pci-ioda.c 103.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Support PCI/PCIe on PowerNV platforms
 *
 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

12
#undef DEBUG
13 14 15

#include <linux/kernel.h>
#include <linux/pci.h>
16
#include <linux/crash_dump.h>
17
#include <linux/debugfs.h>
18 19 20 21 22 23 24
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
25
#include <linux/memblock.h>
26
#include <linux/iommu.h>
27
#include <linux/rculist.h>
28
#include <linux/sizes.h>
29 30 31 32 33 34

#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
35
#include <asm/msi_bitmap.h>
36 37 38 39
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
40
#include <asm/xics.h>
41
#include <asm/debug.h>
42
#include <asm/firmware.h>
43
#include <asm/pnv-pci.h>
44
#include <asm/mmzone.h>
45

46
#include <misc/cxl-base.h>
47 48 49 50

#include "powernv.h"
#include "pci.h"

51 52
#define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
#define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53
#define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54

55 56 57
#define POWERNV_IOMMU_DEFAULT_LEVELS	1
#define POWERNV_IOMMU_MAX_LEVELS	5

58
static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 60
static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);

61
void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 63 64 65 66 67 68 69 70 71 72
			    const char *fmt, ...)
{
	struct va_format vaf;
	va_list args;
	char pfix[32];

	va_start(args, fmt);

	vaf.fmt = fmt;
	vaf.va = &args;

73
	if (pe->flags & PNV_IODA_PE_DEV)
74
		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75
	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 77
		sprintf(pfix, "%04x:%02x     ",
			pci_domain_nr(pe->pbus), pe->pbus->number);
78 79 80 81 82 83 84
#ifdef CONFIG_PCI_IOV
	else if (pe->flags & PNV_IODA_PE_VF)
		sprintf(pfix, "%04x:%02x:%2x.%d",
			pci_domain_nr(pe->parent_dev->bus),
			(pe->rid & 0xff00) >> 8,
			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
#endif /* CONFIG_PCI_IOV*/
85

86
	printk("%spci %s: [PE# %.2x] %pV",
87 88 89 90
	       level, pfix, pe->pe_number, &vaf);

	va_end(args);
}
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
static bool pnv_iommu_bypass_disabled __read_mostly;

static int __init iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;

	while (*str) {
		if (!strncmp(str, "nobypass", 8)) {
			pnv_iommu_bypass_disabled = true;
			pr_info("PowerNV: IOMMU bypass window disabled.\n");
			break;
		}
		str += strcspn(str, ",");
		if (*str == ',')
			str++;
	}

	return 0;
}
early_param("iommu", iommu_setup);

114
static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115
{
116 117 118 119 120 121 122 123 124
	/*
	 * WARNING: We cannot rely on the resource flags. The Linux PCI
	 * allocation code sometimes decides to put a 64-bit prefetchable
	 * BAR in the 32-bit window, so we have to compare the addresses.
	 *
	 * For simplicity we only test resource start.
	 */
	return (r->start >= phb->ioda.m64_base &&
		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 126
}

127 128 129 130 131 132 133
static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
{
	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);

	return (resource_flags & flags) == flags;
}

134 135
static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
{
136 137
	s64 rc;

138 139 140
	phb->ioda.pe_array[pe_no].phb = phb;
	phb->ioda.pe_array[pe_no].pe_number = pe_no;

141 142 143 144 145 146 147
	/*
	 * Clear the PE frozen state as it might be put into frozen state
	 * in the last PCI remove path. It's not harmful to do so when the
	 * PE is already in unfrozen state.
	 */
	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
148
	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
149
		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
150 151
			__func__, rc, phb->hose->global_number, pe_no);

152 153 154
	return &phb->ioda.pe_array[pe_no];
}

155 156
static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
{
157
	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
158
		pr_warn("%s: Invalid PE %x on PHB#%x\n",
159 160 161 162
			__func__, pe_no, phb->hose->global_number);
		return;
	}

163
	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
164
		pr_debug("%s: PE %x was reserved on PHB#%x\n",
165
			 __func__, pe_no, phb->hose->global_number);
166

167
	pnv_ioda_init_pe(phb, pe_no);
168 169
}

170
static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
171
{
172
	long pe;
173

174 175 176 177
	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
			return pnv_ioda_init_pe(phb, pe);
	}
178

179
	return NULL;
180 181
}

182
static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
183
{
184
	struct pnv_phb *phb = pe->phb;
185
	unsigned int pe_num = pe->pe_number;
186 187

	WARN_ON(pe->pdev);
188

189
	memset(pe, 0, sizeof(struct pnv_ioda_pe));
190
	clear_bit(pe_num, phb->ioda.pe_alloc);
191 192
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/* The default M64 BAR is shared by all PEs */
static int pnv_ioda2_init_m64(struct pnv_phb *phb)
{
	const char *desc;
	struct resource *r;
	s64 rc;

	/* Configure the default M64 BAR */
	rc = opal_pci_set_phb_mem_window(phb->opal_id,
					 OPAL_M64_WINDOW_TYPE,
					 phb->ioda.m64_bar_idx,
					 phb->ioda.m64_base,
					 0, /* unused */
					 phb->ioda.m64_size);
	if (rc != OPAL_SUCCESS) {
		desc = "configuring";
		goto fail;
	}

	/* Enable the default M64 BAR */
	rc = opal_pci_phb_mmio_enable(phb->opal_id,
				      OPAL_M64_WINDOW_TYPE,
				      phb->ioda.m64_bar_idx,
				      OPAL_ENABLE_M64_SPLIT);
	if (rc != OPAL_SUCCESS) {
		desc = "enabling";
		goto fail;
	}

	/*
223 224
	 * Exclude the segments for reserved and root bus PE, which
	 * are first or last two PEs.
225 226
	 */
	r = &phb->hose->mem_resources[1];
227
	if (phb->ioda.reserved_pe_idx == 0)
228
		r->start += (2 * phb->ioda.m64_segsize);
229
	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
230
		r->end -= (2 * phb->ioda.m64_segsize);
231
	else
232
		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
233
			phb->ioda.reserved_pe_idx);
234 235 236 237 238 239 240 241 242 243 244 245 246

	return 0;

fail:
	pr_warn("  Failure %lld %s M64 BAR#%d\n",
		rc, desc, phb->ioda.m64_bar_idx);
	opal_pci_phb_mmio_enable(phb->opal_id,
				 OPAL_M64_WINDOW_TYPE,
				 phb->ioda.m64_bar_idx,
				 OPAL_DISABLE_M64);
	return -EIO;
}

247
static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
248
					 unsigned long *pe_bitmap)
249
{
250 251
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
252
	struct resource *r;
253 254 255 256 257 258 259
	resource_size_t base, sgsz, start, end;
	int segno, i;

	base = phb->ioda.m64_base;
	sgsz = phb->ioda.m64_segsize;
	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
		r = &pdev->resource[i];
260
		if (!r->parent || !pnv_pci_is_m64(phb, r))
261
			continue;
262

263 264 265 266 267 268 269
		start = _ALIGN_DOWN(r->start - base, sgsz);
		end = _ALIGN_UP(r->end - base, sgsz);
		for (segno = start / sgsz; segno < end / sgsz; segno++) {
			if (pe_bitmap)
				set_bit(segno, pe_bitmap);
			else
				pnv_ioda_reserve_pe(phb, segno);
270 271 272 273
		}
	}
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static int pnv_ioda1_init_m64(struct pnv_phb *phb)
{
	struct resource *r;
	int index;

	/*
	 * There are 16 M64 BARs, each of which has 8 segments. So
	 * there are as many M64 segments as the maximum number of
	 * PEs, which is 128.
	 */
	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
		unsigned long base, segsz = phb->ioda.m64_segsize;
		int64_t rc;

		base = phb->ioda.m64_base +
		       index * PNV_IODA1_M64_SEGS * segsz;
		rc = opal_pci_set_phb_mem_window(phb->opal_id,
				OPAL_M64_WINDOW_TYPE, index, base, 0,
				PNV_IODA1_M64_SEGS * segsz);
		if (rc != OPAL_SUCCESS) {
294
			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
295 296 297 298 299 300 301 302
				rc, phb->hose->global_number, index);
			goto fail;
		}

		rc = opal_pci_phb_mmio_enable(phb->opal_id,
				OPAL_M64_WINDOW_TYPE, index,
				OPAL_ENABLE_M64_SPLIT);
		if (rc != OPAL_SUCCESS) {
303
			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
304 305 306 307 308 309
				rc, phb->hose->global_number, index);
			goto fail;
		}
	}

	/*
310 311
	 * Exclude the segments for reserved and root bus PE, which
	 * are first or last two PEs.
312 313 314
	 */
	r = &phb->hose->mem_resources[1];
	if (phb->ioda.reserved_pe_idx == 0)
315
		r->start += (2 * phb->ioda.m64_segsize);
316
	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
317
		r->end -= (2 * phb->ioda.m64_segsize);
318
	else
319
		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
320 321 322 323 324 325 326 327 328 329 330 331
		     phb->ioda.reserved_pe_idx, phb->hose->global_number);

	return 0;

fail:
	for ( ; index >= 0; index--)
		opal_pci_phb_mmio_enable(phb->opal_id,
			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);

	return -EIO;
}

332 333 334
static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
				    unsigned long *pe_bitmap,
				    bool all)
335 336
{
	struct pci_dev *pdev;
337 338

	list_for_each_entry(pdev, &bus->devices, bus_list) {
339
		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
340 341

		if (all && pdev->subordinate)
342 343
			pnv_ioda_reserve_m64_pe(pdev->subordinate,
						pe_bitmap, all);
344 345 346
	}
}

347
static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
348
{
349 350
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
351 352
	struct pnv_ioda_pe *master_pe, *pe;
	unsigned long size, *pe_alloc;
353
	int i;
354 355 356

	/* Root bus shouldn't use M64 */
	if (pci_is_root_bus(bus))
357
		return NULL;
358 359

	/* Allocate bitmap */
360
	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
361 362 363 364
	pe_alloc = kzalloc(size, GFP_KERNEL);
	if (!pe_alloc) {
		pr_warn("%s: Out of memory !\n",
			__func__);
365
		return NULL;
366 367
	}

368
	/* Figure out reserved PE numbers by the PE */
369
	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
370 371 372 373 374 375

	/*
	 * the current bus might not own M64 window and that's all
	 * contributed by its child buses. For the case, we needn't
	 * pick M64 dependent PE#.
	 */
376
	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
377
		kfree(pe_alloc);
378
		return NULL;
379 380 381 382 383 384 385 386
	}

	/*
	 * Figure out the master PE and put all slave PEs to master
	 * PE's list to form compound PE.
	 */
	master_pe = NULL;
	i = -1;
387 388
	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
		phb->ioda.total_pe_num) {
389 390
		pe = &phb->ioda.pe_array[i];

391
		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
392 393 394 395 396 397 398 399 400
		if (!master_pe) {
			pe->flags |= PNV_IODA_PE_MASTER;
			INIT_LIST_HEAD(&pe->slaves);
			master_pe = pe;
		} else {
			pe->flags |= PNV_IODA_PE_SLAVE;
			pe->master = master_pe;
			list_add_tail(&pe->list, &master_pe->slaves);
		}
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

		/*
		 * P7IOC supports M64DT, which helps mapping M64 segment
		 * to one particular PE#. However, PHB3 has fixed mapping
		 * between M64 segment and PE#. In order to have same logic
		 * for P7IOC and PHB3, we enforce fixed mapping between M64
		 * segment and PE# on P7IOC.
		 */
		if (phb->type == PNV_PHB_IODA1) {
			int64_t rc;

			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					pe->pe_number, OPAL_M64_WINDOW_TYPE,
					pe->pe_number / PNV_IODA1_M64_SEGS,
					pe->pe_number % PNV_IODA1_M64_SEGS);
			if (rc != OPAL_SUCCESS)
417
				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
418 419 420
					__func__, rc, phb->hose->global_number,
					pe->pe_number);
		}
421 422 423
	}

	kfree(pe_alloc);
424
	return master_pe;
425 426 427 428 429 430 431
}

static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
{
	struct pci_controller *hose = phb->hose;
	struct device_node *dn = hose->dn;
	struct resource *res;
432
	u32 m64_range[2], i;
433
	const __be32 *r;
434 435
	u64 pci_addr;

436
	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
437 438 439 440
		pr_info("  Not support M64 window\n");
		return;
	}

441
	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
442 443 444 445 446 447 448 449 450 451 452
		pr_info("  Firmware too old to support M64 window\n");
		return;
	}

	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
	if (!r) {
		pr_info("  No <ibm,opal-m64-window> on %s\n",
			dn->full_name);
		return;
	}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	/*
	 * Find the available M64 BAR range and pickup the last one for
	 * covering the whole 64-bits space. We support only one range.
	 */
	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
				       m64_range, 2)) {
		/* In absence of the property, assume 0..15 */
		m64_range[0] = 0;
		m64_range[1] = 16;
	}
	/* We only support 64 bits in our allocator */
	if (m64_range[1] > 63) {
		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
			__func__, m64_range[1], phb->hose->global_number);
		m64_range[1] = 63;
	}
	/* Empty range, no m64 */
	if (m64_range[1] <= m64_range[0]) {
		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
			__func__, phb->hose->global_number);
		return;
	}

