arm-smmu-v3.c 74.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

23 24
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
25
#include <linux/bitfield.h>
26
#include <linux/bitops.h>
27
#include <linux/delay.h>
28
#include <linux/dma-iommu.h>
29 30 31 32 33
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/module.h>
34
#include <linux/msi.h>
35 36
#include <linux/of.h>
#include <linux/of_address.h>
37
#include <linux/of_iommu.h>
38
#include <linux/of_platform.h>
39 40 41
#include <linux/pci.h>
#include <linux/platform_device.h>

42 43
#include <linux/amba/bus.h>

44 45 46 47
#include "io-pgtable.h"

/* MMIO registers */
#define ARM_SMMU_IDR0			0x0
48 49 50 51 52 53 54 55 56
#define IDR0_ST_LVL			GENMASK(28, 27)
#define IDR0_ST_LVL_2LVL		1
#define IDR0_STALL_MODEL		GENMASK(25, 24)
#define IDR0_STALL_MODEL_STALL		0
#define IDR0_STALL_MODEL_FORCE		2
#define IDR0_TTENDIAN			GENMASK(22, 21)
#define IDR0_TTENDIAN_MIXED		0
#define IDR0_TTENDIAN_LE		2
#define IDR0_TTENDIAN_BE		3
57 58 59 60 61 62 63 64 65
#define IDR0_CD2L			(1 << 19)
#define IDR0_VMID16			(1 << 18)
#define IDR0_PRI			(1 << 16)
#define IDR0_SEV			(1 << 14)
#define IDR0_MSI			(1 << 13)
#define IDR0_ASID16			(1 << 12)
#define IDR0_ATS			(1 << 10)
#define IDR0_HYP			(1 << 9)
#define IDR0_COHACC			(1 << 4)
66 67 68
#define IDR0_TTF			GENMASK(3, 2)
#define IDR0_TTF_AARCH64		2
#define IDR0_TTF_AARCH32_64		3
69 70 71 72 73 74 75
#define IDR0_S1P			(1 << 1)
#define IDR0_S2P			(1 << 0)

#define ARM_SMMU_IDR1			0x4
#define IDR1_TABLES_PRESET		(1 << 30)
#define IDR1_QUEUES_PRESET		(1 << 29)
#define IDR1_REL			(1 << 28)
76 77 78 79 80
#define IDR1_CMDQS			GENMASK(25, 21)
#define IDR1_EVTQS			GENMASK(20, 16)
#define IDR1_PRIQS			GENMASK(15, 11)
#define IDR1_SSIDSIZE			GENMASK(10, 6)
#define IDR1_SIDSIZE			GENMASK(5, 0)
81 82

#define ARM_SMMU_IDR5			0x14
83
#define IDR5_STALL_MAX			GENMASK(31, 16)
84 85 86
#define IDR5_GRAN64K			(1 << 6)
#define IDR5_GRAN16K			(1 << 5)
#define IDR5_GRAN4K			(1 << 4)
87 88 89 90 91 92 93
#define IDR5_OAS			GENMASK(2, 0)
#define IDR5_OAS_32_BIT			0
#define IDR5_OAS_36_BIT			1
#define IDR5_OAS_40_BIT			2
#define IDR5_OAS_42_BIT			3
#define IDR5_OAS_44_BIT			4
#define IDR5_OAS_48_BIT			5
94
#define IDR5_OAS_52_BIT			6
95 96
#define IDR5_VAX			GENMASK(11, 10)
#define IDR5_VAX_52_BIT			1
97 98 99 100 101 102 103 104 105 106

#define ARM_SMMU_CR0			0x20
#define CR0_CMDQEN			(1 << 3)
#define CR0_EVTQEN			(1 << 2)
#define CR0_PRIQEN			(1 << 1)
#define CR0_SMMUEN			(1 << 0)

#define ARM_SMMU_CR0ACK			0x24

#define ARM_SMMU_CR1			0x28
107 108 109 110 111 112 113
#define CR1_TABLE_SH			GENMASK(11, 10)
#define CR1_TABLE_OC			GENMASK(9, 8)
#define CR1_TABLE_IC			GENMASK(7, 6)
#define CR1_QUEUE_SH			GENMASK(5, 4)
#define CR1_QUEUE_OC			GENMASK(3, 2)
#define CR1_QUEUE_IC			GENMASK(1, 0)
/* CR1 cacheability fields don't quite follow the usual TCR-style encoding */
114 115 116 117 118 119 120 121 122
#define CR1_CACHE_NC			0
#define CR1_CACHE_WB			1
#define CR1_CACHE_WT			2

#define ARM_SMMU_CR2			0x2c
#define CR2_PTM				(1 << 2)
#define CR2_RECINVSID			(1 << 1)
#define CR2_E2H				(1 << 0)

123 124
#define ARM_SMMU_GBPA			0x44
#define GBPA_UPDATE			(1 << 31)
125
#define GBPA_ABORT			(1 << 20)
126

127 128
#define ARM_SMMU_IRQ_CTRL		0x50
#define IRQ_CTRL_EVTQ_IRQEN		(1 << 2)
129
#define IRQ_CTRL_PRIQ_IRQEN		(1 << 1)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
#define IRQ_CTRL_GERROR_IRQEN		(1 << 0)

#define ARM_SMMU_IRQ_CTRLACK		0x54

#define ARM_SMMU_GERROR			0x60
#define GERROR_SFM_ERR			(1 << 8)
#define GERROR_MSI_GERROR_ABT_ERR	(1 << 7)
#define GERROR_MSI_PRIQ_ABT_ERR		(1 << 6)
#define GERROR_MSI_EVTQ_ABT_ERR		(1 << 5)
#define GERROR_MSI_CMDQ_ABT_ERR		(1 << 4)
#define GERROR_PRIQ_ABT_ERR		(1 << 3)
#define GERROR_EVTQ_ABT_ERR		(1 << 2)
#define GERROR_CMDQ_ERR			(1 << 0)
#define GERROR_ERR_MASK			0xfd

#define ARM_SMMU_GERRORN		0x64

#define ARM_SMMU_GERROR_IRQ_CFG0	0x68
#define ARM_SMMU_GERROR_IRQ_CFG1	0x70
#define ARM_SMMU_GERROR_IRQ_CFG2	0x74

#define ARM_SMMU_STRTAB_BASE		0x80
#define STRTAB_BASE_RA			(1UL << 62)
153
#define STRTAB_BASE_ADDR_MASK		GENMASK_ULL(51, 6)
154 155

#define ARM_SMMU_STRTAB_BASE_CFG	0x88
156 157 158 159 160
#define STRTAB_BASE_CFG_FMT		GENMASK(17, 16)
#define STRTAB_BASE_CFG_FMT_LINEAR	0
#define STRTAB_BASE_CFG_FMT_2LVL	1
#define STRTAB_BASE_CFG_SPLIT		GENMASK(10, 6)
#define STRTAB_BASE_CFG_LOG2SIZE	GENMASK(5, 0)
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

#define ARM_SMMU_CMDQ_BASE		0x90
#define ARM_SMMU_CMDQ_PROD		0x98
#define ARM_SMMU_CMDQ_CONS		0x9c

