core.c 84.0 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26 27
#include <linux/of.h>
#include <linux/regulator/of_regulator.h>
28 29 30
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
31
#include <linux/module.h>
32

33 34 35
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

36 37
#include "dummy.h"

M
Mark Brown 已提交
38 39
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 41 42 43 44 45 46 47 48
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

49 50 51
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
52
static bool has_full_constraints;
53
static bool board_wants_dummy_regulator;
54

55 56
static struct dentry *debugfs_root;

57
/*
58 59 60 61 62 63
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
64
	const char *dev_name;   /* The dev_name() for the consumer */
65
	const char *supply;
66
	struct regulator_dev *regulator;
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
83
	struct dentry *debugfs;
84 85 86
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
87
static int _regulator_disable(struct regulator_dev *rdev);
88 89 90 91 92
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
93 94
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
95 96 97
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
98

99 100 101 102 103 104 105 106 107 108
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
 * retruns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
151
		dev_dbg(dev, "Looking up %s property in node %s failed",
152 153 154 155 156 157
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

158 159 160 161 162 163 164
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
165
		rdev_err(rdev, "no constraints\n");
166 167 168
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
169
		rdev_err(rdev, "operation not allowed\n");
170 171 172 173 174 175 176 177
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

178 179
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
180
			 *min_uV, *max_uV);
181
		return -EINVAL;
182
	}
183 184 185 186

	return 0;
}

187 188 189 190 191 192 193 194 195
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
196 197 198 199 200 201 202
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

203 204 205 206 207 208 209 210 211 212 213 214
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

215 216 217 218 219 220 221
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
222
		rdev_err(rdev, "no constraints\n");
223 224 225
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
226
		rdev_err(rdev, "operation not allowed\n");
227 228 229 230 231 232 233 234
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

235 236
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
237
			 *min_uA, *max_uA);
238
		return -EINVAL;
239
	}
240 241 242 243 244

	return 0;
}

/* operating mode constraint check */
245
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
246
{
247
	switch (*mode) {
248 249 250 251 252 253
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
254
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
255 256 257
		return -EINVAL;
	}

258
	if (!rdev->constraints) {
259
		rdev_err(rdev, "no constraints\n");
260 261 262
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
263
		rdev_err(rdev, "operation not allowed\n");
264 265
		return -EPERM;
	}
266 267 268 269 270 271 272 273

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
274
	}
275 276

	return -EINVAL;
277 278 279 280 281 282
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
283
		rdev_err(rdev, "no constraints\n");
284 285 286
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
287
		rdev_err(rdev, "operation not allowed\n");
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
308
	struct regulator_dev *rdev = dev_get_drvdata(dev);
309 310 311 312 313 314 315 316
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
317
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
318 319 320 321

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
322
	struct regulator_dev *rdev = dev_get_drvdata(dev);
323 324 325

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
326
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
327

328 329 330 331 332
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

333
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
334 335
}

D
David Brownell 已提交
336
static ssize_t regulator_print_opmode(char *buf, int mode)
337 338 339 340 341 342 343 344 345 346 347 348 349 350
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
351 352
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
353
{
354
	struct regulator_dev *rdev = dev_get_drvdata(dev);
355

D
David Brownell 已提交
356 357
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
358
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
359 360 361

static ssize_t regulator_print_state(char *buf, int state)
{
362 363 364 365 366 367 368 369
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
370 371 372 373
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 375 376 377 378
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
379

380
	return ret;
D
David Brownell 已提交
381
}
382
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
383

D
David Brownell 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

425 426 427
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
428
	struct regulator_dev *rdev = dev_get_drvdata(dev);
429 430 431 432 433 434

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
435
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436 437 438 439

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
440
	struct regulator_dev *rdev = dev_get_drvdata(dev);
441 442 443 444 445 446

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
447
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448 449 450 451

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
452
	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 454 455 456 457 458

