numa.c 39.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
11 12
#define pr_fmt(fmt) "numa: " fmt

L
Linus Torvalds 已提交
13 14 15 16 17
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19 20 21
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
22
#include <linux/memblock.h>
23
#include <linux/of.h>
24
#include <linux/pfn.h>
25 26
#include <linux/cpuset.h>
#include <linux/node.h>
27
#include <linux/stop_machine.h>
28 29 30
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
31
#include <linux/slab.h>
32
#include <asm/cputhreads.h>
33
#include <asm/sparsemem.h>
34
#include <asm/prom.h>
P
Paul Mackerras 已提交
35
#include <asm/smp.h>
36 37
#include <asm/cputhreads.h>
#include <asm/topology.h>
38 39
#include <asm/firmware.h>
#include <asm/paca.h>
40
#include <asm/hvcall.h>
41
#include <asm/setup.h>
42
#include <asm/vdso.h>
L
Linus Torvalds 已提交
43 44 45

static int numa_enabled = 1;

46 47
static char *cmdline __initdata;

L
Linus Torvalds 已提交
48 49 50
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

51
int numa_cpu_lookup_table[NR_CPUS];
52
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
53
struct pglist_data *node_data[MAX_NUMNODES];
54 55

EXPORT_SYMBOL(numa_cpu_lookup_table);
56
EXPORT_SYMBOL(node_to_cpumask_map);
57 58
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
59
static int min_common_depth;
60
static int n_mem_addr_cells, n_mem_size_cells;
61 62 63 64
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
65
static const __be32 *distance_ref_points;
66
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
67

68 69 70 71
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
72
 * Note: cpumask_of_node() is not valid until after this is done.
73 74 75
 */
static void __init setup_node_to_cpumask_map(void)
{
76
	unsigned int node;
77 78

	/* setup nr_node_ids if not done yet */
79 80
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
81 82

	/* allocate the map */
83
	for_each_node(node)
84 85 86 87 88 89
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

90
static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

137 138 139 140 141 142 143 144 145
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
L
Linus Torvalds 已提交
146 147
{
	numa_cpu_lookup_table[cpu] = node;
148 149 150 151 152
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
153

154 155
	dbg("adding cpu %d to node %d\n", cpu, node);

156 157
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
158 159
}

160
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
161 162 163 164 165 166
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

167
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
169 170 171 172 173
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
174
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
175 176

/* must hold reference to node during call */
177
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
178
{
179
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
180 181
}

182 183 184 185 186
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
187
static const __be32 *of_get_usable_memory(struct device_node *memory)
188
{
189
	const __be32 *prop;
190 191 192
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
193
		return NULL;
194 195 196
	return prop;
}

197 198 199 200 201 202
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
203
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204 205 206 207 208 209 210 211 212 213 214

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
215
EXPORT_SYMBOL(__node_distance);
216 217

static void initialize_distance_lookup_table(int nid,
218
		const __be32 *associativity)
219 220 221 222 223 224 225
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
226 227
		const __be32 *entry;

228
		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
229
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 231 232
	}
}

233 234 235
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
236
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
237
{
238
	int nid = -1;
L
Linus Torvalds 已提交
239 240

	if (min_common_depth == -1)
241
		goto out;
L
Linus Torvalds 已提交
242

243 244
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
245 246

	/* POWER4 LPAR uses 0xffff as invalid node */
247 248
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
249

250
	if (nid > 0 &&
251 252 253 254 255 256
		of_read_number(associativity, 1) >= distance_ref_points_depth) {
		/*
		 * Skip the length field and send start of associativity array
		 */
		initialize_distance_lookup_table(nid, associativity + 1);
	}
257

258
out:
259
	return nid;
L
Linus Torvalds 已提交
260 261
}

262 263 264 265 266 267
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
268
	const __be32 *tmp;
269 270 271 272 273 274 275

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

276 277 278 279 280 281 282 283 284 285 286
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

