core.c 90.1 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/of.h>
27
#include <linux/regmap.h>
28
#include <linux/regulator/of_regulator.h>
29 30 31
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
32
#include <linux/module.h>
33

34 35 36
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

37 38
#include "dummy.h"

M
Mark Brown 已提交
39 40
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 42 43 44 45 46 47 48 49
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

50 51 52
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
53
static bool has_full_constraints;
54
static bool board_wants_dummy_regulator;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69 70 71 72 73 74 75 76 77
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
78
	unsigned int always_on:1;
79 80 81 82 83 84
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
85
	struct dentry *debugfs;
86 87 88
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
89
static int _regulator_disable(struct regulator_dev *rdev);
90 91 92 93 94
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
95 96
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
97 98 99
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
100

101 102 103 104 105 106 107 108 109 110
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
 * retruns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
153
		dev_dbg(dev, "Looking up %s property in node %s failed",
154 155 156 157 158 159
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

160 161 162 163 164 165 166 167 168 169 170
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

171 172 173 174 175 176 177
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
178
		rdev_err(rdev, "no constraints\n");
179 180 181
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182
		rdev_err(rdev, "operation not allowed\n");
183 184 185 186 187 188 189 190
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

191 192
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193
			 *min_uV, *max_uV);
194
		return -EINVAL;
195
	}
196 197 198 199

	return 0;
}

200 201 202 203 204 205 206 207 208
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
209 210 211 212 213 214 215
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

216 217 218 219 220 221 222 223 224 225 226 227
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

228 229 230 231 232 233 234
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
235
		rdev_err(rdev, "no constraints\n");
236 237 238
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239
		rdev_err(rdev, "operation not allowed\n");
240 241 242 243 244 245 246 247
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

248 249
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250
			 *min_uA, *max_uA);
251
		return -EINVAL;
252
	}
253 254 255 256 257

	return 0;
}

/* operating mode constraint check */
258
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259
{
260
	switch (*mode) {
261 262 263 264 265 266
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
267
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
268 269 270
		return -EINVAL;
	}

271
	if (!rdev->constraints) {
272
		rdev_err(rdev, "no constraints\n");
273 274 275
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276
		rdev_err(rdev, "operation not allowed\n");
277 278
		return -EPERM;
	}
279 280 281 282 283 284 285 286

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
287
	}
288 289

	return -EINVAL;
290 291 292 293 294 295
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
296
		rdev_err(rdev, "no constraints\n");
297 298 299
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300
		rdev_err(rdev, "operation not allowed\n");
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
321
	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 323 324 325 326 327 328 329
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
330
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
331 332 333 334

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
335
	struct regulator_dev *rdev = dev_get_drvdata(dev);
336 337 338

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
339
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
340

341 342 343 344 345
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

346
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
347 348
}

D
David Brownell 已提交
349
static ssize_t regulator_print_opmode(char *buf, int mode)
350 351 352 353 354 355 356 357 358 359 360 361 362 363
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
364 365
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
366
{
367
	struct regulator_dev *rdev = dev_get_drvdata(dev);
368

D
David Brownell 已提交
369 370
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
371
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
372 373 374

static ssize_t regulator_print_state(char *buf, int state)
{
375 376 377 378 379 380 381 382
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
383 384 385 386
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
387 388 389 390 391
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
392

393
	return ret;
D
David Brownell 已提交
394
}
395
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
396

D
David Brownell 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

438 439 440
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
441
	struct regulator_dev *rdev = dev_get_drvdata(dev);
442 443 444 445 446 447

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
448
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449 450 451 452

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
453
	struct regulator_dev *rdev = dev_get_drvdata(dev);
454 455 456 457 458 459

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
460
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461 462 463 464

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
465
	struct regulator_dev *rdev = dev_get_drvdata(dev);
466 467 468 469 470 471

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
472
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473 474 475 476

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
477
	struct regulator_dev *rdev = dev_get_drvdata(dev);
478 479 480 481 482 483

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
484
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485 486 487 488

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
489
	struct regulator_dev *rdev = dev_get_drvdata(dev);
490 491 492 493 494
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
495
		uA += regulator->uA_load;
496 497 498
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
499
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500 501 502 503

