arm-smmu-v3.c 101.8 KB
Newer Older
A
Andrew Murray 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

12 13
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
14
#include <linux/bitfield.h>
15
#include <linux/bitops.h>
16
#include <linux/crash_dump.h>
17
#include <linux/delay.h>
18
#include <linux/dma-iommu.h>
19 20
#include <linux/err.h>
#include <linux/interrupt.h>
21
#include <linux/io-pgtable.h>
22 23
#include <linux/iommu.h>
#include <linux/iopoll.h>
24
#include <linux/module.h>
25
#include <linux/msi.h>
26 27
#include <linux/of.h>
#include <linux/of_address.h>
28
#include <linux/of_iommu.h>
29
#include <linux/of_platform.h>
30
#include <linux/pci.h>
31
#include <linux/pci-ats.h>
32 33
#include <linux/platform_device.h>

34 35
#include <linux/amba/bus.h>

36 37
/* MMIO registers */
#define ARM_SMMU_IDR0			0x0
38 39 40 41 42 43 44 45 46
#define IDR0_ST_LVL			GENMASK(28, 27)
#define IDR0_ST_LVL_2LVL		1
#define IDR0_STALL_MODEL		GENMASK(25, 24)
#define IDR0_STALL_MODEL_STALL		0
#define IDR0_STALL_MODEL_FORCE		2
#define IDR0_TTENDIAN			GENMASK(22, 21)
#define IDR0_TTENDIAN_MIXED		0
#define IDR0_TTENDIAN_LE		2
#define IDR0_TTENDIAN_BE		3
47 48 49 50 51 52 53 54 55
#define IDR0_CD2L			(1 << 19)
#define IDR0_VMID16			(1 << 18)
#define IDR0_PRI			(1 << 16)
#define IDR0_SEV			(1 << 14)
#define IDR0_MSI			(1 << 13)
#define IDR0_ASID16			(1 << 12)
#define IDR0_ATS			(1 << 10)
#define IDR0_HYP			(1 << 9)
#define IDR0_COHACC			(1 << 4)
56 57 58
#define IDR0_TTF			GENMASK(3, 2)
#define IDR0_TTF_AARCH64		2
#define IDR0_TTF_AARCH32_64		3
59 60 61 62 63 64 65
#define IDR0_S1P			(1 << 1)
#define IDR0_S2P			(1 << 0)

#define ARM_SMMU_IDR1			0x4
#define IDR1_TABLES_PRESET		(1 << 30)
#define IDR1_QUEUES_PRESET		(1 << 29)
#define IDR1_REL			(1 << 28)
66 67 68 69 70
#define IDR1_CMDQS			GENMASK(25, 21)
#define IDR1_EVTQS			GENMASK(20, 16)
#define IDR1_PRIQS			GENMASK(15, 11)
#define IDR1_SSIDSIZE			GENMASK(10, 6)
#define IDR1_SIDSIZE			GENMASK(5, 0)
71 72

#define ARM_SMMU_IDR5			0x14
73
#define IDR5_STALL_MAX			GENMASK(31, 16)
74 75 76
#define IDR5_GRAN64K			(1 << 6)
#define IDR5_GRAN16K			(1 << 5)
#define IDR5_GRAN4K			(1 << 4)
77 78 79 80 81 82 83
#define IDR5_OAS			GENMASK(2, 0)
#define IDR5_OAS_32_BIT			0
#define IDR5_OAS_36_BIT			1
#define IDR5_OAS_40_BIT			2
#define IDR5_OAS_42_BIT			3
#define IDR5_OAS_44_BIT			4
#define IDR5_OAS_48_BIT			5
84
#define IDR5_OAS_52_BIT			6
85 86
#define IDR5_VAX			GENMASK(11, 10)
#define IDR5_VAX_52_BIT			1
87 88

#define ARM_SMMU_CR0			0x20
89
#define CR0_ATSCHK			(1 << 4)
90 91 92 93 94 95 96 97
#define CR0_CMDQEN			(1 << 3)
#define CR0_EVTQEN			(1 << 2)
#define CR0_PRIQEN			(1 << 1)
#define CR0_SMMUEN			(1 << 0)

#define ARM_SMMU_CR0ACK			0x24

#define ARM_SMMU_CR1			0x28
98 99 100 101 102 103 104
#define CR1_TABLE_SH			GENMASK(11, 10)
#define CR1_TABLE_OC			GENMASK(9, 8)
#define CR1_TABLE_IC			GENMASK(7, 6)
#define CR1_QUEUE_SH			GENMASK(5, 4)
#define CR1_QUEUE_OC			GENMASK(3, 2)
#define CR1_QUEUE_IC			GENMASK(1, 0)
/* CR1 cacheability fields don't quite follow the usual TCR-style encoding */
105 106 107 108 109 110 111 112 113
#define CR1_CACHE_NC			0
#define CR1_CACHE_WB			1
#define CR1_CACHE_WT			2

#define ARM_SMMU_CR2			0x2c
#define CR2_PTM				(1 << 2)
#define CR2_RECINVSID			(1 << 1)
#define CR2_E2H				(1 << 0)

114 115
#define ARM_SMMU_GBPA			0x44
#define GBPA_UPDATE			(1 << 31)
116
#define GBPA_ABORT			(1 << 20)
117

118 119
#define ARM_SMMU_IRQ_CTRL		0x50
#define IRQ_CTRL_EVTQ_IRQEN		(1 << 2)
120
#define IRQ_CTRL_PRIQ_IRQEN		(1 << 1)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#define IRQ_CTRL_GERROR_IRQEN		(1 << 0)

#define ARM_SMMU_IRQ_CTRLACK		0x54

#define ARM_SMMU_GERROR			0x60
#define GERROR_SFM_ERR			(1 << 8)
#define GERROR_MSI_GERROR_ABT_ERR	(1 << 7)
#define GERROR_MSI_PRIQ_ABT_ERR		(1 << 6)
#define GERROR_MSI_EVTQ_ABT_ERR		(1 << 5)
#define GERROR_MSI_CMDQ_ABT_ERR		(1 << 4)
#define GERROR_PRIQ_ABT_ERR		(1 << 3)
#define GERROR_EVTQ_ABT_ERR		(1 << 2)
#define GERROR_CMDQ_ERR			(1 << 0)
#define GERROR_ERR_MASK			0xfd

#define ARM_SMMU_GERRORN		0x64

#define ARM_SMMU_GERROR_IRQ_CFG0	0x68
#define ARM_SMMU_GERROR_IRQ_CFG1	0x70
#define ARM_SMMU_GERROR_IRQ_CFG2	0x74

#define ARM_SMMU_STRTAB_BASE		0x80
#define STRTAB_BASE_RA			(1UL << 62)
144
#define STRTAB_BASE_ADDR_MASK		GENMASK_ULL(51, 6)
145 146

#define ARM_SMMU_STRTAB_BASE_CFG	0x88
147 148 149 150 151
#define STRTAB_BASE_CFG_FMT		GENMASK(17, 16)
#define STRTAB_BASE_CFG_FMT_LINEAR	0
#define STRTAB_BASE_CFG_FMT_2LVL	1
#define STRTAB_BASE_CFG_SPLIT		GENMASK(10, 6)
#define STRTAB_BASE_CFG_LOG2SIZE	GENMASK(5, 0)
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

#define ARM_SMMU_CMDQ_BASE		0x90
#define ARM_SMMU_CMDQ_PROD		0x98
#define ARM_SMMU_CMDQ_CONS		0x9c

#define ARM_SMMU_EVTQ_BASE		0xa0
#define ARM_SMMU_EVTQ_PROD		0x100a8
#define ARM_SMMU_EVTQ_CONS		0x100ac
#define ARM_SMMU_EVTQ_IRQ_CFG0		0xb0
#define ARM_SMMU_EVTQ_IRQ_CFG1		0xb8
#define ARM_SMMU_EVTQ_IRQ_CFG2		0xbc

#define ARM_SMMU_PRIQ_BASE		0xc0
#define ARM_SMMU_PRIQ_PROD		0x100c8
#define ARM_SMMU_PRIQ_CONS		0x100cc
#define ARM_SMMU_PRIQ_IRQ_CFG0		0xd0
#define ARM_SMMU_PRIQ_IRQ_CFG1		0xd8
#define ARM_SMMU_PRIQ_IRQ_CFG2		0xdc

/* Common MSI config fields */
172
#define MSI_CFG0_ADDR_MASK		GENMASK_ULL(51, 2)
173 174 175 176 177 178 179 180
#define MSI_CFG2_SH			GENMASK(5, 4)
#define MSI_CFG2_MEMATTR		GENMASK(3, 0)

/* Common memory attribute values */
#define ARM_SMMU_SH_NSH			0
#define ARM_SMMU_SH_OSH			2
#define ARM_SMMU_SH_ISH			3
#define ARM_SMMU_MEMATTR_DEVICE_nGnRE	0x1
181
#define ARM_SMMU_MEMATTR_OIWB		0xf
182

183 184
#define Q_IDX(llq, p)			((p) & ((1 << (llq)->max_n_shift) - 1))
#define Q_WRP(llq, p)			((p) & (1 << (llq)->max_n_shift))
185
#define Q_OVERFLOW_FLAG			(1U << 31)
186
#define Q_OVF(p)			((p) & Q_OVERFLOW_FLAG)
187
#define Q_ENT(q, p)			((q)->base +			\
188 189
					 Q_IDX(&((q)->llq), p) *	\
					 (q)->ent_dwords)
190 191

#define Q_BASE_RWA			(1UL << 62)
192
#define Q_BASE_ADDR_MASK		GENMASK_ULL(51, 5)
193
#define Q_BASE_LOG2SIZE			GENMASK(4, 0)
194 195 196

/* Ensure DMA allocations are naturally aligned */
#ifdef CONFIG_CMA_ALIGNMENT
197
#define Q_MAX_SZ_SHIFT			(PAGE_SHIFT + CONFIG_CMA_ALIGNMENT)
198 199 200
#else
#define Q_MAX_SZ_SHIFT			(PAGE_SHIFT + MAX_ORDER - 1)
#endif
201 202 203 204 205

/*
 * Stream table.
 *
 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
206 207
 * 2lvl: 128k L1 entries,
 *       256 lazy entries per table (each table covers a PCI bus)
208
 */
209
#define STRTAB_L1_SZ_SHIFT		20
210 211 212
#define STRTAB_SPLIT			8

#define STRTAB_L1_DESC_DWORDS		1
213
#define STRTAB_L1_DESC_SPAN		GENMASK_ULL(4, 0)
214
#define STRTAB_L1_DESC_L2PTR_MASK	GENMASK_ULL(51, 6)
215 216 217