287
		device = of_get_next_parent(device);
288 289 290 291 292
	}
	of_node_put(device);

	return nid;
}
293
EXPORT_SYMBOL(of_node_to_nid);
294

L
Linus Torvalds 已提交
295 296
static int __init find_min_common_depth(void)
{
297
	int depth;
298
	struct device_node *root;
L
Linus Torvalds 已提交
299

300 301 302 303
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
304 305
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
306 307

	/*
308 309 310 311 312 313 314 315 316 317
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
318
	 */
319
	distance_ref_points = of_get_property(root,
320 321 322 323 324 325 326 327 328
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
329

330 331 332
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
333
		form1_affinity = 1;
334 335
	}

336
	if (form1_affinity) {
337
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
338
	} else {
339 340 341 342 343 344
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

345
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
346 347
	}

348 349 350 351 352 353 354 355 356 357
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

358
	of_node_put(root);
L
Linus Torvalds 已提交
359
	return depth;
360 361

err:
362
	of_node_put(root);
363
	return -1;
L
Linus Torvalds 已提交
364 365
}

366
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
367 368 369 370
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
371
	if (!memory)
372
		panic("numa.c: No memory nodes found!");
373

374
	*n_addr_cells = of_n_addr_cells(memory);
375
	*n_size_cells = of_n_size_cells(memory);
376
	of_node_put(memory);
L
Linus Torvalds 已提交
377 378
}

379
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
380 381 382 383
{
	unsigned long result = 0;

	while (n--) {
384
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
385 386 387 388 389
		(*buf)++;
	}
	return result;
}

390
/*
Y
Yinghai Lu 已提交
391
 * Read the next memblock list entry from the ibm,dynamic-memory property
392 393
 * and return the information in the provided of_drconf_cell structure.
 */
394
static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
395
{
396
	const __be32 *cp;
397 398 399 400

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
401 402 403 404
	drmem->drc_index = of_read_number(cp, 1);
	drmem->reserved = of_read_number(&cp[1], 1);
	drmem->aa_index = of_read_number(&cp[2], 1);
	drmem->flags = of_read_number(&cp[3], 1);
405 406 407 408 409

	*cellp = cp + 4;
}

/*
L
Lucas De Marchi 已提交
410
 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
411
 *
Y
Yinghai Lu 已提交
412 413
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
L
Lucas De Marchi 已提交
414
 * contains information as laid out in the of_drconf_cell struct above.
415
 */
416
static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
417
{
418
	const __be32 *prop;
419 420 421 422 423 424
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

425
	entries = of_read_number(prop++, 1);
426 427 428 429 430 431 432 433 434 435 436 437

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
L
Lucas De Marchi 已提交
438
 * Retrieve and validate the ibm,lmb-size property for drconf memory
439 440
 * from the device tree.
 */
441
static u64 of_get_lmb_size(struct device_node *memory)
442
{
443
	const __be32 *prop;
444 445
	u32 len;

446
	prop = of_get_property(memory, "ibm,lmb-size", &len);
447 448 449 450 451 452 453 454 455
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
456
	const __be32 *arrays;
457 458 459
};

/*
L
Lucas De Marchi 已提交
460
 * Retrieve and validate the list of associativity arrays for drconf
461 462 463 464 465 466 467 468
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
469
static int of_get_assoc_arrays(struct assoc_arrays *aa)
470
{
471
	struct device_node *memory;
472
	const __be32 *prop;
473 474
	u32 len;

475 476 477 478
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (!memory)
		return -1;

479
	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
480 481
	if (!prop || len < 2 * sizeof(unsigned int)) {
		of_node_put(memory);
482
		return -1;
483
	}
484

485 486
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
487

488 489
	of_node_put(memory);

490
	/* Now that we know the number of arrays and size of each array,
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
515
		nid = of_read_number(&aa->arrays[index], 1);
516 517 518