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
504
	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 506 507 508 509 510
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
511
	struct regulator_dev *rdev = dev_get_drvdata(dev);
512 513 514 515 516 517 518 519 520 521 522 523 524

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
525
	struct regulator_dev *rdev = dev_get_drvdata(dev);
526 527 528

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
529 530
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
531 532 533 534

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
535
	struct regulator_dev *rdev = dev_get_drvdata(dev);
536 537 538

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
539 540
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
541 542 543 544

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
545
	struct regulator_dev *rdev = dev_get_drvdata(dev);
546 547 548

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
549 550
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
551 552 553 554

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
555
	struct regulator_dev *rdev = dev_get_drvdata(dev);
556

D
David Brownell 已提交
557 558
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
559
}
560 561
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
562 563 564 565

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
566
	struct regulator_dev *rdev = dev_get_drvdata(dev);
567

D
David Brownell 已提交
568 569
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
570
}
571 572
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
573 574 575 576

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
577
	struct regulator_dev *rdev = dev_get_drvdata(dev);
578

D
David Brownell 已提交
579 580
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
581
}
582 583
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
584 585 586 587

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
588
	struct regulator_dev *rdev = dev_get_drvdata(dev);
589

D
David Brownell 已提交
590 591
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
592
}
593 594
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
595 596 597 598

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
599
	struct regulator_dev *rdev = dev_get_drvdata(dev);
600

D
David Brownell 已提交
601 602
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
603
}
604 605
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
606 607 608 609

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
610
	struct regulator_dev *rdev = dev_get_drvdata(dev);
611

D
David Brownell 已提交
612 613
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
614
}
615 616 617
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

618

619 620 621 622
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
623
static struct device_attribute regulator_dev_attrs[] = {
624
	__ATTR(name, 0444, regulator_name_show, NULL),
625 626 627 628 629 630 631
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
632
	struct regulator_dev *rdev = dev_get_drvdata(dev);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
652 653 654
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
655
		return;
656 657

	/* get output voltage */
658
	output_uV = _regulator_get_voltage(rdev);
659 660 661 662
	if (output_uV <= 0)
		return;

	/* get input voltage */
663 664
	input_uV = 0;
	if (rdev->supply)
665
		input_uV = regulator_get_voltage(rdev->supply);
666
	if (input_uV <= 0)
667 668 669 670 671 672
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
673
		current_uA += sibling->uA_load;
674 675 676 677 678 679

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
680
	err = regulator_mode_constrain(rdev, &mode);
681 682 683 684 685 686 687 688
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
689 690

	/* If we have no suspend mode configration don't set anything;
691 692
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
693 694
	 */
	if (!rstate->enabled && !rstate->disabled) {
695 696
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
697
			rdev_warn(rdev, "No configuration\n");
698 699 700 701
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
702
		rdev_err(rdev, "invalid configuration\n");
703 704
		return -EINVAL;
	}
705

706
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
707
		ret = rdev->desc->ops->set_suspend_enable(rdev);
708
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
709
		ret = rdev->desc->ops->set_suspend_disable(rdev);
710 711 712
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

713
	if (ret < 0) {
714
		rdev_err(rdev, "failed to enabled/disable\n");
715 716 717 718 719 720
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
721
			rdev_err(rdev, "failed to set voltage\n");
722 723 724 725 726 727 728
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
729
			rdev_err(rdev, "failed to set mode\n");
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
760
	char buf[80] = "";
761 762
	int count = 0;
	int ret;
763

764
	if (constraints->min_uV && constraints->max_uV) {
765
		if (constraints->min_uV == constraints->max_uV)
766 767
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
768
		else
769 770 771 772 773 774 775 776 777 778 779 780
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

781 782 783 784
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

785
	if (constraints->min_uA && constraints->max_uA) {
786
		if (constraints->min_uA == constraints->max_uA)
787 788
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
789
		else
790 791 792 793 794 795 796 797 798
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
799
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
800
	}
801

802 803 804 805 806 807 808 809 810
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

M
Mark Brown 已提交
811
	rdev_info(rdev, "%s\n", buf);
812 813 814 815 816

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
817 818
}

819
static int machine_constraints_voltage(struct regulator_dev *rdev,
820
	struct regulation_constraints *constraints)
821
{
822
	struct regulator_ops *ops = rdev->desc->ops;
823 824 825 826
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
827 828 829 830 831 832 833 834 835
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
836
	}
837

