intel_engine_cs.c 45.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28 29 30
#include "i915_drv.h"
#include "intel_ringbuffer.h"
#include "intel_lrc.h"

31 32 33 34 35 36 37 38 39
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

40
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
41 42
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
44
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
45 46 47

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

48
struct engine_class_info {
49
	const char *name;
50 51
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
52 53

	u8 uabi_class;
54 55 56 57 58 59 60
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
61
		.uabi_class = I915_ENGINE_CLASS_RENDER,
62 63 64 65 66
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
67
		.uabi_class = I915_ENGINE_CLASS_COPY,
68 69 70 71 72
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
73
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
74 75 76 77 78
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
79
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
80 81 82
	},
};

83
#define MAX_MMIO_BASES 3
84
struct engine_info {
85
	unsigned int hw_id;
86
	unsigned int uabi_id;
87 88
	u8 class;
	u8 instance;
89 90 91 92 93
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
94 95 96
};

static const struct engine_info intel_engines[] = {
97
	[RCS] = {
98
		.hw_id = RCS_HW,
99
		.uabi_id = I915_EXEC_RENDER,
100 101
		.class = RENDER_CLASS,
		.instance = 0,
102 103 104
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
105 106
	},
	[BCS] = {
107
		.hw_id = BCS_HW,
108
		.uabi_id = I915_EXEC_BLT,
109 110
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
111 112 113
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
114 115
	},
	[VCS] = {
116
		.hw_id = VCS_HW,
117
		.uabi_id = I915_EXEC_BSD,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
120 121 122 123 124
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
125 126
	},
	[VCS2] = {
127
		.hw_id = VCS2_HW,
128
		.uabi_id = I915_EXEC_BSD,
129 130
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
131 132 133 134
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
135
	},
136 137 138 139 140
	[VCS3] = {
		.hw_id = VCS3_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
141 142 143
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
144 145 146 147 148 149
	},
	[VCS4] = {
		.hw_id = VCS4_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
150 151 152
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
153
	},
154
	[VECS] = {
155
		.hw_id = VECS_HW,
156
		.uabi_id = I915_EXEC_VEBOX,
157 158
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
159 160 161 162
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
163
	},
164 165 166 167 168
	[VECS2] = {
		.hw_id = VECS2_HW,
		.uabi_id = I915_EXEC_VEBOX,
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
169 170 171
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
172
	},
173 174
};

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
201
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
202 203
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
204
		case 10:
O
Oscar Mateo 已提交
205
			return GEN10_LR_CONTEXT_RENDER_SIZE;
206 207 208
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
209
			return GEN8_LR_CONTEXT_RENDER_SIZE;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
232
		/* fall through */
233 234 235 236 237 238 239 240 241
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

257 258 259 260 261 262 263
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

264
static int
265 266 267 268
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
269 270
	struct intel_engine_cs *engine;

271 272
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

273 274 275
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

276
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
277 278
		return -EINVAL;

279
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
280 281
		return -EINVAL;

282
	if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
283 284
		return -EINVAL;

285 286 287 288
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
289 290 291

	engine->id = id;
	engine->i915 = dev_priv;
292
	__sprint_engine_name(engine->name, info);
293
	engine->hw_id = engine->guc_id = info->hw_id;
294
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
295 296
	engine->class = info->class;
	engine->instance = info->instance;
297

298
	engine->uabi_id = info->uabi_id;
299
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
300

301 302 303 304
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
305 306
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
307

308 309 310
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

311
	seqlock_init(&engine->stats.lock);
312

313 314
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

315
	dev_priv->engine_class[info->class][info->instance] = engine;
316 317
	dev_priv->engine[id] = engine;
	return 0;
318 319 320
}

/**
321
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
322
 * @dev_priv: i915 device private
323 324 325
 *
 * Return: non-zero if the initialization failed.
 */
326
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
327
{
328
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
329
	const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
330 331
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
332
	unsigned int mask = 0;
333
	unsigned int i;
334
	int err;
335

336 337
	WARN_ON(ring_mask == 0);
	WARN_ON(ring_mask &
338
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
339