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
459
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460 461 462 463

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
464
	struct regulator_dev *rdev = dev_get_drvdata(dev);
465 466 467 468 469 470

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
471
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472 473 474 475

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
476
	struct regulator_dev *rdev = dev_get_drvdata(dev);
477 478 479 480 481
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
482
		uA += regulator->uA_load;
483 484 485
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
486
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487 488 489 490

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
491
	struct regulator_dev *rdev = dev_get_drvdata(dev);
492 493 494 495 496 497
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
498
	struct regulator_dev *rdev = dev_get_drvdata(dev);
499 500 501 502 503 504 505 506 507 508 509 510 511

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
512
	struct regulator_dev *rdev = dev_get_drvdata(dev);
513 514 515

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
516 517
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
518 519 520 521

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
522
	struct regulator_dev *rdev = dev_get_drvdata(dev);
523 524 525

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
526 527
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
528 529 530 531

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
532
	struct regulator_dev *rdev = dev_get_drvdata(dev);
533 534 535

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
536 537
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
538 539 540 541

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
542
	struct regulator_dev *rdev = dev_get_drvdata(dev);
543

D
David Brownell 已提交
544 545
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
546
}
547 548
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
549 550 551 552

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
553
	struct regulator_dev *rdev = dev_get_drvdata(dev);
554

D
David Brownell 已提交
555 556
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
557
}
558 559
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
560 561 562 563

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
564
	struct regulator_dev *rdev = dev_get_drvdata(dev);
565

D
David Brownell 已提交
566 567
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
568
}
569 570
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
571 572 573 574

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
575
	struct regulator_dev *rdev = dev_get_drvdata(dev);
576

D
David Brownell 已提交
577 578
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
579
}
580 581
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
582 583 584 585

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
586
	struct regulator_dev *rdev = dev_get_drvdata(dev);
587

D
David Brownell 已提交
588 589
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
590
}
591 592
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
593 594 595 596

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
597
	struct regulator_dev *rdev = dev_get_drvdata(dev);
598

D
David Brownell 已提交
599 600
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
601
}
602 603 604
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

605

606 607 608 609
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
610
static struct device_attribute regulator_dev_attrs[] = {
611
	__ATTR(name, 0444, regulator_name_show, NULL),
612 613 614 615 616 617 618
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
619
	struct regulator_dev *rdev = dev_get_drvdata(dev);
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
639 640 641
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
642
		return;
643 644

	/* get output voltage */
645
	output_uV = _regulator_get_voltage(rdev);
646 647 648 649
	if (output_uV <= 0)
		return;

	/* get input voltage */
650 651 652 653
	input_uV = 0;
	if (rdev->supply)
		input_uV = _regulator_get_voltage(rdev);
	if (input_uV <= 0)
654 655 656 657 658 659
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
660
		current_uA += sibling->uA_load;
661 662 663 664 665 666

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
667
	err = regulator_mode_constrain(rdev, &mode);
668 669 670 671 672 673 674 675
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
676 677 678 679 680 681 682 683 684 685 686
	bool can_set_state;

	can_set_state = rdev->desc->ops->set_suspend_enable &&
		rdev->desc->ops->set_suspend_disable;

	/* If we have no suspend mode configration don't set anything;
	 * only warn if the driver actually makes the suspend mode
	 * configurable.
	 */
	if (!rstate->enabled && !rstate->disabled) {
		if (can_set_state)
687
			rdev_warn(rdev, "No configuration\n");
688 689 690 691
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
692
		rdev_err(rdev, "invalid configuration\n");
693 694
		return -EINVAL;
	}
695

