compaction.c 38.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36 37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

38 39 40
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

55 56 57 58 59 60 61 62 63 64
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

65 66 67 68 69
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
129
static void __reset_isolation_suitable(struct zone *zone)
130 131
{
	unsigned long start_pfn = zone->zone_start_pfn;
132
	unsigned long end_pfn = zone_end_pfn(zone);
133 134
	unsigned long pfn;

135 136
	zone->compact_cached_migrate_pfn[0] = start_pfn;
	zone->compact_cached_migrate_pfn[1] = start_pfn;
137
	zone->compact_cached_free_pfn = end_pfn;
138
	zone->compact_blockskip_flush = false;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

172 173
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
174
 * future. The information is later cleared by __reset_isolation_suitable().
175
 */
176 177
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
178
			bool migrate_scanner)
179
{
180
	struct zone *zone = cc->zone;
181
	unsigned long pfn;
182 183 184 185

	if (cc->ignore_skip_hint)
		return;

186 187 188
	if (!page)
		return;

189 190 191
	if (nr_isolated)
		return;

192
	set_pageblock_skip(page);
193

194 195 196 197 198 199 200 201
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (cc->finished_update_migrate)
			return;
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
202 203
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
204 205 206 207 208 209
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (cc->finished_update_free)
			return;
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
210
	}
211 212 213 214 215 216 217 218
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

219 220
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
221
			bool migrate_scanner)
222 223 224 225
{
}
#endif /* CONFIG_COMPACTION */

226
static int should_release_lock(spinlock_t *lock)
227
{
228 229 230 231 232 233 234 235 236 237 238 239 240
	/*
	 * Sched contention has higher priority here as we may potentially
	 * have to abort whole compaction ASAP. Returning with lock contention
	 * means we will try another zone, and further decisions are
	 * influenced only when all zones are lock contended. That means
	 * potentially missing a lock contention is less critical.
	 */
	if (need_resched())
		return COMPACT_CONTENDED_SCHED;
	else if (spin_is_contended(lock))
		return COMPACT_CONTENDED_LOCK;

	return COMPACT_CONTENDED_NONE;
241 242
}

243 244 245 246 247 248 249 250 251 252 253 254
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
255 256 257
	int contended = should_release_lock(lock);

	if (contended) {
258 259 260 261 262 263
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
264
		if (cc->mode == MIGRATE_ASYNC) {
265
			cc->contended = contended;
266 267 268 269 270 271 272 273 274 275 276
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
 * compaction. This is similar to what compact_checklock_irqsave() does, but
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
291
			cc->contended = COMPACT_CONTENDED_SCHED;
292 293 294 295 296 297 298 299 300
			return true;
		}

		cond_resched();
	}

	return false;
}

301 302 303
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
304
	/* If the page is a large free page, then disallow migration */
305
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
306
		return false;
307 308

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
309
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
310 311 312 313 314 315
		return true;

	/* Otherwise skip the block */
	return false;
}

316
/*
317 318 319
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
320
 */
321 322
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
323 324 325
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
326
{
327
	int nr_scanned = 0, total_isolated = 0;
328
	struct page *cursor, *valid_page = NULL;
329 330
	unsigned long flags;
	bool locked = false;
331 332 333

	cursor = pfn_to_page(blockpfn);

334
	/* Isolate free pages. */
335 336 337 338
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

339
		nr_scanned++;
340
		if (!pfn_valid_within(blockpfn))
341 342
			goto isolate_fail;

343 344
		if (!valid_page)
			valid_page = page;
345
		if (!PageBuddy(page))
346
			goto isolate_fail;
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
363
			goto isolate_fail;
364 365 366 367 368 369 370 371 372 373 374 375 376

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
377
			continue;
378
		}
379 380 381 382 383 384 385

isolate_fail:
		if (strict)
			break;
		else
			continue;

386 387
	}

388
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
389 390 391 392 393 394

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
395
	if (strict && blockpfn < end_pfn)
396 397 398 399 400
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

401 402
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
403
		update_pageblock_skip(cc, valid_page, total_isolated, false);
404

405
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
406
	if (total_isolated)
407
		count_compact_events(COMPACTISOLATED, total_isolated);
408 409 410
	return total_isolated;
}

411 412 413 414 415 416 417 418 419 420 421 422 423
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
424
unsigned long
425 426
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
427
{
428
	unsigned long isolated, pfn, block_end_pfn;
429 430
	LIST_HEAD(freelist);

431 432 433 434 435
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn += isolated,
				block_end_pfn += pageblock_nr_pages) {
436 437 438

		block_end_pfn = min(block_end_pfn, end_pfn);