838 839 840 841 842 843 844 845 846 847 848
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

849 850
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
851
		if (count == 1 && !cmin) {
852
			cmin = 1;
853
			cmax = INT_MAX;
854 855
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
856 857
		}

858 859
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
860
			return 0;
861

862
		/* else require explicit machine-level constraints */
863
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
864
			rdev_err(rdev, "invalid voltage constraints\n");
865
			return -EINVAL;
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
885
			rdev_err(rdev, "unsupportable voltage constraints\n");
886
			return -EINVAL;
887 888 889 890
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
891 892
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
893 894 895
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
896 897
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
898 899 900 901
			constraints->max_uV = max_uV;
		}
	}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
917
	const struct regulation_constraints *constraints)
918 919 920 921
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

922 923 924 925 926 927
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
928 929
	if (!rdev->constraints)
		return -ENOMEM;
930

931
	ret = machine_constraints_voltage(rdev, rdev->constraints);
932 933 934
	if (ret != 0)
		goto out;

935
	/* do we need to setup our suspend state */
936
	if (rdev->constraints->initial_state) {
937
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
938
		if (ret < 0) {
939
			rdev_err(rdev, "failed to set suspend state\n");
940 941 942
			goto out;
		}
	}
943

944
	if (rdev->constraints->initial_mode) {
945
		if (!ops->set_mode) {
946
			rdev_err(rdev, "no set_mode operation\n");
947 948 949 950
			ret = -EINVAL;
			goto out;
		}

951
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
952
		if (ret < 0) {
953
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
954 955 956 957
			goto out;
		}
	}

958 959 960
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
961 962
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
963 964
		ret = ops->enable(rdev);
		if (ret < 0) {
965
			rdev_err(rdev, "failed to enable\n");
966 967 968 969
			goto out;
		}
	}

970
	print_constraints(rdev);
971
	return 0;
972
out:
973 974
	kfree(rdev->constraints);
	rdev->constraints = NULL;
975 976 977 978 979
	return ret;
}

/**
 * set_supply - set regulator supply regulator
980 981
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
982 983 984 985 986 987
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
988
		      struct regulator_dev *supply_rdev)
989 990 991
{
	int err;

992 993 994
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
995 996
	if (rdev->supply == NULL) {
		err = -ENOMEM;
997
		return err;
998
	}
999 1000

	return 0;
1001 1002 1003
}

/**
1004
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1005
 * @rdev:         regulator source
1006
 * @consumer_dev_name: dev_name() string for device supply applies to
1007
 * @supply:       symbolic name for supply
1008 1009 1010 1011 1012 1013 1014
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1015 1016
				      const char *consumer_dev_name,
				      const char *supply)
1017 1018
{
	struct regulator_map *node;
1019
	int has_dev;
1020 1021 1022 1023

	if (supply == NULL)
		return -EINVAL;

1024 1025 1026 1027 1028
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1029
	list_for_each_entry(node, &regulator_map_list, list) {
1030 1031 1032 1033
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1034
			continue;
1035 1036
		}

1037 1038 1039
		if (strcmp(node->supply, supply) != 0)
			continue;

1040 1041 1042 1043 1044 1045
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1046 1047 1048
		return -EBUSY;
	}

1049
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1050 1051 1052 1053 1054 1055
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1056 1057 1058 1059 1060 1061
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1062 1063
	}

1064 1065 1066 1067
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1068 1069 1070 1071 1072 1073 1074
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1075
			kfree(node->dev_name);
1076 1077 1078 1079 1080
			kfree(node);
		}
	}
}