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
519 520 521 522 523 524

		if (nid > 0) {
			index = drmem->aa_index * aa->array_sz;
			initialize_distance_lookup_table(nid,
							&aa->arrays[index]);
		}
525 526 527 528 529
	}

	return nid;
}

L
Linus Torvalds 已提交
530 531 532 533
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
534
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
535
{
536
	int nid = -1;
537 538 539 540 541 542 543 544 545 546 547 548 549
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
550 551 552

	if (!cpu) {
		WARN_ON(1);
553 554 555 556
		if (cpu_present(lcpu))
			goto out_present;
		else
			goto out;
L
Linus Torvalds 已提交
557 558
	}

559
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
560

561
out_present:
562
	if (nid < 0 || !node_online(nid))
563
		nid = first_online_node;
L
Linus Torvalds 已提交
564

565
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
566
	of_node_put(cpu);
567
out:
568
	return nid;
L
Linus Torvalds 已提交
569 570
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

592 593 594 595 596 597 598 599 600 601 602 603
/* Must run before sched domains notifier. */
static int ppc_numa_cpu_prepare(unsigned int cpu)
{
	int nid;

	nid = numa_setup_cpu(cpu);
	verify_cpu_node_mapping(cpu, nid);
	return 0;
}

static int ppc_numa_cpu_dead(unsigned int cpu)
{
L
Linus Torvalds 已提交
604
#ifdef CONFIG_HOTPLUG_CPU
605
	unmap_cpu_from_node(cpu);
L
Linus Torvalds 已提交
606
#endif
607
	return 0;
L
Linus Torvalds 已提交
608 609 610 611 612 613 614 615
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
616
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
617
 */
618 619
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
620 621
{
	/*
Y
Yinghai Lu 已提交
622
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
623
	 * we've already adjusted it for the limit and it takes care of
624 625
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
626 627
	 */

Y
Yinghai Lu 已提交
628
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
629 630
		return size;

Y
Yinghai Lu 已提交
631
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
632 633
		return 0;

Y
Yinghai Lu 已提交
634
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
635 636
}

637 638 639 640
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
641
static inline int __init read_usm_ranges(const __be32 **usm)
642 643
{
	/*
644
	 * For each lmb in ibm,dynamic-memory a corresponding
645 646 647 648 649 650 651
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

652 653 654 655 656 657
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
658
	const __be32 *uninitialized_var(dm), *usm;
659
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
660
	unsigned long lmb_size, base, size, sz;
661
	int nid;
662
	struct assoc_arrays aa = { .arrays = NULL };
663 664 665

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
666 667
		return;

668 669
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
670 671
		return;

672
	rc = of_get_assoc_arrays(&aa);
673
	if (rc)
674 675
		return;

676 677 678 679 680
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

681
	for (; n != 0; --n) {
682 683 684 685 686 687 688 689
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
690
			continue;
691

692
		base = drmem.base_addr;
693
		size = lmb_size;
694
		ranges = 1;
695

696 697 698 699 700 701 702 703 704 705 706 707 708
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
709
					   &nid);
710 711 712
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
713 714
				memblock_set_node(base, sz,
						  &memblock.memory, nid);
715
		} while (--ranges);
716 717 718
	}
}

L
Linus Torvalds 已提交
719 720
static int __init parse_numa_properties(void)
{
721
	struct device_node *memory;
722
	int default_nid = 0;
L
Linus Torvalds 已提交
723 724 725 726 727 728 729 730 731 732 733 734
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

735 736
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
737
	/*
738 739 740
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
741
	 */
742
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
743
		struct device_node *cpu;
744
		int nid;
L
Linus Torvalds 已提交
745

746
		cpu = of_get_cpu_node(i, NULL);
747
		BUG_ON(!cpu);
748
		nid = of_node_to_nid_single(cpu);
749
		of_node_put(cpu);
L
Linus Torvalds 已提交
750

751 752 753 754 755 756 757 758
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
759 760
	}