340 341 342
	if (i915_inject_load_failure())
		return -ENODEV;

343 344 345 346
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

		mask |= ENGINE_MASK(i);
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != ring_mask))
		device_info->ring_mask = mask;

362 363 364 365 366 367
	/* We always presume we have at least RCS available for later probing */
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
		err = -ENODEV;
		goto cleanup;
	}

368 369
	device_info->num_rings = hweight32(mask);

370 371
	i915_check_and_clear_faults(dev_priv);

372 373 374 375 376 377 378 379 380
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
381
 * intel_engines_init() - init the Engine Command Streamers
382 383 384 385 386 387 388 389
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
390
	int err;
391 392

	for_each_engine(engine, dev_priv, id) {
393 394
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
395 396
		int (*init)(struct intel_engine_cs *engine);

397
		if (HAS_EXECLISTS(dev_priv))
398
			init = class_info->init_execlists;
399
		else
400
			init = class_info->init_legacy;
401 402 403 404

		err = -EINVAL;
		err_id = id;

405
		if (GEM_DEBUG_WARN_ON(!init))
406
			goto cleanup;
407

408
		err = init(engine);
409
		if (err)
410 411
			goto cleanup;

412
		GEM_BUG_ON(!engine->submit_request);
413 414 415 416 417
	}

	return 0;

cleanup:
418
	for_each_engine(engine, dev_priv, id) {
419
		if (id >= err_id) {
420
			kfree(engine);
421 422
			dev_priv->engine[id] = NULL;
		} else {
423
			dev_priv->gt.cleanup_engine(engine);
424
		}
425
	}
426
	return err;
427 428
}

429
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
{
	struct drm_i915_private *dev_priv = engine->i915;

	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
		if (HAS_VEBOX(dev_priv))
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
	}

	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
449
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
450

451 452 453 454
	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	intel_engine_wakeup(engine);
455 456

	GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
457 458
}

459 460 461 462 463
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

464 465 466 467
static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

468
	execlists->port_mask = 1;
469
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
470 471
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

472
	execlists->queue_priority = INT_MIN;
473
	execlists->queue = RB_ROOT_CACHED;
474 475
}

476 477 478 479 480 481 482 483 484 485 486
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
void intel_engine_setup_common(struct intel_engine_cs *engine)
{
487
	i915_timeline_init(engine->i915, &engine->timeline, engine->name);
488
	i915_timeline_set_subclass(&engine->timeline, TIMELINE_ENGINE);
489

490
	intel_engine_init_execlist(engine);
491
	intel_engine_init_hangcheck(engine);
492
	intel_engine_init_batch_pool(engine);
493
	intel_engine_init_cmd_parser(engine);
494 495
}

496 497
int intel_engine_create_scratch(struct intel_engine_cs *engine,
				unsigned int size)
498 499 500 501 502 503 504
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	WARN_ON(engine->scratch);

505
	obj = i915_gem_object_create_stolen(engine->i915, size);
506
	if (!obj)
507
		obj = i915_gem_object_create_internal(engine->i915, size);
508 509 510 511 512
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

513
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
514 515 516 517 518
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

519
	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
520 521 522 523 524 525 526 527 528 529 530
	if (ret)
		goto err_unref;

	engine->scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

531
void intel_engine_cleanup_scratch(struct intel_engine_cs *engine)
532
{
533
	i915_vma_unpin_and_release(&engine->scratch, 0);
534 535
}

536
static void cleanup_status_page(struct intel_engine_cs *engine)
537
{
538 539
	if (HWS_NEEDS_PHYSICAL(engine->i915)) {
		void *addr = fetch_and_zero(&engine->status_page.page_addr);
540

541 542
		__free_page(virt_to_page(addr));
	}
543

544 545
	i915_vma_unpin_and_release(&engine->status_page.vma,
				   I915_VMA_RELEASE_MAP);
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	void *vaddr;
	int ret;

	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;

566
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
585 586
	else
		flags |= PIN_HIGH;
587
	ret = i915_vma_pin(vma, 0, 0, flags);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	if (ret)
		goto err;