1081
#define REG_STR_SIZE	64
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
1101 1102 1103
		size = scnprintf(buf, REG_STR_SIZE,
				 "microamps_requested_%s-%s",
				 dev_name(dev), supply_name);
1104 1105 1106 1107
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1108
		sysfs_attr_init(&regulator->dev_attr.attr);
1109 1110 1111 1112 1113 1114 1115 1116
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1117
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1134 1135
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1136 1137
			goto link_name_err;
		}
1138 1139 1140 1141 1142 1143 1144 1145
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1146
	if (!regulator->debugfs) {
1147 1148 1149 1150 1151 1152 1153 1154
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1155
	}
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1181 1182 1183 1184 1185 1186 1187
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1188
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1189 1190
						  const char *supply,
						  int *ret)
1191 1192 1193
{
	struct regulator_dev *r;
	struct device_node *node;
1194 1195
	struct regulator_map *map;
	const char *devname = NULL;
1196 1197 1198 1199

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1200
		if (node) {
1201 1202 1203 1204
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1205 1206 1207 1208 1209 1210 1211 1212 1213
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1214 1215 1216
	}

	/* if not found, try doing it non-dt way */
1217 1218 1219
	if (dev)
		devname = dev_name(dev);

1220 1221 1222 1223
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1235 1236 1237
	return NULL;
}

1238 1239 1240
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1241 1242
{
	struct regulator_dev *rdev;
1243
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1244
	const char *devname = NULL;
1245
	int ret;
1246 1247

	if (id == NULL) {
1248
		pr_err("get() with no identifier\n");
1249 1250 1251
		return regulator;
	}

1252 1253 1254
	if (dev)
		devname = dev_name(dev);

1255 1256
	mutex_lock(&regulator_list_mutex);

1257
	rdev = regulator_dev_lookup(dev, id, &ret);
1258 1259 1260
	if (rdev)
		goto found;

1261 1262 1263 1264 1265
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1266 1267 1268 1269 1270 1271 1272 1273
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1274 1275
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1276 1277 1278 1279 1280
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1281 1282 1283 1284
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1295 1296 1297
	if (!try_module_get(rdev->owner))
		goto out;

1298 1299 1300 1301
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1302
		goto out;
1303 1304
	}

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1316
out:
1317
	mutex_unlock(&regulator_list_mutex);
1318

1319 1320
	return regulator;
}
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1339 1340
EXPORT_SYMBOL_GPL(regulator_get);

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

1420 1421
	debugfs_remove_recursive(regulator->debugfs);

1422 1423 1424 1425 1426 1427
	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
1428
	kfree(regulator->supply_name);
1429 1430 1431
	list_del(&regulator->list);
	kfree(regulator);

1432 1433 1434
	rdev->open_count--;
	rdev->exclusive = 0;

1435 1436 1437 1438 1439
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

	rc = devres_destroy(regulator->dev, devm_regulator_release,
			    devm_regulator_match, regulator);
1464 1465 1466 1467
	if (rc == 0)
		regulator_put(regulator);
	else
		WARN_ON(rc);
1468 1469 1470
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1471 1472 1473
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1474
	int ret, delay;
1475 1476

	/* check voltage and requested load before enabling */
1477 1478 1479
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1480

1481 1482 1483 1484 1485 1486 1487
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1488
			if (!rdev->desc->ops->enable)
1489
				return -EINVAL;
1490 1491

			/* Query before enabling in case configuration
L
Lucas De Marchi 已提交
1492
			 * dependent.  */
1493 1494 1495 1496
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1497
				rdev_warn(rdev, "enable_time() failed: %d\n",
1498
					   ret);
1499
				delay = 0;
1500
			}
1501

1502 1503
			trace_regulator_enable(rdev_get_name(rdev));

1504 1505 1506 1507 1508 1509 1510
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1511 1512
			trace_regulator_enable_delay(rdev_get_name(rdev));

1513
			if (delay >= 1000) {
1514
				mdelay(delay / 1000);
1515 1516
				udelay(delay % 1000);
			} else if (delay) {
1517
				udelay(delay);
1518
			}
1519

1520 1521
			trace_regulator_enable_complete(rdev_get_name(rdev));

1522
		} else if (ret < 0) {
1523
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1524 1525
			return ret;
		}
1526
		/* Fallthrough on positive return values - already enabled */
1527 1528
	}

1529 1530 1531
	rdev->use_count++;

	return 0;
1532 1533 1534 1535 1536 1537
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1538 1539 1540 1541
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1542
 * NOTE: the output value can be set by other drivers, boot loader or may be
1543
 * hardwired in the regulator.
1544 1545 1546
 */
int regulator_enable(struct regulator *regulator)
{
1547 1548
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1549