#define ARM_SMMU_EVTQ_BASE		0xa0
#define ARM_SMMU_EVTQ_PROD		0x100a8
#define ARM_SMMU_EVTQ_CONS		0x100ac
#define ARM_SMMU_EVTQ_IRQ_CFG0		0xb0
#define ARM_SMMU_EVTQ_IRQ_CFG1		0xb8
#define ARM_SMMU_EVTQ_IRQ_CFG2		0xbc

#define ARM_SMMU_PRIQ_BASE		0xc0
#define ARM_SMMU_PRIQ_PROD		0x100c8
#define ARM_SMMU_PRIQ_CONS		0x100cc
#define ARM_SMMU_PRIQ_IRQ_CFG0		0xd0
#define ARM_SMMU_PRIQ_IRQ_CFG1		0xd8
#define ARM_SMMU_PRIQ_IRQ_CFG2		0xdc

/* Common MSI config fields */
181
#define MSI_CFG0_ADDR_MASK		GENMASK_ULL(51, 2)
182 183 184 185 186 187 188 189
#define MSI_CFG2_SH			GENMASK(5, 4)
#define MSI_CFG2_MEMATTR		GENMASK(3, 0)

/* Common memory attribute values */
#define ARM_SMMU_SH_NSH			0
#define ARM_SMMU_SH_OSH			2
#define ARM_SMMU_SH_ISH			3
#define ARM_SMMU_MEMATTR_DEVICE_nGnRE	0x1
190
#define ARM_SMMU_MEMATTR_OIWB		0xf
191 192 193 194 195 196 197 198 199

#define Q_IDX(q, p)			((p) & ((1 << (q)->max_n_shift) - 1))
#define Q_WRP(q, p)			((p) & (1 << (q)->max_n_shift))
#define Q_OVERFLOW_FLAG			(1 << 31)
#define Q_OVF(q, p)			((p) & Q_OVERFLOW_FLAG)
#define Q_ENT(q, p)			((q)->base +			\
					 Q_IDX(q, p) * (q)->ent_dwords)

#define Q_BASE_RWA			(1UL << 62)
200
#define Q_BASE_ADDR_MASK		GENMASK_ULL(51, 5)
201
#define Q_BASE_LOG2SIZE			GENMASK(4, 0)
202 203 204 205 206

/*
 * Stream table.
 *
 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
207 208
 * 2lvl: 128k L1 entries,
 *       256 lazy entries per table (each table covers a PCI bus)
209
 */
210
#define STRTAB_L1_SZ_SHIFT		20
211 212 213
#define STRTAB_SPLIT			8

#define STRTAB_L1_DESC_DWORDS		1
214
#define STRTAB_L1_DESC_SPAN		GENMASK_ULL(4, 0)
215
#define STRTAB_L1_DESC_L2PTR_MASK	GENMASK_ULL(51, 6)
216 217 218

#define STRTAB_STE_DWORDS		8
#define STRTAB_STE_0_V			(1UL << 0)
219 220 221 222 223 224 225 226
#define STRTAB_STE_0_CFG		GENMASK_ULL(3, 1)
#define STRTAB_STE_0_CFG_ABORT		0
#define STRTAB_STE_0_CFG_BYPASS		4
#define STRTAB_STE_0_CFG_S1_TRANS	5
#define STRTAB_STE_0_CFG_S2_TRANS	6

#define STRTAB_STE_0_S1FMT		GENMASK_ULL(5, 4)
#define STRTAB_STE_0_S1FMT_LINEAR	0
227
#define STRTAB_STE_0_S1CTXPTR_MASK	GENMASK_ULL(51, 6)
228
#define STRTAB_STE_0_S1CDMAX		GENMASK_ULL(63, 59)
229 230 231 232 233

#define STRTAB_STE_1_S1C_CACHE_NC	0UL
#define STRTAB_STE_1_S1C_CACHE_WBRA	1UL
#define STRTAB_STE_1_S1C_CACHE_WT	2UL
#define STRTAB_STE_1_S1C_CACHE_WB	3UL
234 235 236
#define STRTAB_STE_1_S1CIR		GENMASK_ULL(3, 2)
#define STRTAB_STE_1_S1COR		GENMASK_ULL(5, 4)
#define STRTAB_STE_1_S1CSH		GENMASK_ULL(7, 6)
237 238 239

#define STRTAB_STE_1_S1STALLD		(1UL << 27)

240
#define STRTAB_STE_1_EATS		GENMASK_ULL(29, 28)
241 242 243 244
#define STRTAB_STE_1_EATS_ABT		0UL
#define STRTAB_STE_1_EATS_TRANS		1UL
#define STRTAB_STE_1_EATS_S1CHK		2UL

245
#define STRTAB_STE_1_STRW		GENMASK_ULL(31, 30)
246 247 248
#define STRTAB_STE_1_STRW_NSEL1		0UL
#define STRTAB_STE_1_STRW_EL2		2UL

249
#define STRTAB_STE_1_SHCFG		GENMASK_ULL(45, 44)
250 251
#define STRTAB_STE_1_SHCFG_INCOMING	1UL

252 253
#define STRTAB_STE_2_S2VMID		GENMASK_ULL(15, 0)
#define STRTAB_STE_2_VTCR		GENMASK_ULL(50, 32)
254 255 256 257 258
#define STRTAB_STE_2_S2AA64		(1UL << 51)
#define STRTAB_STE_2_S2ENDI		(1UL << 52)
#define STRTAB_STE_2_S2PTW		(1UL << 54)
#define STRTAB_STE_2_S2R		(1UL << 58)

259
#define STRTAB_STE_3_S2TTB_MASK		GENMASK_ULL(51, 4)
260 261 262

/* Context descriptor (stage-1 only) */
#define CTXDESC_CD_DWORDS		8
263 264 265 266 267 268 269 270 271 272 273 274 275 276
#define CTXDESC_CD_0_TCR_T0SZ		GENMASK_ULL(5, 0)
#define ARM64_TCR_T0SZ			GENMASK_ULL(5, 0)
#define CTXDESC_CD_0_TCR_TG0		GENMASK_ULL(7, 6)
#define ARM64_TCR_TG0			GENMASK_ULL(15, 14)
#define CTXDESC_CD_0_TCR_IRGN0		GENMASK_ULL(9, 8)
#define ARM64_TCR_IRGN0			GENMASK_ULL(9, 8)
#define CTXDESC_CD_0_TCR_ORGN0		GENMASK_ULL(11, 10)
#define ARM64_TCR_ORGN0			GENMASK_ULL(11, 10)
#define CTXDESC_CD_0_TCR_SH0		GENMASK_ULL(13, 12)
#define ARM64_TCR_SH0			GENMASK_ULL(13, 12)
#define CTXDESC_CD_0_TCR_EPD0		(1ULL << 14)
#define ARM64_TCR_EPD0			(1ULL << 7)
#define CTXDESC_CD_0_TCR_EPD1		(1ULL << 30)
#define ARM64_TCR_EPD1			(1ULL << 23)
277 278 279 280