696
	if (!can_set_state) {
697
		rdev_err(rdev, "no way to set suspend state\n");
698
		return -EINVAL;
699
	}
700 701 702 703 704 705

	if (rstate->enabled)
		ret = rdev->desc->ops->set_suspend_enable(rdev);
	else
		ret = rdev->desc->ops->set_suspend_disable(rdev);
	if (ret < 0) {
706
		rdev_err(rdev, "failed to enabled/disable\n");
707 708 709 710 711 712
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
713
			rdev_err(rdev, "failed to set voltage\n");
714 715 716 717 718 719 720
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
721
			rdev_err(rdev, "failed to set mode\n");
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
752
	char buf[80] = "";
753 754
	int count = 0;
	int ret;
755

756
	if (constraints->min_uV && constraints->max_uV) {
757
		if (constraints->min_uV == constraints->max_uV)
758 759
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
760
		else
761 762 763 764 765 766 767 768 769 770 771 772
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

773 774 775 776
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

777
	if (constraints->min_uA && constraints->max_uA) {
778
		if (constraints->min_uA == constraints->max_uA)
779 780
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
781
		else
782 783 784 785 786 787 788 789 790
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
791
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
792
	}
793

794 795 796 797 798 799 800 801 802
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

M
Mark Brown 已提交
803
	rdev_info(rdev, "%s\n", buf);
804 805 806 807 808

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
809 810
}

811
static int machine_constraints_voltage(struct regulator_dev *rdev,
812
	struct regulation_constraints *constraints)
813
{
814
	struct regulator_ops *ops = rdev->desc->ops;
815 816 817 818
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
819 820 821 822 823 824 825 826 827
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
828
	}
829

830 831 832 833 834 835 836 837 838 839 840
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

841 842
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
843
		if (count == 1 && !cmin) {
844
			cmin = 1;
845
			cmax = INT_MAX;
846 847
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
848 849
		}

850 851
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
852
			return 0;
853

854
		/* else require explicit machine-level constraints */
855
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
856
			rdev_err(rdev, "invalid voltage constraints\n");
857
			return -EINVAL;
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
877
			rdev_err(rdev, "unsupportable voltage constraints\n");
878
			return -EINVAL;
879 880 881 882
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
883 884
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
885 886 887
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
888 889
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
890 891 892 893
			constraints->max_uV = max_uV;
		}
	}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
909
	const struct regulation_constraints *constraints)
910 911 912 913
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

914 915 916 917 918 919
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
920 921
	if (!rdev->constraints)
		return -ENOMEM;
922

923
	ret = machine_constraints_voltage(rdev, rdev->constraints);
924 925 926
	if (ret != 0)
		goto out;

927
	/* do we need to setup our suspend state */
928
	if (rdev->constraints->initial_state) {
929
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
930
		if (ret < 0) {
931
			rdev_err(rdev, "failed to set suspend state\n");
932 933 934
			goto out;
		}
	}
935

936
	if (rdev->constraints->initial_mode) {
937
		if (!ops->set_mode) {
938
			rdev_err(rdev, "no set_mode operation\n");
939 940 941 942
			ret = -EINVAL;
			goto out;
		}

943
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
944
		if (ret < 0) {
945
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
946 947 948 949
			goto out;
		}
	}

950 951 952
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
953 954
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
955 956
		ret = ops->enable(rdev);
		if (ret < 0) {
957
			rdev_err(rdev, "failed to enable\n");
958 959 960 961
			goto out;
		}
	}

962
	print_constraints(rdev);
963
	return 0;
964
out:
965 966
	kfree(rdev->constraints);
	rdev->constraints = NULL;
967 968 969 970 971
	return ret;
}

/**
 * set_supply - set regulator supply regulator
972 973
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
974 975 976 977 978 979
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
980
		      struct regulator_dev *supply_rdev)
981 982 983
{
	int err;

