fsl_ssi.c 40.2 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *
 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
 *
 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
 * one FIFO which combines all valid receive slots. We cannot even select
 * which slots we want to receive. The WM9712 with which this driver
 * was developed with always sends GPIO status data in slot 12 which
 * we receive in our (PCM-) data stream. The only chance we have is to
 * manually skip this data in the FIQ handler. With sampling rates different
 * from 48000Hz not every frame has valid receive data, so the ratio
 * between pcm data and GPIO status data changes. Our FIQ handler is not
 * able to handle this, hence this driver only works with 48000Hz sampling
 * rate.
 * Reading and writing AC97 registers is another challenge. The core
 * provides us status bits when the read register is updated with *another*
 * value. When we read the same register two times (and the register still
 * contains the same value) these status bits are not set. We work
 * around this by not polling these bits but only wait a fixed delay.
31 32 33
 */

#include <linux/init.h>
34
#include <linux/io.h>
35 36
#include <linux/module.h>
#include <linux/interrupt.h>
37
#include <linux/clk.h>
38
#include <linux/debugfs.h>
39 40
#include <linux/device.h>
#include <linux/delay.h>
41
#include <linux/slab.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/of_address.h>
#include <linux/of_irq.h>
45
#include <linux/of_platform.h>
46 47 48 49 50 51

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
52
#include <sound/dmaengine_pcm.h>
53 54

#include "fsl_ssi.h"
55
#include "imx-pcm.h"
56

57 58 59 60
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
61
#else
62 63 64 65 66 67 68 69 70 71 72 73 74 75
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

111 112 113 114 115 116 117
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

118 119 120 121 122 123 124 125
#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
		CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
		CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
		CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
		CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
#define FSLSSI_SISR_MASK (FSLSSI_SIER_DBG_RX_FLAGS | FSLSSI_SIER_DBG_TX_FLAGS)

126 127 128 129

enum fsl_ssi_type {
	FSL_SSI_MCP8610,
	FSL_SSI_MX21,
130
	FSL_SSI_MX35,
131 132 133
	FSL_SSI_MX51,
};

134 135 136 137 138 139 140 141 142 143 144
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
145
 * @name: name for this device
146 147 148 149 150
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
151
	unsigned int fifo_depth;
152 153
	struct snd_soc_dai_driver cpu_dai_drv;
	struct platform_device *pdev;
154

155
	enum fsl_ssi_type hw_type;
156 157
	bool new_binding;
	bool ssi_on_imx;
158
	bool imx_ac97;
159
	bool use_dma;
160
	bool baudclk_locked;
161
	bool irq_stats;
162
	u8 i2s_mode;
163 164
	spinlock_t baudclk_lock;
	struct clk *baudclk;
165
	struct clk *clk;
166 167 168 169
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
	struct imx_dma_data filter_data_tx;
	struct imx_dma_data filter_data_rx;
170
	struct imx_pcm_fiq_params fiq_params;
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
195 196
	struct dentry *dbg_dir;
	struct dentry *dbg_stats;
197 198

	char name[1];
199 200
};

201 202 203
static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", .data = (void *) FSL_SSI_MCP8610},
	{ .compatible = "fsl,imx51-ssi", .data = (void *) FSL_SSI_MX51},
204
	{ .compatible = "fsl,imx35-ssi", .data = (void *) FSL_SSI_MX35},
205 206 207 208 209
	{ .compatible = "fsl,imx21-ssi", .data = (void *) FSL_SSI_MX21},
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	__be32 sisr2;
	__be32 sisr_write_mask = 0;

	switch (ssi_private->hw_type) {
	case FSL_SSI_MX21:
		sisr_write_mask = 0;
		break;

	case FSL_SSI_MCP8610:
	case FSL_SSI_MX35:
		sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1;
		break;

	case FSL_SSI_MX51:
		sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1;
		break;
	}
248 249 250 251 252

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
253
	sisr = read_ssi(&ssi->sisr) & FSLSSI_SISR_MASK;
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

360
	sisr2 = sisr & sisr_write_mask;
361 362
	/* Clear the bits that we set */
	if (sisr2)
363
		write_ssi(sisr2, &ssi->sisr);
364 365 366 367

	return ret;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
#if IS_ENABLED(CONFIG_DEBUG_FS)
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (FSLSSI_SISR_MASK & CCSR_SSI_SIER_##flag) \
			seq_printf(s, #name "=%u\n", ssi_private->stats.name); \
	} while (0)