#define CTXDESC_CD_0_ENDI		(1UL << 15)
#define CTXDESC_CD_0_V			(1UL << 31)

281 282 283 284
#define CTXDESC_CD_0_TCR_IPS		GENMASK_ULL(34, 32)
#define ARM64_TCR_IPS			GENMASK_ULL(34, 32)
#define CTXDESC_CD_0_TCR_TBI0		(1ULL << 38)
#define ARM64_TCR_TBI0			(1ULL << 37)
285 286

#define CTXDESC_CD_0_AA64		(1UL << 41)
287
#define CTXDESC_CD_0_S			(1UL << 44)
288 289
#define CTXDESC_CD_0_R			(1UL << 45)
#define CTXDESC_CD_0_A			(1UL << 46)
290 291
#define CTXDESC_CD_0_ASET		(1UL << 47)
#define CTXDESC_CD_0_ASID		GENMASK_ULL(63, 48)
292

293
#define CTXDESC_CD_1_TTB0_MASK		GENMASK_ULL(51, 4)
294 295

/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
296 297
#define ARM_SMMU_TCR2CD(tcr, fld)	FIELD_PREP(CTXDESC_CD_0_TCR_##fld, \
					FIELD_GET(ARM64_TCR_##fld, tcr))
298 299 300 301 302

/* Command queue */
#define CMDQ_ENT_DWORDS			2
#define CMDQ_MAX_SZ_SHIFT		8

303
#define CMDQ_CONS_ERR			GENMASK(30, 24)
304 305 306 307
#define CMDQ_ERR_CERROR_NONE_IDX	0
#define CMDQ_ERR_CERROR_ILL_IDX		1
#define CMDQ_ERR_CERROR_ABT_IDX		2

308
#define CMDQ_0_OP			GENMASK_ULL(7, 0)
309 310
#define CMDQ_0_SSV			(1UL << 11)

311 312
#define CMDQ_PREFETCH_0_SID		GENMASK_ULL(63, 32)
#define CMDQ_PREFETCH_1_SIZE		GENMASK_ULL(4, 0)
313
#define CMDQ_PREFETCH_1_ADDR_MASK	GENMASK_ULL(63, 12)
314

315
#define CMDQ_CFGI_0_SID			GENMASK_ULL(63, 32)
316
#define CMDQ_CFGI_1_LEAF		(1UL << 0)
317
#define CMDQ_CFGI_1_RANGE		GENMASK_ULL(4, 0)
318

319 320
#define CMDQ_TLBI_0_VMID		GENMASK_ULL(47, 32)
#define CMDQ_TLBI_0_ASID		GENMASK_ULL(63, 48)
321
#define CMDQ_TLBI_1_LEAF		(1UL << 0)
322
#define CMDQ_TLBI_1_VA_MASK		GENMASK_ULL(63, 12)
323
#define CMDQ_TLBI_1_IPA_MASK		GENMASK_ULL(51, 12)
324

325 326 327 328 329 330 331 332 333 334 335 336
#define CMDQ_PRI_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_PRI_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_PRI_1_GRPID		GENMASK_ULL(8, 0)
#define CMDQ_PRI_1_RESP			GENMASK_ULL(13, 12)

#define CMDQ_SYNC_0_CS			GENMASK_ULL(13, 12)
#define CMDQ_SYNC_0_CS_NONE		0
#define CMDQ_SYNC_0_CS_IRQ		1
#define CMDQ_SYNC_0_CS_SEV		2
#define CMDQ_SYNC_0_MSH			GENMASK_ULL(23, 22)
#define CMDQ_SYNC_0_MSIATTR		GENMASK_ULL(27, 24)
#define CMDQ_SYNC_0_MSIDATA		GENMASK_ULL(63, 32)
337
#define CMDQ_SYNC_1_MSIADDR_MASK	GENMASK_ULL(51, 2)
338 339 340 341 342

/* Event queue */
#define EVTQ_ENT_DWORDS			4
#define EVTQ_MAX_SZ_SHIFT		7

343
#define EVTQ_0_ID			GENMASK_ULL(7, 0)
344 345 346 347 348

/* PRI queue */
#define PRIQ_ENT_DWORDS			2
#define PRIQ_MAX_SZ_SHIFT		8

349 350
#define PRIQ_0_SID			GENMASK_ULL(31, 0)
#define PRIQ_0_SSID			GENMASK_ULL(51, 32)
351 352 353 354 355 356 357
#define PRIQ_0_PERM_PRIV		(1UL << 58)
#define PRIQ_0_PERM_EXEC		(1UL << 59)
#define PRIQ_0_PERM_READ		(1UL << 60)
#define PRIQ_0_PERM_WRITE		(1UL << 61)
#define PRIQ_0_PRG_LAST			(1UL << 62)
#define PRIQ_0_SSID_V			(1UL << 63)

358
#define PRIQ_1_PRG_IDX			GENMASK_ULL(8, 0)
359
#define PRIQ_1_ADDR_MASK		GENMASK_ULL(63, 12)
360 361 362

/* High-level queue structures */
#define ARM_SMMU_POLL_TIMEOUT_US	100
363
#define ARM_SMMU_CMDQ_SYNC_TIMEOUT_US	1000000 /* 1s! */
364
#define ARM_SMMU_CMDQ_SYNC_SPIN_COUNT	10
365

366 367 368
#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

369 370 371 372 373 374
static bool disable_bypass;
module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

enum pri_resp {
375 376 377
	PRI_RESP_DENY = 0,
	PRI_RESP_FAIL = 1,
	PRI_RESP_SUCC = 2,
378 379
};

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
struct arm_smmu_cmdq_ent {
	/* Common fields */
	u8				opcode;
	bool				substream_valid;

	/* Command-specific fields */
	union {
		#define CMDQ_OP_PREFETCH_CFG	0x1
		struct {
			u32			sid;
			u8			size;
			u64			addr;
		} prefetch;

		#define CMDQ_OP_CFGI_STE	0x3
		#define CMDQ_OP_CFGI_ALL	0x4
		struct {
			u32			sid;
			union {
				bool		leaf;
				u8		span;
			};
		} cfgi;

		#define CMDQ_OP_TLBI_NH_ASID	0x11
		#define CMDQ_OP_TLBI_NH_VA	0x12
		#define CMDQ_OP_TLBI_EL2_ALL	0x20
		#define CMDQ_OP_TLBI_S12_VMALL	0x28
		#define CMDQ_OP_TLBI_S2_IPA	0x2a
		#define CMDQ_OP_TLBI_NSNH_ALL	0x30
		struct {
			u16			asid;
			u16			vmid;
			bool			leaf;
			u64			addr;
		} tlbi;

		#define CMDQ_OP_PRI_RESP	0x41
		struct {
			u32			sid;
			u32			ssid;
			u16			grpid;
			enum pri_resp		resp;
		} pri;