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

	engine->status_page.vma = vma;
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
	return 0;

err_unpin:
	i915_vma_unpin(vma);
err:
	i915_gem_object_put(obj);
	return ret;
}

static int init_phys_status_page(struct intel_engine_cs *engine)
{
611
	struct page *page;
612

613 614 615 616 617 618 619
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO);
	if (!page)
620 621
		return -ENOMEM;

622
	engine->status_page.page_addr = page_address(page);
623 624 625 626

	return 0;
}

627 628 629 630 631 632
static void __intel_context_unpin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	intel_context_unpin(to_intel_context(ctx, engine));
}

633 634 635 636 637 638 639 640 641 642 643 644 645
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
646 647
	struct drm_i915_private *i915 = engine->i915;
	struct intel_context *ce;
648 649
	int ret;

650 651
	engine->set_default_submission(engine);

652 653 654 655 656 657 658
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
659 660 661
	ce = intel_context_pin(i915->kernel_context, engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);
662

663 664 665 666
	/*
	 * Similarly the preempt context must always be available so that
	 * we can interrupt the engine at any time.
	 */
667 668 669 670
	if (i915->preempt_context) {
		ce = intel_context_pin(i915->preempt_context, engine);
		if (IS_ERR(ce)) {
			ret = PTR_ERR(ce);
671 672 673 674
			goto err_unpin_kernel;
		}
	}

675 676
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
677
		goto err_unpin_preempt;
678

679
	if (HWS_NEEDS_PHYSICAL(i915))
680 681 682 683
		ret = init_phys_status_page(engine);
	else
		ret = init_status_page(engine);
	if (ret)
684
		goto err_breadcrumbs;
685

686
	return 0;
687

688 689
err_breadcrumbs:
	intel_engine_fini_breadcrumbs(engine);
690
err_unpin_preempt:
691 692 693
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);

694
err_unpin_kernel:
695
	__intel_context_unpin(i915->kernel_context, engine);
696
	return ret;
697
}
698 699 700 701 702 703 704 705 706 707

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
708 709
	struct drm_i915_private *i915 = engine->i915;

710 711
	intel_engine_cleanup_scratch(engine);

712
	cleanup_status_page(engine);
713

714
	intel_engine_fini_breadcrumbs(engine);
715
	intel_engine_cleanup_cmd_parser(engine);
716
	i915_gem_batch_pool_fini(&engine->batch_pool);
717

718 719 720
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

721 722 723
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);
	__intel_context_unpin(i915->kernel_context, engine);
724 725

	i915_timeline_fini(&engine->timeline);
726
}
727

728
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 acthd;

	if (INTEL_GEN(dev_priv) >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
	else
		acthd = I915_READ(ACTHD);

	return acthd;
}

744
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
745 746 747 748 749 750 751 752 753 754 755 756
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 bbaddr;

	if (INTEL_GEN(dev_priv) >= 8)
		bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
					  RING_BBADDR_UDW(engine->mmio_base));
	else
		bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));

	return bbaddr;
}
757

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

	if (INTEL_GEN(dev_priv) < 3)
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

	I915_WRITE_FW(mode, _MASKED_BIT_ENABLE(STOP_RING));

	err = 0;
	if (__intel_wait_for_register_fw(dev_priv,
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	POSTING_READ_FW(mode);

	return err;
}

787 788 789 790 791 792 793 794 795 796
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	GEM_TRACE("%s\n", engine->name);

	I915_WRITE_FW(RING_MI_MODE(engine->mmio_base),
		      _MASKED_BIT_DISABLE(STOP_RING));
}

797 798 799 800 801 802 803 804 805 806 807
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

808 809 810 811 812 813 814
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
	const struct sseu_dev_info *sseu = &(INTEL_INFO(dev_priv)->sseu);
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
	u32 subslice = fls(sseu->subslice_mask[slice]);

815
	if (IS_GEN10(dev_priv))
816 817
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
818 819 820
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
821 822 823 824 825 826
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