/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
 */
static ssize_t fsl_ssi_stats_show(struct seq_file *s, void *unused)
{
	struct fsl_ssi_private *ssi_private = s->private;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);

	return 0;
}

static int fsl_ssi_stats_open(struct inode *inode, struct file *file)
{
	return single_open(file, fsl_ssi_stats_show, inode->i_private);
}

static const struct file_operations fsl_ssi_stats_ops = {
	.open = fsl_ssi_stats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int fsl_ssi_debugfs_create(struct fsl_ssi_private *ssi_private,
		struct device *dev)
{
	ssi_private->dbg_dir = debugfs_create_dir(dev_name(dev), NULL);
	if (!ssi_private->dbg_dir)
		return -ENOMEM;

	ssi_private->dbg_stats = debugfs_create_file("stats", S_IRUGO,
			ssi_private->dbg_dir, ssi_private, &fsl_ssi_stats_ops);
	if (!ssi_private->dbg_stats) {
		debugfs_remove(ssi_private->dbg_dir);
		return -ENOMEM;
	}

	return 0;
}

static void fsl_ssi_debugfs_remove(struct fsl_ssi_private *ssi_private)
{
	debugfs_remove(ssi_private->dbg_stats);
	debugfs_remove(ssi_private->dbg_dir);
}

#else

static int fsl_ssi_debugfs_create(struct fsl_ssi_private *ssi_private,
		struct device *dev)
{
	return 0;
}

static void fsl_ssi_debugfs_remove(struct fsl_ssi_private *ssi_private)
{
}

#endif /* IS_ENABLED(CONFIG_DEBUG_FS) */

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	/*
	 * Setup the clock control register
	 */
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->stccr);
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->srccr);

	/*
	 * Enable AC97 mode and startup the SSI
	 */
	write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
			&ssi->sacnt);
	write_ssi(0xff, &ssi->saccdis);
	write_ssi(0x300, &ssi->saccen);

	/*
	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
	 * codec before a stream is started.
	 */
	write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
			CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);

	write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
}

494 495 496 497 498 499 500
static int fsl_ssi_setup(struct fsl_ssi_private *ssi_private)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u8 wm;
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;

	if (ssi_private->imx_ac97)
501
		ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_NORMAL | CCSR_SSI_SCR_NET;
502
	else
503
		ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

	/*
	 * Section 16.5 of the MPC8610 reference manual says that the SSI needs
	 * to be disabled before updating the registers we set here.
	 */
	write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);

	/*
	 * Program the SSI into I2S Slave Non-Network Synchronous mode. Also
	 * enable the transmit and receive FIFO.
	 *
	 * FIXME: Little-endian samples require a different shift dir
	 */
	write_ssi_mask(&ssi->scr,
		CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
		CCSR_SSI_SCR_TFR_CLK_DIS |
520
		ssi_private->i2s_mode |
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		(synchronous ? CCSR_SSI_SCR_SYN : 0));

	write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
		 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
		 CCSR_SSI_STCR_TSCKP, &ssi->stcr);

	write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
		 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
		 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
	/*
	 * The DC and PM bits are only used if the SSI is the clock master.
	 */

	/*
	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
	 * use FIFO 1. We program the transmit water to signal a DMA transfer
	 * if there are only two (or fewer) elements left in the FIFO. Two
	 * elements equals one frame (left channel, right channel). This value,
	 * however, depends on the depth of the transmit buffer.
	 *
	 * We set the watermark on the same level as the DMA burstsize.  For
	 * fiq it is probably better to use the biggest possible watermark
	 * size.
	 */
	if (ssi_private->use_dma)
		wm = ssi_private->fifo_depth - 2;
	else
		wm = ssi_private->fifo_depth;

	write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
		CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
		&ssi->sfcsr);

	/*
	 * For ac97 interrupts are enabled with the startup of the substream
	 * because it is also running without an active substream. Normally SSI
	 * is only enabled when there is a substream.
	 */
559 560
	if (ssi_private->imx_ac97)
		fsl_ssi_setup_ac97(ssi_private);
561 562 563 564 565

	return 0;
}


566 567 568 569 570 571 572 573
/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
574 575
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
576 577
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
578 579
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
580
	unsigned long flags;
581