		#define CMDQ_OP_CMD_SYNC	0x46
451 452 453 454
		struct {
			u32			msidata;
			u64			msiaddr;
		} sync;
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	};
};

struct arm_smmu_queue {
	int				irq; /* Wired interrupt */

	__le64				*base;
	dma_addr_t			base_dma;
	u64				q_base;

	size_t				ent_dwords;
	u32				max_n_shift;
	u32				prod;
	u32				cons;

	u32 __iomem			*prod_reg;
	u32 __iomem			*cons_reg;
};

struct arm_smmu_cmdq {
	struct arm_smmu_queue		q;
	spinlock_t			lock;
};

struct arm_smmu_evtq {
	struct arm_smmu_queue		q;
	u32				max_stalls;
};

struct arm_smmu_priq {
	struct arm_smmu_queue		q;
};

/* High-level stream table and context descriptor structures */
struct arm_smmu_strtab_l1_desc {
	u8				span;

	__le64				*l2ptr;
	dma_addr_t			l2ptr_dma;
};

struct arm_smmu_s1_cfg {
	__le64				*cdptr;
	dma_addr_t			cdptr_dma;

	struct arm_smmu_ctx_desc {
		u16	asid;
		u64	ttbr;
		u64	tcr;
		u64	mair;
	}				cd;
};

struct arm_smmu_s2_cfg {
	u16				vmid;
	u64				vttbr;
	u64				vtcr;
};

struct arm_smmu_strtab_ent {
515 516 517 518 519 520 521 522
	/*
	 * An STE is "assigned" if the master emitting the corresponding SID
	 * is attached to a domain. The behaviour of an unassigned STE is
	 * determined by the disable_bypass parameter, whereas an assigned
	 * STE behaves according to s1_cfg/s2_cfg, which themselves are
	 * configured according to the domain type.
	 */
	bool				assigned;
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	struct arm_smmu_s1_cfg		*s1_cfg;
	struct arm_smmu_s2_cfg		*s2_cfg;
};

struct arm_smmu_strtab_cfg {
	__le64				*strtab;
	dma_addr_t			strtab_dma;
	struct arm_smmu_strtab_l1_desc	*l1_desc;
	unsigned int			num_l1_ents;

	u64				strtab_base;
	u32				strtab_base_cfg;
};

/* An SMMUv3 instance */
struct arm_smmu_device {
	struct device			*dev;
	void __iomem			*base;

#define ARM_SMMU_FEAT_2_LVL_STRTAB	(1 << 0)
#define ARM_SMMU_FEAT_2_LVL_CDTAB	(1 << 1)
#define ARM_SMMU_FEAT_TT_LE		(1 << 2)
#define ARM_SMMU_FEAT_TT_BE		(1 << 3)
#define ARM_SMMU_FEAT_PRI		(1 << 4)
#define ARM_SMMU_FEAT_ATS		(1 << 5)
#define ARM_SMMU_FEAT_SEV		(1 << 6)
#define ARM_SMMU_FEAT_MSI		(1 << 7)
#define ARM_SMMU_FEAT_COHERENCY		(1 << 8)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 9)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 10)
#define ARM_SMMU_FEAT_STALLS		(1 << 11)
#define ARM_SMMU_FEAT_HYP		(1 << 12)
555
#define ARM_SMMU_FEAT_STALL_FORCE	(1 << 13)
556
#define ARM_SMMU_FEAT_VAX		(1 << 14)
557 558
	u32				features;

559
#define ARM_SMMU_OPT_SKIP_PREFETCH	(1 << 0)
560
#define ARM_SMMU_OPT_PAGE0_REGS_ONLY	(1 << 1)
561 562
	u32				options;

563 564 565 566 567
	struct arm_smmu_cmdq		cmdq;
	struct arm_smmu_evtq		evtq;
	struct arm_smmu_priq		priq;

	int				gerr_irq;
568
	int				combined_irq;
569
	atomic_t			sync_nr;
570 571 572

	unsigned long			ias; /* IPA */
	unsigned long			oas; /* PA */
573
	unsigned long			pgsize_bitmap;
574 575 576 577 578 579 580 581 582 583 584 585 586

#define ARM_SMMU_MAX_ASIDS		(1 << 16)
	unsigned int			asid_bits;
	DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);

#define ARM_SMMU_MAX_VMIDS		(1 << 16)
	unsigned int			vmid_bits;
	DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);

	unsigned int			ssid_bits;
	unsigned int			sid_bits;

	struct arm_smmu_strtab_cfg	strtab_cfg;
587

588 589
	u32				sync_count;

590 591
	/* IOMMU core code handle */
	struct iommu_device		iommu;
592 593
};

594 595
/* SMMU private data for each master */
struct arm_smmu_master_data {
596 597 598 599 600 601 602 603 604
	struct arm_smmu_device		*smmu;
	struct arm_smmu_strtab_ent	ste;
};

/* SMMU private data for an IOMMU domain */
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
605
	ARM_SMMU_DOMAIN_BYPASS,
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
};

struct arm_smmu_domain {
	struct arm_smmu_device		*smmu;
	struct mutex			init_mutex; /* Protects smmu pointer */

	struct io_pgtable_ops		*pgtbl_ops;

	enum arm_smmu_domain_stage	stage;
	union {
		struct arm_smmu_s1_cfg	s1_cfg;
		struct arm_smmu_s2_cfg	s2_cfg;
	};

	struct iommu_domain		domain;
};

623 624 625 626 627 628 629
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
630
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
631 632 633
	{ 0, NULL},
};

634 635 636 637 638 639 640 641 642 643
static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
						 struct arm_smmu_device *smmu)
{
	if ((offset > SZ_64K) &&
	    (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
		offset -= SZ_64K;

	return smmu->base + offset;
}

644 645 646 647 648
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/* Low-level queue manipulation functions */
static bool queue_full(struct arm_smmu_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

static bool queue_empty(struct arm_smmu_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

static void queue_sync_cons(struct arm_smmu_queue *q)
{
	q->cons = readl_relaxed(q->cons_reg);
}

static void queue_inc_cons(struct arm_smmu_queue *q)
{
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;

	q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
	writel(q->cons, q->cons_reg);
}

static int queue_sync_prod(struct arm_smmu_queue *q)
{
	int ret = 0;
	u32 prod = readl_relaxed(q->prod_reg);

	if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
		ret = -EOVERFLOW;

	q->prod = prod;
	return ret;
}

static void queue_inc_prod(struct arm_smmu_queue *q)
{
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;

	q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
	writel(q->prod, q->prod_reg);
}

709 710 711 712
/*
 * Wait for the SMMU to consume items. If drain is true, wait until the queue
 * is empty. Otherwise, wait until there is at least one free slot.
 */
713
static int queue_poll_cons(struct arm_smmu_queue *q, bool sync, bool wfe)
714
{
715
	ktime_t timeout;
716
	unsigned int delay = 1, spin_cnt = 0;
717

718 719 720
	/* Wait longer if it's a CMD_SYNC */
	timeout = ktime_add_us(ktime_get(), sync ?
					    ARM_SMMU_CMDQ_SYNC_TIMEOUT_US :
721
					    ARM_SMMU_POLL_TIMEOUT_US);
722