#define STRTAB_STE_DWORDS		8
#define STRTAB_STE_0_V			(1UL << 0)
218 219 220 221 222 223 224 225
#define STRTAB_STE_0_CFG		GENMASK_ULL(3, 1)
#define STRTAB_STE_0_CFG_ABORT		0
#define STRTAB_STE_0_CFG_BYPASS		4
#define STRTAB_STE_0_CFG_S1_TRANS	5
#define STRTAB_STE_0_CFG_S2_TRANS	6

#define STRTAB_STE_0_S1FMT		GENMASK_ULL(5, 4)
#define STRTAB_STE_0_S1FMT_LINEAR	0
226
#define STRTAB_STE_0_S1CTXPTR_MASK	GENMASK_ULL(51, 6)
227
#define STRTAB_STE_0_S1CDMAX		GENMASK_ULL(63, 59)
228

229 230 231 232 233
#define STRTAB_STE_1_S1DSS		GENMASK_ULL(1, 0)
#define STRTAB_STE_1_S1DSS_TERMINATE	0x0
#define STRTAB_STE_1_S1DSS_BYPASS	0x1
#define STRTAB_STE_1_S1DSS_SSID0	0x2

234 235 236 237
#define STRTAB_STE_1_S1C_CACHE_NC	0UL
#define STRTAB_STE_1_S1C_CACHE_WBRA	1UL
#define STRTAB_STE_1_S1C_CACHE_WT	2UL
#define STRTAB_STE_1_S1C_CACHE_WB	3UL
238 239 240
#define STRTAB_STE_1_S1CIR		GENMASK_ULL(3, 2)
#define STRTAB_STE_1_S1COR		GENMASK_ULL(5, 4)
#define STRTAB_STE_1_S1CSH		GENMASK_ULL(7, 6)
241 242 243

#define STRTAB_STE_1_S1STALLD		(1UL << 27)

244
#define STRTAB_STE_1_EATS		GENMASK_ULL(29, 28)
245 246 247 248
#define STRTAB_STE_1_EATS_ABT		0UL
#define STRTAB_STE_1_EATS_TRANS		1UL
#define STRTAB_STE_1_EATS_S1CHK		2UL

249
#define STRTAB_STE_1_STRW		GENMASK_ULL(31, 30)
250 251 252
#define STRTAB_STE_1_STRW_NSEL1		0UL
#define STRTAB_STE_1_STRW_EL2		2UL

253
#define STRTAB_STE_1_SHCFG		GENMASK_ULL(45, 44)
254 255
#define STRTAB_STE_1_SHCFG_INCOMING	1UL

256 257
#define STRTAB_STE_2_S2VMID		GENMASK_ULL(15, 0)
#define STRTAB_STE_2_VTCR		GENMASK_ULL(50, 32)
258 259 260 261 262 263 264
#define STRTAB_STE_2_VTCR_S2T0SZ	GENMASK_ULL(5, 0)
#define STRTAB_STE_2_VTCR_S2SL0		GENMASK_ULL(7, 6)
#define STRTAB_STE_2_VTCR_S2IR0		GENMASK_ULL(9, 8)
#define STRTAB_STE_2_VTCR_S2OR0		GENMASK_ULL(11, 10)
#define STRTAB_STE_2_VTCR_S2SH0		GENMASK_ULL(13, 12)
#define STRTAB_STE_2_VTCR_S2TG		GENMASK_ULL(15, 14)
#define STRTAB_STE_2_VTCR_S2PS		GENMASK_ULL(18, 16)
265 266 267 268 269
#define STRTAB_STE_2_S2AA64		(1UL << 51)
#define STRTAB_STE_2_S2ENDI		(1UL << 52)
#define STRTAB_STE_2_S2PTW		(1UL << 54)
#define STRTAB_STE_2_S2R		(1UL << 58)

270
#define STRTAB_STE_3_S2TTB_MASK		GENMASK_ULL(51, 4)
271 272 273

/* Context descriptor (stage-1 only) */
#define CTXDESC_CD_DWORDS		8
274 275 276 277 278 279 280
#define CTXDESC_CD_0_TCR_T0SZ		GENMASK_ULL(5, 0)
#define CTXDESC_CD_0_TCR_TG0		GENMASK_ULL(7, 6)
#define CTXDESC_CD_0_TCR_IRGN0		GENMASK_ULL(9, 8)
#define CTXDESC_CD_0_TCR_ORGN0		GENMASK_ULL(11, 10)
#define CTXDESC_CD_0_TCR_SH0		GENMASK_ULL(13, 12)
#define CTXDESC_CD_0_TCR_EPD0		(1ULL << 14)
#define CTXDESC_CD_0_TCR_EPD1		(1ULL << 30)
281 282 283 284

#define CTXDESC_CD_0_ENDI		(1UL << 15)
#define CTXDESC_CD_0_V			(1UL << 31)

285 286
#define CTXDESC_CD_0_TCR_IPS		GENMASK_ULL(34, 32)
#define CTXDESC_CD_0_TCR_TBI0		(1ULL << 38)
287 288

#define CTXDESC_CD_0_AA64		(1UL << 41)
289
#define CTXDESC_CD_0_S			(1UL << 44)
290 291
#define CTXDESC_CD_0_R			(1UL << 45)
#define CTXDESC_CD_0_A			(1UL << 46)
292 293
#define CTXDESC_CD_0_ASET		(1UL << 47)
#define CTXDESC_CD_0_ASID		GENMASK_ULL(63, 48)
294

295
#define CTXDESC_CD_1_TTB0_MASK		GENMASK_ULL(51, 4)
296

297 298 299 300 301 302
/*
 * When the SMMU only supports linear context descriptor tables, pick a
 * reasonable size limit (64kB).
 */
#define CTXDESC_LINEAR_CDMAX		ilog2(SZ_64K / (CTXDESC_CD_DWORDS << 3))

303
/* Command queue */
304 305 306
#define CMDQ_ENT_SZ_SHIFT		4
#define CMDQ_ENT_DWORDS			((1 << CMDQ_ENT_SZ_SHIFT) >> 3)
#define CMDQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - CMDQ_ENT_SZ_SHIFT)
307

308
#define CMDQ_CONS_ERR			GENMASK(30, 24)
309 310 311
#define CMDQ_ERR_CERROR_NONE_IDX	0
#define CMDQ_ERR_CERROR_ILL_IDX		1
#define CMDQ_ERR_CERROR_ABT_IDX		2
312
#define CMDQ_ERR_CERROR_ATC_INV_IDX	3
313

314 315
#define CMDQ_PROD_OWNED_FLAG		Q_OVERFLOW_FLAG

316 317 318 319 320 321 322
/*
 * This is used to size the command queue and therefore must be at least
 * BITS_PER_LONG so that the valid_map works correctly (it relies on the
 * total number of queue entries being a multiple of BITS_PER_LONG).
 */
#define CMDQ_BATCH_ENTRIES		BITS_PER_LONG

323
#define CMDQ_0_OP			GENMASK_ULL(7, 0)
324 325
#define CMDQ_0_SSV			(1UL << 11)

326 327
#define CMDQ_PREFETCH_0_SID		GENMASK_ULL(63, 32)
#define CMDQ_PREFETCH_1_SIZE		GENMASK_ULL(4, 0)
328
#define CMDQ_PREFETCH_1_ADDR_MASK	GENMASK_ULL(63, 12)
329

330
#define CMDQ_CFGI_0_SSID		GENMASK_ULL(31, 12)
331
#define CMDQ_CFGI_0_SID			GENMASK_ULL(63, 32)
332
#define CMDQ_CFGI_1_LEAF		(1UL << 0)
333
#define CMDQ_CFGI_1_RANGE		GENMASK_ULL(4, 0)
334

335 336
#define CMDQ_TLBI_0_VMID		GENMASK_ULL(47, 32)
#define CMDQ_TLBI_0_ASID		GENMASK_ULL(63, 48)
337
#define CMDQ_TLBI_1_LEAF		(1UL << 0)
338
#define CMDQ_TLBI_1_VA_MASK		GENMASK_ULL(63, 12)
339
#define CMDQ_TLBI_1_IPA_MASK		GENMASK_ULL(51, 12)
340

341 342 343 344 345 346
#define CMDQ_ATC_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_ATC_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_ATC_0_GLOBAL		(1UL << 9)
#define CMDQ_ATC_1_SIZE			GENMASK_ULL(5, 0)
#define CMDQ_ATC_1_ADDR_MASK		GENMASK_ULL(63, 12)

347 348 349 350 351 352 353 354 355 356 357 358
#define CMDQ_PRI_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_PRI_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_PRI_1_GRPID		GENMASK_ULL(8, 0)
#define CMDQ_PRI_1_RESP			GENMASK_ULL(13, 12)

#define CMDQ_SYNC_0_CS			GENMASK_ULL(13, 12)
#define CMDQ_SYNC_0_CS_NONE		0
#define CMDQ_SYNC_0_CS_IRQ		1
#define CMDQ_SYNC_0_CS_SEV		2
#define CMDQ_SYNC_0_MSH			GENMASK_ULL(23, 22)
#define CMDQ_SYNC_0_MSIATTR		GENMASK_ULL(27, 24)
#define CMDQ_SYNC_0_MSIDATA		GENMASK_ULL(63, 32)
359
#define CMDQ_SYNC_1_MSIADDR_MASK	GENMASK_ULL(51, 2)
360 361

/* Event queue */
362 363 364
#define EVTQ_ENT_SZ_SHIFT		5
#define EVTQ_ENT_DWORDS			((1 << EVTQ_ENT_SZ_SHIFT) >> 3)
#define EVTQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - EVTQ_ENT_SZ_SHIFT)
365

366
#define EVTQ_0_ID			GENMASK_ULL(7, 0)
367 368

/* PRI queue */
369 370 371
#define PRIQ_ENT_SZ_SHIFT		4
#define PRIQ_ENT_DWORDS			((1 << PRIQ_ENT_SZ_SHIFT) >> 3)
#define PRIQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - PRIQ_ENT_SZ_SHIFT)
372

373 374
#define PRIQ_0_SID			GENMASK_ULL(31, 0)
#define PRIQ_0_SSID			GENMASK_ULL(51, 32)
375 376 377 378 379 380 381
#define PRIQ_0_PERM_PRIV		(1UL << 58)
#define PRIQ_0_PERM_EXEC		(1UL << 59)
#define PRIQ_0_PERM_READ		(1UL << 60)
#define PRIQ_0_PERM_WRITE		(1UL << 61)
#define PRIQ_0_PRG_LAST			(1UL << 62)
#define PRIQ_0_SSID_V			(1UL << 63)

382
#define PRIQ_1_PRG_IDX			GENMASK_ULL(8, 0)
383
#define PRIQ_1_ADDR_MASK		GENMASK_ULL(63, 12)
384 385

/* High-level queue structures */
386 387
#define ARM_SMMU_POLL_TIMEOUT_US	1000000 /* 1s! */
#define ARM_SMMU_POLL_SPIN_COUNT	10
388