582 583 584
	/* First, we only do fsl_ssi_setup() when SSI is going to be active.
	 * Second, fsl_ssi_setup was already called by ac97_init earlier if
	 * the driver is in ac97 mode.
585
	 */
586
	if (!dai->active && !ssi_private->imx_ac97) {
587
		fsl_ssi_setup(ssi_private);
588 589 590 591
		spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
		ssi_private->baudclk_locked = false;
		spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
	}
592

593 594 595 596
	return 0;
}

/**
597
 * fsl_ssi_hw_params - program the sample size
598 599 600 601 602 603 604 605 606 607 608
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
609 610
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
611
{
612
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
613
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
614
	unsigned int channels = params_channels(hw_params);
615 616 617
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
618
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
619

620 621 622 623 624 625
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
626

627 628 629 630 631 632 633 634 635
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
636

637 638 639
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
640
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
641
	else
642
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
643

644 645 646 647 648
	if (!ssi_private->imx_ac97)
		write_ssi_mask(&ssi->scr,
				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
				channels == 1 ? 0 : ssi_private->i2s_mode);

649 650 651
	return 0;
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/**
 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
 */
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u32 strcr = 0, stcr, srcr, scr, mask;

	scr = read_ssi(&ssi->scr) & ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
	scr |= CCSR_SSI_SCR_NET;

	mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
		CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
		CCSR_SSI_STCR_TEFS;
	stcr = read_ssi(&ssi->stcr) & ~mask;
	srcr = read_ssi(&ssi->srcr) & ~mask;

	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
		case SND_SOC_DAIFMT_CBS_CFS:
			ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_MASTER;
			break;
		case SND_SOC_DAIFMT_CBM_CFM:
			ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;
			break;
		default:
			return -EINVAL;
		}
		scr |= ssi_private->i2s_mode;

		/* Data on rising edge of bclk, frame low, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_DSP_A:
		/* Data on rising edge of bclk, frame high, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0;
		break;
	default:
		return -EINVAL;
	}

	/* DAI clock inversion */
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_NB_NF:
		/* Nothing to do for both normal cases */
		break;
	case SND_SOC_DAIFMT_IB_NF:
		/* Invert bit clock */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_NB_IF:
		/* Invert frame clock */
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	case SND_SOC_DAIFMT_IB_IF:
		/* Invert both clocks */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	default:
		return -EINVAL;
	}

	/* DAI clock master masks */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
		scr |= CCSR_SSI_SCR_SYS_CLK_EN;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
		break;
	default:
		return -EINVAL;
	}

	stcr |= strcr;
	srcr |= strcr;

	if (ssi_private->cpu_dai_drv.symmetric_rates) {
		/* Need to clear RXDIR when using SYNC mode */
		srcr &= ~CCSR_SSI_SRCR_RXDIR;
		scr |= CCSR_SSI_SCR_SYN;
	}

	write_ssi(stcr, &ssi->stcr);
	write_ssi(srcr, &ssi->srcr);
	write_ssi(scr, &ssi->scr);

	return 0;
}

/**
 * fsl_ssi_set_dai_sysclk - configure Digital Audio Interface bit clock
 *
 * Note: This function can be only called when using SSI as DAI master
 *
 * Quick instruction for parameters:
 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
 */
static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
				  int clk_id, unsigned int freq, int dir)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
	unsigned long flags, clkrate, baudrate, tmprate;
	u64 sub, savesub = 100000;

	/* Don't apply it to any non-baudclk circumstance */
	if (IS_ERR(ssi_private->baudclk))
		return -EINVAL;

	/* It should be already enough to divide clock by setting pm alone */
	psr = 0;
	div2 = 0;

	factor = (div2 + 1) * (7 * psr + 1) * 2;

	for (i = 0; i < 255; i++) {
		/* The bclk rate must be smaller than 1/5 sysclk rate */
		if (factor * (i + 1) < 5)
			continue;

		tmprate = freq * factor * (i + 2);
		clkrate = clk_round_rate(ssi_private->baudclk, tmprate);

		do_div(clkrate, factor);
		afreq = (u32)clkrate / (i + 1);

		if (freq == afreq)
			sub = 0;
		else if (freq / afreq == 1)
			sub = freq - afreq;
		else if (afreq / freq == 1)
			sub = afreq - freq;
		else
			continue;