827 828 829 830
static inline uint32_t
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
831 832
	uint32_t mcr_slice_subslice_mask;
	uint32_t mcr_slice_subslice_select;
833
	uint32_t default_mcr_s_ss_select;
834 835 836 837
	uint32_t mcr;
	uint32_t ret;
	enum forcewake_domains fw_domains;

838 839 840 841 842 843 844 845 846 847 848 849
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

850 851
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);

852 853 854 855 856 857 858 859 860 861
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
						    FW_REG_READ);
	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

	spin_lock_irq(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

	mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
862 863 864 865

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

866 867
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
868 869 870 871
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	ret = I915_READ_FW(reg);

872
	mcr &= ~mcr_slice_subslice_mask;
873 874
	mcr |= default_mcr_s_ss_select;

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irq(&dev_priv->uncore.lock);

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);

		break;
	case 6:
	case 5:
	case 4:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id == RCS)
			/* HACK: Using the wrong struct member */
			instdone->slice_common = I915_READ(GEN4_INSTDONE1);
		break;
	case 3:
	case 2:
		instdone->instdone = I915_READ(GEN2_INSTDONE);
		break;
	}
}
937

938 939 940 941 942
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool idle = true;

943 944 945
	/* If the whole device is asleep, the engine must be idle */
	if (!intel_runtime_pm_get_if_in_use(dev_priv))
		return true;
946

947 948 949 950 951
	/* First check that no commands are left in the ring */
	if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
	    (I915_READ_TAIL(engine) & TAIL_ADDR))
		idle = false;

952 953 954 955 956 957 958 959 960
	/* No bit for gen2, so assume the CS parser is idle */
	if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
		idle = false;

	intel_runtime_pm_put(dev_priv);

	return idle;
}

961 962 963 964 965 966 967 968 969 970 971
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

972 973 974 975
	/* More white lies, if wedged, hw state is inconsistent */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

976
	/* Any inflight/incomplete requests? */
977
	if (!intel_engine_signaled(engine, intel_engine_last_submit(engine)))
978 979
		return false;

980 981 982
	if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
		return true;

983
	/* Waiting to drain ELSP? */
984
	if (READ_ONCE(engine->execlists.active)) {
985
		struct tasklet_struct *t = &engine->execlists.tasklet;
986

987
		local_bh_disable();
988 989 990 991 992
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
993
		}
994
		local_bh_enable();
995

996 997 998
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

999
		if (READ_ONCE(engine->execlists.active))
1000 1001
			return false;
	}
1002

1003
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1004
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1005 1006
		return false;

1007
	/* Ring stopped? */
1008
	if (!ring_is_idle(engine))
1009 1010 1011 1012 1013
		return false;

	return true;
}

1014 1015 1016 1017 1018
bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1019 1020
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1021 1022 1023 1024 1025
	 * report that it is still busy, even though we have stopped using it.
	 */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

1026 1027 1028 1029 1030 1031 1032 1033
	for_each_engine(engine, dev_priv, id) {
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1034 1035 1036 1037 1038 1039 1040 1041
/**
 * intel_engine_has_kernel_context:
 * @engine: the engine
 *
 * Returns true if the last context to be executed on this engine, or has been
 * executed if the engine is already idle, is the kernel context
 * (#i915.kernel_context).
 */
1042 1043
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
1044 1045
	const struct intel_context *kernel_context =
		to_intel_context(engine->i915->kernel_context, engine);
1046
	struct i915_request *rq;
1047 1048 1049 1050 1051 1052 1053 1054

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

	/*
	 * Check the last context seen by the engine. If active, it will be
	 * the last request that remains in the timeline. When idle, it is
	 * the last executed context as tracked by retirement.
	 */
1055
	rq = __i915_gem_active_peek(&engine->timeline.last_request);
1056
	if (rq)
1057
		return rq->hw_context == kernel_context;
1058 1059
	else
		return engine->last_retired_context == kernel_context;
1060 1061
}