	/* Configure M64 informations */
477
	res = &hose->mem_resources[1];
478
	res->name = dn->full_name;
479 480 481 482 483 484 485
	res->start = of_translate_address(dn, r + 2);
	res->end = res->start + of_read_number(r + 4, 2) - 1;
	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
	pci_addr = of_read_number(r, 2);
	hose->mem_offset[1] = res->start - pci_addr;

	phb->ioda.m64_size = resource_size(res);
486
	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
487 488
	phb->ioda.m64_base = pci_addr;

489 490 491 492 493 494 495
	/* This lines up nicely with the display from processing OF ranges */
	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
		res->start, res->end, pci_addr, m64_range[0],
		m64_range[0] + m64_range[1] - 1);

	/* Mark all M64 used up by default */
	phb->ioda.m64_bar_alloc = (unsigned long)-1;
496

497
	/* Use last M64 BAR to cover M64 window */
498 499 500 501 502 503 504 505 506 507 508 509 510
	m64_range[1]--;
	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];

	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);

	/* Mark remaining ones free */
	for (i = m64_range[0]; i < m64_range[1]; i++)
		clear_bit(i, &phb->ioda.m64_bar_alloc);

	/*
	 * Setup init functions for M64 based on IODA version, IODA3 uses
	 * the IODA2 code.
	 */
511 512 513 514
	if (phb->type == PNV_PHB_IODA1)
		phb->init_m64 = pnv_ioda1_init_m64;
	else
		phb->init_m64 = pnv_ioda2_init_m64;
515 516
	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
517 518
}

G
Gavin Shan 已提交
519 520 521 522 523 524 525 526 527
static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
{
	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
	struct pnv_ioda_pe *slave;
	s64 rc;

	/* Fetch master PE */
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
528 529 530
		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
			return;

G
Gavin Shan 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		pe_no = pe->pe_number;
	}

	/* Freeze master PE */
	rc = opal_pci_eeh_freeze_set(phb->opal_id,
				     pe_no,
				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
			__func__, rc, phb->hose->global_number, pe_no);
		return;
	}

	/* Freeze slave PEs */
	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return;

	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_set(phb->opal_id,
					     slave->pe_number,
					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
		if (rc != OPAL_SUCCESS)
			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
				__func__, rc, phb->hose->global_number,
				slave->pe_number);
	}
}

559
static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
G
Gavin Shan 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
{
	struct pnv_ioda_pe *pe, *slave;
	s64 rc;

	/* Find master PE */
	pe = &phb->ioda.pe_array[pe_no];
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
		pe_no = pe->pe_number;
	}

	/* Clear frozen state for master PE */
	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
			__func__, rc, opt, phb->hose->global_number, pe_no);
		return -EIO;
	}

	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return 0;

	/* Clear frozen state for slave PEs */
	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
					     slave->pe_number,
					     opt);
		if (rc != OPAL_SUCCESS) {
			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
				__func__, rc, opt, phb->hose->global_number,
				slave->pe_number);
			return -EIO;
		}
	}

	return 0;
}

static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
{
	struct pnv_ioda_pe *slave, *pe;
	u8 fstate, state;
	__be16 pcierr;
	s64 rc;

	/* Sanity check on PE number */
607
	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
G
Gavin Shan 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
		return OPAL_EEH_STOPPED_PERM_UNAVAIL;

	/*
	 * Fetch the master PE and the PE instance might be
	 * not initialized yet.
	 */
	pe = &phb->ioda.pe_array[pe_no];
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
		pe_no = pe->pe_number;
	}

	/* Check the master PE */
	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
					&state, &pcierr, NULL);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld getting "
			"PHB#%x-PE#%x state\n",
			__func__, rc,
			phb->hose->global_number, pe_no);
		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
	}

	/* Check the slave PE */
	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return state;

	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_status(phb->opal_id,
						slave->pe_number,
						&fstate,
						&pcierr,
						NULL);
		if (rc != OPAL_SUCCESS) {
			pr_warn("%s: Failure %lld getting "
				"PHB#%x-PE#%x state\n",
				__func__, rc,
				phb->hose->global_number, slave->pe_number);
			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
		}

		/*
		 * Override the result based on the ascending
		 * priority.
		 */
		if (fstate > state)
			state = fstate;
	}

	return state;
}

661 662 663 664
/* Currently those 2 are only used when MSIs are enabled, this will change
 * but in the meantime, we need to protect them to avoid warnings
 */
#ifdef CONFIG_PCI_MSI
665
struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 667 668
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
669
	struct pci_dn *pdn = pci_get_pdn(dev);
670 671 672 673 674 675 676 677 678

	if (!pdn)
		return NULL;
	if (pdn->pe_number == IODA_INVALID_PE)
		return NULL;
	return &phb->ioda.pe_array[pdn->pe_number];
}
#endif /* CONFIG_PCI_MSI */

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
				  struct pnv_ioda_pe *parent,
				  struct pnv_ioda_pe *child,
				  bool is_add)
{
	const char *desc = is_add ? "adding" : "removing";
	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
			      OPAL_REMOVE_PE_FROM_DOMAIN;
	struct pnv_ioda_pe *slave;
	long rc;

	/* Parent PE affects child PE */
	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
				child->pe_number, op);
	if (rc != OPAL_SUCCESS) {
		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
			rc, desc);
		return -ENXIO;
	}

	if (!(child->flags & PNV_IODA_PE_MASTER))
		return 0;

	/* Compound case: parent PE affects slave PEs */
	list_for_each_entry(slave, &child->slaves, list) {
		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
					slave->pe_number, op);
		if (rc != OPAL_SUCCESS) {
			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
				rc, desc);
			return -ENXIO;
		}
	}

	return 0;
}

static int pnv_ioda_set_peltv(struct pnv_phb *phb,
			      struct pnv_ioda_pe *pe,
			      bool is_add)
{
	struct pnv_ioda_pe *slave;
721
	struct pci_dev *pdev = NULL;
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	int ret;

	/*
	 * Clear PE frozen state. If it's master PE, we need
	 * clear slave PE frozen state as well.
	 */
	if (is_add) {
		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
		if (pe->flags & PNV_IODA_PE_MASTER) {
			list_for_each_entry(slave, &pe->slaves, list)
				opal_pci_eeh_freeze_clear(phb->opal_id,
							  slave->pe_number,
							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
		}
	}

	/*
	 * Associate PE in PELT. We need add the PE into the
	 * corresponding PELT-V as well. Otherwise, the error
	 * originated from the PE might contribute to other
	 * PEs.
	 */
	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
	if (ret)
		return ret;

	/* For compound PEs, any one affects all of them */
	if (pe->flags & PNV_IODA_PE_MASTER) {
		list_for_each_entry(slave, &pe->slaves, list) {
			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
			if (ret)
				return ret;
		}
	}

	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
		pdev = pe->pbus->self;
760
	else if (pe->flags & PNV_IODA_PE_DEV)
761
		pdev = pe->pdev->bus->self;
762 763
#ifdef CONFIG_PCI_IOV
	else if (pe->flags & PNV_IODA_PE_VF)
764
		pdev = pe->parent_dev;
765
#endif /* CONFIG_PCI_IOV */
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
	while (pdev) {
		struct pci_dn *pdn = pci_get_pdn(pdev);
		struct pnv_ioda_pe *parent;

		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
			parent = &phb->ioda.pe_array[pdn->pe_number];
			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
			if (ret)
				return ret;
		}

		pdev = pdev->bus->self;
	}

	return 0;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
	struct pci_dev *parent;
	uint8_t bcomp, dcomp, fcomp;
	int64_t rc;
	long rid_end, rid;

	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
	if (pe->pbus) {
		int count;

		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
		parent = pe->pbus->self;
		if (pe->flags & PNV_IODA_PE_BUS_ALL)
			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
		else
			count = 1;

		switch(count) {
		case  1: bcomp = OpalPciBusAll;         break;
		case  2: bcomp = OpalPciBus7Bits;       break;
		case  4: bcomp = OpalPciBus6Bits;       break;
		case  8: bcomp = OpalPciBus5Bits;       break;
		case 16: bcomp = OpalPciBus4Bits;       break;
		case 32: bcomp = OpalPciBus3Bits;       break;
		default:
			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
			        count);
			/* Do an exact match only */
			bcomp = OpalPciBusAll;
		}
		rid_end = pe->rid + (count << 8);
	} else {
817
#ifdef CONFIG_PCI_IOV
818 819 820
		if (pe->flags & PNV_IODA_PE_VF)
			parent = pe->parent_dev;
		else
821
#endif
822 823 824 825 826 827 828 829 830
			parent = pe->pdev->bus->self;
		bcomp = OpalPciBusAll;
		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
		rid_end = pe->rid + 1;
	}

	/* Clear the reverse map */
	for (rid = pe->rid; rid < rid_end; rid++)
831
		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
832 833 834 835 836 837 838 839 840 841 842 843

	/* Release from all parents PELT-V */
	while (parent) {
		struct pci_dn *pdn = pci_get_pdn(parent);
		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
			/* XXX What to do in case of error ? */
		}
		parent = parent->bus->self;
	}

844
	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
845 846 847 848 849 850 851 852 853 854 855 856 857 858
				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);

	/* Disassociate PE in PELT */
	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
	if (rc)
		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
	if (rc)
		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);

	pe->pbus = NULL;
	pe->pdev = NULL;
859
#ifdef CONFIG_PCI_IOV
860
	pe->parent_dev = NULL;
861
#endif
862 863 864 865

	return 0;
}

866
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
867 868 869 870 871 872 873 874 875 876 877 878
{
	struct pci_dev *parent;
	uint8_t bcomp, dcomp, fcomp;
	long rc, rid_end, rid;

	/* Bus validation ? */
	if (pe->pbus) {
		int count;

		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
		parent = pe->pbus->self;
879 880 881 882 883
		if (pe->flags & PNV_IODA_PE_BUS_ALL)
			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
		else
			count = 1;

884 885 886 887 888 889 890 891
		switch(count) {
		case  1: bcomp = OpalPciBusAll;		break;
		case  2: bcomp = OpalPciBus7Bits;	break;
		case  4: bcomp = OpalPciBus6Bits;	break;
		case  8: bcomp = OpalPciBus5Bits;	break;
		case 16: bcomp = OpalPciBus4Bits;	break;
		case 32: bcomp = OpalPciBus3Bits;	break;
		default:
892 893
			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
			        count);
894 895 896 897 898
			/* Do an exact match only */
			bcomp = OpalPciBusAll;
		}
		rid_end = pe->rid + (count << 8);
	} else {
899 900 901 902 903 904
#ifdef CONFIG_PCI_IOV
		if (pe->flags & PNV_IODA_PE_VF)
			parent = pe->parent_dev;
		else
#endif /* CONFIG_PCI_IOV */
			parent = pe->pdev->bus->self;
905 906 907 908 909 910
		bcomp = OpalPciBusAll;
		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
		rid_end = pe->rid + 1;
	}

911 912 913 914 915 916
	/*
	 * Associate PE in PELT. We need add the PE into the
	 * corresponding PELT-V as well. Otherwise, the error
	 * originated from the PE might contribute to other
	 * PEs.
	 */
917 918 919 920 921 922
	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
	if (rc) {
		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
		return -ENXIO;
	}
923

924 925 926 927 928 929
	/*
	 * Configure PELTV. NPUs don't have a PELTV table so skip
	 * configuration on them.
	 */
	if (phb->type != PNV_PHB_NPU)
		pnv_ioda_set_peltv(phb, pe, true);
930 931 932 933 934 935

	/* Setup reverse map */
	for (rid = pe->rid; rid < rid_end; rid++)
		phb->ioda.pe_rmap[rid] = pe->pe_number;

	/* Setup one MVTs on IODA1 */
936 937 938 939 940 941 942 943
	if (phb->type != PNV_PHB_IODA1) {
		pe->mve_number = 0;
		goto out;
	}

	pe->mve_number = pe->pe_number;
	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
	if (rc != OPAL_SUCCESS) {
944
		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
945 946 947 948 949
		       rc, pe->mve_number);
		pe->mve_number = -1;
	} else {
		rc = opal_pci_set_mve_enable(phb->opal_id,
					     pe->mve_number, OPAL_ENABLE_MVE);
950
		if (rc) {
951
			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
952 953 954
			       rc, pe->mve_number);
			pe->mve_number = -1;
		}
955
	}
956

957
out:
958 959 960
	return 0;
}

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
#ifdef CONFIG_PCI_IOV
static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
{
	struct pci_dn *pdn = pci_get_pdn(dev);
	int i;
	struct resource *res, res2;
	resource_size_t size;
	u16 num_vfs;

	if (!dev->is_physfn)
		return -EINVAL;

	/*
	 * "offset" is in VFs.  The M64 windows are sized so that when they
	 * are segmented, each segment is the same size as the IOV BAR.
	 * Each segment is in a separate PE, and the high order bits of the
	 * address are the PE number.  Therefore, each VF's BAR is in a
	 * separate PE, and changing the IOV BAR start address changes the
	 * range of PEs the VFs are in.
	 */
	num_vfs = pdn->num_vfs;
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &dev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