		/* Calculate the fraction */
		sub *= 100000;
		do_div(sub, freq);

		if (sub < savesub) {
			baudrate = tmprate;
			savesub = sub;
			pm = i;
		}

		/* We are lucky */
		if (savesub == 0)
			break;
	}

	/* No proper pm found if it is still remaining the initial value */
	if (pm == 999) {
		dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
		return -EINVAL;
	}

	stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
		(psr ? CCSR_SSI_SxCCR_PSR : 0);
	mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 | CCSR_SSI_SxCCR_PSR;

	if (dir == SND_SOC_CLOCK_OUT || synchronous)
		write_ssi_mask(&ssi->stccr, mask, stccr);
	else
		write_ssi_mask(&ssi->srccr, mask, stccr);

	spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
	if (!ssi_private->baudclk_locked) {
		ret = clk_set_rate(ssi_private->baudclk, baudrate);
		if (ret) {
			spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
			dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
			return -EINVAL;
		}
		ssi_private->baudclk_locked = true;
	}
	spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);

	return 0;
}

/**
 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
 *
 * Note: This function can be only called when using SSI as DAI master
 */
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
				u32 rx_mask, int slots, int slot_width)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u32 val;

	/* The slot number should be >= 2 if using Network mode or I2S mode */
	val = read_ssi(&ssi->scr) & (CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET);
	if (val && slots < 2) {
		dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
		return -EINVAL;
	}

	write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_DC_MASK,
			CCSR_SSI_SxCCR_DC(slots));
	write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_DC_MASK,
			CCSR_SSI_SxCCR_DC(slots));

	/* The register SxMSKs needs SSI to provide essential clock due to
	 * hardware design. So we here temporarily enable SSI to set them.
	 */
	val = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
	write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN);

	write_ssi(tx_mask, &ssi->stmsk);
	write_ssi(rx_mask, &ssi->srmsk);

	write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, val);

	return 0;
}

889 890 891 892 893 894 895 896 897
/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
898 899
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
900 901
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
902
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
903
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
904
	unsigned int sier_bits;
905
	unsigned long flags;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

	/*
	 *  Enable only the interrupts and DMA requests
	 *  that are needed for the channel. As the fiq
	 *  is polling for this bits, we have to ensure
	 *  that this are aligned with the preallocated
	 *  buffers
	 */

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		if (ssi_private->use_dma)
			sier_bits = SIER_FLAGS;
		else
			sier_bits = CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TFE0_EN;
	} else {
		if (ssi_private->use_dma)
			sier_bits = SIER_FLAGS;
		else
			sier_bits = CCSR_SSI_SIER_RIE | CCSR_SSI_SIER_RFF0_EN;
	}
926 927 928 929

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
930
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
931
			write_ssi_mask(&ssi->scr, 0,
932
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
933
		else
934
			write_ssi_mask(&ssi->scr, 0,
935
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
936 937 938 939 940
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
941
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
942
		else
943
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
944

945
		if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
946
					(CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0) {
947
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
948 949 950 951
			spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
			ssi_private->baudclk_locked = false;
			spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
		}
952 953 954 955 956 957
		break;

	default:
		return -EINVAL;
	}

958 959
	write_ssi(sier_bits, &ssi->sier);

960 961 962
	return 0;
}

963 964 965 966
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);

967
	if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
968 969 970 971 972 973 974
		dai->playback_dma_data = &ssi_private->dma_params_tx;
		dai->capture_dma_data = &ssi_private->dma_params_rx;
	}

	return 0;
}

975
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
976 977
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
978 979 980
	.set_fmt	= fsl_ssi_set_dai_fmt,
	.set_sysclk	= fsl_ssi_set_dai_sysclk,
	.set_tdm_slot	= fsl_ssi_set_dai_tdm_slot,
981 982 983
	.trigger	= fsl_ssi_trigger,
};