1550 1551 1552
	if (regulator->always_on)
		return 0;

1553 1554 1555 1556 1557 1558
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1559
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1560
	ret = _regulator_enable(rdev);
1561
	mutex_unlock(&rdev->mutex);
1562

1563
	if (ret != 0 && rdev->supply)
1564 1565
		regulator_disable(rdev->supply);

1566 1567 1568 1569 1570
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1571
static int _regulator_disable(struct regulator_dev *rdev)
1572 1573 1574
{
	int ret = 0;

D
David Brownell 已提交
1575
	if (WARN(rdev->use_count <= 0,
1576
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1577 1578
		return -EIO;

1579
	/* are we the last user and permitted to disable ? */
1580 1581
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1582 1583

		/* we are last user */
1584 1585
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1586 1587
			trace_regulator_disable(rdev_get_name(rdev));

1588 1589
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1590
				rdev_err(rdev, "failed to disable\n");
1591 1592
				return ret;
			}
1593

1594 1595
			trace_regulator_disable_complete(rdev_get_name(rdev));

1596 1597
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1610

1611 1612 1613 1614 1615 1616 1617
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1618 1619 1620
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1621
 *
1622
 * NOTE: this will only disable the regulator output if no other consumer
1623 1624
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1625 1626 1627
 */
int regulator_disable(struct regulator *regulator)
{
1628 1629
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1630

1631 1632 1633
	if (regulator->always_on)
		return 0;

1634
	mutex_lock(&rdev->mutex);
1635
	ret = _regulator_disable(rdev);
1636
	mutex_unlock(&rdev->mutex);
1637

1638 1639
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1640

1641 1642 1643 1644 1645
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1646
static int _regulator_force_disable(struct regulator_dev *rdev)
1647 1648 1649 1650 1651 1652 1653 1654
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1655
			rdev_err(rdev, "failed to force disable\n");
1656 1657 1658
			return ret;
		}
		/* notify other consumers that power has been forced off */
1659 1660
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1677
	struct regulator_dev *rdev = regulator->rdev;
1678 1679
	int ret;

1680
	mutex_lock(&rdev->mutex);
1681
	regulator->uA_load = 0;
1682
	ret = _regulator_force_disable(regulator->rdev);
1683
	mutex_unlock(&rdev->mutex);
1684

1685 1686 1687
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1688

1689 1690 1691 1692
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1740
	int ret;
1741

1742 1743 1744
	if (regulator->always_on)
		return 0;

1745 1746 1747 1748
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1749 1750 1751 1752 1753 1754
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1755 1756 1757
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
/**
 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their is_enabled operation, saving some code.
 */
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
	if (ret != 0)
		return ret;

	return (val & rdev->desc->enable_mask) != 0;
}
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);

/**
 * regulator_enable_regmap - standard enable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their enable() operation, saving some code.
 */
int regulator_enable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask,
				  rdev->desc->enable_mask);
}
EXPORT_SYMBOL_GPL(regulator_enable_regmap);

/**
 * regulator_disable_regmap - standard disable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their disable() operation, saving some code.
 */
int regulator_disable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask, 0);
}
EXPORT_SYMBOL_GPL(regulator_disable_regmap);

1813 1814
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1815
	/* If we don't know then assume that the regulator is always on */
1816
	if (!rdev->desc->ops->is_enabled)
1817
		return 1;
1818

1819
	return rdev->desc->ops->is_enabled(rdev);
1820 1821 1822 1823 1824 1825
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1826 1827 1828 1829 1830 1831 1832
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1833 1834 1835
 */
int regulator_is_enabled(struct regulator *regulator)
{
1836 1837
	int ret;

1838 1839 1840
	if (regulator->always_on)
		return 1;

1841 1842 1843 1844 1845
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1846 1847 1848
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
/**
 * regulator_list_voltage_linear - List voltages with simple calculation
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with a simple linear mapping between voltages and
 * selectors can set min_uV and uV_step in the regulator descriptor
 * and then use this function as their list_voltage() operation,
 */
int regulator_list_voltage_linear(struct regulator_dev *rdev,
				  unsigned int selector)
{
	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;