984 985 986
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
987 988
	if (rdev->supply == NULL) {
		err = -ENOMEM;
989
		return err;
990
	}
991 992

	return 0;
993 994 995
}

/**
996
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
997
 * @rdev:         regulator source
998
 * @consumer_dev_name: dev_name() string for device supply applies to
999
 * @supply:       symbolic name for supply
1000 1001 1002 1003 1004 1005 1006
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1007 1008
				      const char *consumer_dev_name,
				      const char *supply)
1009 1010
{
	struct regulator_map *node;
1011
	int has_dev;
1012 1013 1014 1015

	if (supply == NULL)
		return -EINVAL;

1016 1017 1018 1019 1020
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1021
	list_for_each_entry(node, &regulator_map_list, list) {
1022 1023 1024 1025
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1026
			continue;
1027 1028
		}

1029 1030 1031
		if (strcmp(node->supply, supply) != 0)
			continue;

1032 1033 1034 1035 1036 1037
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1038 1039 1040
		return -EBUSY;
	}

1041
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1042 1043 1044 1045 1046 1047
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1048 1049 1050 1051 1052 1053
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1054 1055
	}

1056 1057 1058 1059
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1060 1061 1062 1063 1064 1065 1066
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1067
			kfree(node->dev_name);
1068 1069 1070 1071 1072
			kfree(node);
		}
	}
}

1073
#define REG_STR_SIZE	64
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
1093 1094 1095
		size = scnprintf(buf, REG_STR_SIZE,
				 "microamps_requested_%s-%s",
				 dev_name(dev), supply_name);
1096 1097 1098 1099
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1100
		sysfs_attr_init(&regulator->dev_attr.attr);
1101 1102 1103 1104 1105 1106 1107 1108
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1109
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1126 1127
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1128 1129
			goto link_name_err;
		}
1130 1131 1132 1133 1134 1135 1136 1137
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1138
	if (!regulator->debugfs) {
1139 1140 1141 1142 1143 1144 1145 1146
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1147
	}
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1164 1165 1166 1167 1168 1169 1170
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
							 const char *supply)
{
	struct regulator_dev *r;
	struct device_node *node;

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
		if (node)
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
	}

	/* if not found, try doing it non-dt way */
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

	return NULL;
}

1195 1196 1197
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1198 1199 1200
{
	struct regulator_dev *rdev;
	struct regulator_map *map;
1201
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1202
	const char *devname = NULL;
1203
	int ret;
1204 1205

	if (id == NULL) {
1206
		pr_err("get() with no identifier\n");
1207 1208 1209
		return regulator;
	}

1210 1211 1212
	if (dev)
		devname = dev_name(dev);

1213 1214
	mutex_lock(&regulator_list_mutex);

1215 1216 1217 1218
	rdev = regulator_dev_lookup(dev, id);
	if (rdev)
		goto found;

1219
	list_for_each_entry(map, &regulator_map_list, list) {
1220 1221 1222 1223 1224 1225
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, id) == 0) {
1226
			rdev = map->regulator;
1227
			goto found;
1228
		}
1229
	}
1230

1231 1232 1233 1234 1235
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1236 1237 1238 1239 1240 1241 1242 1243
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1244 1245
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1246 1247 1248 1249 1250
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1251 1252 1253 1254
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1265 1266 1267
	if (!try_module_get(rdev->owner))
		goto out;

1268 1269 1270 1271
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1272
		goto out;
1273 1274
	}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1286
out:
1287
	mutex_unlock(&regulator_list_mutex);
1288

1289 1290
	return regulator;
}
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1309 1310
EXPORT_SYMBOL_GPL(regulator_get);

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

1390 1391
	debugfs_remove_recursive(regulator->debugfs);

1392 1393 1394 1395 1396 1397
	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
1398
	kfree(regulator->supply_name);
1399 1400 1401
	list_del(&regulator->list);
	kfree(regulator);

1402 1403 1404
	rdev->open_count--;
	rdev->exclusive = 0;

1405 1406 1407 1408 1409
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

	rc = devres_destroy(regulator->dev, devm_regulator_release,
			    devm_regulator_match, regulator);
	WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1449 1450 1451
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1452
	int ret, delay;
1453 1454