984 985
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
986
	.probe = fsl_ssi_dai_probe,
987
	.playback = {
988
		.channels_min = 1,
989 990 991 992 993
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
994
		.channels_min = 1,
995 996 997 998
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
999
	.ops = &fsl_ssi_dai_ops,
1000 1001
};

1002 1003 1004 1005
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/**
 * fsl_ssi_ac97_trigger: start and stop the AC97 receive/transmit.
 *
 * This function is called by ALSA to start, stop, pause, and resume the
 * transfer of data.
 */
static int fsl_ssi_ac97_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(
			rtd->cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_TIE |
					CCSR_SSI_SIER_TFE0_EN);
		else
			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_RIE |
					CCSR_SSI_SIER_RFF0_EN);
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_TIE |
					CCSR_SSI_SIER_TFE0_EN, 0);
		else
			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_RIE |
					CCSR_SSI_SIER_RFF0_EN, 0);
		break;

	default:
		return -EINVAL;
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
	else
		write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);

	return 0;
}

static const struct snd_soc_dai_ops fsl_ssi_ac97_dai_ops = {
	.startup	= fsl_ssi_startup,
	.trigger	= fsl_ssi_ac97_trigger,
};

static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
	.ac97_control = 1,
	.playback = {
		.stream_name = "AC97 Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.capture = {
		.stream_name = "AC97 Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.ops = &fsl_ssi_ac97_dai_ops,
};


static struct fsl_ssi_private *fsl_ac97_data;

static void fsl_ssi_ac97_init(void)
{
	fsl_ssi_setup(fsl_ac97_data);
}

1085
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		unsigned short val)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
	unsigned int lreg;
	unsigned int lval;

	if (reg > 0x7f)
		return;


	lreg = reg <<  12;
	write_ssi(lreg, &ssi->sacadd);

	lval = val << 4;
	write_ssi(lval , &ssi->sacdat);

	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_WR);
	udelay(100);
}

1107
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		unsigned short reg)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;

	unsigned short val = -1;
	unsigned int lreg;

	lreg = (reg & 0x7f) <<  12;
	write_ssi(lreg, &ssi->sacadd);
	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_RD);

	udelay(100);

	val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;

	return val;
}

static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
	.read		= fsl_ssi_ac97_read,
	.write		= fsl_ssi_ac97_write,
};

1132
/**
1133
 * Make every character in a string lower-case
1134
 */
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

1147
static int fsl_ssi_probe(struct platform_device *pdev)
1148 1149 1150
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
1151
	struct device_attribute *dev_attr = NULL;
1152
	struct device_node *np = pdev->dev.of_node;
1153 1154
	const struct of_device_id *of_id;
	enum fsl_ssi_type hw_type;
1155
	const char *p, *sprop;
1156
	const uint32_t *iprop;
1157 1158
	struct resource res;
	char name[64];
1159
	bool shared;
1160
	bool ac97 = false;
1161

1162 1163 1164
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
1165
	 */
1166
	if (!of_device_is_available(np))
1167 1168
		return -ENODEV;

1169 1170 1171 1172 1173
	of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
	if (!of_id)
		return -EINVAL;
	hw_type = (enum fsl_ssi_type) of_id->data;

1174 1175
	/* We only support the SSI in "I2S Slave" mode */
	sprop = of_get_property(np, "fsl,mode", NULL);
1176 1177 1178 1179 1180 1181 1182
	if (!sprop) {
		dev_err(&pdev->dev, "fsl,mode property is necessary\n");
		return -EINVAL;
	}
	if (!strcmp(sprop, "ac97-slave")) {
		ac97 = true;
	} else if (strcmp(sprop, "i2s-slave")) {
1183
		dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
1184 1185 1186 1187 1188
		return -ENODEV;
	}

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
1189
	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
1190
			      GFP_KERNEL);
1191
	if (!ssi_private) {
1192
		dev_err(&pdev->dev, "could not allocate DAI object\n");
1193
		return -ENOMEM;
1194 1195
	}