761
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
762 763

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
764 765
		unsigned long start;
		unsigned long size;
766
		int nid;
L
Linus Torvalds 已提交
767
		int ranges;
768
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
769 770
		unsigned int len;

771
		memcell_buf = of_get_property(memory,
772 773
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
774
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
775 776 777
		if (!memcell_buf || len <= 0)
			continue;

778 779
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
780 781
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
782 783
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
784

785 786 787 788 789
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
790
		nid = of_node_to_nid_single(memory);
791 792
		if (nid < 0)
			nid = default_nid;
793 794

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
795
		node_set_online(nid);
L
Linus Torvalds 已提交
796

797 798 799
		size = numa_enforce_memory_limit(start, size);
		if (size)
			memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
800 801 802 803 804

		if (--ranges)
			goto new_range;
	}

805
	/*
A
Anton Blanchard 已提交
806 807 808
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
809 810 811 812 813
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
814 815 816 817 818
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
819 820
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
821
	unsigned long start_pfn, end_pfn;
822 823
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
824

825
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
826
	       top_of_ram, total_ram);
827
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
828 829
	       (top_of_ram - total_ram) >> 20);

830
	for_each_memblock(memory, reg) {
831 832
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
833 834

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
835
		memblock_set_node(PFN_PHYS(start_pfn),
836 837
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
838
		node_set_online(nid);
839
	}
L
Linus Torvalds 已提交
840 841
}

842 843 844 845 846 847 848 849 850
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
851
		pr_info("Node %d CPUs:", node);
852 853 854 855 856 857

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
858 859 860
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
861
				if (count == 0)
862
					pr_cont(" %u", cpu);
863 864 865
				++count;
			} else {
				if (count > 1)
866
					pr_cont("-%u", cpu - 1);
867 868 869 870 871
				count = 0;
			}
		}

		if (count > 1)
872 873
			pr_cont("-%u", nr_cpu_ids - 1);
		pr_cont("\n");
874 875 876
	}
}

877 878
/* Initialize NODE_DATA for a node on the local memory */
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
879
{
880 881 882 883 884
	u64 spanned_pages = end_pfn - start_pfn;
	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
	u64 nd_pa;
	void *nd;
	int tnid;
885

886 887
	nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
	nd = __va(nd_pa);
888

889 890 891 892 893 894
	/* report and initialize */
	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
		nd_pa, nd_pa + nd_size - 1);
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
	if (tnid != nid)
		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
895

896 897 898 899 900 901
	node_data[nid] = nd;
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
	NODE_DATA(nid)->node_id = nid;
	NODE_DATA(nid)->node_start_pfn = start_pfn;
	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
}
902

903
void __init initmem_init(void)
L
Linus Torvalds 已提交
904
{
905
	int nid, cpu;
L
Linus Torvalds 已提交
906

Y
Yinghai Lu 已提交
907
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
908 909 910 911 912
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();

913 914
	memblock_dump_all();

915 916 917 918 919 920 921
	/*
	 * Reduce the possible NUMA nodes to the online NUMA nodes,
	 * since we do not support node hotplug. This ensures that  we
	 * lower the maximum NUMA node ID to what is actually present.
	 */
	nodes_and(node_possible_map, node_possible_map, node_online_map);

L
Linus Torvalds 已提交
922
	for_each_online_node(nid) {
923
		unsigned long start_pfn, end_pfn;
L
Linus Torvalds 已提交
924

925
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
926
		setup_node_data(nid, start_pfn, end_pfn);
927
		sparse_memory_present_with_active_regions(nid);
928
	}
929

930
	sparse_init();
931 932 933

	setup_node_to_cpumask_map();

934
	reset_numa_cpu_lookup_table();
935

936 937 938 939
	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
940 941
	 * _nocalls() + manual invocation is used because cpuhp is not yet
	 * initialized for the boot CPU.
942
	 */
T
Thomas Gleixner 已提交
943
	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
944 945 946
				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
	for_each_present_cpu(cpu)
		numa_setup_cpu(cpu);
L
Linus Torvalds 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