		/*
		 * The actual IOV BAR range is determined by the start address
		 * and the actual size for num_vfs VFs BAR.  This check is to
		 * make sure that after shifting, the range will not overlap
		 * with another device.
		 */
		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
		res2.flags = res->flags;
		res2.start = res->start + (size * offset);
		res2.end = res2.start + (size * num_vfs) - 1;

		if (res2.end > res->end) {
			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
				i, &res2, res, num_vfs, offset);
			return -EBUSY;
		}
	}

	/*
	 * After doing so, there would be a "hole" in the /proc/iomem when
	 * offset is a positive value. It looks like the device return some
	 * mmio back to the system, which actually no one could use it.
	 */
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &dev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
		res2 = *res;
		res->start += size * offset;

1019 1020 1021
		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
			 i, &res2, res, (offset > 0) ? "En" : "Dis",
			 num_vfs, offset);
1022 1023 1024 1025 1026 1027
		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
	}
	return 0;
}
#endif /* CONFIG_PCI_IOV */

1028
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1029 1030 1031
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
1032
	struct pci_dn *pdn = pci_get_pdn(dev);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	struct pnv_ioda_pe *pe;

	if (!pdn) {
		pr_err("%s: Device tree node not associated properly\n",
			   pci_name(dev));
		return NULL;
	}
	if (pdn->pe_number != IODA_INVALID_PE)
		return NULL;

1043 1044
	pe = pnv_ioda_alloc_pe(phb);
	if (!pe) {
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		pr_warning("%s: Not enough PE# available, disabling device\n",
			   pci_name(dev));
		return NULL;
	}

	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
	 * pointer in the PE data structure, both should be destroyed at the
	 * same time. However, this needs to be looked at more closely again
	 * once we actually start removing things (Hotplug, SR-IOV, ...)
	 *
	 * At some point we want to remove the PDN completely anyways
	 */
	pci_dev_get(dev);
	pdn->pcidev = dev;
1059
	pdn->pe_number = pe->pe_number;
1060
	pe->flags = PNV_IODA_PE_DEV;
1061 1062 1063 1064 1065 1066 1067 1068 1069
	pe->pdev = dev;
	pe->pbus = NULL;
	pe->mve_number = -1;
	pe->rid = dev->bus->number << 8 | pdn->devfn;

	pe_info(pe, "Associated device to PE\n");

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
1070
		pnv_ioda_free_pe(pe);
1071 1072 1073 1074 1075 1076
		pdn->pe_number = IODA_INVALID_PE;
		pe->pdev = NULL;
		pci_dev_put(dev);
		return NULL;
	}

1077 1078 1079
	/* Put PE to the list */
	list_add_tail(&pe->list, &phb->ioda.pe_list);

1080 1081 1082 1083 1084 1085 1086 1087
	return pe;
}

static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
1088
		struct pci_dn *pdn = pci_get_pdn(dev);
1089 1090 1091 1092 1093 1094

		if (pdn == NULL) {
			pr_warn("%s: No device node associated with device !\n",
				pci_name(dev));
			continue;
		}
1095 1096 1097 1098 1099 1100 1101 1102 1103

		/*
		 * In partial hotplug case, the PCI device might be still
		 * associated with the PE and needn't attach it to the PE
		 * again.
		 */
		if (pdn->pe_number != IODA_INVALID_PE)
			continue;

1104
		pe->device_count++;
1105
		pdn->pcidev = dev;
1106
		pdn->pe_number = pe->pe_number;
1107
		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1108 1109 1110 1111
			pnv_ioda_setup_same_PE(dev->subordinate, pe);
	}
}

1112 1113 1114 1115 1116 1117
/*
 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
 * single PCI bus. Another one that contains the primary PCI bus and its
 * subordinate PCI devices and buses. The second type of PE is normally
 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
 */
1118
static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1119
{
1120
	struct pci_controller *hose = pci_bus_to_host(bus);
1121
	struct pnv_phb *phb = hose->private_data;
1122
	struct pnv_ioda_pe *pe = NULL;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	unsigned int pe_num;

	/*
	 * In partial hotplug case, the PE instance might be still alive.
	 * We should reuse it instead of allocating a new one.
	 */
	pe_num = phb->ioda.pe_rmap[bus->number << 8];
	if (pe_num != IODA_INVALID_PE) {
		pe = &phb->ioda.pe_array[pe_num];
		pnv_ioda_setup_same_PE(bus, pe);
		return NULL;
	}
1135

1136 1137 1138 1139 1140
	/* PE number for root bus should have been reserved */
	if (pci_is_root_bus(bus) &&
	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];

1141
	/* Check if PE is determined by M64 */
1142
	if (!pe && phb->pick_m64_pe)
1143
		pe = phb->pick_m64_pe(bus, all);
1144 1145

	/* The PE number isn't pinned by M64 */
1146 1147
	if (!pe)
		pe = pnv_ioda_alloc_pe(phb);
1148

1149
	if (!pe) {
1150 1151
		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
			__func__, pci_domain_nr(bus), bus->number);
1152
		return NULL;
1153 1154
	}

1155
	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1156 1157 1158
	pe->pbus = bus;
	pe->pdev = NULL;
	pe->mve_number = -1;
1159
	pe->rid = bus->busn_res.start << 8;
1160

1161
	if (all)
1162
		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1163
			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1164
	else
1165
		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1166
			bus->busn_res.start, pe->pe_number);
1167 1168 1169

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
1170
		pnv_ioda_free_pe(pe);
1171
		pe->pbus = NULL;
1172
		return NULL;
1173 1174 1175 1176 1177
	}

	/* Associate it with all child devices */
	pnv_ioda_setup_same_PE(bus, pe);

1178 1179
	/* Put PE to the list */
	list_add_tail(&pe->list, &phb->ioda.pe_list);
1180 1181

	return pe;
1182 1183
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
{
	int pe_num, found_pe = false, rc;
	long rid;
	struct pnv_ioda_pe *pe;
	struct pci_dev *gpu_pdev;
	struct pci_dn *npu_pdn;
	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
	struct pnv_phb *phb = hose->private_data;

	/*
	 * Due to a hardware errata PE#0 on the NPU is reserved for
	 * error handling. This means we only have three PEs remaining
	 * which need to be assigned to four links, implying some
	 * links must share PEs.
	 *
	 * To achieve this we assign PEs such that NPUs linking the
	 * same GPU get assigned the same PE.
	 */
	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1204
	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		pe = &phb->ioda.pe_array[pe_num];
		if (!pe->pdev)
			continue;

		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
			/*
			 * This device has the same peer GPU so should
			 * be assigned the same PE as the existing
			 * peer NPU.
			 */
			dev_info(&npu_pdev->dev,
1216
				"Associating to existing PE %x\n", pe_num);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
			pci_dev_get(npu_pdev);
			npu_pdn = pci_get_pdn(npu_pdev);
			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
			npu_pdn->pcidev = npu_pdev;
			npu_pdn->pe_number = pe_num;
			phb->ioda.pe_rmap[rid] = pe->pe_number;

			/* Map the PE to this link */
			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
					OpalPciBusAll,
					OPAL_COMPARE_RID_DEVICE_NUMBER,
					OPAL_COMPARE_RID_FUNCTION_NUMBER,
					OPAL_MAP_PE);
			WARN_ON(rc != OPAL_SUCCESS);
			found_pe = true;
			break;
		}
	}

	if (!found_pe)
		/*
		 * Could not find an existing PE so allocate a new
		 * one.
		 */
		return pnv_ioda_setup_dev_PE(npu_pdev);
	else
		return pe;
}

static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1247 1248 1249 1250
{
	struct pci_dev *pdev;

	list_for_each_entry(pdev, &bus->devices, bus_list)
1251
		pnv_ioda_setup_npu_PE(pdev);
1252 1253
}

1254
static void pnv_pci_ioda_setup_PEs(void)
1255 1256
{
	struct pci_controller *hose, *tmp;
1257
	struct pnv_phb *phb;
1258 1259

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1260
		phb = hose->private_data;
1261 1262 1263
		if (phb->type == PNV_PHB_NPU) {
			/* PE#0 is needed for error reporting */
			pnv_ioda_reserve_pe(phb, 0);
1264
			pnv_ioda_setup_npu_PEs(hose->bus);
1265
		}
1266 1267 1268
	}
}

G
Gavin Shan 已提交
1269
#ifdef CONFIG_PCI_IOV
1270
static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1271 1272 1273 1274 1275
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pci_dn         *pdn;
1276
	int                    i, j;
1277
	int                    m64_bars;
1278 1279 1280 1281 1282 1283

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

1284 1285 1286 1287 1288
	if (pdn->m64_single_mode)
		m64_bars = num_vfs;
	else
		m64_bars = 1;

1289
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1290 1291
		for (j = 0; j < m64_bars; j++) {
			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1292 1293
				continue;
			opal_pci_phb_mmio_enable(phb->opal_id,
1294 1295 1296
				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
			pdn->m64_map[j][i] = IODA_INVALID_M64;
1297
		}
1298

1299
	kfree(pdn->m64_map);
1300 1301 1302
	return 0;
}

1303
static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1304 1305 1306 1307 1308 1309 1310
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pci_dn         *pdn;
	unsigned int           win;
	struct resource       *res;
1311
	int                    i, j;
1312
	int64_t                rc;
1313 1314 1315
	int                    total_vfs;
	resource_size_t        size, start;
	int                    pe_num;
1316
	int                    m64_bars;
1317 1318 1319 1320 1321

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);
1322
	total_vfs = pci_sriov_get_totalvfs(pdev);
1323

1324 1325 1326 1327 1328
	if (pdn->m64_single_mode)
		m64_bars = num_vfs;
	else
		m64_bars = 1;

1329 1330 1331
	pdn->m64_map = kmalloc_array(m64_bars,
				     sizeof(*pdn->m64_map),
				     GFP_KERNEL);
1332 1333 1334 1335 1336 1337
	if (!pdn->m64_map)
		return -ENOMEM;
	/* Initialize the m64_map to IODA_INVALID_M64 */
	for (i = 0; i < m64_bars ; i++)
		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
			pdn->m64_map[i][j] = IODA_INVALID_M64;
1338

1339 1340 1341 1342 1343 1344

	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

1345
		for (j = 0; j < m64_bars; j++) {
1346 1347 1348 1349 1350 1351 1352 1353
			do {
				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
						phb->ioda.m64_bar_idx + 1, 0);

				if (win >= phb->ioda.m64_bar_idx + 1)
					goto m64_failed;
			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));

1354
			pdn->m64_map[j][i] = win;
1355

1356
			if (pdn->m64_single_mode) {
1357 1358 1359 1360 1361 1362 1363 1364 1365
				size = pci_iov_resource_size(pdev,
							PCI_IOV_RESOURCES + i);
				start = res->start + size * j;
			} else {
				size = resource_size(res);
				start = res->start;
			}

			/* Map the M64 here */
1366
			if (pdn->m64_single_mode) {
1367
				pe_num = pdn->pe_num_map[j];
1368 1369
				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
						pe_num, OPAL_M64_WINDOW_TYPE,
1370
						pdn->m64_map[j][i], 0);
1371 1372 1373 1374
			}

			rc = opal_pci_set_phb_mem_window(phb->opal_id,
						 OPAL_M64_WINDOW_TYPE,
1375
						 pdn->m64_map[j][i],
1376 1377 1378
						 start,
						 0, /* unused */
						 size);
1379 1380


1381 1382 1383 1384 1385
			if (rc != OPAL_SUCCESS) {
				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
					win, rc);
				goto m64_failed;
			}
1386

1387
			if (pdn->m64_single_mode)
1388
				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1389
				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1390 1391
			else
				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1392
				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1393

1394 1395 1396 1397 1398
			if (rc != OPAL_SUCCESS) {
				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
					win, rc);
				goto m64_failed;
			}
1399 1400 1401 1402 1403
		}
	}
	return 0;

m64_failed:
1404
	pnv_pci_vf_release_m64(pdev, num_vfs);
1405 1406 1407
	return -EBUSY;
}

1408 1409 1410 1411
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
		int num);
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);

1412 1413 1414 1415 1416
static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
{
	struct iommu_table    *tbl;
	int64_t               rc;

1417
	tbl = pe->table_group.tables[0];
1418
	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1419 1420 1421
	if (rc)
		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);

1422
	pnv_pci_ioda2_set_bypass(pe, false);
1423 1424 1425
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		BUG_ON(pe->table_group.group);
1426
	}
1427
	pnv_pci_ioda2_table_free_pages(tbl);
1428 1429 1430
	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
}

1431
static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pnv_ioda_pe    *pe, *pe_n;
	struct pci_dn         *pdn;

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
1442
	pdn = pci_get_pdn(pdev);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	if (!pdev->is_physfn)
		return;

	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
		if (pe->parent_dev != pdev)
			continue;

		pnv_pci_ioda2_release_dma_pe(pdev, pe);