723
	while (queue_sync_cons(q), (sync ? !queue_empty(q) : queue_full(q))) {
724 725 726 727 728
		if (ktime_compare(ktime_get(), timeout) > 0)
			return -ETIMEDOUT;

		if (wfe) {
			wfe();
729
		} else if (++spin_cnt < ARM_SMMU_CMDQ_SYNC_SPIN_COUNT) {
730
			cpu_relax();
731 732
			continue;
		} else {
733 734
			udelay(delay);
			delay *= 2;
735
			spin_cnt = 0;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
		}
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
{
	if (queue_full(q))
		return -ENOSPC;

	queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
	queue_inc_prod(q);
	return 0;
}

static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
	if (queue_empty(q))
		return -EAGAIN;

	queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
	queue_inc_cons(q);
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
	memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
782
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
783 784 785 786 787 788

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
789 790
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
791 792 793
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
	case CMDQ_OP_CFGI_STE:
794 795
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
796 797 798
		break;
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
799
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
800 801
		break;
	case CMDQ_OP_TLBI_NH_VA:
802 803
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
804 805
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
806
	case CMDQ_OP_TLBI_S2_IPA:
807 808
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
809
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
810 811
		break;
	case CMDQ_OP_TLBI_NH_ASID:
812
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
813 814
		/* Fallthrough */
	case CMDQ_OP_TLBI_S12_VMALL:
815
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
816 817
		break;
	case CMDQ_OP_PRI_RESP:
818 819 820 821
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
822 823 824 825 826 827 828 829
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
830
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
831 832
		break;
	case CMDQ_OP_CMD_SYNC:
833
		if (ent->sync.msiaddr)
834
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
835
		else
836 837 838 839
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIDATA, ent->sync.msidata);
840
		cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
861
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
862 863 864 865 866
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
867
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
868 869 870 871 872 873

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
874 875 876 877
	case CMDQ_ERR_CERROR_ILL_IDX:
		/* Fallthrough */
	default:
		break;
878 879 880 881 882 883
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
884
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
885 886 887 888 889 890 891 892 893 894
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

895
	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
896 897
}

898 899 900 901 902 903 904 905 906 907 908
static void arm_smmu_cmdq_insert_cmd(struct arm_smmu_device *smmu, u64 *cmd)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);

	while (queue_insert_raw(q, cmd) == -ENOSPC) {
		if (queue_poll_cons(q, false, wfe))
			dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
	}
}

909 910 911 912
static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				    struct arm_smmu_cmdq_ent *ent)
{
	u64 cmd[CMDQ_ENT_DWORDS];
913
	unsigned long flags;
914 915 916 917 918 919 920

	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return;
	}

921
	spin_lock_irqsave(&smmu->cmdq.lock, flags);
922 923 924
	arm_smmu_cmdq_insert_cmd(smmu, cmd);
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
}
925

926 927 928 929
/*
 * The difference between val and sync_idx is bounded by the maximum size of
 * a queue at 2^20 entries, so 32 bits is plenty for wrap-safe arithmetic.
 */
930
static int __arm_smmu_sync_poll_msi(struct arm_smmu_device *smmu, u32 sync_idx)
931
{
932 933 934 935 936 937 938
	ktime_t timeout;
	u32 val;

	timeout = ktime_add_us(ktime_get(), ARM_SMMU_CMDQ_SYNC_TIMEOUT_US);
	val = smp_cond_load_acquire(&smmu->sync_count,
				    (int)(VAL - sync_idx) >= 0 ||
				    !ktime_before(ktime_get(), timeout));
939 940 941 942

	return (int)(val - sync_idx) < 0 ? -ETIMEDOUT : 0;
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static int __arm_smmu_cmdq_issue_sync_msi(struct arm_smmu_device *smmu)
{
	u64 cmd[CMDQ_ENT_DWORDS];
	unsigned long flags;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
		.sync	= {
			.msidata = atomic_inc_return_relaxed(&smmu->sync_nr),
			.msiaddr = virt_to_phys(&smmu->sync_count),
		},
	};

	arm_smmu_cmdq_build_cmd(cmd, &ent);

	spin_lock_irqsave(&smmu->cmdq.lock, flags);
	arm_smmu_cmdq_insert_cmd(smmu, cmd);
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);

	return __arm_smmu_sync_poll_msi(smmu, ent.sync.msidata);
}

static int __arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
965 966 967 968 969 970 971 972 973 974 975
{
	u64 cmd[CMDQ_ENT_DWORDS];
	unsigned long flags;
	bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	struct arm_smmu_cmdq_ent ent = { .opcode = CMDQ_OP_CMD_SYNC };
	int ret;

	arm_smmu_cmdq_build_cmd(cmd, &ent);

	spin_lock_irqsave(&smmu->cmdq.lock, flags);
	arm_smmu_cmdq_insert_cmd(smmu, cmd);
976
	ret = queue_poll_cons(&smmu->cmdq.q, true, wfe);
977
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
978

979 980 981 982 983 984 985 986 987 988 989
	return ret;
}

static void arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	int ret;
	bool msi = (smmu->features & ARM_SMMU_FEAT_MSI) &&
		   (smmu->features & ARM_SMMU_FEAT_COHERENCY);

	ret = msi ? __arm_smmu_cmdq_issue_sync_msi(smmu)
		  : __arm_smmu_cmdq_issue_sync(smmu);
990 991
	if (ret)
		dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
}

/* Context descriptor manipulation functions */
static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
{
	u64 val = 0;

	/* Repack the TCR. Just care about TTBR0 for now */
	val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
	val |= ARM_SMMU_TCR2CD(tcr, TG0);
	val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
	val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
	val |= ARM_SMMU_TCR2CD(tcr, SH0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD1);
	val |= ARM_SMMU_TCR2CD(tcr, IPS);
	val |= ARM_SMMU_TCR2CD(tcr, TBI0);

	return val;
}

static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
				    struct arm_smmu_s1_cfg *cfg)
{
	u64 val;

	/*
	 * We don't need to issue any invalidation here, as we'll invalidate
	 * the STE when installing the new entry anyway.
	 */
	val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
#ifdef __BIG_ENDIAN
	      CTXDESC_CD_0_ENDI |
#endif
1026 1027
	      CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET |
	      CTXDESC_CD_0_AA64 | FIELD_PREP(CTXDESC_CD_0_ASID, cfg->cd.asid) |
1028
	      CTXDESC_CD_0_V;
1029 1030 1031 1032 1033

	/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
	if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
		val |= CTXDESC_CD_0_S;

1034 1035
	cfg->cdptr[0] = cpu_to_le64(val);

1036
	val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK;
1037 1038
	cfg->cdptr[1] = cpu_to_le64(val);

1039
	cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair);
1040 1041 1042 1043 1044 1045 1046 1047
}

/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

1048
	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1049
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

	*dst = cpu_to_le64(val);
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1065
	arm_smmu_cmdq_issue_sync(smmu);
1066 1067 1068 1069 1070 1071 1072 1073 1074
}

static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
				      __le64 *dst, struct arm_smmu_strtab_ent *ste)
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
1075 1076 1077
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

	if (val & STRTAB_STE_0_V) {
1097
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1098 1099 1100 1101 1102 1103
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
1104 1105 1106
		case STRTAB_STE_0_CFG_ABORT:
			if (disable_bypass)
				break;
1107 1108 1109 1110 1111
		default:
			BUG(); /* STE corruption */
		}
	}