	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);

1885 1886 1887 1888 1889 1890 1891
/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1892
 * zero if this selector code can't be used on this system, or a
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
1947
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
/**
 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their get_voltage_vsel operation, saving some code.
 */
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
	if (ret != 0)
		return ret;

	val &= rdev->desc->vsel_mask;
	val >>= ffs(rdev->desc->vsel_mask) - 1;

	return val;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);

/**
 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 * @sel: Selector to set
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their set_voltage_vsel operation, saving some code.
 */
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
{
	sel <<= ffs(rdev->desc->vsel_mask) - 1;

	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
				  rdev->desc->vsel_mask, sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
/**
 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers implementing set_voltage_sel() and list_voltage() can use
 * this as their map_voltage() operation.  It will find a suitable
 * voltage by calling list_voltage() until it gets something in bounds
 * for the requested voltages.
 */
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
				  int min_uV, int max_uV)
{
	int best_val = INT_MAX;
	int selector = 0;
	int i, ret;

	/* Find the smallest voltage that falls within the specified
	 * range.
	 */
	for (i = 0; i < rdev->desc->n_voltages; i++) {
		ret = rdev->desc->ops->list_voltage(rdev, i);
		if (ret < 0)
			continue;

		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
			best_val = ret;
			selector = i;
		}
	}

	if (best_val != INT_MAX)
		return selector;
	else
		return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
/**
 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers providing min_uV and uV_step in their regulator_desc can
 * use this as their map_voltage() operation.
 */
int regulator_map_voltage_linear(struct regulator_dev *rdev,
				 int min_uV, int max_uV)
{
	int ret, voltage;

	if (!rdev->desc->uV_step) {
		BUG_ON(!rdev->desc->uV_step);
		return -EINVAL;
	}

2053
	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	if (ret < 0)
		return ret;

	/* Map back into a voltage to verify we're still in bounds */
	voltage = rdev->desc->ops->list_voltage(rdev, ret);
	if (voltage < min_uV || voltage > max_uV)
		return -EINVAL;

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);

2066 2067 2068 2069
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2070
	int delay = 0;
2071
	int best_val;
2072
	unsigned int selector;
2073
	int old_selector = -1;
2074 2075 2076

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2077 2078 2079
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
	if (rdev->desc->ops->set_voltage_time_sel &&
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2091 2092 2093
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);
2094
	} else if (rdev->desc->ops->set_voltage_sel) {
2095 2096 2097 2098 2099 2100
		if (rdev->desc->ops->map_voltage)
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
		else
			ret = regulator_map_voltage_iterate(rdev, min_uV,
							    max_uV);
2101

2102 2103 2104
		if (ret >= 0) {
			selector = ret;
			ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2105
		}
2106 2107 2108
	} else {
		ret = -EINVAL;
	}
2109

2110 2111 2112 2113
	if (rdev->desc->ops->list_voltage)
		best_val = rdev->desc->ops->list_voltage(rdev, selector);
	else
		best_val = -1;
2114

2115 2116 2117
	/* Call set_voltage_time_sel if successfully obtained old_selector */
	if (ret == 0 && old_selector >= 0 &&
	    rdev->desc->ops->set_voltage_time_sel) {
2118

2119 2120 2121 2122 2123 2124
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2125
		}
2126 2127
	}

2128 2129 2130 2131 2132 2133 2134 2135
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

2136 2137 2138 2139
	if (ret == 0)
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
				     NULL);

2140
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2141 2142 2143 2144

	return ret;
}

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2160
 * Regulator system constraints must be set for this regulator before
2161 2162 2163 2164 2165
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2166
	int ret = 0;
2167 2168 2169

	mutex_lock(&rdev->mutex);

2170 2171 2172 2173 2174 2175 2176
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2177
	/* sanity check */
2178 2179
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2190

2191 2192 2193 2194
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

2195
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2196

2197 2198 2199 2200 2201 2202
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2295 2296
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2297
	int sel, ret;
2298 2299 2300 2301 2302

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2303
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2304
	} else if (rdev->desc->ops->get_voltage) {
2305
		ret = rdev->desc->ops->get_voltage(rdev);
2306
	} else {
2307
		return -EINVAL;
2308
	}
2309

