
					ac->classzone_idx, alloc_flags)) {
1502 1503 1504 1505 1506 1507 1508
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

1523
		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1524 1525 1526 1527 1528 1529 1530
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1552 1553
	}

1554 1555 1556 1557 1558 1559 1560
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1561 1562 1563 1564
	return rc;
}


1565
/* Compact all zones within a node */
1566
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1577 1578 1579 1580 1581
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1582

1583
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1584
			compact_zone(zone, cc);
1585

1586
		if (cc->order > 0) {
1587 1588 1589
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1590 1591
		}

1592 1593
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1594 1595 1596
	}
}

1597
void compact_pgdat(pg_data_t *pgdat, int order)
1598 1599 1600
{
	struct compact_control cc = {
		.order = order,
1601
		.mode = MIGRATE_ASYNC,
1602 1603
	};

1604 1605 1606
	if (!order)
		return;

1607
	__compact_pgdat(pgdat, &cc);
1608 1609
}

1610
static void compact_node(int nid)
1611 1612 1613
{
	struct compact_control cc = {
		.order = -1,
1614
		.mode = MIGRATE_SYNC,
1615
		.ignore_skip_hint = true,
1616 1617
	};

1618
	__compact_pgdat(NODE_DATA(nid), &cc);
1619 1620
}

1621
/* Compact all nodes in the system */
1622
static void compact_nodes(void)
1623 1624 1625
{
	int nid;

1626 1627 1628
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1641
		compact_nodes();
1642 1643 1644

	return 0;
}
1645

1646 1647 1648 1649 1650 1651 1652 1653
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1654
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1655
static ssize_t sysfs_compact_node(struct device *dev,
1656
			struct device_attribute *attr,
1657 1658
			const char *buf, size_t count)
{
1659 1660 1661 1662 1663 1664 1665 1666
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1667 1668 1669

	return count;
}
1670
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1671 1672 1673

int compaction_register_node(struct node *node)
{
1674
	return device_create_file(&node->dev, &dev_attr_compact);
1675 1676 1677 1678
}

void compaction_unregister_node(struct node *node)
{
1679
	return device_remove_file(&node->dev, &dev_attr_compact);
1680 1681
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1682 1683

#endif /* CONFIG_COMPACTION */