389 390 391
#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

392
static bool disable_bypass = 1;
393 394 395 396 397
module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

enum pri_resp {
398 399 400
	PRI_RESP_DENY = 0,
	PRI_RESP_FAIL = 1,
	PRI_RESP_SUCC = 2,
401 402
};

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
struct arm_smmu_cmdq_ent {
	/* Common fields */
	u8				opcode;
	bool				substream_valid;

	/* Command-specific fields */
	union {
		#define CMDQ_OP_PREFETCH_CFG	0x1
		struct {
			u32			sid;
			u8			size;
			u64			addr;
		} prefetch;

		#define CMDQ_OP_CFGI_STE	0x3
		#define CMDQ_OP_CFGI_ALL	0x4
444 445
		#define CMDQ_OP_CFGI_CD		0x5
		#define CMDQ_OP_CFGI_CD_ALL	0x6
446 447
		struct {
			u32			sid;
448
			u32			ssid;
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
			union {
				bool		leaf;
				u8		span;
			};
		} cfgi;

		#define CMDQ_OP_TLBI_NH_ASID	0x11
		#define CMDQ_OP_TLBI_NH_VA	0x12
		#define CMDQ_OP_TLBI_EL2_ALL	0x20
		#define CMDQ_OP_TLBI_S12_VMALL	0x28
		#define CMDQ_OP_TLBI_S2_IPA	0x2a
		#define CMDQ_OP_TLBI_NSNH_ALL	0x30
		struct {
			u16			asid;
			u16			vmid;
			bool			leaf;
			u64			addr;
		} tlbi;

468 469 470 471 472 473 474 475 476 477
		#define CMDQ_OP_ATC_INV		0x40
		#define ATC_INV_SIZE_ALL	52
		struct {
			u32			sid;
			u32			ssid;
			u64			addr;
			u8			size;
			bool			global;
		} atc;

478 479 480 481 482 483 484 485 486
		#define CMDQ_OP_PRI_RESP	0x41
		struct {
			u32			sid;
			u32			ssid;
			u16			grpid;
			enum pri_resp		resp;
		} pri;

		#define CMDQ_OP_CMD_SYNC	0x46
487 488 489
		struct {
			u64			msiaddr;
		} sync;
490 491 492
	};
};

493
struct arm_smmu_ll_queue {
494 495 496 497 498 499 500 501 502 503 504 505
	union {
		u64			val;
		struct {
			u32		prod;
			u32		cons;
		};
		struct {
			atomic_t	prod;
			atomic_t	cons;
		} atomic;
		u8			__pad[SMP_CACHE_BYTES];
	} ____cacheline_aligned_in_smp;
506 507 508
	u32				max_n_shift;
};

509
struct arm_smmu_queue {
510
	struct arm_smmu_ll_queue	llq;
511 512 513 514 515 516 517 518 519 520 521 522
	int				irq; /* Wired interrupt */

	__le64				*base;
	dma_addr_t			base_dma;
	u64				q_base;

	size_t				ent_dwords;

	u32 __iomem			*prod_reg;
	u32 __iomem			*cons_reg;
};

523 524 525 526 527 528 529
struct arm_smmu_queue_poll {
	ktime_t				timeout;
	unsigned int			delay;
	unsigned int			spin_cnt;
	bool				wfe;
};

530 531
struct arm_smmu_cmdq {
	struct arm_smmu_queue		q;
532 533 534
	atomic_long_t			*valid_map;
	atomic_t			owner_prod;
	atomic_t			lock;
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
};

struct arm_smmu_evtq {
	struct arm_smmu_queue		q;
	u32				max_stalls;
};

struct arm_smmu_priq {
	struct arm_smmu_queue		q;
};

/* High-level stream table and context descriptor structures */
struct arm_smmu_strtab_l1_desc {
	u8				span;

	__le64				*l2ptr;
	dma_addr_t			l2ptr_dma;
};

554 555 556 557 558 559 560 561 562 563
struct arm_smmu_ctx_desc {
	u16				asid;
	u64				ttbr;
	u64				tcr;
	u64				mair;
};

struct arm_smmu_ctx_desc_cfg {
	__le64				*cdtab;
	dma_addr_t			cdtab_dma;
564
	unsigned int			num_l1_ents;
565 566
};

567
struct arm_smmu_s1_cfg {
568 569
	struct arm_smmu_ctx_desc_cfg	cdcfg;
	struct arm_smmu_ctx_desc	cd;
570
	u8				s1fmt;
571
	u8				s1cdmax;
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
};

struct arm_smmu_s2_cfg {
	u16				vmid;
	u64				vttbr;
	u64				vtcr;
};

struct arm_smmu_strtab_cfg {
	__le64				*strtab;
	dma_addr_t			strtab_dma;
	struct arm_smmu_strtab_l1_desc	*l1_desc;
	unsigned int			num_l1_ents;

	u64				strtab_base;
	u32				strtab_base_cfg;
};

/* An SMMUv3 instance */
struct arm_smmu_device {
	struct device			*dev;
	void __iomem			*base;

#define ARM_SMMU_FEAT_2_LVL_STRTAB	(1 << 0)
#define ARM_SMMU_FEAT_2_LVL_CDTAB	(1 << 1)
#define ARM_SMMU_FEAT_TT_LE		(1 << 2)
#define ARM_SMMU_FEAT_TT_BE		(1 << 3)
#define ARM_SMMU_FEAT_PRI		(1 << 4)
#define ARM_SMMU_FEAT_ATS		(1 << 5)
#define ARM_SMMU_FEAT_SEV		(1 << 6)
#define ARM_SMMU_FEAT_MSI		(1 << 7)
#define ARM_SMMU_FEAT_COHERENCY		(1 << 8)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 9)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 10)
#define ARM_SMMU_FEAT_STALLS		(1 << 11)
#define ARM_SMMU_FEAT_HYP		(1 << 12)
608
#define ARM_SMMU_FEAT_STALL_FORCE	(1 << 13)
609
#define ARM_SMMU_FEAT_VAX		(1 << 14)
610 611
	u32				features;

612
#define ARM_SMMU_OPT_SKIP_PREFETCH	(1 << 0)
613
#define ARM_SMMU_OPT_PAGE0_REGS_ONLY	(1 << 1)
614 615
	u32				options;

616 617 618 619 620
	struct arm_smmu_cmdq		cmdq;
	struct arm_smmu_evtq		evtq;
	struct arm_smmu_priq		priq;

	int				gerr_irq;
621
	int				combined_irq;
622 623 624

	unsigned long			ias; /* IPA */
	unsigned long			oas; /* PA */
625
	unsigned long			pgsize_bitmap;
626 627 628 629 630 631 632 633 634 635 636 637 638

#define ARM_SMMU_MAX_ASIDS		(1 << 16)
	unsigned int			asid_bits;
	DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);

#define ARM_SMMU_MAX_VMIDS		(1 << 16)
	unsigned int			vmid_bits;
	DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);

	unsigned int			ssid_bits;
	unsigned int			sid_bits;

	struct arm_smmu_strtab_cfg	strtab_cfg;
639 640 641

	/* IOMMU core code handle */
	struct iommu_device		iommu;
642 643
};

644
/* SMMU private data for each master */
645
struct arm_smmu_master {
646
	struct arm_smmu_device		*smmu;
647
	struct device			*dev;
648
	struct arm_smmu_domain		*domain;
649
	struct list_head		domain_head;
650 651
	u32				*sids;
	unsigned int			num_sids;
652
	bool				ats_enabled;
653
	unsigned int			ssid_bits;
654 655 656 657 658 659 660
};

/* SMMU private data for an IOMMU domain */
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
661
	ARM_SMMU_DOMAIN_BYPASS,
662 663 664 665 666 667 668
};

struct arm_smmu_domain {
	struct arm_smmu_device		*smmu;
	struct mutex			init_mutex; /* Protects smmu pointer */

	struct io_pgtable_ops		*pgtbl_ops;
669
	bool				non_strict;
670
	atomic_t			nr_ats_masters;
671 672 673 674 675 676 677 678

	enum arm_smmu_domain_stage	stage;
	union {
		struct arm_smmu_s1_cfg	s1_cfg;
		struct arm_smmu_s2_cfg	s2_cfg;
	};

	struct iommu_domain		domain;
679 680 681

	struct list_head		devices;
	spinlock_t			devices_lock;
682 683
};

684 685 686 687 688 689 690
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
691
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
692 693 694
	{ 0, NULL},
};

695 696 697 698 699 700 701 702 703 704
static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
						 struct arm_smmu_device *smmu)
{
	if ((offset > SZ_64K) &&
	    (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
		offset -= SZ_64K;

	return smmu->base + offset;
}

705 706 707 708 709
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

724
/* Low-level queue manipulation functions */
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
{
	u32 space, prod, cons;

	prod = Q_IDX(q, q->prod);
	cons = Q_IDX(q, q->cons);

	if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
		space = (1 << q->max_n_shift) - (prod - cons);
	else
		space = cons - prod;

	return space >= n;
}

740
static bool queue_full(struct arm_smmu_ll_queue *q)
741 742 743 744 745
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

746
static bool queue_empty(struct arm_smmu_ll_queue *q)
747 748 749 750 751
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

752
static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
753
{
754 755 756 757
	return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
	       ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
758 759
}

760
static void queue_sync_cons_out(struct arm_smmu_queue *q)
761
{
762 763 764 765 766
	/*
	 * Ensure that all CPU accesses (reads and writes) to the queue
	 * are complete before we update the cons pointer.
	 */
	mb();
767
	writel_relaxed(q->llq.cons, q->cons_reg);
768 769
}

770
static void queue_inc_cons(struct arm_smmu_ll_queue *q)
771
{
772 773
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
	q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
774 775
}

776
static int queue_sync_prod_in(struct arm_smmu_queue *q)
777 778 779 780
{
	int ret = 0;
	u32 prod = readl_relaxed(q->prod_reg);

781
	if (Q_OVF(prod) != Q_OVF(q->llq.prod))
782 783
		ret = -EOVERFLOW;

784
	q->llq.prod = prod;
785 786 787
	return ret;
}

788
static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
789
{
790 791
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
	return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
792 793
}

794 795
static void queue_poll_init(struct arm_smmu_device *smmu,
			    struct arm_smmu_queue_poll *qp)
796
{
797 798 799 800
	qp->delay = 1;
	qp->spin_cnt = 0;
	qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
801 802
}

803
static int queue_poll(struct arm_smmu_queue_poll *qp)
804
{
805 806
	if (ktime_compare(ktime_get(), qp->timeout) > 0)
		return -ETIMEDOUT;
807

808 809 810 811 812 813 814 815
	if (qp->wfe) {
		wfe();
	} else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
		cpu_relax();
	} else {
		udelay(qp->delay);
		qp->delay *= 2;
		qp->spin_cnt = 0;
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
839
	if (queue_empty(&q->llq))
840 841
		return -EAGAIN;