960 961 962 963
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
964 965 966
	return 0;
}
early_param("numa", early_numa);
967

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
static bool topology_updates_enabled = true;

static int __init early_topology_updates(char *p)
{
	if (!p)
		return 0;

	if (!strcmp(p, "off")) {
		pr_info("Disabling topology updates\n");
		topology_updates_enabled = false;
	}

	return 0;
}
early_param("topology_updates", early_topology_updates);

984
#ifdef CONFIG_MEMORY_HOTPLUG
985
/*
986 987 988
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
989 990 991 992
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
993
	const __be32 *dm;
994
	unsigned int drconf_cell_cnt, rc;
995
	unsigned long lmb_size;
996
	struct assoc_arrays aa;
997
	int nid = -1;
998

999 1000 1001
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1002

1003 1004
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1005
		return -1;
1006

1007
	rc = of_get_assoc_arrays(&aa);
1008
	if (rc)
1009
		return -1;
1010

1011
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1022
		if ((scn_addr < drmem.base_addr)
1023
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1024 1025
			continue;

1026
		nid = of_drconf_to_nid_single(&drmem, &aa);
1027 1028 1029 1030 1031 1032 1033 1034 1035
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1036
 * each memblock.
1037
 */
1038
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1039
{
1040
	struct device_node *memory;
1041 1042
	int nid = -1;

1043
	for_each_node_by_type(memory, "memory") {
1044 1045
		unsigned long start, size;
		int ranges;
1046
		const __be32 *memcell_buf;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1066

1067 1068
		if (nid >= 0)
			break;
1069 1070
	}

1071 1072
	of_node_put(memory);

1073
	return nid;
1074 1075
}

1076 1077
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1078 1079
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1080 1081 1082 1083
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1084
	int nid;
1085 1086

	if (!numa_enabled || (min_common_depth < 0))
1087
		return first_online_node;
1088 1089 1090 1091 1092

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1093 1094
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1095
	}
1096

1097
	if (nid < 0 || !node_possible(nid))
1098
		nid = first_online_node;
1099

1100
	return nid;
1101
}
1102

1103 1104
static u64 hot_add_drconf_memory_max(void)
{
1105
	struct device_node *memory = NULL;
1106
	struct device_node *dn = NULL;
1107 1108
	unsigned int drconf_cell_cnt = 0;
	u64 lmb_size = 0;
1109
	const __be32 *dm = NULL;
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	const __be64 *lrdr = NULL;
	struct of_drconf_cell drmem;

	dn = of_find_node_by_path("/rtas");
	if (dn) {
		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
		of_node_put(dn);
		if (lrdr)
			return be64_to_cpup(lrdr);
	}
1120

1121 1122 1123 1124
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
		lmb_size = of_get_lmb_size(memory);
1125

1126 1127 1128
		/* Advance to the last cell, each cell has 6 32 bit integers */
		dm += (drconf_cell_cnt - 1) * 6;
		read_drconf_cell(&drmem, &dm);
1129
		of_node_put(memory);
1130
		return drmem.base_addr + lmb_size;
1131
	}
1132
	return 0;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1145
#endif /* CONFIG_MEMORY_HOTPLUG */
1146

1147
/* Virtual Processor Home Node (VPHN) support */
1148
#ifdef CONFIG_PPC_SPLPAR
1149 1150 1151

#include "vphn.h"

1152 1153 1154 1155 1156 1157 1158
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1159 1160
#define TOPOLOGY_DEF_TIMER_SECS	60