2310 2311
	if (ret < 0)
		return ret;
2312
	return ret - rdev->constraints->uV_offset;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2428
	int regulator_curr_mode;
2429 2430 2431 2432 2433 2434 2435 2436 2437

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2438 2439 2440 2441 2442 2443 2444 2445 2446
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2447
	/* constraints check */
2448
	ret = regulator_mode_constrain(rdev, &mode);
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

2524 2525 2526 2527
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2528 2529
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2530 2531
	if (ret < 0) {
		ret = 0;
2532
		goto out;
2533
	}
2534 2535 2536 2537

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2538 2539 2540 2541 2542 2543
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2544 2545 2546
	if (!rdev->desc->ops->set_mode)
		goto out;

2547
	/* get output voltage */
2548
	output_uV = _regulator_get_voltage(rdev);
2549
	if (output_uV <= 0) {
2550
		rdev_err(rdev, "invalid output voltage found\n");
2551 2552 2553 2554
		goto out;
	}

	/* get input voltage */
2555 2556
	input_uV = 0;
	if (rdev->supply)
2557
		input_uV = regulator_get_voltage(rdev->supply);
2558
	if (input_uV <= 0)
2559 2560
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2561
		rdev_err(rdev, "invalid input voltage found\n");
2562 2563 2564 2565 2566
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2567
		total_uA_load += consumer->uA_load;
2568 2569 2570 2571

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2572
	ret = regulator_mode_constrain(rdev, &mode);
2573
	if (ret < 0) {
2574 2575
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2576 2577 2578 2579
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2580
	if (ret < 0) {
2581
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2594
 * @nb: notifier block
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2609
 * @nb: notifier block
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2621 2622 2623
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2659 2660
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2661 2662 2663 2664 2665 2666 2667 2668
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2669
	while (--i >= 0)
2670 2671 2672 2673 2674 2675
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

2722 2723 2724 2725 2726 2727 2728
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2744
	LIST_HEAD(async_domain);
2745
	int i;
2746
	int ret = 0;
2747

2748 2749 2750 2751 2752 2753 2754
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
2755 2756 2757 2758

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2759
	for (i = 0; i < num_consumers; i++) {
2760 2761
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2762
			goto err;
2763
		}
2764 2765 2766 2767 2768
	}

	return 0;

err:
2769 2770 2771
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
	while (--i >= 0)
		regulator_disable(consumers[i].consumer);
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
2785 2786
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
2787 2788 2789 2790 2791 2792
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
2793
	int ret, r;
2794

2795
	for (i = num_consumers - 1; i >= 0; --i) {
2796 2797 2798 2799 2800 2801 2802 2803
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2804
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2805 2806 2807 2808 2809 2810
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
2811 2812 2813 2814 2815

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2876
 * @rdev: regulator source
2877
 * @event: notifier block
2878
 * @data: callback-specific data.
2879 2880 2881
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2882
 * Note lock must be held by caller.
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2928 2929
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2949 2950 2951 2952 2953
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
2970
	if (ops->set_voltage || ops->set_voltage_sel) {
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

3030 3031 3032
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3033
	if (!rdev->debugfs) {
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
}

3044 3045
/**
 * regulator_register - register regulator
3046
 * @regulator_desc: regulator to register
3047
 * @config: runtime configuration for regulator
3048 3049 3050 3051
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
3052 3053
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3054
		   const struct regulator_config *config)
3055
{
3056
	const struct regulation_constraints *constraints = NULL;
3057
	const struct regulator_init_data *init_data;
3058 3059
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
3060
	struct device *dev;
3061
	int ret, i;
3062
	const char *supply = NULL;
3063

3064
	if (regulator_desc == NULL || config == NULL)
3065 3066
		return ERR_PTR(-EINVAL);

3067
	dev = config->dev;
3068
	WARN_ON(!dev);
3069

3070 3071 3072
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3073 3074
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3075 3076
		return ERR_PTR(-EINVAL);

3077 3078 3079
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3080 3081
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3082 3083 3084 3085 3086 3087

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3088 3089 3090 3091
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3092

3093 3094
	init_data = config->init_data;