439 440 441
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
			break;

442
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

473
/* Update the number of anon and file isolated pages in the zone */
474
static void acct_isolated(struct zone *zone, struct compact_control *cc)
475 476
{
	struct page *page;
477
	unsigned int count[2] = { 0, };
478

479 480 481
	if (list_empty(&cc->migratepages))
		return;

482 483
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
484

485 486
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
487 488 489 490 491
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
492
	unsigned long active, inactive, isolated;
493 494 495

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
496 497
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
498 499 500
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

501
	return isolated > (inactive + active) / 2;
502 503
}

504
/**
505 506
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
507
 * @cc:		Compaction control structure.
508 509 510
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
511 512
 *
 * Isolate all pages that can be migrated from the range specified by
513 514 515 516
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
517
 *
518 519 520
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
521
 */
522 523 524
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
525
{
526
	struct zone *zone = cc->zone;
527
	unsigned long nr_scanned = 0, nr_isolated = 0;
528
	struct list_head *migratelist = &cc->migratepages;
529
	struct lruvec *lruvec;
530
	unsigned long flags;
531
	bool locked = false;
532
	struct page *page = NULL, *valid_page = NULL;
533 534 535 536 537 538 539

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
540
		/* async migration should just abort */
541
		if (cc->mode == MIGRATE_ASYNC)
542
			return 0;
543

544 545 546
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
547
			return 0;
548 549
	}

550 551
	if (compact_should_abort(cc))
		return 0;
552

553 554
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
555
		/* give a chance to irqs before checking need_resched() */
556
		if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
557 558 559 560
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
561
		}
562

563 564
		if (!pfn_valid_within(low_pfn))
			continue;
565
		nr_scanned++;
566 567

		page = pfn_to_page(low_pfn);
568

569 570 571
		if (!valid_page)
			valid_page = page;

572 573 574 575
		/*
		 * Skip if free. page_order cannot be used without zone->lock
		 * as nothing prevents parallel allocations or buddy merging.
		 */
576 577 578
		if (PageBuddy(page))
			continue;

579 580 581 582 583 584 585 586 587
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
588
					goto isolate_success;
589 590
				}
			}
591
			continue;
592
		}
593 594

		/*
595 596 597 598 599 600 601 602
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
603
		 */
604 605
		if (PageTransHuge(page)) {
			if (!locked)
606 607 608 609 610
				low_pfn = ALIGN(low_pfn + 1,
						pageblock_nr_pages) - 1;
			else
				low_pfn += (1 << compound_order(page)) - 1;

611 612 613
			continue;
		}

614 615 616 617 618 619 620 621 622
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

623 624 625 626 627 628 629 630 631
		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
632 633 634 635 636
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

637 638
		lruvec = mem_cgroup_page_lruvec(page, zone);

639
		/* Try isolate the page */
640
		if (__isolate_lru_page(page, isolate_mode) != 0)
641 642
			continue;

643
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
644

645
		/* Successfully isolated */
646
		del_page_from_lru_list(page, lruvec, page_lru(page));
647 648 649

isolate_success:
		cc->finished_update_migrate = true;
650 651
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
652
		nr_isolated++;
653 654

		/* Avoid isolating too much */
655 656
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
657
			break;
658
		}
659 660
	}

661 662
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
663

664 665 666 667
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
668
	if (low_pfn == end_pfn)
669
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
670

671 672
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

673
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
674
	if (nr_isolated)
675
		count_compact_events(COMPACTISOLATED, nr_isolated);
676

677 678 679
	return low_pfn;
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
	unsigned long pfn, block_end_pfn;

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn = block_end_pfn,
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

705
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

		/*
		 * In case of fatal failure, release everything that might
		 * have been isolated in the previous iteration, and signal
		 * the failure back to caller.
		 */
		if (!pfn) {
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			break;
		}
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

727 728
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
729
/*
730 731
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
732
 */
733
static void isolate_freepages(struct compact_control *cc)
734
{
735
	struct zone *zone = cc->zone;
736
	struct page *page;
737 738 739
	unsigned long block_start_pfn;	/* start of current pageblock */
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
740 741
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
742

743 744
	/*
	 * Initialise the free scanner. The starting point is where we last
745 746
	 * successfully isolated from, zone-cached value, or the end of the
	 * zone when isolating for the first time. We need this aligned to
747 748 749 750
	 * the pageblock boundary, because we do
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
751 752
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
753
	 */
754 755 756
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
757
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
758