	/* check voltage and requested load before enabling */
1455 1456 1457
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1458

1459 1460 1461 1462 1463 1464 1465
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1466
			if (!rdev->desc->ops->enable)
1467
				return -EINVAL;
1468 1469

			/* Query before enabling in case configuration
L
Lucas De Marchi 已提交
1470
			 * dependent.  */
1471 1472 1473 1474
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1475
				rdev_warn(rdev, "enable_time() failed: %d\n",
1476
					   ret);
1477
				delay = 0;
1478
			}
1479

1480 1481
			trace_regulator_enable(rdev_get_name(rdev));

1482 1483 1484 1485 1486 1487 1488
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1489 1490
			trace_regulator_enable_delay(rdev_get_name(rdev));

1491
			if (delay >= 1000) {
1492
				mdelay(delay / 1000);
1493 1494
				udelay(delay % 1000);
			} else if (delay) {
1495
				udelay(delay);
1496
			}
1497

1498 1499
			trace_regulator_enable_complete(rdev_get_name(rdev));

1500
		} else if (ret < 0) {
1501
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1502 1503
			return ret;
		}
1504
		/* Fallthrough on positive return values - already enabled */
1505 1506
	}

1507 1508 1509
	rdev->use_count++;

	return 0;
1510 1511 1512 1513 1514 1515
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1516 1517 1518 1519
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1520
 * NOTE: the output value can be set by other drivers, boot loader or may be
1521
 * hardwired in the regulator.
1522 1523 1524
 */
int regulator_enable(struct regulator *regulator)
{
1525 1526
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1527

1528 1529 1530 1531 1532 1533
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1534
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1535
	ret = _regulator_enable(rdev);
1536
	mutex_unlock(&rdev->mutex);
1537

1538
	if (ret != 0 && rdev->supply)
1539 1540
		regulator_disable(rdev->supply);

1541 1542 1543 1544 1545
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1546
static int _regulator_disable(struct regulator_dev *rdev)
1547 1548 1549
{
	int ret = 0;

D
David Brownell 已提交
1550
	if (WARN(rdev->use_count <= 0,
1551
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1552 1553
		return -EIO;

1554
	/* are we the last user and permitted to disable ? */
1555 1556
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1557 1558

		/* we are last user */
1559 1560
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1561 1562
			trace_regulator_disable(rdev_get_name(rdev));

1563 1564
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1565
				rdev_err(rdev, "failed to disable\n");
1566 1567
				return ret;
			}
1568

1569 1570
			trace_regulator_disable_complete(rdev_get_name(rdev));

1571 1572
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1585

1586 1587 1588 1589 1590 1591 1592
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1593 1594 1595
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1596
 *
1597
 * NOTE: this will only disable the regulator output if no other consumer
1598 1599
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1600 1601 1602
 */
int regulator_disable(struct regulator *regulator)
{
1603 1604
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1605

1606
	mutex_lock(&rdev->mutex);
1607
	ret = _regulator_disable(rdev);
1608
	mutex_unlock(&rdev->mutex);
1609

1610 1611
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1612

1613 1614 1615 1616 1617
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1618
static int _regulator_force_disable(struct regulator_dev *rdev)
1619 1620 1621 1622 1623 1624 1625 1626
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1627
			rdev_err(rdev, "failed to force disable\n");
1628 1629 1630
			return ret;
		}
		/* notify other consumers that power has been forced off */
1631 1632
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1649
	struct regulator_dev *rdev = regulator->rdev;
1650 1651
	int ret;

1652
	mutex_lock(&rdev->mutex);
1653
	regulator->uA_load = 0;
1654
	ret = _regulator_force_disable(regulator->rdev);
1655
	mutex_unlock(&rdev->mutex);
1656

1657 1658 1659
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1660

1661 1662 1663 1664
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1712
	int ret;
1713 1714 1715 1716 1717