1196
	strcpy(ssi_private->name, p);
1197

1198 1199
	ssi_private->use_dma = !of_property_read_bool(np,
			"fsl,fiq-stream-filter");
1200
	ssi_private->hw_type = hw_type;
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	if (ac97) {
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
				sizeof(fsl_ssi_ac97_dai));

		fsl_ac97_data = ssi_private;
		ssi_private->imx_ac97 = true;

		snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
	} else {
		/* Initialize this copy of the CPU DAI driver structure */
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
		       sizeof(fsl_ssi_dai_template));
	}
1215 1216 1217 1218 1219
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
1220
		dev_err(&pdev->dev, "could not determine device resources\n");
1221
		return ret;
1222
	}
1223 1224 1225
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
1226
		return -ENOMEM;
1227
	}
1228
	ssi_private->ssi_phys = res.start;
1229

1230
	ssi_private->irq = irq_of_parse_and_map(np, 0);
1231
	if (!ssi_private->irq) {
1232
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
1233
		return -ENXIO;
1234 1235
	}

1236
	/* Are the RX and the TX clocks locked? */
1237
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1238
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
1239 1240 1241
		ssi_private->cpu_dai_drv.symmetric_channels = 1;
		ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
	}
1242

1243 1244 1245
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
1246
		ssi_private->fifo_depth = be32_to_cpup(iprop);
1247 1248 1249 1250
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

1251 1252 1253
	ssi_private->baudclk_locked = false;
	spin_lock_init(&ssi_private->baudclk_lock);

1254 1255
	if (hw_type == FSL_SSI_MX21 || hw_type == FSL_SSI_MX51 ||
			hw_type == FSL_SSI_MX35) {
1256 1257
		u32 dma_events[2];
		ssi_private->ssi_on_imx = true;
1258

1259
		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1260 1261 1262
		if (IS_ERR(ssi_private->clk)) {
			ret = PTR_ERR(ssi_private->clk);
			dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1263
			goto error_irqmap;
1264
		}
1265 1266 1267 1268 1269 1270
		ret = clk_prepare_enable(ssi_private->clk);
		if (ret) {
			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
				ret);
			goto error_irqmap;
		}
1271

1272 1273 1274 1275 1276
		/* For those SLAVE implementations, we ingore non-baudclk cases
		 * and, instead, abandon MASTER mode that needs baud clock.
		 */
		ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
		if (IS_ERR(ssi_private->baudclk))
1277
			dev_warn(&pdev->dev, "could not get baud clock: %ld\n",
1278
				 PTR_ERR(ssi_private->baudclk));
1279 1280 1281
		else
			clk_prepare_enable(ssi_private->baudclk);

1282 1283 1284 1285
		/*
		 * We have burstsize be "fifo_depth - 2" to match the SSI
		 * watermark setting in fsl_ssi_startup().
		 */
1286
		ssi_private->dma_params_tx.maxburst =
1287
			ssi_private->fifo_depth - 2;
1288
		ssi_private->dma_params_rx.maxburst =
1289
			ssi_private->fifo_depth - 2;
1290
		ssi_private->dma_params_tx.addr =
1291
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
1292
		ssi_private->dma_params_rx.addr =
1293
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
1294 1295 1296 1297
		ssi_private->dma_params_tx.filter_data =
			&ssi_private->filter_data_tx;
		ssi_private->dma_params_rx.filter_data =
			&ssi_private->filter_data_rx;
1298 1299 1300 1301 1302 1303 1304 1305
		if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
				ssi_private->use_dma) {
			/*
			 * FIXME: This is a temporary solution until all
			 * necessary dma drivers support the generic dma
			 * bindings.
			 */
			ret = of_property_read_u32_array(pdev->dev.of_node,
1306
					"fsl,ssi-dma-events", dma_events, 2);
1307 1308 1309 1310
			if (ret && ssi_private->use_dma) {
				dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
				goto error_clk;
			}
1311
		}
1312 1313 1314 1315

		shared = of_device_is_compatible(of_get_parent(np),
			    "fsl,spba-bus");

1316
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
1317
			dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1318
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
1319
			dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1320 1321 1322 1323 1324 1325 1326
	}

	/*
	 * Enable interrupts only for MCP8610 and MX51. The other MXs have
	 * different writeable interrupt status registers.
	 */
	if (ssi_private->use_dma) {
1327 1328 1329 1330
		/* The 'name' should not have any slashes in it. */
		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
					fsl_ssi_isr, 0, ssi_private->name,
					ssi_private);
1331
		ssi_private->irq_stats = true;
1332 1333 1334 1335 1336
		if (ret < 0) {
			dev_err(&pdev->dev, "could not claim irq %u\n",
					ssi_private->irq);
			goto error_irqmap;
		}
1337 1338
	}