1112
	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1113 1114 1115 1116 1117
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
	if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
		if (!ste->assigned && disable_bypass)
1118
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1119
		else
1120
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1121 1122

		dst[0] = cpu_to_le64(val);
1123 1124
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
1125
		dst[2] = 0; /* Nuke the VMID */
1126 1127 1128 1129 1130
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
1131 1132 1133 1134 1135 1136 1137
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

	if (ste->s1_cfg) {
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
1138 1139 1140
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
1141
#ifdef CONFIG_PCI_ATS
1142
			 FIELD_PREP(STRTAB_STE_1_EATS, STRTAB_STE_1_EATS_TRANS) |
1143
#endif
1144
			 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1145

1146 1147
		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1148 1149
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

1150
		val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1151
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS);
1152 1153 1154 1155 1156
	}

	if (ste->s2_cfg) {
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
1157 1158
			 FIELD_PREP(STRTAB_STE_2_S2VMID, ste->s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, ste->s2_cfg->vtcr) |
1159 1160 1161 1162 1163 1164
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

1165
		dst[3] = cpu_to_le64(ste->s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1166

1167
		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1168 1169 1170 1171 1172 1173 1174
	}

	arm_smmu_sync_ste_for_sid(smmu, sid);
	dst[0] = cpu_to_le64(val);
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1175 1176
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1177 1178 1179 1180 1181
}

static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
{
	unsigned int i;
1182
	struct arm_smmu_strtab_ent ste = { .assigned = false };
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

	for (i = 0; i < nent; ++i) {
		arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1201
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1202 1203

	desc->span = STRTAB_SPLIT + 1;
1204 1205
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
					  GFP_KERNEL | __GFP_ZERO);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
	u64 evt[EVTQ_ENT_DWORDS];

1226 1227
	do {
		while (!queue_remove_raw(q, evt)) {
1228
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
		if (queue_sync_prod(q) == -EOVERFLOW)
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
	} while (!queue_empty(q));
1244 1245 1246 1247 1248 1249

	/* Sync our overflow flag, as we believe we're up to speed */
	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
	return IRQ_HANDLED;
}

1250 1251 1252 1253 1254 1255
static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

1256 1257 1258 1259 1260
	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1261 1262 1263 1264 1265 1266 1267 1268 1269

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1270
		 evt[1] & PRIQ_1_ADDR_MASK);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};
1283

1284 1285
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
1286 1287 1288 1289 1290 1291 1292 1293
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
	u64 evt[PRIQ_ENT_DWORDS];

1294 1295 1296
	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);
1297

1298 1299 1300
		if (queue_sync_prod(q) == -EOVERFLOW)
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
	} while (!queue_empty(q));
1301 1302 1303

	/* Sync our overflow flag, as we believe we're up to speed */
	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1304
	writel(q->cons, q->cons_reg);
1305 1306 1307 1308 1309 1310 1311
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
1312
	u32 gerror, gerrorn, active;
1313 1314 1315 1316 1317
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

1318 1319
	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
1320 1321 1322 1323
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
1324
		 active);
1325

1326
	if (active & GERROR_SFM_ERR) {
1327 1328 1329 1330
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

1331
	if (active & GERROR_MSI_GERROR_ABT_ERR)
1332 1333
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

1334
	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1335 1336
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

1337
	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1338 1339
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

1340
	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1341 1342
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

1343
	if (active & GERROR_PRIQ_ABT_ERR)
1344 1345
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

1346
	if (active & GERROR_EVTQ_ABT_ERR)
1347 1348
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

1349
	if (active & GERROR_CMDQ_ERR)
1350 1351 1352 1353 1354 1355
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

1373 1374 1375
/* IO_PGTABLE API */
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
1376
	arm_smmu_cmdq_issue_sync(smmu);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
}

static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
		cmd.tlbi.vmid	= 0;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1405
					  size_t granule, bool leaf, void *cookie)
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
			.addr	= iova,
		},
	};

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1424 1425 1426 1427
	do {
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
		cmd.tlbi.addr += granule;
	} while (size -= granule);
1428 1429
}

1430
static const struct iommu_gather_ops arm_smmu_gather_ops = {
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

1453 1454 1455
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

1467 1468 1469 1470 1471 1472
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	mutex_init(&smmu_domain->init_mutex);
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1500
	iommu_put_dma_cookie(domain);
1501
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1502 1503 1504 1505 1506 1507

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

		if (cfg->cdptr) {
1508 1509 1510 1511
			dmam_free_coherent(smmu_domain->smmu->dev,
					   CTXDESC_CD_DWORDS << 3,
					   cfg->cdptr,
					   cfg->cdptr_dma);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

			arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
		}
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
1528
	int asid;
1529 1530 1531 1532
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

	asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1533
	if (asid < 0)
1534 1535
		return asid;

1536 1537 1538
	cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
					 &cfg->cdptr_dma,
					 GFP_KERNEL | __GFP_ZERO);
1539 1540
	if (!cfg->cdptr) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1541
		ret = -ENOMEM;
1542 1543 1544
		goto out_free_asid;
	}

1545
	cfg->cd.asid	= (u16)asid;
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
	cfg->cd.tcr	= pgtbl_cfg->arm_lpae_s1_cfg.tcr;
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
	return 0;

out_free_asid:
	arm_smmu_bitmap_free(smmu->asid_map, asid);
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
1559
	int vmid;
1560 1561 1562 1563
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1564
	if (vmid < 0)
1565 1566
		return vmid;

1567
	cfg->vmid	= (u16)vmid;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
	cfg->vtcr	= pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
	return 0;
}

static int arm_smmu_domain_finalise(struct iommu_domain *domain)
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1585 1586 1587 1588 1589
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

1590 1591 1592 1593 1594 1595 1596 1597
	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
1598 1599
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
1616
		.pgsize_bitmap	= smmu->pgsize_bitmap,
1617 1618 1619
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
1620
		.iommu_dev	= smmu->dev,
1621 1622
	};

1623 1624 1625
	if (smmu->features & ARM_SMMU_FEAT_COHERENCY)
		pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;

1626 1627 1628 1629
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

1630
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1631
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
1632
	domain->geometry.force_aperture = true;
1633 1634

	ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1635
	if (ret < 0) {
1636
		free_io_pgtable_ops(pgtbl_ops);
1637 1638
		return ret;
	}
1639

1640 1641
	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

1666
static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1667
{
1668
	int i, j;
1669 1670
	struct arm_smmu_master_data *master = fwspec->iommu_priv;
	struct arm_smmu_device *smmu = master->smmu;
1671

1672 1673
	for (i = 0; i < fwspec->num_ids; ++i) {
		u32 sid = fwspec->ids[i];
1674 1675
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

1676 1677 1678 1679 1680 1681 1682
		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
			if (fwspec->ids[j] == sid)
				break;
		if (j < i)
			continue;

1683
		arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1684 1685 1686
	}
}

1687 1688
static void arm_smmu_detach_dev(struct device *dev)
{
1689
	struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1690