		/* Remove from list */
		mutex_lock(&phb->ioda.pe_list_mutex);
		list_del(&pe->list);
		mutex_unlock(&phb->ioda.pe_list_mutex);

		pnv_ioda_deconfigure_pe(phb, pe);

1460
		pnv_ioda_free_pe(pe);
1461 1462 1463 1464 1465 1466 1467 1468
	}
}

void pnv_pci_sriov_disable(struct pci_dev *pdev)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
1469
	struct pnv_ioda_pe    *pe;
1470
	struct pci_dn         *pdn;
1471
	u16                    num_vfs, i;
1472 1473 1474 1475 1476 1477 1478 1479

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);
	num_vfs = pdn->num_vfs;

	/* Release VF PEs */
1480
	pnv_ioda_release_vf_PE(pdev);
1481 1482

	if (phb->type == PNV_PHB_IODA2) {
1483
		if (!pdn->m64_single_mode)
1484
			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1485 1486

		/* Release M64 windows */
1487
		pnv_pci_vf_release_m64(pdev, num_vfs);
1488 1489

		/* Release PE numbers */
1490 1491
		if (pdn->m64_single_mode) {
			for (i = 0; i < num_vfs; i++) {
1492 1493 1494 1495 1496
				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
					continue;

				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
				pnv_ioda_free_pe(pe);
1497 1498 1499 1500 1501
			}
		} else
			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
		/* Releasing pe_num_map */
		kfree(pdn->pe_num_map);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	}
}

static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe);
static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pnv_ioda_pe    *pe;
	int                    pe_num;
	u16                    vf_index;
	struct pci_dn         *pdn;

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

	if (!pdev->is_physfn)
		return;

	/* Reserve PE for each VF */
	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1527 1528 1529 1530
		if (pdn->m64_single_mode)
			pe_num = pdn->pe_num_map[vf_index];
		else
			pe_num = *pdn->pe_num_map + vf_index;
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

		pe = &phb->ioda.pe_array[pe_num];
		pe->pe_number = pe_num;
		pe->phb = phb;
		pe->flags = PNV_IODA_PE_VF;
		pe->pbus = NULL;
		pe->parent_dev = pdev;
		pe->mve_number = -1;
		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
			   pci_iov_virtfn_devfn(pdev, vf_index);

1542
		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1543 1544 1545 1546 1547 1548
			hose->global_number, pdev->bus->number,
			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);

		if (pnv_ioda_configure_pe(phb, pe)) {
			/* XXX What do we do here ? */
1549
			pnv_ioda_free_pe(pe);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
			pe->pdev = NULL;
			continue;
		}

		/* Put PE to the list */
		mutex_lock(&phb->ioda.pe_list_mutex);
		list_add_tail(&pe->list, &phb->ioda.pe_list);
		mutex_unlock(&phb->ioda.pe_list_mutex);

		pnv_pci_ioda2_setup_dma_pe(phb, pe);
	}
}

int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
1568
	struct pnv_ioda_pe    *pe;
1569 1570
	struct pci_dn         *pdn;
	int                    ret;
1571
	u16                    i;
1572 1573 1574 1575 1576 1577 1578

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

	if (phb->type == PNV_PHB_IODA2) {
1579 1580 1581 1582 1583 1584
		if (!pdn->vfs_expanded) {
			dev_info(&pdev->dev, "don't support this SRIOV device"
				" with non 64bit-prefetchable IOV BAR\n");
			return -ENOSPC;
		}

1585 1586 1587 1588 1589 1590 1591 1592 1593
		/*
		 * When M64 BARs functions in Single PE mode, the number of VFs
		 * could be enabled must be less than the number of M64 BARs.
		 */
		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
			return -EBUSY;
		}

1594 1595
		/* Allocating pe_num_map */
		if (pdn->m64_single_mode)
1596 1597 1598
			pdn->pe_num_map = kmalloc_array(num_vfs,
							sizeof(*pdn->pe_num_map),
							GFP_KERNEL);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		else
			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);

		if (!pdn->pe_num_map)
			return -ENOMEM;

		if (pdn->m64_single_mode)
			for (i = 0; i < num_vfs; i++)
				pdn->pe_num_map[i] = IODA_INVALID_PE;

1609
		/* Calculate available PE for required VFs */
1610 1611
		if (pdn->m64_single_mode) {
			for (i = 0; i < num_vfs; i++) {
1612 1613
				pe = pnv_ioda_alloc_pe(phb);
				if (!pe) {
1614 1615 1616
					ret = -EBUSY;
					goto m64_failed;
				}
1617 1618

				pdn->pe_num_map[i] = pe->pe_number;
1619 1620 1621 1622
			}
		} else {
			mutex_lock(&phb->ioda.pe_alloc_mutex);
			*pdn->pe_num_map = bitmap_find_next_zero_area(
1623
				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1624
				0, num_vfs, 0);
1625
			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1626 1627 1628 1629 1630 1631
				mutex_unlock(&phb->ioda.pe_alloc_mutex);
				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
				kfree(pdn->pe_num_map);
				return -EBUSY;
			}
			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1632 1633 1634 1635 1636
			mutex_unlock(&phb->ioda.pe_alloc_mutex);
		}
		pdn->num_vfs = num_vfs;

		/* Assign M64 window accordingly */
1637
		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		if (ret) {
			dev_info(&pdev->dev, "Not enough M64 window resources\n");
			goto m64_failed;
		}

		/*
		 * When using one M64 BAR to map one IOV BAR, we need to shift
		 * the IOV BAR according to the PE# allocated to the VFs.
		 * Otherwise, the PE# for the VF will conflict with others.
		 */
1648
		if (!pdn->m64_single_mode) {
1649
			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1650 1651 1652
			if (ret)
				goto m64_failed;
		}
1653 1654 1655 1656 1657 1658 1659 1660
	}

	/* Setup VF PEs */
	pnv_ioda_setup_vf_PE(pdev, num_vfs);

	return 0;

m64_failed:
1661 1662
	if (pdn->m64_single_mode) {
		for (i = 0; i < num_vfs; i++) {
1663 1664 1665 1666 1667
			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
				continue;

			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
			pnv_ioda_free_pe(pe);
1668 1669 1670 1671 1672 1673
		}
	} else
		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);

	/* Releasing pe_num_map */
	kfree(pdn->pe_num_map);
1674 1675 1676 1677

	return ret;
}

G
Gavin Shan 已提交
1678 1679
int pcibios_sriov_disable(struct pci_dev *pdev)
{
1680 1681
	pnv_pci_sriov_disable(pdev);

G
Gavin Shan 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690
	/* Release PCI data */
	remove_dev_pci_data(pdev);
	return 0;
}

int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
	/* Allocate PCI data */
	add_dev_pci_data(pdev);
1691

1692
	return pnv_pci_sriov_enable(pdev, num_vfs);
G
Gavin Shan 已提交
1693 1694 1695
}
#endif /* CONFIG_PCI_IOV */

1696
static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1697
{
1698
	struct pci_dn *pdn = pci_get_pdn(pdev);
1699
	struct pnv_ioda_pe *pe;
1700

1701 1702 1703 1704 1705 1706 1707
	/*
	 * The function can be called while the PE#
	 * hasn't been assigned. Do nothing for the
	 * case.
	 */
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return;
1708

1709
	pe = &phb->ioda.pe_array[pdn->pe_number];
1710
	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1711
	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1712
	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1713 1714 1715 1716 1717 1718
	/*
	 * Note: iommu_add_device() will fail here as
	 * for physical PE: the device is already added by now;
	 * for virtual PE: sysfs entries are not ready yet and
	 * tce_iommu_bus_notifier will add the device to a group later.
	 */
1719 1720
}

1721
static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1722
{
1723 1724
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;
	uint64_t top;
	bool bypass = false;

	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
		return -ENODEV;;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	if (pe->tce_bypass_enabled) {
		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
		bypass = (dma_mask >= top);
	}

	if (bypass) {
		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
		set_dma_ops(&pdev->dev, &dma_direct_ops);
	} else {
		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
		set_dma_ops(&pdev->dev, &dma_iommu_ops);
	}
1746
	*pdev->dev.dma_mask = dma_mask;
1747 1748

	/* Update peer npu devices */
1749
	pnv_npu_try_dma_set_bypass(pdev, bypass);
1750

1751 1752 1753
	return 0;
}

1754
static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1755
{
1756 1757
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;
	u64 end, mask;

	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
		return 0;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	if (!pe->tce_bypass_enabled)
		return __dma_get_required_mask(&pdev->dev);


	end = pe->tce_bypass_base + memblock_end_of_DRAM();
	mask = 1ULL << (fls64(end) - 1);
	mask += mask - 1;

	return mask;
}

1777
static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1778
				   struct pci_bus *bus)
1779 1780 1781 1782
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
1783
		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1784
		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1785
		iommu_add_device(&dev->dev);
1786

1787
		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1788
			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1789 1790 1791
	}
}

1792 1793 1794 1795 1796 1797 1798
static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
						     bool real_mode)
{
	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
		(phb->regs + 0x210);
}

1799
static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1800
		unsigned long index, unsigned long npages, bool rm)
1801
{
1802 1803 1804 1805
	struct iommu_table_group_link *tgl = list_first_entry_or_null(
			&tbl->it_group_list, struct iommu_table_group_link,
			next);
	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1806
			struct pnv_ioda_pe, table_group);
1807
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1808 1809
	unsigned long start, end, inc;

1810 1811 1812
	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
			npages - 1);
1813

1814 1815 1816 1817
	/* p7ioc-style invalidation, 2 TCEs per write */
	start |= (1ull << 63);
	end |= (1ull << 63);
	inc = 16;
1818 1819 1820 1821
        end |= inc - 1;	/* round up end to be different than start */

        mb(); /* Ensure above stores are visible */
        while (start <= end) {
1822
		if (rm)
1823
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1824
		else
1825
			__raw_writeq(cpu_to_be64(start), invalidate);
1826 1827 1828 1829 1830 1831 1832 1833 1834
                start += inc;
        }

	/*
	 * The iommu layer will do another mb() for us on build()
	 * and we don't care on free()
	 */
}

1835 1836 1837
static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
		long npages, unsigned long uaddr,
		enum dma_data_direction direction,
1838
		unsigned long attrs)
1839 1840 1841 1842
{
	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
			attrs);

1843
	if (!ret)
1844
		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1845 1846 1847 1848

	return ret;
}

1849 1850 1851 1852 1853 1854
#ifdef CONFIG_IOMMU_API
static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
		unsigned long *hpa, enum dma_data_direction *direction)
{
	long ret = pnv_tce_xchg(tbl, index, hpa, direction);

1855
	if (!ret)
1856
		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1857 1858 1859 1860 1861

	return ret;
}
#endif

1862 1863 1864 1865 1866
static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
		long npages)
{
	pnv_tce_free(tbl, index, npages);

1867
	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1868 1869
}

1870
static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1871
	.set = pnv_ioda1_tce_build,
1872 1873 1874
#ifdef CONFIG_IOMMU_API
	.exchange = pnv_ioda1_tce_xchg,
#endif
1875
	.clear = pnv_ioda1_tce_free,
1876 1877 1878
	.get = pnv_tce_get,
};

1879 1880 1881
#define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
#define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
#define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1882

1883
void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1884
{
1885
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1886
	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1887 1888 1889

	mb(); /* Ensure previous TCE table stores are visible */
	if (rm)
1890
		__raw_rm_writeq(cpu_to_be64(val), invalidate);
1891
	else
1892
		__raw_writeq(cpu_to_be64(val), invalidate);
1893 1894
}

1895
static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1896 1897
{
	/* 01xb - invalidate TCEs that match the specified PE# */
1898
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1899
	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1900 1901

	mb(); /* Ensure above stores are visible */
1902
	__raw_writeq(cpu_to_be64(val), invalidate);
1903 1904
}

1905 1906 1907
static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
					unsigned shift, unsigned long index,
					unsigned long npages)
1908
{
1909
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1910 1911 1912
	unsigned long start, end, inc;

	/* We'll invalidate DMA address in PE scope */
1913
	start = PHB3_TCE_KILL_INVAL_ONE;
1914
	start |= (pe->pe_number & 0xFF);
1915 1916 1917
	end = start;

	/* Figure out the start, end and step */
1918 1919
	start |= (index << shift);
	end |= ((index + npages - 1) << shift);
1920
	inc = (0x1ull << shift);
1921 1922 1923
	mb();

	while (start <= end) {
1924
		if (rm)
1925
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1926
		else
1927
			__raw_writeq(cpu_to_be64(start), invalidate);
1928 1929 1930 1931
		start += inc;
	}
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;

	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
		pnv_pci_phb3_tce_invalidate_pe(pe);
	else
		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
				  pe->pe_number, 0, 0, 0);
}

1943 1944 1945 1946 1947 1948 1949 1950
static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
		unsigned long index, unsigned long npages, bool rm)
{
	struct iommu_table_group_link *tgl;

	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
				struct pnv_ioda_pe, table_group);
1951 1952 1953
		struct pnv_phb *phb = pe->phb;
		unsigned int shift = tbl->it_page_shift;