842
	queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
843
	queue_inc_cons(&q->llq);
844
	queue_sync_cons_out(q);
845 846 847 848 849 850
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
851
	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
852
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
853 854 855 856 857 858

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
859 860
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
861 862
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
863 864 865
	case CMDQ_OP_CFGI_CD:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid);
		/* Fallthrough */
866
	case CMDQ_OP_CFGI_STE:
867 868
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
869
		break;
870 871 872
	case CMDQ_OP_CFGI_CD_ALL:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		break;
873 874
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
875
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
876 877
		break;
	case CMDQ_OP_TLBI_NH_VA:
878
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
879 880
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
881 882
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
883
	case CMDQ_OP_TLBI_S2_IPA:
884 885
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
886
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
887 888
		break;
	case CMDQ_OP_TLBI_NH_ASID:
889
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
890 891
		/* Fallthrough */
	case CMDQ_OP_TLBI_S12_VMALL:
892
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
893
		break;
894 895 896 897 898 899 900 901
	case CMDQ_OP_ATC_INV:
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
		break;
902
	case CMDQ_OP_PRI_RESP:
903 904 905 906
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
907 908 909 910 911 912 913 914
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
915
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
916 917
		break;
	case CMDQ_OP_CMD_SYNC:
918
		if (ent->sync.msiaddr) {
919
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
920 921
			cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
		} else {
922
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
923
		}
924 925
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
926 927 928 929 930 931 932 933
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
					 u32 prod)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	/*
	 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
	 * payload, so the write will zero the entire command on that platform.
	 */
	if (smmu->features & ARM_SMMU_FEAT_MSI &&
	    smmu->features & ARM_SMMU_FEAT_COHERENCY) {
		ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
				   q->ent_dwords * 8;
	}

	arm_smmu_cmdq_build_cmd(cmd, &ent);
}

955 956 957 958 959 960
static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
961
		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
962 963 964 965 966 967
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
968
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
969 970 971 972 973
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
974
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
975 976 977 978 979 980

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
981 982 983 984 985 986 987 988
	case CMDQ_ERR_CERROR_ATC_INV_IDX:
		/*
		 * ATC Invalidation Completion timeout. CONS is still pointing
		 * at the CMD_SYNC. Attempt to complete other pending commands
		 * by repeating the CMD_SYNC, though we might well end up back
		 * here since the ATC invalidation may still be pending.
		 */
		return;
989 990 991 992
	case CMDQ_ERR_CERROR_ILL_IDX:
		/* Fallthrough */
	default:
		break;
993 994 995 996 997 998
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
999
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

1010
	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
1011 1012
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
/*
 * Command queue locking.
 * This is a form of bastardised rwlock with the following major changes:
 *
 * - The only LOCK routines are exclusive_trylock() and shared_lock().
 *   Neither have barrier semantics, and instead provide only a control
 *   dependency.
 *
 * - The UNLOCK routines are supplemented with shared_tryunlock(), which
 *   fails if the caller appears to be the last lock holder (yes, this is
 *   racy). All successful UNLOCK routines have RELEASE semantics.
 */
static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
1026
{
1027
	int val;
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	/*
	 * We can try to avoid the cmpxchg() loop by simply incrementing the
	 * lock counter. When held in exclusive state, the lock counter is set
	 * to INT_MIN so these increments won't hurt as the value will remain
	 * negative.
	 */
	if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
		return;

	do {
		val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
	} while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
}

static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
{
	(void)atomic_dec_return_release(&cmdq->lock);
}

static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
{
	if (atomic_read(&cmdq->lock) == 1)
		return false;

	arm_smmu_cmdq_shared_unlock(cmdq);
	return true;
}

#define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)		\
({									\
	bool __ret;							\
	local_irq_save(flags);						\
	__ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN);	\
	if (!__ret)							\
		local_irq_restore(flags);				\
	__ret;								\
})

#define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags)		\
({									\
	atomic_set_release(&cmdq->lock, 0);				\
	local_irq_restore(flags);					\
})


/*
 * Command queue insertion.
 * This is made fiddly by our attempts to achieve some sort of scalability
 * since there is one queue shared amongst all of the CPUs in the system.  If
 * you like mixed-size concurrency, dependency ordering and relaxed atomics,
 * then you'll *love* this monstrosity.
 *
 * The basic idea is to split the queue up into ranges of commands that are
 * owned by a given CPU; the owner may not have written all of the commands
 * itself, but is responsible for advancing the hardware prod pointer when
 * the time comes. The algorithm is roughly:
 *
 * 	1. Allocate some space in the queue. At this point we also discover
 *	   whether the head of the queue is currently owned by another CPU,
 *	   or whether we are the owner.
 *
 *	2. Write our commands into our allocated slots in the queue.
 *
 *	3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
 *
 *	4. If we are an owner:
 *		a. Wait for the previous owner to finish.
 *		b. Mark the queue head as unowned, which tells us the range
 *		   that we are responsible for publishing.
 *		c. Wait for all commands in our owned range to become valid.
 *		d. Advance the hardware prod pointer.
 *		e. Tell the next owner we've finished.
 *
 *	5. If we are inserting a CMD_SYNC (we may or may not have been an
 *	   owner), then we need to stick around until it has completed:
 *		a. If we have MSIs, the SMMU can write back into the CMD_SYNC
 *		   to clear the first 4 bytes.
 *		b. Otherwise, we spin waiting for the hardware cons pointer to
 *		   advance past our command.
 *
 * The devil is in the details, particularly the use of locking for handling
 * SYNC completion and freeing up space in the queue before we think that it is
 * full.
 */
static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
					       u32 sprod, u32 eprod, bool set)
{
	u32 swidx, sbidx, ewidx, ebidx;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= sprod,
	};
1121

1122 1123
	ewidx = BIT_WORD(Q_IDX(&llq, eprod));
	ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;
1124

1125 1126 1127 1128
	while (llq.prod != eprod) {
		unsigned long mask;
		atomic_long_t *ptr;
		u32 limit = BITS_PER_LONG;
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
		sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;

		ptr = &cmdq->valid_map[swidx];

		if ((swidx == ewidx) && (sbidx < ebidx))
			limit = ebidx;

		mask = GENMASK(limit - 1, sbidx);

		/*
		 * The valid bit is the inverse of the wrap bit. This means
		 * that a zero-initialised queue is invalid and, after marking
		 * all entries as valid, they become invalid again when we
		 * wrap.
		 */
		if (set) {
			atomic_long_xor(mask, ptr);
		} else { /* Poll */
			unsigned long valid;

			valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
			atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
		}

		llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
1156 1157 1158
	}
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/* Mark all entries in the range [sprod, eprod) as valid */
static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
					u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
}

/* Wait for all entries in the range [sprod, eprod) to become valid */
static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
					 u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
}

/* Wait for the command queue to become non-full */
static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
					     struct arm_smmu_ll_queue *llq)
1176
{
1177
	unsigned long flags;
1178 1179 1180
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	int ret = 0;
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190
	/*
	 * Try to update our copy of cons by grabbing exclusive cmdq access. If
	 * that fails, spin until somebody else updates it for us.
	 */
	if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
		WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
		arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
		llq->val = READ_ONCE(cmdq->q.llq.val);
		return 0;
1191 1192
	}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	queue_poll_init(smmu, &qp);
	do {
		llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
		if (!queue_full(llq))
			break;

		ret = queue_poll(&qp);
	} while (!ret);

	return ret;
1203
}
1204

1205
/*
1206 1207
 * Wait until the SMMU signals a CMD_SYNC completion MSI.
 * Must be called with the cmdq lock held in some capacity.
1208
 */
1209 1210
static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
					  struct arm_smmu_ll_queue *llq)
1211
{
1212 1213 1214 1215
	int ret = 0;
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
1216

1217
	queue_poll_init(smmu, &qp);
1218

1219 1220 1221 1222 1223 1224 1225 1226
	/*
	 * The MSI won't generate an event, since it's being written back
	 * into the command queue.
	 */
	qp.wfe = false;
	smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
	llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
	return ret;
1227 1228
}

1229 1230 1231 1232 1233 1234
/*
 * Wait until the SMMU cons index passes llq->prod.
 * Must be called with the cmdq lock held in some capacity.
 */
static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
					       struct arm_smmu_ll_queue *llq)
1235
{
1236 1237 1238 1239
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 prod = llq->prod;
	int ret = 0;
1240

1241 1242 1243 1244 1245
	queue_poll_init(smmu, &qp);
	llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
	do {
		if (queue_consumed(llq, prod))
			break;
1246

1247
		ret = queue_poll(&qp);
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		/*
		 * This needs to be a readl() so that our subsequent call
		 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
		 *
		 * Specifically, we need to ensure that we observe all
		 * shared_lock()s by other CMD_SYNCs that share our owner,
		 * so that a failing call to tryunlock() means that we're
		 * the last one out and therefore we can safely advance
		 * cmdq->q.llq.cons. Roughly speaking:
		 *
		 * CPU 0		CPU1			CPU2 (us)
		 *
		 * if (sync)
		 * 	shared_lock();
		 *
		 * dma_wmb();
		 * set_valid_map();
		 *
		 * 			if (owner) {
		 *				poll_valid_map();
		 *				<control dependency>
		 *				writel(prod_reg);
		 *
		 *						readl(cons_reg);
		 *						tryunlock();
		 *
		 * Requires us to see CPU 0's shared_lock() acquisition.
		 */
		llq->cons = readl(cmdq->q.cons_reg);
	} while (!ret);
1279

1280
	return ret;
1281 1282
}

1283 1284
static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
					 struct arm_smmu_ll_queue *llq)
1285
{
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	if (smmu->features & ARM_SMMU_FEAT_MSI &&
	    smmu->features & ARM_SMMU_FEAT_COHERENCY)
		return __arm_smmu_cmdq_poll_until_msi(smmu, llq);

	return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
}

static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
					u32 prod, int n)
{
	int i;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= prod,
	};

	for (i = 0; i < n; ++i) {
		u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];

		prod = queue_inc_prod_n(&llq, i);
		queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
	}
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/*
 * This is the actual insertion function, and provides the following
 * ordering guarantees to callers:
 *
 * - There is a dma_wmb() before publishing any commands to the queue.
 *   This can be relied upon to order prior writes to data structures
 *   in memory (such as a CD or an STE) before the command.
 *
 * - On completion of a CMD_SYNC, there is a control dependency.
 *   This can be relied upon to order subsequent writes to memory (e.g.
 *   freeing an IOVA) after completion of the CMD_SYNC.
 *
 * - Command insertion is totally ordered, so if two CPUs each race to
 *   insert their own list of commands then all of the commands from one
 *   CPU will appear before any of the commands from the other CPU.
 */
1326 1327 1328 1329 1330
static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
				       u64 *cmds, int n, bool sync)
{
	u64 cmd_sync[CMDQ_ENT_DWORDS];
	u32 prod;
1331
	unsigned long flags;
1332 1333 1334 1335 1336 1337
	bool owner;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift = cmdq->q.llq.max_n_shift,
	}, head = llq;
	int ret = 0;
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	/* 1. Allocate some space in the queue */
	local_irq_save(flags);
	llq.val = READ_ONCE(cmdq->q.llq.val);
	do {
		u64 old;

		while (!queue_has_space(&llq, n + sync)) {
			local_irq_restore(flags);
			if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
				dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
			local_irq_save(flags);
		}

		head.cons = llq.cons;
		head.prod = queue_inc_prod_n(&llq, n + sync) |
					     CMDQ_PROD_OWNED_FLAG;

		old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
		if (old == llq.val)
			break;

		llq.val = old;
	} while (1);
	owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
	head.prod &= ~CMDQ_PROD_OWNED_FLAG;
	llq.prod &= ~CMDQ_PROD_OWNED_FLAG;