759 760 761 762 763
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
764 765 766
	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
				block_end_pfn = block_start_pfn,
				block_start_pfn -= pageblock_nr_pages) {
767
		unsigned long isolated;
768

769 770 771
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
772
		 * to schedule, or even abort async compaction.
773
		 */
774 775 776
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
777

778 779 780
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
781 782 783
			continue;

		/* Check the block is suitable for migration */
784
		if (!suitable_migration_target(page))
785
			continue;
786

787 788 789 790
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

791
		/* Found a block suitable for isolating free pages from */
792
		cc->free_pfn = block_start_pfn;
793 794
		isolated = isolate_freepages_block(cc, block_start_pfn,
					block_end_pfn, freelist, false);
795
		nr_freepages += isolated;
796 797

		/*
798 799 800 801
		 * Set a flag that we successfully isolated in this pageblock.
		 * In the next loop iteration, zone->compact_cached_free_pfn
		 * will not be updated and thus it will effectively contain the
		 * highest pageblock we isolated pages from.
802
		 */
803
		if (isolated)
804
			cc->finished_update_free = true;
805 806 807 808 809 810 811

		/*
		 * isolate_freepages_block() might have aborted due to async
		 * compaction being contended
		 */
		if (cc->contended)
			break;
812 813 814 815 816
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

817 818 819 820
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
821
	if (block_start_pfn < low_pfn)
822
		cc->free_pfn = cc->migrate_pfn;
823

824
	cc->nr_freepages = nr_freepages;
825 826 827 828 829 830 831 832 833 834 835 836 837
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

838 839 840 841
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
842
	if (list_empty(&cc->freepages)) {
843
		if (!cc->contended)
844
			isolate_freepages(cc);
845 846 847 848 849 850 851 852 853 854 855 856 857

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
858 859 860 861 862 863 864 865 866 867 868 869
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

870 871 872 873 874 875 876 877
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
878 879 880
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
881 882 883 884 885
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
886 887 888
	struct page *page;
	const isolate_mode_t isolate_mode =
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
889

890 891 892 893 894
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
895 896

	/* Only scan within a pageblock boundary */
897
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
898

899 900 901 902 903 904
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
	for (; end_pfn <= cc->free_pfn;
			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
905

906 907 908 909 910 911 912 913
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
914

915 916
		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
		if (!page)
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
								isolate_mode);

		if (!low_pfn || cc->contended)
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
	/* Record where migration scanner will be restarted */
949 950
	cc->migrate_pfn = low_pfn;

951
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
952 953
}

954
static int compact_finished(struct zone *zone,
955
			    struct compact_control *cc)
956
{
957
	unsigned int order;
958
	unsigned long watermark;
959

960
	if (cc->contended || fatal_signal_pending(current))
961 962
		return COMPACT_PARTIAL;

963
	/* Compaction run completes if the migrate and free scanner meet */
964
	if (cc->free_pfn <= cc->migrate_pfn) {
965
		/* Let the next compaction start anew. */
966 967
		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
968 969
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

970 971 972 973 974 975 976 977 978
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

979
		return COMPACT_COMPLETE;
980
	}
981

982 983 984 985
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
986 987 988
	if (cc->order == -1)
		return COMPACT_CONTINUE;

989 990 991 992 993 994 995
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

996
	/* Direct compactor: Is a suitable page free? */
997 998 999 1000 1001 1002 1003 1004 1005
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
		if (!list_empty(&area->free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
1006 1007 1008
			return COMPACT_PARTIAL;
	}

1009 1010 1011
	return COMPACT_CONTINUE;
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

1024 1025 1026 1027 1028 1029 1030
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1044 1045
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
1046 1047 1048 1049 1050 1051 1052 1053 1054
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

1055 1056
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
1057 1058 1059 1060 1061
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

1062 1063 1064
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
1065
	unsigned long start_pfn = zone->zone_start_pfn;
1066
	unsigned long end_pfn = zone_end_pfn(zone);
1067
	const bool sync = cc->mode != MIGRATE_ASYNC;
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1080 1081 1082 1083 1084 1085 1086 1087
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1088 1089 1090 1091 1092
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1093
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1094 1095 1096 1097 1098 1099 1100
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
1101 1102
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1103
	}
1104

1105 1106
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);

1107 1108 1109
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1110
		int err;
1111

1112 1113 1114
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1115
			putback_movable_pages(&cc->migratepages);
1116
			cc->nr_migratepages = 0;
1117 1118
			goto out;
		case ISOLATE_NONE:
1119
			continue;
1120 1121 1122
		case ISOLATE_SUCCESS:
			;
		}
1123