1954 1955 1956 1957 1958 1959
		/*
		 * NVLink1 can use the TCE kill register directly as
		 * it's the same as PHB3. NVLink2 is different and
		 * should go via the OPAL call.
		 */
		if (phb->model == PNV_PHB_MODEL_NPU) {
1960 1961 1962 1963 1964
			/*
			 * The NVLink hardware does not support TCE kill
			 * per TCE entry so we have to invalidate
			 * the entire cache for it.
			 */
1965
			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1966 1967
			continue;
		}
1968 1969 1970 1971 1972 1973 1974 1975
		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
						    index, npages);
		else
			opal_pci_tce_kill(phb->opal_id,
					  OPAL_PCI_TCE_KILL_PAGES,
					  pe->pe_number, 1u << shift,
					  index << shift, npages);
1976 1977 1978
	}
}

1979 1980 1981
static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
		long npages, unsigned long uaddr,
		enum dma_data_direction direction,
1982
		unsigned long attrs)
1983
{
1984 1985
	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
			attrs);
1986

1987
	if (!ret)
1988 1989 1990 1991 1992
		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);

	return ret;
}

1993 1994 1995 1996 1997 1998
#ifdef CONFIG_IOMMU_API
static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
		unsigned long *hpa, enum dma_data_direction *direction)
{
	long ret = pnv_tce_xchg(tbl, index, hpa, direction);

1999
	if (!ret)
2000 2001 2002 2003 2004 2005
		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);

	return ret;
}
#endif

2006 2007 2008 2009 2010
static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
		long npages)
{
	pnv_tce_free(tbl, index, npages);

2011
	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2012 2013
}

2014 2015 2016 2017 2018 2019
static void pnv_ioda2_table_free(struct iommu_table *tbl)
{
	pnv_pci_ioda2_table_free_pages(tbl);
	iommu_free_table(tbl, "pnv");
}

2020
static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2021
	.set = pnv_ioda2_tce_build,
2022 2023 2024
#ifdef CONFIG_IOMMU_API
	.exchange = pnv_ioda2_tce_xchg,
#endif
2025
	.clear = pnv_ioda2_tce_free,
2026
	.get = pnv_tce_get,
2027
	.free = pnv_ioda2_table_free,
2028 2029
};

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
{
	unsigned int *weight = (unsigned int *)data;

	/* This is quite simplistic. The "base" weight of a device
	 * is 10. 0 means no DMA is to be accounted for it.
	 */
	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
		return 0;

	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
		*weight += 3;
	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
		*weight += 15;
	else
		*weight += 10;

	return 0;
}

static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
{
	unsigned int weight = 0;

	/* SRIOV VF has same DMA32 weight as its PF */
#ifdef CONFIG_PCI_IOV
	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
		return weight;
	}
#endif

	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
		struct pci_dev *pdev;

		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
	}

	return weight;
}

2078
static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2079
				       struct pnv_ioda_pe *pe)
2080 2081 2082 2083
{

	struct page *tce_mem = NULL;
	struct iommu_table *tbl;
2084 2085
	unsigned int weight, total_weight = 0;
	unsigned int tce32_segsz, base, segs, avail, i;
2086 2087 2088 2089 2090 2091
	int64_t rc;
	void *addr;

	/* XXX FIXME: Handle 64-bit only DMA devices */
	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2092 2093 2094 2095 2096 2097 2098 2099 2100
	weight = pnv_pci_ioda_pe_dma_weight(pe);
	if (!weight)
		return;

	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
		     &total_weight);
	segs = (weight * phb->ioda.dma32_count) / total_weight;
	if (!segs)
		segs = 1;
2101

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	/*
	 * Allocate contiguous DMA32 segments. We begin with the expected
	 * number of segments. With one more attempt, the number of DMA32
	 * segments to be allocated is decreased by one until one segment
	 * is allocated successfully.
	 */
	do {
		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
			for (avail = 0, i = base; i < base + segs; i++) {
				if (phb->ioda.dma32_segmap[i] ==
				    IODA_INVALID_PE)
					avail++;
			}

			if (avail == segs)
				goto found;
		}
	} while (--segs);

	if (!segs) {
		pe_warn(pe, "No available DMA32 segments\n");
		return;
	}

found:
2127
	tbl = pnv_pci_table_alloc(phb->hose->node);
2128 2129
	iommu_register_group(&pe->table_group, phb->hose->global_number,
			pe->pe_number);
2130
	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2131

2132
	/* Grab a 32-bit TCE table */
2133 2134
	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
		weight, total_weight, base, segs);
2135
	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2136 2137
		base * PNV_IODA1_DMA32_SEGSIZE,
		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2138 2139 2140 2141 2142

	/* XXX Currently, we allocate one big contiguous table for the
	 * TCEs. We only really need one chunk per 256M of TCE space
	 * (ie per segment) but that's an optimization for later, it
	 * requires some added smarts with our get/put_tce implementation
2143 2144 2145
	 *
	 * Each TCE page is 4KB in size and each TCE entry occupies 8
	 * bytes
2146
	 */
2147
	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2148
	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2149
				   get_order(tce32_segsz * segs));
2150 2151 2152 2153 2154
	if (!tce_mem) {
		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
		goto fail;
	}
	addr = page_address(tce_mem);
2155
	memset(addr, 0, tce32_segsz * segs);
2156 2157 2158 2159 2160 2161

	/* Configure HW */
	for (i = 0; i < segs; i++) {
		rc = opal_pci_map_pe_dma_window(phb->opal_id,
					      pe->pe_number,
					      base + i, 1,
2162 2163
					      __pa(addr) + tce32_segsz * i,
					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2164 2165 2166 2167 2168 2169 2170
		if (rc) {
			pe_err(pe, " Failed to configure 32-bit TCE table,"
			       " err %ld\n", rc);
			goto fail;
		}
	}

2171 2172 2173 2174
	/* Setup DMA32 segment mapping */
	for (i = base; i < base + segs; i++)
		phb->ioda.dma32_segmap[i] = pe->pe_number;

2175
	/* Setup linux iommu table */
2176 2177 2178
	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
				  base * PNV_IODA1_DMA32_SEGSIZE,
				  IOMMU_PAGE_SHIFT_4K);
2179

2180
	tbl->it_ops = &pnv_ioda1_iommu_ops;
2181 2182
	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2183 2184
	iommu_init_table(tbl, phb->hose->node);

2185
	if (pe->flags & PNV_IODA_PE_DEV) {
2186 2187 2188 2189 2190 2191 2192
		/*
		 * Setting table base here only for carrying iommu_group
		 * further down to let iommu_add_device() do the job.
		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
		 */
		set_iommu_table_base(&pe->pdev->dev, tbl);
		iommu_add_device(&pe->pdev->dev);
2193
	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2194
		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2195

2196 2197 2198 2199
	return;
 fail:
	/* XXX Failure: Try to fallback to 64-bit only ? */
	if (tce_mem)
2200
		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2201 2202 2203 2204
	if (tbl) {
		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
		iommu_free_table(tbl, "pnv");
	}
2205 2206
}

2207 2208 2209 2210 2211 2212 2213
static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
		int num, struct iommu_table *tbl)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	struct pnv_phb *phb = pe->phb;
	int64_t rc;
2214 2215
	const unsigned long size = tbl->it_indirect_levels ?
			tbl->it_level_size : tbl->it_size;
2216 2217 2218
	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
	const __u64 win_size = tbl->it_size << tbl->it_page_shift;

2219
	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2220 2221 2222 2223 2224 2225 2226 2227 2228
			start_addr, start_addr + win_size - 1,
			IOMMU_PAGE_SIZE(tbl));

	/*
	 * Map TCE table through TVT. The TVE index is the PE number
	 * shifted by 1 bit for 32-bits DMA space.
	 */
	rc = opal_pci_map_pe_dma_window(phb->opal_id,
			pe->pe_number,
2229
			(pe->pe_number << 1) + num,
2230
			tbl->it_indirect_levels + 1,
2231
			__pa(tbl->it_base),
2232
			size << 3,
2233 2234 2235 2236 2237 2238 2239 2240
			IOMMU_PAGE_SIZE(tbl));
	if (rc) {
		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
		return rc;
	}

	pnv_pci_link_table_and_group(phb->hose->node, num,
			tbl, &pe->table_group);
2241
	pnv_pci_ioda2_tce_invalidate_pe(pe);
2242 2243 2244 2245

	return 0;
}

2246
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
{
	uint16_t window_id = (pe->pe_number << 1 ) + 1;
	int64_t rc;

	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
	if (enable) {
		phys_addr_t top = memblock_end_of_DRAM();

		top = roundup_pow_of_two(top);
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     top);
	} else {
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     0);
	}
	if (rc)
		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
	else
		pe->tce_bypass_enabled = enable;
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
		__u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table *tbl);

static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
		int num, __u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table **ptbl)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	int nid = pe->phb->hose->node;
	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
	long ret;
	struct iommu_table *tbl;

	tbl = pnv_pci_table_alloc(nid);
	if (!tbl)
		return -ENOMEM;

	ret = pnv_pci_ioda2_table_alloc_pages(nid,
			bus_offset, page_shift, window_size,
			levels, tbl);
	if (ret) {
		iommu_free_table(tbl, "pnv");
		return ret;
	}

	tbl->it_ops = &pnv_ioda2_iommu_ops;

	*ptbl = tbl;

	return 0;
}

2308 2309 2310 2311 2312
static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
{
	struct iommu_table *tbl = NULL;
	long rc;

2313 2314 2315 2316 2317 2318 2319
	/*
	 * crashkernel= specifies the kdump kernel's maximum memory at
	 * some offset and there is no guaranteed the result is a power
	 * of 2, which will cause errors later.
	 */
	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());

2320 2321 2322 2323 2324
	/*
	 * In memory constrained environments, e.g. kdump kernel, the
	 * DMA window can be larger than available memory, which will
	 * cause errors later.
	 */
2325
	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2326

2327 2328
	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
			IOMMU_PAGE_SHIFT_4K,
2329
			window_size,
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
	if (rc) {
		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
				rc);
		return rc;
	}

	iommu_init_table(tbl, pe->phb->hose->node);

	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
	if (rc) {
		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
				rc);
		pnv_ioda2_table_free(tbl);
		return rc;
	}

	if (!pnv_iommu_bypass_disabled)
		pnv_pci_ioda2_set_bypass(pe, true);

	/*
	 * Setting table base here only for carrying iommu_group
	 * further down to let iommu_add_device() do the job.
	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
	 */
	if (pe->flags & PNV_IODA_PE_DEV)
		set_iommu_table_base(&pe->pdev->dev, tbl);

	return 0;
}

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
#if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
		int num)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	struct pnv_phb *phb = pe->phb;
	long ret;

	pe_info(pe, "Removing DMA window #%d\n", num);

	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
			(pe->pe_number << 1) + num,
			0/* levels */, 0/* table address */,
			0/* table size */, 0/* page size */);
	if (ret)
		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
	else
2379
		pnv_pci_ioda2_tce_invalidate_pe(pe);
2380 2381 2382 2383 2384 2385 2386

	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);

	return ret;
}
#endif

2387
#ifdef CONFIG_IOMMU_API
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
		__u64 window_size, __u32 levels)
{
	unsigned long bytes = 0;
	const unsigned window_shift = ilog2(window_size);
	unsigned entries_shift = window_shift - page_shift;
	unsigned table_shift = entries_shift + 3;
	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
	unsigned long direct_table_size;

	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
			(window_size > memory_hotplug_max()) ||
			!is_power_of_2(window_size))
		return 0;

	/* Calculate a direct table size from window_size and levels */
	entries_shift = (entries_shift + levels - 1) / levels;
	table_shift = entries_shift + 3;
	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
	direct_table_size =  1UL << table_shift;

	for ( ; levels; --levels) {
		bytes += _ALIGN_UP(tce_table_size, direct_table_size);

		tce_table_size /= direct_table_size;
		tce_table_size <<= 3;
		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
	}

	return bytes;
}

2420
static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2421
{
2422 2423
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
						table_group);
2424 2425
	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
	struct iommu_table *tbl = pe->table_group.tables[0];
2426

2427
	pnv_pci_ioda2_set_bypass(pe, false);
2428 2429
	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
	pnv_ioda2_table_free(tbl);
2430
}
2431

2432 2433 2434 2435 2436
static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
						table_group);

2437
	pnv_pci_ioda2_setup_default_config(pe);
2438 2439
}

2440
static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2441
	.get_table_size = pnv_pci_ioda2_get_table_size,
2442 2443 2444
	.create_table = pnv_pci_ioda2_create_table,
	.set_window = pnv_pci_ioda2_set_window,
	.unset_window = pnv_pci_ioda2_unset_window,
2445 2446 2447
	.take_ownership = pnv_ioda2_take_ownership,
	.release_ownership = pnv_ioda2_release_ownership,
};
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
	struct pnv_ioda_pe **ptmppe = opaque;
	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
	struct pci_dn *pdn = pci_get_pdn(pdev);

	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return 0;

	hose = pci_bus_to_host(pdev->bus);
	phb = hose->private_data;
	if (phb->type != PNV_PHB_NPU)
		return 0;