	/*
	 * 2. Write our commands into the queue
	 * Dependency ordering from the cmpxchg() loop above.
	 */
	arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
	if (sync) {
		prod = queue_inc_prod_n(&llq, n);
		arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, prod);
		queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);

		/*
		 * In order to determine completion of our CMD_SYNC, we must
		 * ensure that the queue can't wrap twice without us noticing.
		 * We achieve that by taking the cmdq lock as shared before
		 * marking our slot as valid.
		 */
		arm_smmu_cmdq_shared_lock(cmdq);
	}
1384

1385 1386 1387
	/* 3. Mark our slots as valid, ensuring commands are visible first */
	dma_wmb();
	arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	/* 4. If we are the owner, take control of the SMMU hardware */
	if (owner) {
		/* a. Wait for previous owner to finish */
		atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);

		/* b. Stop gathering work by clearing the owned flag */
		prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
						   &cmdq->q.llq.atomic.prod);
		prod &= ~CMDQ_PROD_OWNED_FLAG;

		/*
		 * c. Wait for any gathered work to be written to the queue.
		 * Note that we read our own entries so that we have the control
		 * dependency required by (d).
		 */
		arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);

		/*
		 * d. Advance the hardware prod pointer
		 * Control dependency ordering from the entries becoming valid.
		 */
		writel_relaxed(prod, cmdq->q.prod_reg);

		/*
		 * e. Tell the next owner we're done
		 * Make sure we've updated the hardware first, so that we don't
		 * race to update prod and potentially move it backwards.
		 */
		atomic_set_release(&cmdq->owner_prod, prod);
	}

	/* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
	if (sync) {
		llq.prod = queue_inc_prod_n(&llq, n);
		ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
		if (ret) {
			dev_err_ratelimited(smmu->dev,
					    "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
					    llq.prod,
					    readl_relaxed(cmdq->q.prod_reg),
					    readl_relaxed(cmdq->q.cons_reg));
		}
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440
		/*
		 * Try to unlock the cmq lock. This will fail if we're the last
		 * reader, in which case we can safely update cmdq->q.llq.cons
		 */
		if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
			WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
			arm_smmu_cmdq_shared_unlock(cmdq);
		}
	}
1441

1442
	local_irq_restore(flags);
1443 1444 1445
	return ret;
}

1446 1447
static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				   struct arm_smmu_cmdq_ent *ent)
1448
{
1449
	u64 cmd[CMDQ_ENT_DWORDS];
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return -EINVAL;
	}

	return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, false);
}

static int arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, NULL, 0, true);
1463 1464 1465
}

/* Context descriptor manipulation functions */
1466 1467
static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain,
			     int ssid, bool leaf)
1468
{
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	size_t i;
	unsigned long flags;
	struct arm_smmu_master *master;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_CD,
		.cfgi	= {
			.ssid	= ssid,
			.leaf	= leaf,
		},
	};

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		for (i = 0; i < master->num_sids; i++) {
			cmd.cfgi.sid = master->sids[i];
			arm_smmu_cmdq_issue_cmd(smmu, &cmd);
		}
	}
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
1489

1490 1491 1492 1493 1494 1495
	arm_smmu_cmdq_issue_sync(smmu);
}

static int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain,
				   int ssid, struct arm_smmu_ctx_desc *cd)
{
1496
	/*
1497 1498 1499 1500 1501 1502 1503
	 * This function handles the following cases:
	 *
	 * (1) Install primary CD, for normal DMA traffic (SSID = 0).
	 * (2) Install a secondary CD, for SID+SSID traffic.
	 * (3) Update ASID of a CD. Atomically write the first 64 bits of the
	 *     CD, then invalidate the old entry and mappings.
	 * (4) Remove a secondary CD.
1504
	 */
1505 1506 1507 1508 1509 1510 1511 1512
	u64 val;
	bool cd_live;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	__le64 *cdptr = smmu_domain->s1_cfg.cdcfg.cdtab + ssid *
			CTXDESC_CD_DWORDS;

	val = le64_to_cpu(cdptr[0]);
	cd_live = !!(val & CTXDESC_CD_0_V);
1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	if (!cd) { /* (4) */
		val = 0;
	} else if (cd_live) { /* (3) */
		val &= ~CTXDESC_CD_0_ASID;
		val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid);
		/*
		 * Until CD+TLB invalidation, both ASIDs may be used for tagging
		 * this substream's traffic
		 */
	} else { /* (1) and (2) */
		cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK);
		cdptr[2] = 0;
		cdptr[3] = cpu_to_le64(cd->mair);
1527

1528 1529 1530 1531 1532 1533
		/*
		 * STE is live, and the SMMU might read dwords of this CD in any
		 * order. Ensure that it observes valid values before reading
		 * V=1.
		 */
		arm_smmu_sync_cd(smmu_domain, ssid, true);
1534

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		val = cd->tcr |
#ifdef __BIG_ENDIAN
			CTXDESC_CD_0_ENDI |
#endif
			CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET |
			CTXDESC_CD_0_AA64 |
			FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) |
			CTXDESC_CD_0_V;

		/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
		if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
			val |= CTXDESC_CD_0_S;
	}
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	/*
	 * The SMMU accesses 64-bit values atomically. See IHI0070Ca 3.21.3
	 * "Configuration structures and configuration invalidation completion"
	 *
	 *   The size of single-copy atomic reads made by the SMMU is
	 *   IMPLEMENTATION DEFINED but must be at least 64 bits. Any single
	 *   field within an aligned 64-bit span of a structure can be altered
	 *   without first making the structure invalid.
	 */
	WRITE_ONCE(cdptr[0], cpu_to_le64(val));
	arm_smmu_sync_cd(smmu_domain, ssid, true);
	return 0;
1561 1562
}

1563 1564 1565 1566 1567 1568 1569
static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain)
{
	size_t l1size;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg;

1570 1571
	cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	cdcfg->num_l1_ents = 1UL << cfg->s1cdmax;
	l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3);
	cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma,
					   GFP_KERNEL);
	if (!cdcfg->cdtab) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
		return -ENOMEM;
	}
	return 0;
}

static void arm_smmu_free_cd_tables(struct arm_smmu_domain *smmu_domain)
{
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
	size_t l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3);

	dmam_free_coherent(smmu->dev, l1size, cdcfg->cdtab, cdcfg->cdtab_dma);
	cdcfg->cdtab_dma = 0;
	cdcfg->cdtab = NULL;
}

1594 1595 1596 1597 1598 1599
/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

1600
	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1601
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

	*dst = cpu_to_le64(val);
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1617
	arm_smmu_cmdq_issue_sync(smmu);
1618 1619
}

1620 1621
static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
				      __le64 *dst)
1622 1623 1624 1625 1626
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
1627 1628 1629
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
1641 1642 1643 1644
	struct arm_smmu_device *smmu = NULL;
	struct arm_smmu_s1_cfg *s1_cfg = NULL;
	struct arm_smmu_s2_cfg *s2_cfg = NULL;
	struct arm_smmu_domain *smmu_domain = NULL;
1645 1646 1647 1648 1649 1650 1651
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	if (master) {
		smmu_domain = master->domain;
		smmu = master->smmu;
	}

	if (smmu_domain) {
		switch (smmu_domain->stage) {
		case ARM_SMMU_DOMAIN_S1:
			s1_cfg = &smmu_domain->s1_cfg;
			break;
		case ARM_SMMU_DOMAIN_S2:
		case ARM_SMMU_DOMAIN_NESTED:
			s2_cfg = &smmu_domain->s2_cfg;
			break;
		default:
			break;
		}
	}

1671
	if (val & STRTAB_STE_0_V) {
1672
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1673 1674 1675 1676 1677 1678
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
1679
		case STRTAB_STE_0_CFG_ABORT:
1680 1681
			BUG_ON(!disable_bypass);
			break;
1682 1683 1684 1685 1686
		default:
			BUG(); /* STE corruption */
		}
	}

1687
	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1688 1689 1690
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
1691 1692
	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
		if (!smmu_domain && disable_bypass)
1693
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1694
		else
1695
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1696 1697

		dst[0] = cpu_to_le64(val);
1698 1699
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
1700
		dst[2] = 0; /* Nuke the VMID */
1701 1702 1703 1704 1705
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
1706 1707 1708 1709
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

1710
	if (s1_cfg) {
1711 1712
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
1713
			 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) |
1714 1715 1716 1717
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
			 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1718

1719 1720
		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1721 1722
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

1723
		val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1724 1725 1726
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
			FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) |
			FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt);
1727 1728
	}

1729
	if (s2_cfg) {
1730 1731
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
1732 1733
			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1734 1735 1736 1737 1738 1739
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

1740
		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1741

1742
		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1743 1744
	}

1745 1746 1747 1748
	if (master->ats_enabled)
		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
						 STRTAB_STE_1_EATS_TRANS));

1749 1750 1751 1752 1753
	arm_smmu_sync_ste_for_sid(smmu, sid);
	dst[0] = cpu_to_le64(val);
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1754 1755
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1756 1757 1758 1759 1760 1761 1762
}

static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
{
	unsigned int i;

	for (i = 0; i < nent; ++i) {
1763
		arm_smmu_write_strtab_ent(NULL, -1, strtab);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1779
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1780 1781

	desc->span = STRTAB_SPLIT + 1;
1782
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1783
					  GFP_KERNEL);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
1802
	struct arm_smmu_ll_queue *llq = &q->llq;
1803 1804
	u64 evt[EVTQ_ENT_DWORDS];

1805 1806
	do {
		while (!queue_remove_raw(q, evt)) {
1807
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1808

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
1820
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1821
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1822
	} while (!queue_empty(llq));
1823 1824

	/* Sync our overflow flag, as we believe we're up to speed */
1825 1826
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		    Q_IDX(llq, llq->cons);
1827 1828 1829
	return IRQ_HANDLED;
}

1830 1831 1832 1833 1834 1835
static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

1836 1837 1838 1839 1840
	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1841 1842 1843 1844 1845 1846 1847 1848 1849