1161
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1162 1163
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1164 1165
static int prrn_enabled;
static void reset_topology_timer(void);
1166
static int topology_timer_secs = 1;
1167 1168
static int topology_inited;
static int topology_update_needed;
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/*
 * Change polling interval for associativity changes.
 */
int timed_topology_update(int nsecs)
{
	if (vphn_enabled) {
		if (nsecs > 0)
			topology_timer_secs = nsecs;
		else
			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;

		reset_topology_timer();
	}

	return 0;
}
1186 1187 1188 1189 1190 1191 1192

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1193
	int cpu;
1194

1195 1196 1197
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1198
	for_each_possible_cpu(cpu) {
1199
		int i;
1200 1201 1202
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1203
		for (i = 0; i < distance_ref_points_depth; i++)
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1221
	int cpu;
1222 1223 1224 1225 1226 1227 1228
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1229
		for (i = 0; i < distance_ref_points_depth; i++) {
1230
			if (hypervisor_counts[i] != counts[i]) {
1231 1232 1233 1234 1235
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1236 1237
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1238 1239 1240
		}
	}

1241
	return cpumask_weight(changes);
1242 1243 1244 1245 1246 1247
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
1248
static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1249
{
1250
	long rc;
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
1262
					__be32 *associativity)
1263
{
1264
	long rc;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
1279 1280 1281
		break;
	case H_SUCCESS:
		dbg("VPHN hcall succeeded. Reset polling...\n");
1282
		timed_topology_update(0);
1283
		break;
1284 1285 1286 1287 1288
	}

	return rc;
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1302
	cpu = smp_processor_id();
1303 1304

	for (update = data; update; update = update->next) {
1305
		int new_nid = update->new_nid;
1306 1307 1308
		if (cpu != update->cpu)
			continue;

1309
		unmap_cpu_from_node(cpu);
1310 1311 1312
		map_cpu_to_node(cpu, new_nid);
		set_cpu_numa_node(cpu, new_nid);
		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1313
		vdso_getcpu_init();
1314 1315 1316 1317 1318
	}

	return 0;
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1346 1347
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1348
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1349 1350
 *
 * cpus_locked says whether we already hold cpu_hotplug_lock.
1351
 */
1352
int numa_update_cpu_topology(bool cpus_locked)
1353
{
1354
	unsigned int cpu, sibling, changed = 0;
1355
	struct topology_update_data *updates, *ud;
1356
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1357
	cpumask_t updated_cpus;
1358
	struct device *dev;
1359
	int weight, new_nid, i = 0;
1360

1361 1362 1363
	if (!prrn_enabled && !vphn_enabled) {
		if (!topology_inited)
			topology_update_needed = 1;
1364
		return 0;
1365
	}
1366

1367 1368 1369 1370 1371 1372 1373
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
	if (!updates)
		return 0;
1374

1375 1376
	cpumask_clear(&updated_cpus);

1377
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1393

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		/* Use associativity from first thread for all siblings */
		vphn_get_associativity(cpu, associativity);
		new_nid = associativity_to_nid(associativity);
		if (new_nid < 0 || !node_online(new_nid))
			new_nid = first_online_node;

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
1404 1405
			dbg("Assoc chg gives same node %d for cpu%d\n",
					new_nid, cpu);
1406 1407 1408
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1409

1410 1411
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
1412
			ud->next = &updates[i];
1413 1414 1415 1416 1417 1418
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
		}
		cpu = cpu_last_thread_sibling(cpu);
1419 1420
	}

1421 1422 1423 1424 1425 1426 1427
	/*
	 * Prevent processing of 'updates' from overflowing array
	 * where last entry filled in a 'next' pointer.
	 */
	if (i)
		updates[i-1].next = NULL;

1428 1429 1430 1431 1432 1433 1434 1435 1436
	pr_debug("Topology update for the following CPUs:\n");
	if (cpumask_weight(&updated_cpus)) {
		for (ud = &updates[0]; ud; ud = ud->next) {
			pr_debug("cpu %d moving from node %d "
					  "to %d\n", ud->cpu,
					  ud->old_nid, ud->new_nid);
		}
	}