	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];

	return 1;
}

/*
 * This returns PE of associated NPU.
 * This assumes that NPU is in the same IOMMU group with GPU and there is
 * no other PEs.
 */
static struct pnv_ioda_pe *gpe_table_group_to_npe(
		struct iommu_table_group *table_group)
{
	struct pnv_ioda_pe *npe = NULL;
	int ret = iommu_group_for_each_dev(table_group->group, &npe,
			gpe_table_group_to_npe_cb);

	BUG_ON(!ret || !npe);

	return npe;
}

static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
		int num, struct iommu_table *tbl)
{
	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);

	if (ret)
		return ret;

	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
	if (ret)
		pnv_pci_ioda2_unset_window(table_group, num);

	return ret;
}

static long pnv_pci_ioda2_npu_unset_window(
		struct iommu_table_group *table_group,
		int num)
{
	long ret = pnv_pci_ioda2_unset_window(table_group, num);

	if (ret)
		return ret;

	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
}

static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
{
	/*
	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
	 * the iommu_table if 32bit DMA is enabled.
	 */
	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
	pnv_ioda2_take_ownership(table_group);
}

static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
	.get_table_size = pnv_pci_ioda2_get_table_size,
	.create_table = pnv_pci_ioda2_create_table,
	.set_window = pnv_pci_ioda2_npu_set_window,
	.unset_window = pnv_pci_ioda2_npu_unset_window,
	.take_ownership = pnv_ioda2_npu_take_ownership,
	.release_ownership = pnv_ioda2_release_ownership,
};

static void pnv_pci_ioda_setup_iommu_api(void)
{
	struct pci_controller *hose, *tmp;
	struct pnv_phb *phb;
	struct pnv_ioda_pe *pe, *gpe;

	/*
	 * Now we have all PHBs discovered, time to add NPU devices to
	 * the corresponding IOMMU groups.
	 */
	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;

		if (phb->type != PNV_PHB_NPU)
			continue;

		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
			gpe = pnv_pci_npu_setup_iommu(pe);
			if (gpe)
				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
		}
	}
}
#else /* !CONFIG_IOMMU_API */
static void pnv_pci_ioda_setup_iommu_api(void) { };
2558 2559
#endif

2560 2561
static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
		unsigned levels, unsigned long limit,
2562
		unsigned long *current_offset, unsigned long *total_allocated)
2563 2564
{
	struct page *tce_mem = NULL;
2565
	__be64 *addr, *tmp;
2566
	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2567 2568 2569
	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
	unsigned entries = 1UL << (shift - 3);
	long i;
2570 2571 2572 2573 2574 2575 2576

	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
	if (!tce_mem) {
		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
		return NULL;
	}
	addr = page_address(tce_mem);
2577
	memset(addr, 0, allocated);
2578
	*total_allocated += allocated;
2579 2580 2581 2582 2583 2584 2585 2586 2587

	--levels;
	if (!levels) {
		*current_offset += allocated;
		return addr;
	}

	for (i = 0; i < entries; ++i) {
		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2588
				levels, limit, current_offset, total_allocated);
2589 2590 2591 2592 2593 2594 2595 2596 2597
		if (!tmp)
			break;

		addr[i] = cpu_to_be64(__pa(tmp) |
				TCE_PCI_READ | TCE_PCI_WRITE);

		if (*current_offset >= limit)
			break;
	}
2598 2599 2600 2601

	return addr;
}

2602 2603 2604
static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
		unsigned long size, unsigned level);

2605
static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2606 2607
		__u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table *tbl)
2608
{
2609
	void *addr;
2610
	unsigned long offset = 0, level_shift, total_allocated = 0;
2611 2612 2613 2614 2615
	const unsigned window_shift = ilog2(window_size);
	unsigned entries_shift = window_shift - page_shift;
	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
	const unsigned long tce_table_size = 1UL << table_shift;

2616 2617 2618
	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
		return -EINVAL;

2619 2620 2621
	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
		return -EINVAL;

2622 2623 2624 2625 2626
	/* Adjust direct table size from window_size and levels */
	entries_shift = (entries_shift + levels - 1) / levels;
	level_shift = entries_shift + 3;
	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);

2627
	/* Allocate TCE table */
2628
	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2629
			levels, tce_table_size, &offset, &total_allocated);
2630 2631

	/* addr==NULL means that the first level allocation failed */
2632 2633 2634
	if (!addr)
		return -ENOMEM;

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	/*
	 * First level was allocated but some lower level failed as
	 * we did not allocate as much as we wanted,
	 * release partially allocated table.
	 */
	if (offset < tce_table_size) {
		pnv_pci_ioda2_table_do_free_pages(addr,
				1ULL << (level_shift - 3), levels - 1);
		return -ENOMEM;
	}

2646 2647 2648
	/* Setup linux iommu table */
	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
			page_shift);
2649 2650
	tbl->it_level_size = 1ULL << (level_shift - 3);
	tbl->it_indirect_levels = levels - 1;
2651
	tbl->it_allocated_size = total_allocated;
2652 2653 2654 2655 2656 2657 2658

	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
			window_size, tce_table_size, bus_offset);

	return 0;
}

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
		unsigned long size, unsigned level)
{
	const unsigned long addr_ul = (unsigned long) addr &
			~(TCE_PCI_READ | TCE_PCI_WRITE);

	if (level) {
		long i;
		u64 *tmp = (u64 *) addr_ul;

		for (i = 0; i < size; ++i) {
			unsigned long hpa = be64_to_cpu(tmp[i]);

			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
				continue;

			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
					level - 1);
		}
	}

	free_pages(addr_ul, get_order(size << 3));
}

2683 2684
static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
{
2685 2686 2687
	const unsigned long size = tbl->it_indirect_levels ?
			tbl->it_level_size : tbl->it_size;

2688 2689 2690
	if (!tbl->it_size)
		return;

2691 2692
	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
			tbl->it_indirect_levels);
2693 2694 2695 2696 2697
}

static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe)
{
2698 2699
	int64_t rc;

2700 2701 2702
	if (!pnv_pci_ioda_pe_dma_weight(pe))
		return;

2703 2704 2705
	/* TVE #1 is selected by PCI address bit 59 */
	pe->tce_bypass_base = 1ull << 59;

2706 2707
	iommu_register_group(&pe->table_group, phb->hose->global_number,
			pe->pe_number);
2708

2709 2710
	/* The PE will reserve all possible 32-bits space */
	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2711
		phb->ioda.m32_pci_base);
2712

2713
	/* Setup linux iommu table */
2714 2715 2716 2717 2718 2719
	pe->table_group.tce32_start = 0;
	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
	pe->table_group.max_dynamic_windows_supported =
			IOMMU_TABLE_GROUP_MAX_TABLES;
	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2720 2721 2722 2723
#ifdef CONFIG_IOMMU_API
	pe->table_group.ops = &pnv_pci_ioda2_ops;
#endif

2724
	rc = pnv_pci_ioda2_setup_default_config(pe);
2725
	if (rc)
2726
		return;
2727

2728
	if (pe->flags & PNV_IODA_PE_DEV)
2729
		iommu_add_device(&pe->pdev->dev);
2730
	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2731
		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2732 2733
}

2734
#ifdef CONFIG_PCI_MSI
2735
int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2736 2737 2738
{
	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
					   ioda.irq_chip);
2739 2740 2741 2742 2743 2744

	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
}

static void pnv_ioda2_msi_eoi(struct irq_data *d)
{
2745
	int64_t rc;
2746 2747
	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
	struct irq_chip *chip = irq_data_get_irq_chip(d);
2748

2749
	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2750 2751 2752 2753 2754
	WARN_ON_ONCE(rc);

	icp_native_eoi(d);
}

2755

2756
void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2757 2758 2759 2760
{
	struct irq_data *idata;
	struct irq_chip *ichip;

2761 2762
	/* The MSI EOI OPAL call is only needed on PHB3 */
	if (phb->model != PNV_PHB_MODEL_PHB3)
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
		return;

	if (!phb->ioda.irq_chip_init) {
		/*
		 * First time we setup an MSI IRQ, we need to setup the
		 * corresponding IRQ chip to route correctly.
		 */
		idata = irq_get_irq_data(virq);
		ichip = irq_data_get_irq_chip(idata);
		phb->ioda.irq_chip_init = 1;
		phb->ioda.irq_chip = *ichip;
		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
	}
	irq_set_chip(virq, &phb->ioda.irq_chip);
}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
/*
 * Returns true iff chip is something that we could call
 * pnv_opal_pci_msi_eoi for.
 */
bool is_pnv_opal_msi(struct irq_chip *chip)
{
	return chip->irq_eoi == pnv_ioda2_msi_eoi;
}
EXPORT_SYMBOL_GPL(is_pnv_opal_msi);

2789
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2790 2791
				  unsigned int hwirq, unsigned int virq,
				  unsigned int is_64, struct msi_msg *msg)
2792 2793 2794
{
	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
	unsigned int xive_num = hwirq - phb->msi_base;
2795
	__be32 data;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	int rc;

	/* No PE assigned ? bail out ... no MSI for you ! */
	if (pe == NULL)
		return -ENXIO;

	/* Check if we have an MVE */
	if (pe->mve_number < 0)
		return -ENXIO;

2806
	/* Force 32-bit MSI on some broken devices */
2807
	if (dev->no_64bit_msi)
2808 2809
		is_64 = 0;

2810 2811 2812 2813 2814 2815 2816 2817 2818
	/* Assign XIVE to PE */
	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
	if (rc) {
		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
			pci_name(dev), rc, xive_num);
		return -EIO;
	}

	if (is_64) {
2819 2820
		__be64 addr64;

2821 2822 2823 2824 2825 2826 2827
		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr64, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
2828 2829
		msg->address_hi = be64_to_cpu(addr64) >> 32;
		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2830
	} else {
2831 2832
		__be32 addr32;

2833 2834 2835 2836 2837 2838 2839 2840
		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr32, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
		msg->address_hi = 0;
2841
		msg->address_lo = be32_to_cpu(addr32);
2842
	}
2843
	msg->data = be32_to_cpu(data);
2844

2845
	pnv_set_msi_irq_chip(phb, virq);
2846

2847
	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2848
		 " address=%x_%08x data=%x PE# %x\n",
2849 2850 2851 2852 2853 2854 2855 2856
		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
		 msg->address_hi, msg->address_lo, data, pe->pe_number);

	return 0;
}

static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
2857
	unsigned int count;
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
	const __be32 *prop = of_get_property(phb->hose->dn,
					     "ibm,opal-msi-ranges", NULL);
	if (!prop) {
		/* BML Fallback */
		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
	}
	if (!prop)
		return;

	phb->msi_base = be32_to_cpup(prop);
2868 2869
	count = be32_to_cpup(prop + 1);
	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2870 2871 2872 2873
		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
		       phb->hose->global_number);
		return;
	}
2874

2875 2876 2877
	phb->msi_setup = pnv_pci_ioda_msi_setup;
	phb->msi32_support = 1;
	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2878
		count, phb->msi_base);
2879 2880 2881 2882 2883
}
#else
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
#endif /* CONFIG_PCI_MSI */

2884 2885 2886
#ifdef CONFIG_PCI_IOV
static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
{
2887 2888 2889
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2890 2891
	struct resource *res;
	int i;
2892
	resource_size_t size, total_vf_bar_sz;
2893
	struct pci_dn *pdn;
2894
	int mul, total_vfs;
2895 2896 2897 2898 2899 2900

	if (!pdev->is_physfn || pdev->is_added)
		return;

	pdn = pci_get_pdn(pdev);
	pdn->vfs_expanded = 0;
2901
	pdn->m64_single_mode = false;
2902

2903
	total_vfs = pci_sriov_get_totalvfs(pdev);
2904
	mul = phb->ioda.total_pe_num;
2905
	total_vf_bar_sz = 0;
2906 2907 2908 2909 2910

	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || res->parent)
			continue;
2911
		if (!pnv_pci_is_m64_flags(res->flags)) {
2912 2913
			dev_warn(&pdev->dev, "Don't support SR-IOV with"
					" non M64 VF BAR%d: %pR. \n",
2914
				 i, res);
2915
			goto truncate_iov;
2916 2917
		}

2918 2919
		total_vf_bar_sz += pci_iov_resource_size(pdev,
				i + PCI_IOV_RESOURCES);
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
		/*
		 * If bigger than quarter of M64 segment size, just round up
		 * power of two.
		 *
		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
		 * with other devices, IOV BAR size is expanded to be
		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
		 * segment size , the expanded size would equal to half of the
		 * whole M64 space size, which will exhaust the M64 Space and
		 * limit the system flexibility.  This is a design decision to
		 * set the boundary to quarter of the M64 segment size.
		 */
2933
		if (total_vf_bar_sz > gate) {
2934
			mul = roundup_pow_of_two(total_vfs);
2935 2936 2937
			dev_info(&pdev->dev,
				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
				total_vf_bar_sz, gate, mul);
2938
			pdn->m64_single_mode = true;
2939 2940 2941 2942
			break;
		}
	}

2943 2944 2945 2946 2947 2948
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || res->parent)
			continue;