1062 1063 1064 1065 1066 1067 1068 1069 1070
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/**
 * intel_engines_sanitize: called after the GPU has lost power
 * @i915: the i915 device
 *
 * Anytime we reset the GPU, either with an explicit GPU reset or through a
 * PCI power cycle, the GPU loses state and we must reset our state tracking
 * to match. Note that calling intel_engines_sanitize() if the GPU has not
 * been reset results in much confusion!
 */
void intel_engines_sanitize(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	GEM_TRACE("\n");

	for_each_engine(engine, i915, id) {
		if (engine->reset.reset)
			engine->reset.reset(engine, NULL);
	}
}

1093 1094 1095 1096 1097 1098 1099 1100 1101
/**
 * intel_engines_park: called when the GT is transitioning from busy->idle
 * @i915: the i915 device
 *
 * The GT is now idle and about to go to sleep (maybe never to wake again?).
 * Time for us to tidy and put away our toys (release resources back to the
 * system).
 */
void intel_engines_park(struct drm_i915_private *i915)
1102 1103 1104 1105 1106
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1107 1108
		/* Flush the residual irq tasklets first. */
		intel_engine_disarm_breadcrumbs(engine);
1109
		tasklet_kill(&engine->execlists.tasklet);
1110

1111 1112 1113 1114 1115
		/*
		 * We are committed now to parking the engines, make sure there
		 * will be no more interrupts arriving later and the engines
		 * are truly idle.
		 */
1116
		if (wait_for(intel_engine_is_idle(engine), 10)) {
1117 1118
			struct drm_printer p = drm_debug_printer(__func__);

1119 1120 1121
			dev_err(i915->drm.dev,
				"%s is not idle before parking\n",
				engine->name);
1122
			intel_engine_dump(engine, &p, NULL);
1123 1124
		}

1125 1126 1127
		/* Must be reset upon idling, or we may miss the busy wakeup. */
		GEM_BUG_ON(engine->execlists.queue_priority != INT_MIN);

1128 1129 1130
		if (engine->park)
			engine->park(engine);

1131 1132 1133 1134 1135
		if (engine->pinned_default_state) {
			i915_gem_object_unpin_map(engine->default_state);
			engine->pinned_default_state = NULL;
		}

1136
		i915_gem_batch_pool_fini(&engine->batch_pool);
1137
		engine->execlists.no_priolist = false;
1138 1139 1140
	}
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/**
 * intel_engines_unpark: called when the GT is transitioning from idle->busy
 * @i915: the i915 device
 *
 * The GT was idle and now about to fire up with some new user requests.
 */
void intel_engines_unpark(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		void *map;

		/* Pin the default state for fast resets from atomic context. */
		map = NULL;
		if (engine->default_state)
			map = i915_gem_object_pin_map(engine->default_state,
						      I915_MAP_WB);
		if (!IS_ERR_OR_NULL(map))
			engine->pinned_default_state = map;

1163 1164
		if (engine->unpark)
			engine->unpark(engine);
1165 1166

		intel_engine_init_hangcheck(engine);
1167 1168 1169
	}
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1181
	struct intel_context *ce;
1182 1183 1184

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1185 1186 1187
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1219 1220 1221
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1222 1223
{
	if (attr->priority == I915_PRIORITY_INVALID)
1224 1225 1226 1227
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1228

1229
	return x;
1230 1231
}

1232
static void print_request(struct drm_printer *m,
1233
			  struct i915_request *rq,
1234 1235
			  const char *prefix)
{
1236
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1237
	char buf[80] = "";
1238 1239 1240
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1241

1242
	drm_printf(m, "%s%x%s [%llx:%x]%s @ %dms: %s\n",
1243
		   prefix,
1244
		   rq->global_seqno,
1245
		   i915_request_completed(rq) ? "!" : "",
1246 1247
		   rq->fence.context, rq->fence.seqno,
		   buf,
1248
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1249
		   name);
1250 1251
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1274
		drm_printf(m, "[%04zx] %s\n", pos, line);
1275 1276 1277 1278 1279 1280

		prev = buf + pos;
		skip = false;
	}
}

1281 1282
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1283 1284
{
	struct drm_i915_private *dev_priv = engine->i915;
1285 1286
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1287 1288
	u64 addr;