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1850
		 evt[1] & PRIQ_1_ADDR_MASK);
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};
1863

1864 1865
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
1866 1867 1868 1869 1870 1871
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
1872
	struct arm_smmu_ll_queue *llq = &q->llq;
1873 1874
	u64 evt[PRIQ_ENT_DWORDS];

1875 1876 1877
	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);
1878

1879
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1880
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1881
	} while (!queue_empty(llq));
1882 1883

	/* Sync our overflow flag, as we believe we're up to speed */
1884 1885 1886
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		      Q_IDX(llq, llq->cons);
	queue_sync_cons_out(q);
1887 1888 1889 1890 1891 1892 1893
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
1894
	u32 gerror, gerrorn, active;
1895 1896 1897 1898 1899
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

1900 1901
	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
1902 1903 1904 1905
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
1906
		 active);
1907

1908
	if (active & GERROR_SFM_ERR) {
1909 1910 1911 1912
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

1913
	if (active & GERROR_MSI_GERROR_ABT_ERR)
1914 1915
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

1916
	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1917 1918
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

1919
	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1920 1921
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

1922
	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1923 1924
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

1925
	if (active & GERROR_PRIQ_ABT_ERR)
1926 1927
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

1928
	if (active & GERROR_EVTQ_ABT_ERR)
1929 1930
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

1931
	if (active & GERROR_CMDQ_ERR)
1932 1933 1934 1935 1936 1937
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static void
arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
			struct arm_smmu_cmdq_ent *cmd)
{
	size_t log2_span;
	size_t span_mask;
	/* ATC invalidates are always on 4096-bytes pages */
	size_t inval_grain_shift = 12;
	unsigned long page_start, page_end;

	*cmd = (struct arm_smmu_cmdq_ent) {
		.opcode			= CMDQ_OP_ATC_INV,
		.substream_valid	= !!ssid,
		.atc.ssid		= ssid,
	};

	if (!size) {
		cmd->atc.size = ATC_INV_SIZE_ALL;
		return;
	}

	page_start	= iova >> inval_grain_shift;
	page_end	= (iova + size - 1) >> inval_grain_shift;

	/*
	 * In an ATS Invalidate Request, the address must be aligned on the
	 * range size, which must be a power of two number of page sizes. We
	 * thus have to choose between grossly over-invalidating the region, or
	 * splitting the invalidation into multiple commands. For simplicity
	 * we'll go with the first solution, but should refine it in the future
	 * if multiple commands are shown to be more efficient.
	 *
	 * Find the smallest power of two that covers the range. The most
	 * significant differing bit between the start and end addresses,
	 * fls(start ^ end), indicates the required span. For example:
	 *
	 * We want to invalidate pages [8; 11]. This is already the ideal range:
	 *		x = 0b1000 ^ 0b1011 = 0b11
	 *		span = 1 << fls(x) = 4
	 *
	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
	 *		x = 0b0111 ^ 0b1010 = 0b1101
	 *		span = 1 << fls(x) = 16
	 */
	log2_span	= fls_long(page_start ^ page_end);
	span_mask	= (1ULL << log2_span) - 1;

	page_start	&= ~span_mask;

	cmd->atc.addr	= page_start << inval_grain_shift;
	cmd->atc.size	= log2_span;
}

static int arm_smmu_atc_inv_master(struct arm_smmu_master *master,
				   struct arm_smmu_cmdq_ent *cmd)
{
	int i;

	if (!master->ats_enabled)
		return 0;

	for (i = 0; i < master->num_sids; i++) {
		cmd->atc.sid = master->sids[i];
		arm_smmu_cmdq_issue_cmd(master->smmu, cmd);
	}

	return arm_smmu_cmdq_issue_sync(master->smmu);
}

static int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain,
				   int ssid, unsigned long iova, size_t size)
{
	int ret = 0;
	unsigned long flags;
	struct arm_smmu_cmdq_ent cmd;
	struct arm_smmu_master *master;

	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
		return 0;

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	/*
	 * Ensure that we've completed prior invalidation of the main TLBs
	 * before we read 'nr_ats_masters' in case of a concurrent call to
	 * arm_smmu_enable_ats():
	 *
	 *	// unmap()			// arm_smmu_enable_ats()
	 *	TLBI+SYNC			atomic_inc(&nr_ats_masters);
	 *	smp_mb();			[...]
	 *	atomic_read(&nr_ats_masters);	pci_enable_ats() // writel()
	 *
	 * Ensures that we always see the incremented 'nr_ats_masters' count if
	 * ATS was enabled at the PCI device before completion of the TLBI.
	 */
	smp_mb();
	if (!atomic_read(&smmu_domain->nr_ats_masters))
		return 0;

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master, &smmu_domain->devices, domain_head)
		ret |= arm_smmu_atc_inv_master(master, &cmd);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

	return ret ? -ETIMEDOUT : 0;
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
/* IO_PGTABLE API */
static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
		cmd.tlbi.vmid	= 0;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

2078 2079 2080
	/*
	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
	 * PTEs previously cleared by unmaps on the current CPU not yet visible
2081 2082 2083
	 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
	 * insertion to guarantee those are observed before the TLBI. Do be
	 * careful, 007.
2084
	 */
2085
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2086
	arm_smmu_cmdq_issue_sync(smmu);
2087
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
2088 2089
}

2090 2091 2092
static void arm_smmu_tlb_inv_range(unsigned long iova, size_t size,
				   size_t granule, bool leaf,
				   struct arm_smmu_domain *smmu_domain)
2093
{
2094
	u64 cmds[CMDQ_BATCH_ENTRIES * CMDQ_ENT_DWORDS];
2095
	struct arm_smmu_device *smmu = smmu_domain->smmu;
2096
	unsigned long start = iova, end = iova + size;
2097
	int i = 0;
2098 2099 2100 2101 2102 2103
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
		},
	};

2104 2105 2106
	if (!size)
		return;

2107 2108 2109 2110 2111 2112 2113 2114
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	while (iova < end) {
		if (i == CMDQ_BATCH_ENTRIES) {
			arm_smmu_cmdq_issue_cmdlist(smmu, cmds, i, false);
			i = 0;
		}

		cmd.tlbi.addr = iova;
		arm_smmu_cmdq_build_cmd(&cmds[i * CMDQ_ENT_DWORDS], &cmd);
		iova += granule;
		i++;
	}

	arm_smmu_cmdq_issue_cmdlist(smmu, cmds, i, true);
2128 2129 2130 2131 2132 2133

	/*
	 * Unfortunately, this can't be leaf-only since we may have
	 * zapped an entire table.
	 */
	arm_smmu_atc_inv_domain(smmu_domain, 0, start, size);
2134 2135
}

2136 2137
static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
					 unsigned long iova, size_t granule,
2138 2139
					 void *cookie)
{
2140 2141 2142 2143
	struct arm_smmu_domain *smmu_domain = cookie;
	struct iommu_domain *domain = &smmu_domain->domain;

	iommu_iotlb_gather_add_page(domain, gather, iova, granule);
2144 2145
}

2146 2147 2148
static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
2149
	arm_smmu_tlb_inv_range(iova, size, granule, false, cookie);
2150 2151 2152 2153 2154
}

static void arm_smmu_tlb_inv_leaf(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
2155
	arm_smmu_tlb_inv_range(iova, size, granule, true, cookie);
2156 2157
}

2158
static const struct iommu_flush_ops arm_smmu_flush_ops = {
2159
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
2160 2161
	.tlb_flush_walk = arm_smmu_tlb_inv_walk,
	.tlb_flush_leaf = arm_smmu_tlb_inv_leaf,
2162
	.tlb_add_page	= arm_smmu_tlb_inv_page_nosync,
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

2182 2183 2184
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

2196 2197 2198 2199 2200 2201
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

2202
	mutex_init(&smmu_domain->init_mutex);
2203 2204 2205
	INIT_LIST_HEAD(&smmu_domain->devices);
	spin_lock_init(&smmu_domain->devices_lock);

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

2232
	iommu_put_dma_cookie(domain);
2233
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
2234 2235 2236 2237 2238

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

2239
		if (cfg->cdcfg.cdtab) {
2240
			arm_smmu_free_cd_tables(smmu_domain);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
			arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
		}
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
2253
				       struct arm_smmu_master *master,
2254 2255 2256
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
2257
	int asid;
2258 2259
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
2260
	typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr;
2261 2262

	asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
2263
	if (asid < 0)
2264 2265
		return asid;

2266 2267
	cfg->s1cdmax = master->ssid_bits;

2268 2269
	ret = arm_smmu_alloc_cd_tables(smmu_domain);
	if (ret)
2270 2271
		goto out_free_asid;

2272
	cfg->cd.asid	= (u16)asid;
2273
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
2274 2275 2276 2277 2278 2279 2280
	cfg->cd.tcr	= FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
			  CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
2281
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair;
2282 2283 2284 2285 2286 2287 2288 2289
	return 0;

out_free_asid:
	arm_smmu_bitmap_free(smmu->asid_map, asid);
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
2290
				       struct arm_smmu_master *master,
2291 2292
				       struct io_pgtable_cfg *pgtbl_cfg)
{
2293
	int vmid;
2294 2295
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
2296
	typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr;
2297 2298

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
2299
	if (vmid < 0)
2300 2301
		return vmid;

2302
	vtcr = &pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
2303
	cfg->vmid	= (u16)vmid;
2304
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
2305 2306 2307 2308 2309 2310 2311
	cfg->vtcr	= FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps);
2312 2313 2314
	return 0;
}

2315 2316
static int arm_smmu_domain_finalise(struct iommu_domain *domain,
				    struct arm_smmu_master *master)
2317 2318 2319 2320 2321 2322 2323
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
2324
				 struct arm_smmu_master *,
2325 2326 2327 2328
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

2329 2330 2331 2332 2333
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

2334 2335 2336 2337 2338 2339 2340 2341
	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
2342 2343
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
2360
		.pgsize_bitmap	= smmu->pgsize_bitmap,
2361 2362
		.ias		= ias,
		.oas		= oas,
2363
		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
2364
		.tlb		= &arm_smmu_flush_ops,
2365
		.iommu_dev	= smmu->dev,
2366 2367
	};

2368 2369 2370
	if (smmu_domain->non_strict)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_NON_STRICT;

2371 2372 2373 2374
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

2375
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
2376
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
2377
	domain->geometry.force_aperture = true;
2378

2379
	ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg);
2380
	if (ret < 0) {
2381
		free_io_pgtable_ops(pgtbl_ops);
2382 2383
		return ret;
	}
2384

2385 2386
	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

2411
static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
2412
{
2413
	int i, j;
2414
	struct arm_smmu_device *smmu = master->smmu;
2415

2416 2417
	for (i = 0; i < master->num_sids; ++i) {
		u32 sid = master->sids[i];
2418 2419
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

2420 2421
		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
2422
			if (master->sids[j] == sid)
2423 2424 2425 2426
				break;
		if (j < i)
			continue;