		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2949 2950 2951 2952 2953 2954 2955
		/*
		 * On PHB3, the minimum size alignment of M64 BAR in single
		 * mode is 32MB.
		 */
		if (pdn->m64_single_mode && (size < SZ_32M))
			goto truncate_iov;
		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2956
		res->end = res->start + size * mul - 1;
2957 2958
		dev_dbg(&pdev->dev, "                       %pR\n", res);
		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2959
			 i, res, mul);
2960
	}
2961
	pdn->vfs_expanded = mul;
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971

	return;

truncate_iov:
	/* To save MMIO space, IOV BAR is truncated. */
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		res->flags = 0;
		res->end = res->start - 1;
	}
2972 2973 2974
}
#endif /* CONFIG_PCI_IOV */

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
				  struct resource *res)
{
	struct pnv_phb *phb = pe->phb;
	struct pci_bus_region region;
	int index;
	int64_t rc;

	if (!res || !res->flags || res->start > res->end)
		return;

	if (res->flags & IORESOURCE_IO) {
		region.start = res->start - phb->ioda.io_pci_base;
		region.end   = res->end - phb->ioda.io_pci_base;
		index = region.start / phb->ioda.io_segsize;

		while (index < phb->ioda.total_pe_num &&
		       region.start <= region.end) {
			phb->ioda.io_segmap[index] = pe->pe_number;
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
			if (rc != OPAL_SUCCESS) {
2997
				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2998 2999 3000 3001 3002 3003 3004 3005
				       __func__, rc, index, pe->pe_number);
				break;
			}

			region.start += phb->ioda.io_segsize;
			index++;
		}
	} else if ((res->flags & IORESOURCE_MEM) &&
3006
		   !pnv_pci_is_m64(phb, res)) {
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
		region.start = res->start -
			       phb->hose->mem_offset[0] -
			       phb->ioda.m32_pci_base;
		region.end   = res->end -
			       phb->hose->mem_offset[0] -
			       phb->ioda.m32_pci_base;
		index = region.start / phb->ioda.m32_segsize;

		while (index < phb->ioda.total_pe_num &&
		       region.start <= region.end) {
			phb->ioda.m32_segmap[index] = pe->pe_number;
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
			if (rc != OPAL_SUCCESS) {
3021
				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
				       __func__, rc, index, pe->pe_number);
				break;
			}

			region.start += phb->ioda.m32_segsize;
			index++;
		}
	}
}

3032 3033 3034
/*
 * This function is supposed to be called on basis of PE from top
 * to bottom style. So the the I/O or MMIO segment assigned to
3035
 * parent PE could be overridden by its child PEs if necessary.
3036
 */
3037
static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3038
{
3039
	struct pci_dev *pdev;
3040
	int i;
3041 3042 3043 3044 3045 3046 3047 3048

	/*
	 * NOTE: We only care PCI bus based PE for now. For PCI
	 * device based PE, for example SRIOV sensitive VF should
	 * be figured out later.
	 */
	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);

		/*
		 * If the PE contains all subordinate PCI buses, the
		 * windows of the child bridges should be mapped to
		 * the PE as well.
		 */
		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
			continue;
		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
			pnv_ioda_setup_pe_res(pe,
				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
	}
3064 3065
}

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
#ifdef CONFIG_DEBUG_FS
static int pnv_pci_diag_data_set(void *data, u64 val)
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
	s64 ret;

	if (val != 1ULL)
		return -EINVAL;

	hose = (struct pci_controller *)data;
	if (!hose || !hose->private_data)
		return -ENODEV;

	phb = hose->private_data;

	/* Retrieve the diag data from firmware */
	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
					  PNV_PCI_DIAG_BUF_SIZE);
	if (ret != OPAL_SUCCESS)
		return -EIO;

	/* Print the diag data to the kernel log */
	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob);
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
			pnv_pci_diag_data_set, "%llu\n");

#endif /* CONFIG_DEBUG_FS */

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
static void pnv_pci_ioda_create_dbgfs(void)
{
#ifdef CONFIG_DEBUG_FS
	struct pci_controller *hose, *tmp;
	struct pnv_phb *phb;
	char name[16];

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;

3108 3109 3110
		/* Notify initialization of PHB done */
		phb->initialized = 1;

3111 3112
		sprintf(name, "PCI%04x", hose->global_number);
		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3113
		if (!phb->dbgfs) {
3114 3115
			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
				__func__, hose->global_number);
3116 3117 3118 3119 3120
			continue;
		}

		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
				    &pnv_pci_diag_data_fops);
3121 3122 3123 3124
	}
#endif /* CONFIG_DEBUG_FS */
}

3125
static void pnv_pci_ioda_fixup(void)
3126 3127
{
	pnv_pci_ioda_setup_PEs();
3128
	pnv_pci_ioda_setup_iommu_api();
3129 3130
	pnv_pci_ioda_create_dbgfs();

3131 3132
#ifdef CONFIG_EEH
	eeh_init();
M
Mike Qiu 已提交
3133
	eeh_addr_cache_build();
3134
#endif
3135 3136
}

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
/*
 * Returns the alignment for I/O or memory windows for P2P
 * bridges. That actually depends on how PEs are segmented.
 * For now, we return I/O or M32 segment size for PE sensitive
 * P2P bridges. Otherwise, the default values (4KiB for I/O,
 * 1MiB for memory) will be returned.
 *
 * The current PCI bus might be put into one PE, which was
 * create against the parent PCI bridge. For that case, we
 * needn't enlarge the alignment so that we can save some
 * resources.
 */
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
						unsigned long type)
{
	struct pci_dev *bridge;
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	int num_pci_bridges = 0;

	bridge = bus->self;
	while (bridge) {
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
			num_pci_bridges++;
			if (num_pci_bridges >= 2)
				return 1;
		}

		bridge = bridge->bus->self;
	}

3168 3169 3170 3171 3172
	/*
	 * We fall back to M32 if M64 isn't supported. We enforce the M64
	 * alignment for any 64-bit resource, PCIe doesn't care and
	 * bridges only do 64-bit prefetchable anyway.
	 */
3173
	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3174
		return phb->ioda.m64_segsize;
3175 3176 3177 3178 3179 3180
	if (type & IORESOURCE_MEM)
		return phb->ioda.m32_segsize;

	return phb->ioda.io_segsize;
}

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
/*
 * We are updating root port or the upstream port of the
 * bridge behind the root port with PHB's windows in order
 * to accommodate the changes on required resources during
 * PCI (slot) hotplug, which is connected to either root
 * port or the downstream ports of PCIe switch behind the
 * root port.
 */
static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
					   unsigned long type)
{
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dev *bridge = bus->self;
	struct resource *r, *w;
	bool msi_region = false;
	int i;

	/* Check if we need apply fixup to the bridge's windows */
	if (!pci_is_root_bus(bridge->bus) &&
	    !pci_is_root_bus(bridge->bus->self->bus))
		return;

	/* Fixup the resources */
	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
		if (!r->flags || !r->parent)
			continue;

		w = NULL;
		if (r->flags & type & IORESOURCE_IO)
			w = &hose->io_resource;
3213
		else if (pnv_pci_is_m64(phb, r) &&
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
			 (type & IORESOURCE_PREFETCH) &&
			 phb->ioda.m64_segsize)
			w = &hose->mem_resources[1];
		else if (r->flags & type & IORESOURCE_MEM) {
			w = &hose->mem_resources[0];
			msi_region = true;
		}

		r->start = w->start;
		r->end = w->end;

		/* The 64KB 32-bits MSI region shouldn't be included in
		 * the 32-bits bridge window. Otherwise, we can see strange
		 * issues. One of them is EEH error observed on Garrison.
		 *
		 * Exclude top 1MB region which is the minimal alignment of
		 * 32-bits bridge window.
		 */
		if (msi_region) {
			r->end += 0x10000;
			r->end -= 0x100000;
		}
	}
}

3239 3240 3241 3242 3243 3244 3245 3246
static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
{
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dev *bridge = bus->self;
	struct pnv_ioda_pe *pe;
	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);

3247 3248 3249
	/* Extend bridge's windows if necessary */
	pnv_pci_fixup_bridge_resources(bus, type);

3250 3251 3252 3253 3254 3255 3256 3257 3258
	/* The PE for root bus should be realized before any one else */
	if (!phb->ioda.root_pe_populated) {
		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
		if (pe) {
			phb->ioda.root_pe_idx = pe->pe_number;
			phb->ioda.root_pe_populated = true;
		}
	}

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
	if (list_empty(&bus->devices))
		return;

	/* Reserve PEs according to used M64 resources */
	if (phb->reserve_m64_pe)
		phb->reserve_m64_pe(bus, NULL, all);

	/*
	 * Assign PE. We might run here because of partial hotplug.
	 * For the case, we just pick up the existing PE and should
	 * not allocate resources again.
	 */
	pe = pnv_ioda_setup_bus_PE(bus, all);
	if (!pe)
		return;

	pnv_ioda_setup_pe_seg(pe);
	switch (phb->type) {
	case PNV_PHB_IODA1:
		pnv_pci_ioda1_setup_dma_pe(phb, pe);
		break;
	case PNV_PHB_IODA2:
		pnv_pci_ioda2_setup_dma_pe(phb, pe);
		break;
	default:
3285
		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3286 3287 3288 3289
			__func__, phb->hose->global_number, phb->type);
	}
}

3290 3291 3292 3293 3294
static resource_size_t pnv_pci_default_alignment(void)
{
	return PAGE_SIZE;
}

3295 3296 3297 3298
#ifdef CONFIG_PCI_IOV
static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
						      int resno)
{
3299 3300
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
3301
	struct pci_dn *pdn = pci_get_pdn(pdev);
3302
	resource_size_t align;
3303

3304 3305 3306 3307 3308
	/*
	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
	 * SR-IOV. While from hardware perspective, the range mapped by M64
	 * BAR should be size aligned.
	 *
3309 3310 3311 3312 3313 3314 3315
	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
	 * powernv-specific hardware restriction is gone. But if just use the
	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
	 * in one segment of M64 #15, which introduces the PE conflict between
	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
	 * m64_segsize.
	 *
3316 3317
	 * This function returns the total IOV BAR size if M64 BAR is in
	 * Shared PE mode or just VF BAR size if not.
3318 3319
	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
	 * M64 segment size if IOV BAR size is less.
3320
	 */
3321
	align = pci_iov_resource_size(pdev, resno);
3322 3323
	if (!pdn->vfs_expanded)
		return align;
3324 3325
	if (pdn->m64_single_mode)
		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3326

3327
	return pdn->vfs_expanded * align;
3328 3329 3330
}
#endif /* CONFIG_PCI_IOV */

3331 3332 3333
/* Prevent enabling devices for which we couldn't properly
 * assign a PE
 */
3334
bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3335
{
3336 3337 3338
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn;
3339

3340 3341 3342 3343 3344 3345
	/* The function is probably called while the PEs have
	 * not be created yet. For example, resource reassignment
	 * during PCI probe period. We just skip the check if
	 * PEs isn't ready.
	 */
	if (!phb->initialized)
3346
		return true;
3347

3348
	pdn = pci_get_pdn(dev);
3349
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3350
		return false;
3351

3352
	return true;
3353 3354
}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
				       int num)
{
	struct pnv_ioda_pe *pe = container_of(table_group,
					      struct pnv_ioda_pe, table_group);
	struct pnv_phb *phb = pe->phb;
	unsigned int idx;
	long rc;

	pe_info(pe, "Removing DMA window #%d\n", num);
	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
			continue;

		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
						idx, 0, 0ul, 0ul, 0ul);
		if (rc != OPAL_SUCCESS) {
			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
				rc, idx);
			return rc;
		}

		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
	}

	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
	return OPAL_SUCCESS;
}

static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
{
	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
	struct iommu_table *tbl = pe->table_group.tables[0];
	int64_t rc;

	if (!weight)
		return;

	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
	if (rc != OPAL_SUCCESS)
		return;

3397
	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		WARN_ON(pe->table_group.group);
	}

	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
	iommu_free_table(tbl, "pnv");
}

static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
{
	struct iommu_table *tbl = pe->table_group.tables[0];
	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
#ifdef CONFIG_IOMMU_API
	int64_t rc;
#endif

	if (!weight)
		return;

#ifdef CONFIG_IOMMU_API
	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
	if (rc)
		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
#endif

	pnv_pci_ioda2_set_bypass(pe, false);
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		WARN_ON(pe->table_group.group);
	}

	pnv_pci_ioda2_table_free_pages(tbl);
	iommu_free_table(tbl, "pnv");
}

static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
				 unsigned short win,
				 unsigned int *map)
{
	struct pnv_phb *phb = pe->phb;
	int idx;
	int64_t rc;