	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1718 1719 1720 1721 1722 1723
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1724 1725 1726
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1727 1728
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1729
	/* If we don't know then assume that the regulator is always on */
1730
	if (!rdev->desc->ops->is_enabled)
1731
		return 1;
1732

1733
	return rdev->desc->ops->is_enabled(rdev);
1734 1735 1736 1737 1738 1739
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1740 1741 1742 1743 1744 1745 1746
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1747 1748 1749
 */
int regulator_is_enabled(struct regulator *regulator)
{
1750 1751 1752 1753 1754 1755 1756
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1757 1758 1759
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1783
 * zero if this selector code can't be used on this system, or a
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
1838
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1839

1840 1841 1842 1843
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
1844
	int delay = 0;
1845 1846 1847 1848
	unsigned int selector;

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

1849 1850 1851
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

1852 1853 1854 1855 1856 1857 1858 1859 1860
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);

		if (rdev->desc->ops->list_voltage)
			selector = rdev->desc->ops->list_voltage(rdev,
								 selector);
		else
			selector = -1;
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	} else if (rdev->desc->ops->set_voltage_sel) {
		int best_val = INT_MAX;
		int i;

		selector = 0;

		/* Find the smallest voltage that falls within the specified
		 * range.
		 */
		for (i = 0; i < rdev->desc->n_voltages; i++) {
			ret = rdev->desc->ops->list_voltage(rdev, i);
			if (ret < 0)
				continue;

			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
				best_val = ret;
				selector = i;
			}
		}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		/*
		 * If we can't obtain the old selector there is not enough
		 * info to call set_voltage_time_sel().
		 */
		if (rdev->desc->ops->set_voltage_time_sel &&
		    rdev->desc->ops->get_voltage_sel) {
			unsigned int old_selector = 0;

			ret = rdev->desc->ops->get_voltage_sel(rdev);
			if (ret < 0)
				return ret;
			old_selector = ret;
1893
			ret = rdev->desc->ops->set_voltage_time_sel(rdev,
1894
						old_selector, selector);
1895 1896 1897 1898
			if (ret < 0)
				rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", ret);
			else
				delay = ret;
1899 1900
		}

1901 1902 1903 1904 1905 1906
		if (best_val != INT_MAX) {
			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
			selector = best_val;
		} else {
			ret = -EINVAL;
		}
1907 1908 1909 1910
	} else {
		ret = -EINVAL;
	}

1911 1912 1913 1914 1915 1916 1917 1918
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

1919 1920 1921 1922
	if (ret == 0)
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
				     NULL);

1923 1924 1925 1926 1927
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);

	return ret;
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1943
 * Regulator system constraints must be set for this regulator before
1944 1945 1946 1947 1948
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
1949
	int ret = 0;
1950 1951 1952

	mutex_lock(&rdev->mutex);

1953 1954 1955 1956 1957 1958 1959
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

1960
	/* sanity check */
1961 1962
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
1973

1974 1975 1976 1977
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

1978
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1979

1980 1981 1982 1983 1984 1985
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2078 2079
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2080
	int sel, ret;
2081 2082 2083 2084 2085

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2086
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2087
	} else if (rdev->desc->ops->get_voltage) {
2088
		ret = rdev->desc->ops->get_voltage(rdev);
2089
	} else {
2090
		return -EINVAL;
2091
	}
2092

2093 2094
	if (ret < 0)
		return ret;
2095
	return ret - rdev->constraints->uV_offset;
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2211
	int regulator_curr_mode;
2212 2213 2214 2215 2216 2217 2218 2219 2220

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2221 2222 2223 2224 2225 2226 2227 2228 2229
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2230
	/* constraints check */
2231
	ret = regulator_mode_constrain(rdev, &mode);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

2307 2308 2309 2310
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2311 2312
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2313 2314
	if (ret < 0) {
		ret = 0;
2315
		goto out;
2316
	}
2317 2318 2319 2320