2427
		arm_smmu_write_strtab_ent(master, sid, step);
2428 2429 2430
	}
}

2431
#ifdef CONFIG_PCI_ATS
2432
static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2433 2434 2435 2436 2437 2438 2439
{
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);

	if (!(smmu->features & ARM_SMMU_FEAT_ATS) || !dev_is_pci(master->dev) ||
	    !(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS) || pci_ats_disabled())
2440
		return false;
2441 2442

	pdev = to_pci_dev(master->dev);
2443 2444
	return !pdev->untrusted && pdev->ats_cap;
}
2445 2446 2447 2448 2449 2450
#else
static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
{
	return false;
}
#endif
2451

2452 2453 2454 2455 2456
static void arm_smmu_enable_ats(struct arm_smmu_master *master)
{
	size_t stu;
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
2457
	struct arm_smmu_domain *smmu_domain = master->domain;
2458

2459 2460 2461
	/* Don't enable ATS at the endpoint if it's not enabled in the STE */
	if (!master->ats_enabled)
		return;
2462 2463 2464

	/* Smallest Translation Unit: log2 of the smallest supported granule */
	stu = __ffs(smmu->pgsize_bitmap);
2465
	pdev = to_pci_dev(master->dev);
2466

2467 2468
	atomic_inc(&smmu_domain->nr_ats_masters);
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
2469 2470
	if (pci_enable_ats(pdev, stu))
		dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2471 2472 2473 2474
}

static void arm_smmu_disable_ats(struct arm_smmu_master *master)
{
2475
	struct arm_smmu_cmdq_ent cmd;
2476
	struct arm_smmu_domain *smmu_domain = master->domain;
2477

2478
	if (!master->ats_enabled)
2479 2480
		return;

2481 2482 2483 2484 2485 2486
	pci_disable_ats(to_pci_dev(master->dev));
	/*
	 * Ensure ATS is disabled at the endpoint before we issue the
	 * ATC invalidation via the SMMU.
	 */
	wmb();
2487 2488
	arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd);
	arm_smmu_atc_inv_master(master, &cmd);
2489
	atomic_dec(&smmu_domain->nr_ats_masters);
2490 2491
}

2492
static void arm_smmu_detach_dev(struct arm_smmu_master *master)
2493
{
2494 2495 2496 2497
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = master->domain;

	if (!smmu_domain)
2498 2499
		return;

2500 2501
	arm_smmu_disable_ats(master);

2502 2503 2504 2505
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_del(&master->domain_head);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2506
	master->domain = NULL;
2507
	master->ats_enabled = false;
2508
	arm_smmu_install_ste_for_dev(master);
2509 2510
}

2511 2512 2513
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
2514
	unsigned long flags;
2515
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2516 2517
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2518
	struct arm_smmu_master *master;
2519

2520
	if (!fwspec)
2521 2522
		return -ENOENT;

2523
	master = fwspec->iommu_priv;
2524 2525
	smmu = master->smmu;

2526
	arm_smmu_detach_dev(master);
2527 2528 2529 2530 2531

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
2532
		ret = arm_smmu_domain_finalise(domain, master);
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
2544 2545 2546 2547 2548 2549 2550
	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
		   master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) {
		dev_err(dev,
			"cannot attach to incompatible domain (%u SSID bits != %u)\n",
			smmu_domain->s1_cfg.s1cdmax, master->ssid_bits);
		ret = -EINVAL;
		goto out_unlock;
2551 2552
	}

2553
	master->domain = smmu_domain;
2554

2555
	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
2556
		master->ats_enabled = arm_smmu_ats_supported(master);
2557

2558
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
2559 2560
		arm_smmu_write_ctx_desc(smmu_domain, 0,
					&smmu_domain->s1_cfg.cd);
2561

2562
	arm_smmu_install_ste_for_dev(master);
2563 2564 2565 2566 2567

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_add(&master->domain_head, &smmu_domain->devices);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2568
	arm_smmu_enable_ats(master);
2569

2570 2571 2572 2573 2574 2575
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
2576
			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2577
{
2578
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2579 2580 2581 2582

	if (!ops)
		return -ENODEV;

2583
	return ops->map(ops, iova, paddr, size, prot);
2584 2585
}

2586 2587
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size, struct iommu_iotlb_gather *gather)
2588
{
2589 2590
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
2591 2592 2593 2594

	if (!ops)
		return 0;

2595
	return ops->unmap(ops, iova, size, gather);
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605
static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (smmu_domain->smmu)
		arm_smmu_tlb_inv_context(smmu_domain);
}

2606 2607
static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
				struct iommu_iotlb_gather *gather)
2608
{
2609
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2610

2611 2612
	arm_smmu_tlb_inv_range(gather->start, gather->end - gather->start,
			       gather->pgsize, true, smmu_domain);
2613 2614
}

2615 2616 2617
static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
2618
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2619

2620 2621 2622
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

2623 2624 2625
	if (!ops)
		return 0;

2626
	return ops->iova_to_phys(ops, iova);
2627 2628
}

2629
static struct platform_driver arm_smmu_driver;
2630

2631 2632
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2633
{
2634 2635
	struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
							  fwnode);
2636 2637
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

2650 2651
static struct iommu_ops arm_smmu_ops;

2652 2653 2654 2655
static int arm_smmu_add_device(struct device *dev)
{
	int i, ret;
	struct arm_smmu_device *smmu;
2656
	struct arm_smmu_master *master;
2657
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2658
	struct iommu_group *group;
2659

2660
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2661
		return -ENODEV;
2662 2663 2664 2665 2666 2667 2668 2669
	/*
	 * We _can_ actually withstand dodgy bus code re-calling add_device()
	 * without an intervening remove_device()/of_xlate() sequence, but
	 * we're not going to do so quietly...
	 */
	if (WARN_ON_ONCE(fwspec->iommu_priv)) {
		master = fwspec->iommu_priv;
		smmu = master->smmu;
2670
	} else {
2671
		smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
2672 2673 2674 2675 2676 2677
		if (!smmu)
			return -ENODEV;
		master = kzalloc(sizeof(*master), GFP_KERNEL);
		if (!master)
			return -ENOMEM;

2678
		master->dev = dev;
2679
		master->smmu = smmu;
2680 2681
		master->sids = fwspec->ids;
		master->num_sids = fwspec->num_ids;
2682
		fwspec->iommu_priv = master;
2683 2684
	}

2685
	/* Check the SIDs are in range of the SMMU and our stream table */
2686 2687
	for (i = 0; i < master->num_sids; i++) {
		u32 sid = master->sids[i];
2688

2689 2690
		if (!arm_smmu_sid_in_range(smmu, sid))
			return -ERANGE;
2691

2692 2693 2694 2695 2696 2697
		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
				return ret;
		}
2698 2699
	}

2700 2701 2702 2703 2704 2705
	master->ssid_bits = min(smmu->ssid_bits, fwspec->num_pasid_bits);

	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
		master->ssid_bits = min_t(u8, master->ssid_bits,
					  CTXDESC_LINEAR_CDMAX);

2706
	group = iommu_group_get_for_dev(dev);
2707
	if (!IS_ERR(group)) {
2708
		iommu_group_put(group);
2709 2710
		iommu_device_link(&smmu->iommu, dev);
	}
2711

2712
	return PTR_ERR_OR_ZERO(group);
2713 2714 2715 2716
}

static void arm_smmu_remove_device(struct device *dev)
{
2717
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2718
	struct arm_smmu_master *master;
2719
	struct arm_smmu_device *smmu;
2720 2721 2722 2723 2724

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

	master = fwspec->iommu_priv;
2725
	smmu = master->smmu;
2726
	arm_smmu_detach_dev(master);
2727
	iommu_group_remove_device(dev);
2728
	iommu_device_unlink(&smmu->iommu, dev);
2729 2730
	kfree(master);
	iommu_fwspec_free(dev);
2731 2732
}

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

2750 2751 2752 2753 2754
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
			return 0;
		default:
			return -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = smmu_domain->non_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
2774
	default:
2775
		return -EINVAL;
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	mutex_lock(&smmu_domain->init_mutex);

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			if (smmu_domain->smmu) {
				ret = -EPERM;
				goto out_unlock;
			}

			if (*(int *)data)
				smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
			else
				smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
			break;
		default:
			ret = -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch(attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			smmu_domain->non_strict = *(int *)data;
			break;
		default:
			ret = -ENODEV;
2812 2813 2814
		}
		break;
	default:
2815
		ret = -EINVAL;
2816 2817 2818 2819 2820 2821 2822
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

2823 2824 2825 2826 2827
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

2828 2829 2830 2831 2832 2833 2834
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2835
					 prot, IOMMU_RESV_SW_MSI);
2836 2837 2838 2839
	if (!region)
		return;

	list_add_tail(&region->list, head);
2840 2841

	iommu_dma_get_resv_regions(dev, head);
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
}

static void arm_smmu_put_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

2853 2854 2855 2856 2857 2858 2859
static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
2860
	.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
2861
	.iotlb_sync		= arm_smmu_iotlb_sync,
2862 2863 2864
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
2865
	.device_group		= arm_smmu_device_group,
2866 2867
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
2868
	.of_xlate		= arm_smmu_of_xlate,
2869 2870
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.put_resv_regions	= arm_smmu_put_resv_regions,
2871 2872 2873 2874 2875 2876 2877 2878
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
2879
				   size_t dwords, const char *name)
2880
{
2881 2882 2883
	size_t qsz;

	do {
2884
		qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
2885 2886 2887 2888 2889
		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
					      GFP_KERNEL);
		if (q->base || qsz < PAGE_SIZE)
			break;

2890
		q->llq.max_n_shift--;
2891
	} while (1);
2892 2893

	if (!q->base) {
2894 2895 2896
		dev_err(smmu->dev,
			"failed to allocate queue (0x%zx bytes) for %s\n",
			qsz, name);
2897 2898 2899
		return -ENOMEM;
	}

2900 2901
	if (!WARN_ON(q->base_dma & (qsz - 1))) {
		dev_info(smmu->dev, "allocated %u entries for %s\n",
2902
			 1 << q->llq.max_n_shift, name);
2903 2904
	}

2905 2906
	q->prod_reg	= arm_smmu_page1_fixup(prod_off, smmu);
	q->cons_reg	= arm_smmu_page1_fixup(cons_off, smmu);
2907 2908 2909
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
2910
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2911
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
2912