1691
	master->ste.assigned = false;
1692
	arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1693 1694
}

1695 1696 1697 1698 1699
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1700 1701
	struct arm_smmu_master_data *master;
	struct arm_smmu_strtab_ent *ste;
1702

1703
	if (!dev->iommu_fwspec)
1704 1705
		return -ENOENT;

1706 1707 1708 1709
	master = dev->iommu_fwspec->iommu_priv;
	smmu = master->smmu;
	ste = &master->ste;

1710
	/* Already attached to a different domain? */
1711
	if (ste->assigned)
1712
		arm_smmu_detach_dev(dev);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
		ret = arm_smmu_domain_finalise(domain);
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
	}

1732
	ste->assigned = true;
1733

1734 1735 1736 1737
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
		ste->s1_cfg = NULL;
		ste->s2_cfg = NULL;
	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1738 1739 1740 1741 1742 1743 1744
		ste->s1_cfg = &smmu_domain->s1_cfg;
		ste->s2_cfg = NULL;
		arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
	} else {
		ste->s1_cfg = NULL;
		ste->s2_cfg = &smmu_domain->s2_cfg;
	}
1745

1746
	arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1747 1748 1749 1750 1751 1752 1753 1754
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
			phys_addr_t paddr, size_t size, int prot)
{
1755
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1756 1757 1758 1759

	if (!ops)
		return -ENODEV;

1760
	return ops->map(ops, iova, paddr, size, prot);
1761 1762 1763 1764 1765
}

static size_t
arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
{
1766
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1767 1768 1769 1770

	if (!ops)
		return 0;

1771
	return ops->unmap(ops, iova, size);
1772 1773
}

1774 1775 1776 1777 1778 1779 1780 1781
static void arm_smmu_iotlb_sync(struct iommu_domain *domain)
{
	struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;

	if (smmu)
		__arm_smmu_tlb_sync(smmu);
}

1782 1783 1784
static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
1785
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1786

1787 1788 1789
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

1790 1791 1792
	if (!ops)
		return 0;

1793
	return ops->iova_to_phys(ops, iova);
1794 1795
}

1796
static struct platform_driver arm_smmu_driver;
1797

1798
static int arm_smmu_match_node(struct device *dev, void *data)
1799
{
1800
	return dev->fwnode == data;
1801 1802
}

1803 1804
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1805
{
1806
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1807
						fwnode, arm_smmu_match_node);
1808 1809
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

1822 1823
static struct iommu_ops arm_smmu_ops;

1824 1825 1826 1827
static int arm_smmu_add_device(struct device *dev)
{
	int i, ret;
	struct arm_smmu_device *smmu;
1828 1829 1830
	struct arm_smmu_master_data *master;
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct iommu_group *group;
1831

1832
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
1833
		return -ENODEV;
1834 1835 1836 1837 1838 1839 1840 1841
	/*
	 * We _can_ actually withstand dodgy bus code re-calling add_device()
	 * without an intervening remove_device()/of_xlate() sequence, but
	 * we're not going to do so quietly...
	 */
	if (WARN_ON_ONCE(fwspec->iommu_priv)) {
		master = fwspec->iommu_priv;
		smmu = master->smmu;
1842
	} else {
1843
		smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1844 1845 1846 1847 1848 1849 1850 1851
		if (!smmu)
			return -ENODEV;
		master = kzalloc(sizeof(*master), GFP_KERNEL);
		if (!master)
			return -ENOMEM;

		master->smmu = smmu;
		fwspec->iommu_priv = master;
1852 1853
	}

1854 1855 1856
	/* Check the SIDs are in range of the SMMU and our stream table */
	for (i = 0; i < fwspec->num_ids; i++) {
		u32 sid = fwspec->ids[i];
1857

1858 1859
		if (!arm_smmu_sid_in_range(smmu, sid))
			return -ERANGE;
1860

1861 1862 1863 1864 1865 1866
		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
				return ret;
		}
1867 1868
	}

1869
	group = iommu_group_get_for_dev(dev);
1870
	if (!IS_ERR(group)) {
1871
		iommu_group_put(group);
1872 1873
		iommu_device_link(&smmu->iommu, dev);
	}
1874

1875
	return PTR_ERR_OR_ZERO(group);
1876 1877 1878 1879
}

static void arm_smmu_remove_device(struct device *dev)
{
1880 1881
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_master_data *master;
1882
	struct arm_smmu_device *smmu;
1883 1884 1885 1886 1887

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

	master = fwspec->iommu_priv;
1888
	smmu = master->smmu;
1889
	if (master && master->ste.assigned)
1890
		arm_smmu_detach_dev(dev);
1891
	iommu_group_remove_device(dev);
1892
	iommu_device_unlink(&smmu->iommu, dev);
1893 1894
	kfree(master);
	iommu_fwspec_free(dev);
1895 1896
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

1914 1915 1916 1917 1918
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

1919 1920 1921
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

1937 1938 1939
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	mutex_lock(&smmu_domain->init_mutex);

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

		break;
	default:
		ret = -ENODEV;
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

1964 1965 1966 1967 1968
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

1969 1970 1971 1972 1973 1974 1975
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1976
					 prot, IOMMU_RESV_SW_MSI);
1977 1978 1979 1980
	if (!region)
		return;

	list_add_tail(&region->list, head);
1981 1982

	iommu_dma_get_resv_regions(dev, head);
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
}

static void arm_smmu_put_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

1994 1995 1996 1997 1998 1999 2000
static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
2001
	.map_sg			= default_iommu_map_sg,
2002 2003
	.flush_iotlb_all	= arm_smmu_iotlb_sync,
	.iotlb_sync		= arm_smmu_iotlb_sync,
2004 2005 2006
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
2007
	.device_group		= arm_smmu_device_group,
2008 2009
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
2010
	.of_xlate		= arm_smmu_of_xlate,
2011 2012
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.put_resv_regions	= arm_smmu_put_resv_regions,
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
				   size_t dwords)
{
	size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;

2025
	q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
2026 2027 2028 2029 2030 2031
	if (!q->base) {
		dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
			qsz);
		return -ENOMEM;
	}

2032 2033
	q->prod_reg	= arm_smmu_page1_fixup(prod_off, smmu);
	q->cons_reg	= arm_smmu_page1_fixup(cons_off, smmu);
2034 2035 2036
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
2037
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2038
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->max_n_shift);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

	q->prod = q->cons = 0;
	return 0;
}

static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	spin_lock_init(&smmu->cmdq.lock);
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
	if (ret)
2053
		return ret;
2054 2055 2056 2057 2058

	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
	if (ret)
2059
		return ret;
2060 2061 2062 2063 2064

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

2065 2066
	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
2094
	u32 size, l1size;
2095 2096
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

2097 2098 2099
	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2100 2101 2102 2103
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
2104 2105
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
2106
			 size, smmu->sid_bits);
2107

2108
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2109 2110
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
2111 2112 2113 2114 2115 2116 2117 2118 2119
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
2120 2121 2122
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
2123 2124
	cfg->strtab_base_cfg = reg;