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	/*
	 * In cases where we have nothing to update (because the updates list
	 * is too short or because the new topology is same as the old one),
	 * skip invoking update_cpu_topology() via stop-machine(). This is
	 * necessary (and not just a fast-path optimization) since stop-machine
	 * can end up electing a random CPU to run update_cpu_topology(), and
	 * thus trick us into setting up incorrect cpu-node mappings (since
	 * 'updates' is kzalloc()'ed).
	 *
	 * And for the similar reason, we will skip all the following updating.
	 */
	if (!cpumask_weight(&updated_cpus))
		goto out;

1451 1452 1453 1454 1455
	if (cpus_locked)
		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
					&updated_cpus);
	else
		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1456

1457 1458 1459 1460 1461
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
1462 1463
	if (cpus_locked)
		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1464
					cpumask_of(raw_smp_processor_id()));
1465 1466 1467
	else
		stop_machine(update_lookup_table, &updates[0],
			     cpumask_of(raw_smp_processor_id()));
1468

1469
	for (ud = &updates[0]; ud; ud = ud->next) {
1470 1471 1472
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1473
		dev = get_cpu_device(ud->cpu);
1474 1475
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1476
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1477
		changed = 1;
1478 1479
	}

1480
out:
1481
	kfree(updates);
1482
	topology_update_needed = 0;
1483
	return changed;
1484 1485
}

1486 1487 1488 1489 1490
int arch_update_cpu_topology(void)
{
	return numa_update_cpu_topology(true);
}

1491 1492 1493 1494 1495 1496
static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1497
static void topology_schedule_update(void)
1498 1499 1500 1501
{
	schedule_work(&topology_work);
}

1502
static void topology_timer_fn(struct timer_list *unused)
1503
{
1504
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1505
		topology_schedule_update();
1506 1507 1508 1509 1510
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1511
}
1512
static struct timer_list topology_timer;
1513

1514
static void reset_topology_timer(void)
1515
{
1516
	mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1517 1518
}

1519 1520
#ifdef CONFIG_SMP

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
1531
	struct of_reconfig_data *update = data;
1532 1533 1534 1535
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
1536 1537
		if (!of_prop_cmp(update->dn->type, "cpu") &&
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1538 1539 1540 1541 1542 1543 1544 1545 1546
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1547 1548
}

1549 1550 1551 1552
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1553 1554
#endif

1555
/*
1556
 * Start polling for associativity changes.
1557 1558 1559 1560 1561
 */
int start_topology_update(void)
{
	int rc = 0;

1562 1563 1564
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
1565
#ifdef CONFIG_SMP
1566
			rc = of_reconfig_notifier_register(&dt_update_nb);
1567
#endif
1568
		}
1569 1570
	}
	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1571
		   lppaca_shared_proc(get_lppaca())) {
1572 1573 1574
		if (!vphn_enabled) {
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
1575 1576
			timer_setup(&topology_timer, topology_timer_fn,
				    TIMER_DEFERRABLE);
1577 1578
			reset_topology_timer();
		}
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	}

	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1589 1590 1591 1592
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
1593
#ifdef CONFIG_SMP
1594
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1595
#endif
1596 1597
	}
	if (vphn_enabled) {
1598 1599 1600 1601 1602
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

	return rc;
1603
}
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

	if (!strncmp(kbuf, "on", 2))
		start_topology_update();
	else if (!strncmp(kbuf, "off", 3))
		stop_topology_update();
	else
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
1656 1657 1658 1659
	/* Do not poll for changes if disabled at boot */
	if (topology_updates_enabled)
		start_topology_update();

1660 1661 1662
	if (vphn_enabled)
		topology_schedule_update();

1663 1664
	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
		return -ENOMEM;
1665

1666 1667 1668 1669 1670
	topology_inited = 1;
	if (topology_update_needed)
		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
					nr_cpumask_bits);

1671
	return 0;
1672
}
1673
device_initcall(topology_update_init);
1674
#endif /* CONFIG_PPC_SPLPAR */