2913
	q->llq.prod = q->llq.cons = 0;
2914 2915 2916
	return 0;
}

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
static void arm_smmu_cmdq_free_bitmap(void *data)
{
	unsigned long *bitmap = data;
	bitmap_free(bitmap);
}

static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
{
	int ret = 0;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
	atomic_long_t *bitmap;

	atomic_set(&cmdq->owner_prod, 0);
	atomic_set(&cmdq->lock, 0);

	bitmap = (atomic_long_t *)bitmap_zalloc(nents, GFP_KERNEL);
	if (!bitmap) {
		dev_err(smmu->dev, "failed to allocate cmdq bitmap\n");
		ret = -ENOMEM;
	} else {
		cmdq->valid_map = bitmap;
		devm_add_action(smmu->dev, arm_smmu_cmdq_free_bitmap, bitmap);
	}

	return ret;
}

2945 2946 2947 2948 2949 2950
static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2951 2952
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS,
				      "cmdq");
2953
	if (ret)
2954
		return ret;
2955

2956 2957 2958 2959
	ret = arm_smmu_cmdq_init(smmu);
	if (ret)
		return ret;

2960 2961
	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2962 2963
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS,
				      "evtq");
2964
	if (ret)
2965
		return ret;
2966 2967 2968 2969 2970

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

2971
	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2972 2973
				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS,
				       "priq");
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
3001
	u32 size, l1size;
3002 3003
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

3004 3005 3006
	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
3007 3008 3009 3010
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
3011 3012
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
3013
			 size, smmu->sid_bits);
3014

3015
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
3016
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
3017
				     GFP_KERNEL);
3018 3019 3020 3021 3022 3023 3024 3025 3026
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
3027 3028 3029
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
3030 3031
	cfg->strtab_base_cfg = reg;

3032
	return arm_smmu_init_l1_strtab(smmu);
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
3043
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
3044
				     GFP_KERNEL);
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
3055 3056
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
3077
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

3094
	return arm_smmu_init_strtab(smmu);
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
3121 3122 3123 3124 3125 3126
	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);

	if (ret)
		dev_err(smmu->dev, "GBPA not responding to update\n");
	return ret;
3127 3128
}

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
3143
	doorbell &= MSI_CFG0_ADDR_MASK;
3144 3145 3146

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
3147
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

3168 3169 3170 3171 3172
	if (!dev->msi_domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

3173 3174 3175
	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
3176
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

3200
static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
3201
{
3202
	int irq, ret;
3203

3204
	arm_smmu_setup_msis(smmu);
3205

3206
	/* Request interrupt lines */
3207 3208
	irq = smmu->evtq.q.irq;
	if (irq) {
3209
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3210
						arm_smmu_evtq_thread,
3211 3212
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
3213
		if (ret < 0)
3214
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
3215 3216
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
3217 3218 3219 3220 3221 3222
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
3223
		if (ret < 0)
3224
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
3225 3226
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
3227 3228 3229 3230 3231
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
3232
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3233
							arm_smmu_priq_thread,
3234 3235
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
3236
							smmu);
3237
			if (ret < 0)
3238 3239
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
3240 3241
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
3242 3243
		}
	}
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
3262 3263
		 * Cavium ThunderX2 implementation doesn't support unique irq
		 * lines. Use a single irq line for all the SMMUv3 interrupts.
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
3277 3278

	/* Enable interrupt generation on the SMMU */
3279
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

3298
static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
3299 3300 3301 3302 3303 3304 3305
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
3306
	if (reg & CR0_SMMUEN) {
3307
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
3308 3309
		WARN_ON(is_kdump_kernel() && !disable_bypass);
		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
3310
	}
3311 3312 3313 3314 3315 3316

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
3317 3318 3319 3320 3321 3322
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
3337 3338
	writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3351
	arm_smmu_cmdq_issue_sync(smmu);
3352 3353 3354 3355 3356 3357 3358 3359 3360

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3361
	arm_smmu_cmdq_issue_sync(smmu);
3362 3363 3364

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
3365
	writel_relaxed(smmu->evtq.q.llq.prod,
3366
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
3367
	writel_relaxed(smmu->evtq.q.llq.cons,
3368
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
3382
		writel_relaxed(smmu->priq.q.llq.prod,
3383
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
3384
		writel_relaxed(smmu->priq.q.llq.cons,
3385
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	if (smmu->features & ARM_SMMU_FEAT_ATS) {
		enables |= CR0_ATSCHK;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable ATS check\n");
			return ret;
		}
	}

3406 3407 3408 3409 3410 3411
	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

3412 3413
	if (is_kdump_kernel())
		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
3414 3415 3416 3417 3418 3419

	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
3420
		if (ret)
3421 3422
			return ret;
	}
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

3433
static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
3434 3435
{
	u32 reg;
3436
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
3437 3438 3439 3440 3441

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
3442
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
3453
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

	if (reg & IDR0_MSI)
		smmu->features |= ARM_SMMU_FEAT_MSI;

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
3488
	 * The coherency feature as set by FW is used in preference to the ID
3489 3490 3491
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
3492
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
3493 3494
			 coherent ? "true" : "false");

3495
	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
3496
	case IDR0_STALL_MODEL_FORCE:
3497 3498 3499
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
		/* Fallthrough */
	case IDR0_STALL_MODEL_STALL:
3500
		smmu->features |= ARM_SMMU_FEAT_STALLS;
3501
	}
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
3515
	switch (FIELD_GET(IDR0_TTF, reg)) {
3516 3517 3518 3519 3520 3521
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
		/* Fallthrough */
	case IDR0_TTF_AARCH64:
		break;
	default:
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

3537
	/* Queue sizes, capped to ensure natural alignment */
3538 3539
	smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_CMDQS, reg));
3540
	if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
3541
		/*
3542 3543 3544 3545
		 * We don't support splitting up batches, so one batch of
		 * commands plus an extra sync needs to fit inside the command
		 * queue. There's also no way we can handle the weird alignment
		 * restrictions on the base pointer for a unit-length queue.
3546
		 */
3547 3548
		dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
			CMDQ_BATCH_ENTRIES);
3549 3550 3551
		return -ENXIO;
	}

3552 3553 3554 3555
	smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_PRIQS, reg));
3556 3557

	/* SID/SSID sizes */
3558 3559
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
3560

3561 3562 3563 3564 3565 3566 3567
	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

3568 3569 3570 3571
	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
3572
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
3573 3574 3575

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
3576
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
3577
	if (reg & IDR5_GRAN16K)
3578
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
3579
	if (reg & IDR5_GRAN4K)
3580
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
3581

3582 3583 3584 3585
	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

3586
	/* Output address size */
3587
	switch (FIELD_GET(IDR5_OAS, reg)) {
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
3603 3604 3605 3606
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
3607 3608 3609 3610
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
		/* Fallthrough */
3611 3612 3613 3614
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

3615 3616 3617 3618 3619
	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

3620 3621 3622 3623 3624
	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

3625
	smmu->ias = max(smmu->ias, smmu->oas);
3626 3627 3628 3629 3630 3631

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

3632
#ifdef CONFIG_ACPI
3633 3634
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
3635 3636
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3637
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3638
		break;
3639
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3640 3641 3642
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}
3643 3644 3645 3646

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

3659 3660
	acpi_smmu_get_options(iort_smmu->model, smmu);

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

3674 3675
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
3676 3677
{
	struct device *dev = &pdev->dev;
3678
	u32 cells;
3679
	int ret = -EINVAL;
3680 3681 3682 3683 3684 3685

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

3696 3697 3698 3699 3700 3701 3702 3703
static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
static int arm_smmu_set_bus_ops(struct iommu_ops *ops)
{
	int err;

#ifdef CONFIG_PCI
	if (pci_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&pci_bus_type, ops);
		if (err)
			return err;
	}
#endif
#ifdef CONFIG_ARM_AMBA
	if (amba_bustype.iommu_ops != ops) {
		err = bus_set_iommu(&amba_bustype, ops);
		if (err)
			goto err_reset_pci_ops;
	}
#endif
	if (platform_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&platform_bus_type, ops);
		if (err)
			goto err_reset_amba_ops;
	}

	return 0;

err_reset_amba_ops:
#ifdef CONFIG_ARM_AMBA
	bus_set_iommu(&amba_bustype, NULL);
#endif
err_reset_pci_ops: __maybe_unused;
#ifdef CONFIG_PCI
	bus_set_iommu(&pci_bus_type, NULL);
#endif
	return err;
}

3741 3742 3743 3744
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
3745
	resource_size_t ioaddr;
3746 3747 3748
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;
3749 3750 3751 3752 3753 3754 3755 3756

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

3768 3769
	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3770
	if (resource_size(res) < arm_smmu_resource_size(smmu)) {
3771 3772 3773
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
3774
	ioaddr = res->start;
3775 3776 3777 3778 3779 3780 3781

	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

	/* Interrupt lines */

3782
	irq = platform_get_irq_byname_optional(pdev, "combined");
3783
	if (irq > 0)
3784 3785
		smmu->combined_irq = irq;
	else {
3786
		irq = platform_get_irq_byname_optional(pdev, "eventq");
3787 3788
		if (irq > 0)
			smmu->evtq.q.irq = irq;
3789

3790
		irq = platform_get_irq_byname_optional(pdev, "priq");
3791 3792
		if (irq > 0)
			smmu->priq.q.irq = irq;
3793

3794
		irq = platform_get_irq_byname_optional(pdev, "gerror");
3795 3796 3797
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
3798
	/* Probe the h/w */
3799
	ret = arm_smmu_device_hw_probe(smmu);
3800 3801 3802 3803 3804 3805 3806 3807
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

3808 3809 3810
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

3811
	/* Reset the device */
3812 3813 3814 3815 3816
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
3817 3818
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
3819 3820
	if (ret)
		return ret;
3821 3822 3823 3824 3825

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
3826 3827 3828 3829
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}
3830

3831
	return arm_smmu_set_bus_ops(&arm_smmu_ops);
3832 3833
}

3834
static int arm_smmu_device_remove(struct platform_device *pdev)
3835
{
3836
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3837

3838 3839 3840
	arm_smmu_set_bus_ops(NULL);
	iommu_device_unregister(&smmu->iommu);
	iommu_device_sysfs_remove(&smmu->iommu);
3841
	arm_smmu_device_disable(smmu);
3842 3843 3844 3845 3846 3847 3848

	return 0;
}

static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	arm_smmu_device_remove(pdev);
3849 3850
}

3851
static const struct of_device_id arm_smmu_of_match[] = {
3852 3853 3854
	{ .compatible = "arm,smmu-v3", },
	{ },
};
3855
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
3856 3857 3858

static struct platform_driver arm_smmu_driver = {
	.driver	= {
3859
		.name			= "arm-smmu-v3",
3860
		.of_match_table		= arm_smmu_of_match,
3861
		.suppress_bind_attrs	= true,
3862
	},
3863
	.probe	= arm_smmu_device_probe,
3864
	.remove	= arm_smmu_device_remove,
3865
	.shutdown = arm_smmu_device_shutdown,
3866
};
3867 3868 3869
module_platform_driver(arm_smmu_driver);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
3870
MODULE_AUTHOR("Will Deacon <will@kernel.org>");
3871
MODULE_ALIAS("platform:arm-smmu-v3");
3872
MODULE_LICENSE("GPL v2");