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2321 2322 2323 2324 2325 2326
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2327
	/* get output voltage */
2328
	output_uV = _regulator_get_voltage(rdev);
2329
	if (output_uV <= 0) {
2330
		rdev_err(rdev, "invalid output voltage found\n");
2331 2332 2333 2334
		goto out;
	}

	/* get input voltage */
2335 2336
	input_uV = 0;
	if (rdev->supply)
2337
		input_uV = regulator_get_voltage(rdev->supply);
2338
	if (input_uV <= 0)
2339 2340
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2341
		rdev_err(rdev, "invalid input voltage found\n");
2342 2343 2344 2345 2346
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2347
		total_uA_load += consumer->uA_load;
2348 2349 2350 2351

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2352
	ret = regulator_mode_constrain(rdev, &mode);
2353
	if (ret < 0) {
2354 2355
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2356 2357 2358 2359
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2360
	if (ret < 0) {
2361
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2374
 * @nb: notifier block
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2389
 * @nb: notifier block
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2401 2402 2403
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2439 2440
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2441 2442 2443 2444 2445 2446 2447 2448
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2449
	while (--i >= 0)
2450 2451 2452 2453 2454 2455
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

2502 2503 2504 2505 2506 2507 2508
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2524
	LIST_HEAD(async_domain);
2525
	int i;
2526
	int ret = 0;
2527

2528 2529 2530 2531 2532 2533 2534
	for (i = 0; i < num_consumers; i++)
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2535
	for (i = 0; i < num_consumers; i++) {
2536 2537
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2538
			goto err;
2539
		}
2540 2541 2542 2543 2544
	}

	return 0;

err:
2545 2546 2547
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
	while (--i >= 0)
		regulator_disable(consumers[i].consumer);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
2561 2562
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
2563 2564 2565 2566 2567 2568 2569 2570
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

2571
	for (i = num_consumers - 1; i >= 0; --i) {
2572 2573 2574 2575 2576 2577 2578 2579
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2580
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2581
	for (++i; i < num_consumers; ++i)
2582 2583 2584 2585 2586 2587
		regulator_enable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2648
 * @rdev: regulator source
2649
 * @event: notifier block
2650
 * @data: callback-specific data.
2651 2652 2653
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2654
 * Note lock must be held by caller.
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2700 2701
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2721 2722 2723 2724 2725
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
2742
	if (ops->set_voltage || ops->set_voltage_sel) {
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	/* suspend mode constraints need multiple supporting methods */
	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
		return status;

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2806 2807 2808
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2809
	if (!rdev->debugfs) {
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
}

2820 2821
/**
 * regulator_register - register regulator
2822 2823
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2824
 * @init_data: platform provided init data, passed through by driver
2825
 * @driver_data: private regulator data
2826 2827
 * @of_node: OpenFirmware node to parse for device tree bindings (may be
 *           NULL).
2828 2829 2830 2831 2832
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2833
	struct device *dev, const struct regulator_init_data *init_data,
2834
	void *driver_data, struct device_node *of_node)
2835
{
2836
	const struct regulation_constraints *constraints = NULL;
2837 2838
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2839
	int ret, i;
2840
	const char *supply = NULL;
2841 2842 2843 2844 2845 2846 2847

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2848 2849
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2850 2851
		return ERR_PTR(-EINVAL);

2852 2853 2854
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
2855 2856
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
2857 2858 2859 2860 2861 2862

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2863 2864 2865 2866
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2867

2868 2869 2870 2871 2872 2873 2874
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2875
	rdev->reg_data = driver_data;
2876 2877 2878 2879 2880
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2881
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2882

2883
	/* preform any regulator specific init */
2884
	if (init_data && init_data->regulator_init) {
2885
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2886 2887
		if (ret < 0)
			goto clean;
2888 2889 2890
	}