3095 3096 3097 3098 3099 3100 3101
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3102
	rdev->reg_data = config->driver_data;
3103 3104
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3105
	rdev->regmap = config->regmap;
3106 3107 3108
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3109
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3110

3111
	/* preform any regulator specific init */
3112
	if (init_data && init_data->regulator_init) {
3113
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3114 3115
		if (ret < 0)
			goto clean;
3116 3117 3118
	}

	/* register with sysfs */
3119
	rdev->dev.class = &regulator_class;
3120
	rdev->dev.of_node = config->of_node;
3121
	rdev->dev.parent = dev;
3122 3123
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
3124
	ret = device_register(&rdev->dev);
3125 3126
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3127
		goto clean;
3128
	}
3129 3130 3131

	dev_set_drvdata(&rdev->dev, rdev);

3132
	/* set regulator constraints */
3133 3134 3135 3136
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3137 3138 3139
	if (ret < 0)
		goto scrub;

3140 3141 3142 3143 3144
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3145
	if (init_data && init_data->supply_regulator)
3146 3147 3148 3149 3150
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3151 3152
		struct regulator_dev *r;

3153
		r = regulator_dev_lookup(dev, supply, &ret);
3154

3155 3156
		if (!r) {
			dev_err(dev, "Failed to find supply %s\n", supply);
3157
			ret = -EPROBE_DEFER;
3158 3159 3160 3161 3162 3163
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3164 3165

		/* Enable supply if rail is enabled */
3166
		if (_regulator_is_enabled(rdev)) {
3167 3168 3169 3170
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3171 3172
	}

3173
	/* add consumers devices */
3174 3175 3176 3177
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3178
				init_data->consumer_supplies[i].supply);
3179 3180 3181 3182 3183
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3184
		}
3185
	}
3186 3187

	list_add(&rdev->list, &regulator_list);
3188 3189

	rdev_init_debugfs(rdev);
3190
out:
3191 3192
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3193

3194 3195 3196
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3197
scrub:
3198 3199
	if (rdev->supply)
		regulator_put(rdev->supply);
3200
	kfree(rdev->constraints);
D
David Brownell 已提交
3201
	device_unregister(&rdev->dev);
3202 3203 3204 3205
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3206 3207 3208 3209
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3210 3211 3212 3213 3214
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3215
 * @rdev: regulator to unregister
3216 3217 3218 3219 3220 3221 3222 3223
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3224 3225
	if (rdev->supply)
		regulator_put(rdev->supply);
3226
	mutex_lock(&regulator_list_mutex);
3227
	debugfs_remove_recursive(rdev->debugfs);
3228
	flush_work_sync(&rdev->disable_work.work);
3229
	WARN_ON(rdev->open_count);
3230
	unset_regulator_supplies(rdev);
3231
	list_del(&rdev->list);
3232
	kfree(rdev->constraints);
3233
	device_unregister(&rdev->dev);
3234 3235 3236 3237 3238
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3239
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3262
			rdev_err(rdev, "failed to prepare\n");
3263 3264 3265 3266 3267 3268 3269 3270 3271
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
3298
			if (!_regulator_is_enabled(rdev))
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3346 3347
/**
 * rdev_get_drvdata - get rdev regulator driver data
3348
 * @rdev: regulator
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3385
 * @rdev: regulator
3386 3387 3388 3389 3390 3391 3392
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3435
#endif
3436 3437

static const struct file_operations supply_map_fops = {
3438
#ifdef CONFIG_DEBUG_FS
3439 3440 3441
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3442
};
3443

3444 3445
static int __init regulator_init(void)
{
3446 3447 3448 3449
	int ret;

	ret = class_register(&regulator_class);

3450
	debugfs_root = debugfs_create_dir("regulator", NULL);
3451
	if (!debugfs_root)
3452
		pr_warn("regulator: Failed to create debugfs directory\n");
3453

3454 3455
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3456

3457 3458 3459
	regulator_dummy_init();

	return ret;
3460 3461 3462 3463
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3482
		if (!ops->disable || (c && c->always_on))
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3502
			rdev_info(rdev, "disabling\n");
3503 3504
			ret = ops->disable(rdev);
			if (ret != 0) {
3505
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3506 3507 3508 3509 3510 3511 3512
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3513
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);