1339
	/* Register with ASoC */
1340
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
1341

1342 1343
	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
					 &ssi_private->cpu_dai_drv, 1);
1344
	if (ret) {
1345
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1346
		goto error_dev;
1347 1348
	}

1349 1350 1351 1352
	ret = fsl_ssi_debugfs_create(ssi_private, &pdev->dev);
	if (ret)
		goto error_dbgfs;

1353
	if (ssi_private->ssi_on_imx) {
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		if (!ssi_private->use_dma) {

			/*
			 * Some boards use an incompatible codec. To get it
			 * working, we are using imx-fiq-pcm-audio, that
			 * can handle those codecs. DMA is not possible in this
			 * situation.
			 */

			ssi_private->fiq_params.irq = ssi_private->irq;
			ssi_private->fiq_params.base = ssi_private->ssi;
			ssi_private->fiq_params.dma_params_rx =
				&ssi_private->dma_params_rx;
			ssi_private->fiq_params.dma_params_tx =
				&ssi_private->dma_params_tx;

			ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
			if (ret)
1372
				goto error_pcm;
1373 1374 1375
		} else {
			ret = imx_pcm_dma_init(pdev);
			if (ret)
1376
				goto error_pcm;
1377
		}
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	}

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
	if (!of_get_property(np, "codec-handle", NULL)) {
		ssi_private->new_binding = true;
		goto done;
	}

1390
	/* Trigger the machine driver's probe function.  The platform driver
1391
	 * name of the machine driver is taken from /compatible property of the
1392 1393 1394
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
1395 1396
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1397 1398 1399 1400 1401 1402 1403
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
1404
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1405 1406
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
1407
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1408
		goto error_dai;
M
Mark Brown 已提交
1409
	}
1410

1411
done:
1412 1413 1414
	if (ssi_private->imx_ac97)
		fsl_ssi_ac97_init();

1415
	return 0;
1416

1417
error_dai:
1418 1419 1420 1421
	if (ssi_private->ssi_on_imx && !ssi_private->use_dma)
		imx_pcm_fiq_exit(pdev);

error_pcm:
1422 1423 1424
	fsl_ssi_debugfs_remove(ssi_private);

error_dbgfs:
1425
	snd_soc_unregister_component(&pdev->dev);
1426 1427 1428 1429

error_dev:
	device_remove_file(&pdev->dev, dev_attr);

1430
error_clk:
1431 1432 1433
	if (ssi_private->ssi_on_imx) {
		if (!IS_ERR(ssi_private->baudclk))
			clk_disable_unprepare(ssi_private->baudclk);
1434
		clk_disable_unprepare(ssi_private->clk);
1435
	}
1436 1437

error_irqmap:
1438 1439
	if (ssi_private->irq_stats)
		irq_dispose_mapping(ssi_private->irq);
1440

1441
	return ret;
1442 1443
}

1444
static int fsl_ssi_remove(struct platform_device *pdev)
1445
{
1446
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1447

1448 1449
	fsl_ssi_debugfs_remove(ssi_private);

1450 1451
	if (!ssi_private->new_binding)
		platform_device_unregister(ssi_private->pdev);
1452
	snd_soc_unregister_component(&pdev->dev);
1453 1454 1455
	if (ssi_private->ssi_on_imx) {
		if (!IS_ERR(ssi_private->baudclk))
			clk_disable_unprepare(ssi_private->baudclk);
1456
		clk_disable_unprepare(ssi_private->clk);
1457
	}
1458 1459
	if (ssi_private->irq_stats)
		irq_dispose_mapping(ssi_private->irq);
1460 1461

	return 0;
1462
}
1463

1464
static struct platform_driver fsl_ssi_driver = {
1465 1466 1467 1468 1469 1470 1471 1472
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
1473

1474
module_platform_driver(fsl_ssi_driver);
1475

1476
MODULE_ALIAS("platform:fsl-ssi-dai");
1477 1478
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1479
MODULE_LICENSE("GPL v2");