	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
		if (map[idx] != pe->pe_number)
			continue;

		if (win == OPAL_M64_WINDOW_TYPE)
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					phb->ioda.reserved_pe_idx, win,
					idx / PNV_IODA1_M64_SEGS,
					idx % PNV_IODA1_M64_SEGS);
		else
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					phb->ioda.reserved_pe_idx, win, 0, idx);

		if (rc != OPAL_SUCCESS)
			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
				rc, win, idx);

		map[idx] = IODA_INVALID_PE;
	}
}

static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;

	if (phb->type == PNV_PHB_IODA1) {
		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
				     phb->ioda.io_segmap);
		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
				     phb->ioda.m32_segmap);
		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
				     phb->ioda.m64_segmap);
	} else if (phb->type == PNV_PHB_IODA2) {
		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
				     phb->ioda.m32_segmap);
	}
}

static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;
	struct pnv_ioda_pe *slave, *tmp;

	list_del(&pe->list);
	switch (phb->type) {
	case PNV_PHB_IODA1:
		pnv_pci_ioda1_release_pe_dma(pe);
		break;
	case PNV_PHB_IODA2:
		pnv_pci_ioda2_release_pe_dma(pe);
		break;
	default:
		WARN_ON(1);
	}

	pnv_ioda_release_pe_seg(pe);
	pnv_ioda_deconfigure_pe(pe->phb, pe);
3499 3500 3501 3502 3503 3504 3505 3506 3507

	/* Release slave PEs in the compound PE */
	if (pe->flags & PNV_IODA_PE_MASTER) {
		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
			list_del(&slave->list);
			pnv_ioda_free_pe(slave);
		}
	}

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
	/*
	 * The PE for root bus can be removed because of hotplug in EEH
	 * recovery for fenced PHB error. We need to mark the PE dead so
	 * that it can be populated again in PCI hot add path. The PE
	 * shouldn't be destroyed as it's the global reserved resource.
	 */
	if (phb->ioda.root_pe_populated &&
	    phb->ioda.root_pe_idx == pe->pe_number)
		phb->ioda.root_pe_populated = false;
	else
		pnv_ioda_free_pe(pe);
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
}

static void pnv_pci_release_device(struct pci_dev *pdev)
{
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;

	if (pdev->is_virtfn)
		return;

	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return;

3534 3535 3536 3537 3538 3539 3540 3541
	/*
	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
	 * isn't removed and added afterwards in this scenario. We should
	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
	 * device count is decreased on removing devices while failing to
	 * be increased on adding devices. It leads to unbalanced PE's device
	 * count and eventually make normal PCI hotplug path broken.
	 */
3542
	pe = &phb->ioda.pe_array[pdn->pe_number];
3543 3544
	pdn->pe_number = IODA_INVALID_PE;

3545 3546 3547 3548 3549
	WARN_ON(--pe->device_count < 0);
	if (pe->device_count == 0)
		pnv_ioda_release_pe(pe);
}

3550
static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3551
{
3552 3553
	struct pnv_phb *phb = hose->private_data;

3554
	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3555 3556 3557
		       OPAL_ASSERT_RESET);
}

3558
static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3559 3560
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3561
#ifdef CONFIG_PCI_MSI
3562 3563
	.setup_msi_irqs		= pnv_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3564
#endif
3565
	.enable_device_hook	= pnv_pci_enable_device_hook,
3566
	.release_device		= pnv_pci_release_device,
3567
	.window_alignment	= pnv_pci_window_alignment,
3568
	.setup_bridge		= pnv_pci_setup_bridge,
3569 3570 3571 3572
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
3573 3574
};

3575 3576 3577 3578 3579 3580 3581 3582
static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
{
	dev_err_once(&npdev->dev,
			"%s operation unsupported for NVLink devices\n",
			__func__);
	return -EPERM;
}

3583
static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3584
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3585
#ifdef CONFIG_PCI_MSI
3586 3587
	.setup_msi_irqs		= pnv_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3588
#endif
3589 3590 3591 3592 3593
	.enable_device_hook	= pnv_pci_enable_device_hook,
	.window_alignment	= pnv_pci_window_alignment,
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_npu_dma_set_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
3594 3595
};

3596 3597 3598 3599
#ifdef CONFIG_CXL_BASE
const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3600 3601 3602 3603
#ifdef CONFIG_PCI_MSI
	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
#endif
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
	.enable_device_hook	= pnv_cxl_enable_device_hook,
	.disable_device		= pnv_cxl_disable_device,
	.release_device		= pnv_pci_release_device,
	.window_alignment	= pnv_pci_window_alignment,
	.setup_bridge		= pnv_pci_setup_bridge,
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
};
#endif

3616 3617
static void __init pnv_pci_init_ioda_phb(struct device_node *np,
					 u64 hub_id, int ioda_type)
3618 3619 3620
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
3621 3622
	unsigned long size, m64map_off, m32map_off, pemap_off;
	unsigned long iomap_off = 0, dma32map_off = 0;
3623
	struct resource r;
3624
	const __be64 *prop64;
3625
	const __be32 *prop32;
3626
	int len;
3627
	unsigned int segno;
3628 3629 3630 3631
	u64 phb_id;
	void *aux;
	long rc;

3632 3633 3634
	if (!of_device_is_available(np))
		return;

3635 3636
	pr_info("Initializing %s PHB (%s)\n",
		pnv_phb_names[ioda_type], of_node_full_name(np));
3637 3638 3639 3640 3641 3642 3643 3644 3645

	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
	if (!prop64) {
		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
		return;
	}
	phb_id = be64_to_cpup(prop64);
	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);

3646
	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3647 3648 3649 3650 3651

	/* Allocate PCI controller */
	phb->hose = hose = pcibios_alloc_controller(np);
	if (!phb->hose) {
		pr_err("  Can't allocate PCI controller for %s\n",
3652
		       np->full_name);
3653
		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3654 3655 3656 3657
		return;
	}

	spin_lock_init(&phb->lock);
3658 3659
	prop32 = of_get_property(np, "bus-range", &len);
	if (prop32 && len == 8) {
3660 3661
		hose->first_busno = be32_to_cpu(prop32[0]);
		hose->last_busno = be32_to_cpu(prop32[1]);
3662 3663 3664 3665 3666
	} else {
		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
		hose->first_busno = 0;
		hose->last_busno = 0xff;
	}
3667
	hose->private_data = phb;
3668
	phb->hub_id = hub_id;
3669
	phb->opal_id = phb_id;
G
Gavin Shan 已提交
3670
	phb->type = ioda_type;
3671
	mutex_init(&phb->ioda.pe_alloc_mutex);
3672

3673 3674 3675
	/* Detect specific models for error handling */
	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
		phb->model = PNV_PHB_MODEL_P7IOC;
3676
	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
G
Gavin Shan 已提交
3677
		phb->model = PNV_PHB_MODEL_PHB3;
3678 3679
	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
		phb->model = PNV_PHB_MODEL_NPU;
3680 3681
	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
		phb->model = PNV_PHB_MODEL_NPU2;
3682 3683 3684
	else
		phb->model = PNV_PHB_MODEL_UNKNOWN;

G
Gavin Shan 已提交
3685
	/* Parse 32-bit and IO ranges (if any) */
3686
	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3687

G
Gavin Shan 已提交
3688
	/* Get registers */
3689 3690 3691 3692 3693 3694
	if (!of_address_to_resource(np, 0, &r)) {
		phb->regs_phys = r.start;
		phb->regs = ioremap(r.start, resource_size(&r));
		if (phb->regs == NULL)
			pr_err("  Failed to map registers !\n");
	}
3695

3696
	/* Initialize more IODA stuff */
3697
	phb->ioda.total_pe_num = 1;
G
Gavin Shan 已提交
3698
	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3699
	if (prop32)
3700
		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3701 3702
	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
	if (prop32)
3703
		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3704

3705 3706 3707 3708
	/* Invalidate RID to PE# mapping */
	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;

3709 3710 3711
	/* Parse 64-bit MMIO range */
	pnv_ioda_parse_m64_window(phb);

3712
	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
G
Gavin Shan 已提交
3713
	/* FW Has already off top 64k of M32 space (MSI space) */
3714 3715
	phb->ioda.m32_size += 0x10000;

3716
	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3717
	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3718
	phb->ioda.io_size = hose->pci_io_size;
3719
	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3720 3721
	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */

3722 3723 3724 3725
	/* Calculate how many 32-bit TCE segments we have */
	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
				PNV_IODA1_DMA32_SEGSIZE;

3726
	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3727 3728
	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
			sizeof(unsigned long));
3729 3730
	m64map_off = size;
	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3731
	m32map_off = size;
3732
	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3733 3734
	if (phb->type == PNV_PHB_IODA1) {
		iomap_off = size;
3735
		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3736 3737 3738
		dma32map_off = size;
		size += phb->ioda.dma32_count *
			sizeof(phb->ioda.dma32_segmap[0]);
3739
	}
3740
	pemap_off = size;
3741
	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3742
	aux = memblock_virt_alloc(size, 0);
3743
	phb->ioda.pe_alloc = aux;
3744
	phb->ioda.m64_segmap = aux + m64map_off;
3745
	phb->ioda.m32_segmap = aux + m32map_off;
3746 3747
	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3748
		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3749
	}
3750
	if (phb->type == PNV_PHB_IODA1) {
3751
		phb->ioda.io_segmap = aux + iomap_off;
3752 3753
		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3754 3755 3756 3757

		phb->ioda.dma32_segmap = aux + dma32map_off;
		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3758
	}
3759
	phb->ioda.pe_array = aux + pemap_off;
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

	/*
	 * Choose PE number for root bus, which shouldn't have
	 * M64 resources consumed by its child devices. To pick
	 * the PE number adjacent to the reserved one if possible.
	 */
	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
	if (phb->ioda.reserved_pe_idx == 0) {
		phb->ioda.root_pe_idx = 1;
		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
	} else {
		phb->ioda.root_pe_idx = IODA_INVALID_PE;
	}
3776 3777

	INIT_LIST_HEAD(&phb->ioda.pe_list);
3778
	mutex_init(&phb->ioda.pe_list_mutex);
3779 3780

	/* Calculate how many 32-bit TCE segments we have */
3781
	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3782
				PNV_IODA1_DMA32_SEGSIZE;
3783

G
Gavin Shan 已提交
3784
#if 0 /* We should really do that ... */
3785 3786 3787 3788 3789 3790 3791 3792
	rc = opal_pci_set_phb_mem_window(opal->phb_id,
					 window_type,
					 window_num,
					 starting_real_address,
					 starting_pci_address,
					 segment_size);
#endif

3793
	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3794
		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3795 3796 3797 3798 3799 3800 3801 3802
		phb->ioda.m32_size, phb->ioda.m32_segsize);
	if (phb->ioda.m64_size)
		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
			phb->ioda.m64_size, phb->ioda.m64_segsize);
	if (phb->ioda.io_size)
		pr_info("                  IO: 0x%x [segment=0x%x]\n",
			phb->ioda.io_size, phb->ioda.io_segsize);

3803 3804

	phb->hose->ops = &pnv_pci_ops;
G
Gavin Shan 已提交
3805 3806 3807
	phb->get_pe_state = pnv_ioda_get_pe_state;
	phb->freeze_pe = pnv_ioda_freeze_pe;
	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3808 3809 3810 3811

	/* Setup MSI support */
	pnv_pci_init_ioda_msis(phb);

3812 3813 3814 3815 3816 3817
	/*
	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
	 * to let the PCI core do resource assignment. It's supposed
	 * that the PCI core will do correct I/O and MMIO alignment
	 * for the P2P bridge bars so that each PCI bus (excluding
	 * the child P2P bridges) can form individual PE.
3818
	 */
3819
	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3820

3821
	if (phb->type == PNV_PHB_NPU) {
3822
		hose->controller_ops = pnv_npu_ioda_controller_ops;
3823 3824
	} else {
		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3825
		hose->controller_ops = pnv_pci_ioda_controller_ops;
3826
	}
3827

3828 3829
	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;

3830 3831
#ifdef CONFIG_PCI_IOV
	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3832
	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3833 3834
#endif

3835
	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3836 3837

	/* Reset IODA tables to a clean state */
3838
	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3839
	if (rc)
3840
		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3841

3842 3843
	/*
	 * If we're running in kdump kernel, the previous kernel never
3844 3845
	 * shutdown PCI devices correctly. We already got IODA table
	 * cleaned out. So we have to issue PHB reset to stop all PCI
3846
	 * transactions from previous kernel.
3847 3848 3849
	 */
	if (is_kdump_kernel()) {
		pr_info("  Issue PHB reset ...\n");
3850 3851
		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3852
	}
3853

3854 3855
	/* Remove M64 resource if we can't configure it successfully */
	if (!phb->init_m64 || phb->init_m64(phb))
3856
		hose->mem_resources[1].flags = 0;
G
Gavin Shan 已提交
3857 3858
}

3859
void __init pnv_pci_init_ioda2_phb(struct device_node *np)
G
Gavin Shan 已提交
3860
{
3861
	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3862 3863
}

3864 3865 3866 3867 3868
void __init pnv_pci_init_npu_phb(struct device_node *np)
{
	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
}

3869 3870 3871
void __init pnv_pci_init_ioda_hub(struct device_node *np)
{
	struct device_node *phbn;
3872
	const __be64 *prop64;
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
	u64 hub_id;

	pr_info("Probing IODA IO-Hub %s\n", np->full_name);

	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
	if (!prop64) {
		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
		return;
	}
	hub_id = be64_to_cpup(prop64);
	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);

	/* Count child PHBs */
	for_each_child_of_node(np, phbn) {
		/* Look for IODA1 PHBs */
		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3889
			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3890 3891
	}
}