1124
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1125
				compaction_free, (unsigned long)cc, cc->mode,
1126
				MR_COMPACTION);
1127

1128 1129
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1130

1131 1132
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1133
		if (err) {
1134
			putback_movable_pages(&cc->migratepages);
1135 1136 1137 1138 1139
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1140 1141 1142
				ret = COMPACT_PARTIAL;
				goto out;
			}
1143 1144 1145
		}
	}

1146
out:
1147 1148 1149 1150
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

1151 1152
	trace_mm_compaction_end(ret);

1153 1154
	return ret;
}
1155

1156
static unsigned long compact_zone_order(struct zone *zone, int order,
1157
		gfp_t gfp_mask, enum migrate_mode mode, int *contended)
1158
{
1159
	unsigned long ret;
1160 1161 1162 1163 1164 1165
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1166
		.mode = mode,
1167 1168 1169 1170
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1171 1172 1173 1174 1175 1176 1177
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1178 1179
}

1180 1181
int sysctl_extfrag_threshold = 500;

1182 1183 1184 1185 1186 1187
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1188
 * @mode: The migration mode for async, sync light, or sync migration
1189 1190
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1191
 * @candidate_zone: Return the zone where we think allocation should succeed
1192 1193 1194 1195
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1196
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1197
			enum migrate_mode mode, int *contended,
1198
			struct zone **candidate_zone)
1199 1200 1201 1202 1203 1204
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1205
	int rc = COMPACT_DEFERRED;
1206
	int alloc_flags = 0;
1207 1208 1209
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1210

1211
	/* Check if the GFP flags allow compaction */
1212
	if (!order || !may_enter_fs || !may_perform_io)
1213
		return COMPACT_SKIPPED;
1214

1215 1216 1217 1218
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1219 1220 1221 1222
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;
1223
		int zone_contended;
1224

1225 1226 1227
		if (compaction_deferred(zone, order))
			continue;

1228
		status = compact_zone_order(zone, order, gfp_mask, mode,
1229
							&zone_contended);
1230
		rc = max(status, rc);
1231 1232 1233 1234 1235
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1236

1237
		/* If a normal allocation would succeed, stop compacting */
1238
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1239 1240 1241 1242 1243 1244 1245 1246 1247
				      alloc_flags)) {
			*candidate_zone = zone;
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

		if (mode != MIGRATE_ASYNC) {
1263 1264 1265 1266 1267 1268 1269
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1291 1292
	}

1293 1294 1295 1296 1297 1298 1299
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1300 1301 1302 1303
	return rc;
}


1304
/* Compact all zones within a node */
1305
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1316 1317 1318 1319 1320
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1321

1322
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1323
			compact_zone(zone, cc);
1324

1325
		if (cc->order > 0) {
1326 1327 1328
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1329 1330
		}

1331 1332
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1333 1334 1335
	}
}

1336
void compact_pgdat(pg_data_t *pgdat, int order)
1337 1338 1339
{
	struct compact_control cc = {
		.order = order,
1340
		.mode = MIGRATE_ASYNC,
1341 1342
	};

1343 1344 1345
	if (!order)
		return;

1346
	__compact_pgdat(pgdat, &cc);
1347 1348
}

1349
static void compact_node(int nid)
1350 1351 1352
{
	struct compact_control cc = {
		.order = -1,
1353
		.mode = MIGRATE_SYNC,
1354
		.ignore_skip_hint = true,
1355 1356
	};

1357
	__compact_pgdat(NODE_DATA(nid), &cc);
1358 1359
}

1360
/* Compact all nodes in the system */
1361
static void compact_nodes(void)
1362 1363 1364
{
	int nid;

1365 1366 1367
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1380
		compact_nodes();
1381 1382 1383

	return 0;
}
1384

1385 1386 1387 1388 1389 1390 1391 1392
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1393
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1394
static ssize_t sysfs_compact_node(struct device *dev,
1395
			struct device_attribute *attr,
1396 1397
			const char *buf, size_t count)
{
1398 1399 1400 1401 1402 1403 1404 1405
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1406 1407 1408

	return count;
}
1409
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1410 1411 1412

int compaction_register_node(struct node *node)
{
1413
	return device_create_file(&node->dev, &dev_attr_compact);
1414 1415 1416 1417
}

void compaction_unregister_node(struct node *node)
{
1418
	return device_remove_file(&node->dev, &dev_attr_compact);
1419 1420
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1421 1422

#endif /* CONFIG_COMPACTION */