1289 1290
	if (engine->id == RCS && IS_GEN(dev_priv, 4, 7))
		drm_printf(m, "\tCCID: 0x%08x\n", I915_READ(CCID));
1291 1292 1293 1294 1295 1296
	drm_printf(m, "\tRING_START: 0x%08x\n",
		   I915_READ(RING_START(engine->mmio_base)));
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
		   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
		   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
1297
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1298
		   I915_READ(RING_CTL(engine->mmio_base)),
1299 1300 1301 1302 1303 1304
		   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
			   I915_READ(RING_MI_MODE(engine->mmio_base)),
			   I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
	}
1305 1306 1307 1308 1309

	if (INTEL_GEN(dev_priv) >= 6) {
		drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
	}

1310
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
1311 1312 1313 1314 1315 1316 1317 1318
		drm_printf(m, "\tSYNC_0: 0x%08x\n",
			   I915_READ(RING_SYNC_0(engine->mmio_base)));
		drm_printf(m, "\tSYNC_1: 0x%08x\n",
			   I915_READ(RING_SYNC_1(engine->mmio_base)));
		if (HAS_VEBOX(dev_priv))
			drm_printf(m, "\tSYNC_2: 0x%08x\n",
				   I915_READ(RING_SYNC_2(engine->mmio_base)));
	}
1319 1320 1321 1322 1323 1324 1325

	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (INTEL_GEN(dev_priv) >= 8)
		addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
					RING_DMA_FADD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
	else
		addr = I915_READ(DMA_FADD_I8XX);
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
			   I915_READ(RING_IPEIR(engine->mmio_base)));
		drm_printf(m, "\tIPEHR: 0x%08x\n",
			   I915_READ(RING_IPEHR(engine->mmio_base)));
	} else {
		drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
	}
1344

1345
	if (HAS_EXECLISTS(dev_priv)) {
1346 1347
		const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
		unsigned int idx;
1348
		u8 read, write;
1349 1350 1351 1352 1353

		drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
			   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
			   I915_READ(RING_EXECLIST_STATUS_HI(engine)));

1354 1355 1356 1357 1358 1359
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

		drm_printf(m, "\tExeclist CSB read %d, write %d [mmio:%d], tasklet queued? %s (%s)\n",
			   read, write,
			   GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine))),
1360 1361 1362
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1363 1364 1365 1366 1367 1368 1369 1370
		if (read >= GEN8_CSB_ENTRIES)
			read = 0;
		if (write >= GEN8_CSB_ENTRIES)
			write = 0;
		if (read > write)
			write += GEN8_CSB_ENTRIES;
		while (read < write) {
			idx = ++read % GEN8_CSB_ENTRIES;
1371
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [mmio:0x%08x], context: %d [mmio:%d]\n",
1372 1373
				   idx,
				   hws[idx * 2],
1374 1375 1376
				   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
				   hws[idx * 2 + 1],
				   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
1377 1378 1379 1380
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1381
			struct i915_request *rq;
1382 1383 1384 1385
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1386 1387
				char hdr[80];

1388
				snprintf(hdr, sizeof(hdr),
1389 1390 1391
					 "\t\tELSP[%d] count=%d, ring->start=%08x, rq: ",
					 idx, count,
					 i915_ggtt_offset(rq->ring->vma));
1392
				print_request(m, rq, hdr);
1393
			} else {
1394
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1395 1396
			}
		}
1397
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1398 1399 1400 1401 1402 1403 1404 1405 1406
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE(engine)));
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
			   I915_READ(RING_PP_DIR_DCLV(engine)));
	}
1407 1408
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1442 1443 1444 1445
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
1446
	const int MAX_REQUESTS_TO_SHOW = 8;
1447 1448 1449
	struct intel_breadcrumbs * const b = &engine->breadcrumbs;
	const struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1450
	struct i915_request *rq, *last;
1451
	unsigned long flags;
1452
	struct rb_node *rb;
1453
	int count;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

	if (i915_terminally_wedged(&engine->i915->gpu_error))
		drm_printf(m, "*** WEDGED ***\n");