	/* register with sysfs */
2891
	rdev->dev.class = &regulator_class;
2892
	rdev->dev.of_node = of_node;
2893
	rdev->dev.parent = dev;
2894 2895
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2896
	ret = device_register(&rdev->dev);
2897 2898
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
2899
		goto clean;
2900
	}
2901 2902 2903

	dev_set_drvdata(&rdev->dev, rdev);

2904
	/* set regulator constraints */
2905 2906 2907 2908
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
2909 2910 2911
	if (ret < 0)
		goto scrub;

2912 2913 2914 2915 2916
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2917
	if (init_data && init_data->supply_regulator)
2918 2919 2920 2921 2922
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
2923 2924
		struct regulator_dev *r;

2925
		r = regulator_dev_lookup(dev, supply);
2926

2927 2928
		if (!r) {
			dev_err(dev, "Failed to find supply %s\n", supply);
2929
			ret = -EPROBE_DEFER;
2930 2931 2932 2933 2934 2935
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
2936 2937 2938 2939 2940 2941 2942 2943

		/* Enable supply if rail is enabled */
		if (rdev->desc->ops->is_enabled &&
				rdev->desc->ops->is_enabled(rdev)) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
2944 2945
	}

2946
	/* add consumers devices */
2947 2948 2949 2950
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
2951
				init_data->consumer_supplies[i].supply);
2952 2953 2954 2955 2956
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
2957
		}
2958
	}
2959 2960

	list_add(&rdev->list, &regulator_list);
2961 2962

	rdev_init_debugfs(rdev);
2963
out:
2964 2965
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
2966

2967 2968 2969
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
2970
scrub:
2971
	kfree(rdev->constraints);
D
David Brownell 已提交
2972
	device_unregister(&rdev->dev);
2973 2974 2975 2976
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
2977 2978 2979 2980
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
2981 2982 2983 2984 2985
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
2986
 * @rdev: regulator to unregister
2987 2988 2989 2990 2991 2992 2993 2994
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

2995 2996
	if (rdev->supply)
		regulator_put(rdev->supply);
2997
	mutex_lock(&regulator_list_mutex);
2998
	debugfs_remove_recursive(rdev->debugfs);
2999
	flush_work_sync(&rdev->disable_work.work);
3000
	WARN_ON(rdev->open_count);
3001
	unset_regulator_supplies(rdev);
3002
	list_del(&rdev->list);
3003
	kfree(rdev->constraints);
3004
	device_unregister(&rdev->dev);
3005 3006 3007 3008 3009
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3010
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3033
			rdev_err(rdev, "failed to prepare\n");
3034 3035 3036 3037 3038 3039 3040 3041 3042
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
			if (ops->is_enabled && !ops->is_enabled(rdev))
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3117 3118
/**
 * rdev_get_drvdata - get rdev regulator driver data
3119
 * @rdev: regulator
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3156
 * @rdev: regulator
3157 3158 3159 3160 3161 3162 3163
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3206
#endif
3207 3208

static const struct file_operations supply_map_fops = {
3209
#ifdef CONFIG_DEBUG_FS
3210 3211 3212
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3213
};
3214

3215 3216
static int __init regulator_init(void)
{
3217 3218 3219 3220
	int ret;

	ret = class_register(&regulator_class);

3221
	debugfs_root = debugfs_create_dir("regulator", NULL);
3222
	if (!debugfs_root)
3223
		pr_warn("regulator: Failed to create debugfs directory\n");
3224

3225 3226
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3227

3228 3229 3230
	regulator_dummy_init();

	return ret;
3231 3232 3233 3234
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3253
		if (!ops->disable || (c && c->always_on))
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3273
			rdev_info(rdev, "disabling\n");
3274 3275
			ret = ops->disable(rdev);
			if (ret != 0) {
3276
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3277 3278 3279 3280 3281 3282 3283
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3284
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);