1466
	drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
1467 1468 1469
		   intel_engine_get_seqno(engine),
		   intel_engine_last_submit(engine),
		   engine->hangcheck.seqno,
1470
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1471 1472 1473 1474 1475 1476 1477 1478
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1479
	rq = list_first_entry(&engine->timeline.requests,
1480
			      struct i915_request, link);
1481
	if (&rq->link != &engine->timeline.requests)
1482 1483
		print_request(m, rq, "\t\tfirst  ");

1484
	rq = list_last_entry(&engine->timeline.requests,
1485
			     struct i915_request, link);
1486
	if (&rq->link != &engine->timeline.requests)
1487 1488 1489 1490 1491
		print_request(m, rq, "\t\tlast   ");

	rq = i915_gem_find_active_request(engine);
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1492

1493
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1494
			   i915_ggtt_offset(rq->ring->vma));
1495
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1496
			   rq->ring->head);
1497
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1498
			   rq->ring->tail);
1499 1500 1501 1502
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1503 1504

		print_request_ring(m, rq);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	}

	rcu_read_unlock();

	if (intel_runtime_pm_get_if_in_use(engine->i915)) {
		intel_engine_print_registers(engine, m);
		intel_runtime_pm_put(engine->i915);
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1515

1516 1517
	local_irq_save(flags);
	spin_lock(&engine->timeline.lock);
1518 1519 1520

	last = NULL;
	count = 0;
1521
	list_for_each_entry(rq, &engine->timeline.requests, link) {
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		if (count++ < MAX_REQUESTS_TO_SHOW - 1)
			print_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
1538
	drm_printf(m, "\t\tQueue priority: %d\n", execlists->queue_priority);
1539
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
1540 1541
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;
1542

1543
		priolist_for_each_request(rq, p, i) {
1544 1545 1546 1547 1548
			if (count++ < MAX_REQUESTS_TO_SHOW - 1)
				print_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
1549
	}
1550 1551 1552 1553 1554 1555 1556 1557 1558
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tQ ");
	}

1559
	spin_unlock(&engine->timeline.lock);
1560

1561
	spin_lock(&b->rb_lock);
1562 1563 1564 1565 1566 1567
	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
		struct intel_wait *w = rb_entry(rb, typeof(*w), node);

		drm_printf(m, "\t%s [%d] waiting for %x\n",
			   w->tsk->comm, w->tsk->pid, w->seqno);
	}
1568 1569
	spin_unlock(&b->rb_lock);
	local_irq_restore(flags);
1570

C
Chris Wilson 已提交
1571
	drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s)\n",
1572 1573 1574
		   engine->irq_posted,
		   yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
				  &engine->irq_posted)));
1575 1576 1577 1578

	drm_printf(m, "HWSP:\n");
	hexdump(m, engine->status_page.page_addr, PAGE_SIZE);

1579
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1580 1581
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1615
	struct intel_engine_execlists *execlists = &engine->execlists;
1616
	unsigned long flags;
1617
	int err = 0;
1618

1619
	if (!intel_engine_supports_stats(engine))
1620 1621
		return -ENODEV;

1622 1623
	spin_lock_irqsave(&engine->timeline.lock, flags);
	write_seqlock(&engine->stats.lock);
1624 1625 1626 1627 1628 1629

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1630 1631 1632 1633
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1634
		engine->stats.enabled_at = ktime_get();
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1645

1646
unlock:
1647 1648
	write_sequnlock(&engine->stats.lock);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1649

1650
	return err;
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1676
	unsigned int seq;
1677 1678
	ktime_t total;

1679 1680 1681 1682
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1697
	if (!intel_engine_supports_stats(engine))
1698 1699
		return;

1700
	write_seqlock_irqsave(&engine->stats.lock, flags);
1701 1702 1703 1704 1705
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1706
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1707 1708
}

1709 1710
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
1711
#include "selftests/intel_engine_cs.c"
1712
#endif