2125
	return arm_smmu_init_l1_strtab(smmu);
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2136 2137
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
2148 2149
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
2170
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

2183
	atomic_set(&smmu->sync_nr, 0);
2184 2185 2186 2187
	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

2188
	return arm_smmu_init_strtab(smmu);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
	return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2233
	doorbell &= MSI_CFG0_ADDR_MASK;
2234 2235 2236

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
2237
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

2258 2259 2260 2261 2262
	if (!dev->msi_domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

2263 2264 2265
	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
2266
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

2290
static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2291
{
2292
	int irq, ret;
2293

2294
	arm_smmu_setup_msis(smmu);
2295

2296
	/* Request interrupt lines */
2297 2298
	irq = smmu->evtq.q.irq;
	if (irq) {
2299
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2300
						arm_smmu_evtq_thread,
2301 2302
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
2303
		if (ret < 0)
2304
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
2305 2306
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
2307 2308 2309 2310 2311 2312
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
2313
		if (ret < 0)
2314
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
2315 2316
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
2317 2318 2319 2320 2321
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
2322
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2323
							arm_smmu_priq_thread,
2324 2325
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
2326
							smmu);
2327
			if (ret < 0)
2328 2329
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
2330 2331
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
2332 2333
		}
	}
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
		 * Cavium ThunderX2 implementation doesn't not support unique
		 * irq lines. Use single irq line for all the SMMUv3 interrupts.
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2367 2368

	/* Enable interrupt generation on the SMMU */
2369
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

2388
static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
	if (reg & CR0_SMMUEN)
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
2404 2405 2406 2407 2408 2409
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
	writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2438
	arm_smmu_cmdq_issue_sync(smmu);
2439 2440 2441 2442 2443 2444 2445 2446 2447

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2448
	arm_smmu_cmdq_issue_sync(smmu);
2449 2450 2451

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2452 2453 2454 2455
	writel_relaxed(smmu->evtq.q.prod,
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
	writel_relaxed(smmu->evtq.q.cons,
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
		writel_relaxed(smmu->priq.q.prod,
2470
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
2471
		writel_relaxed(smmu->priq.q.cons,
2472
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
		if (ret) {
			dev_err(smmu->dev, "GBPA not responding to update\n");
			return ret;
		}
	}
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

2510
static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2511 2512
{
	u32 reg;
2513
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2514 2515 2516 2517 2518

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
2519
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
2530
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

	if (reg & IDR0_MSI)
		smmu->features |= ARM_SMMU_FEAT_MSI;

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
2565
	 * The coherency feature as set by FW is used in preference to the ID
2566 2567 2568
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
2569
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
2570 2571
			 coherent ? "true" : "false");

2572
	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
2573
	case IDR0_STALL_MODEL_FORCE:
2574 2575 2576
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
		/* Fallthrough */
	case IDR0_STALL_MODEL_STALL:
2577
		smmu->features |= ARM_SMMU_FEAT_STALLS;
2578
	}
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
2592
	switch (FIELD_GET(IDR0_TTF, reg)) {
2593 2594 2595 2596 2597 2598
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
		/* Fallthrough */
	case IDR0_TTF_AARCH64:
		break;
	default:
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

	/* Queue sizes, capped at 4k */
2615 2616
	smmu->cmdq.q.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					 FIELD_GET(IDR1_CMDQS, reg));
2617 2618 2619 2620 2621 2622
	if (!smmu->cmdq.q.max_n_shift) {
		/* Odd alignment restrictions on the base, so ignore for now */
		dev_err(smmu->dev, "unit-length command queue not supported\n");
		return -ENXIO;
	}

2623 2624 2625 2626
	smmu->evtq.q.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					 FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					 FIELD_GET(IDR1_PRIQS, reg));
2627 2628

	/* SID/SSID sizes */
2629 2630
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
2631

2632 2633 2634 2635 2636 2637 2638
	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

2639 2640 2641 2642
	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
2643
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
2644 2645 2646

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
2647
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2648
	if (reg & IDR5_GRAN16K)
2649
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2650
	if (reg & IDR5_GRAN4K)
2651
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2652

2653 2654 2655 2656
	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

2657
	/* Output address size */
2658
	switch (FIELD_GET(IDR5_OAS, reg)) {
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
2674 2675 2676 2677
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
2678 2679 2680 2681
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
		/* Fallthrough */
2682 2683 2684 2685
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

2686 2687 2688 2689 2690
	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

2691 2692 2693 2694 2695
	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

2696
	smmu->ias = max(smmu->ias, smmu->oas);
2697 2698 2699 2700 2701 2702

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

2703
#ifdef CONFIG_ACPI
2704 2705
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
2706 2707
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
2708
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
2709
		break;
2710
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
2711 2712 2713
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}
2714 2715 2716 2717

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

2730 2731
	acpi_smmu_get_options(iort_smmu->model, smmu);

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

2745 2746
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
2747 2748
{
	struct device *dev = &pdev->dev;
2749
	u32 cells;
2750
	int ret = -EINVAL;
2751 2752 2753 2754 2755 2756

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

2767 2768 2769 2770 2771 2772 2773 2774
static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

2775 2776 2777 2778
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
2779
	resource_size_t ioaddr;
2780 2781 2782
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;
2783 2784 2785 2786 2787 2788 2789 2790

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

2802 2803
	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2804
	if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
2805 2806 2807
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
2808
	ioaddr = res->start;
2809 2810 2811 2812 2813 2814 2815

	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

	/* Interrupt lines */

2816
	irq = platform_get_irq_byname(pdev, "combined");
2817
	if (irq > 0)
2818 2819 2820 2821 2822
		smmu->combined_irq = irq;
	else {
		irq = platform_get_irq_byname(pdev, "eventq");
		if (irq > 0)
			smmu->evtq.q.irq = irq;
2823

2824 2825 2826
		irq = platform_get_irq_byname(pdev, "priq");
		if (irq > 0)
			smmu->priq.q.irq = irq;
2827

2828 2829 2830 2831
		irq = platform_get_irq_byname(pdev, "gerror");
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
2832
	/* Probe the h/w */
2833
	ret = arm_smmu_device_hw_probe(smmu);
2834 2835 2836 2837 2838 2839 2840 2841
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

2842 2843 2844
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

2845
	/* Reset the device */
2846 2847 2848 2849 2850
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
2851 2852
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
2853 2854
	if (ret)
		return ret;
2855 2856 2857 2858 2859

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
2860 2861 2862 2863
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}
2864

2865
#ifdef CONFIG_PCI
2866 2867 2868 2869 2870 2871
	if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
		pci_request_acs();
		ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
2872 2873
#endif
#ifdef CONFIG_ARM_AMBA
2874 2875 2876 2877 2878
	if (amba_bustype.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
		if (ret)
			return ret;
	}
2879
#endif
2880 2881 2882 2883 2884 2885
	if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
	return 0;
2886 2887 2888 2889
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
2890
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2891 2892

	arm_smmu_device_disable(smmu);
2893

2894 2895 2896
	return 0;
}

2897 2898 2899 2900 2901
static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	arm_smmu_device_remove(pdev);
}

2902
static const struct of_device_id arm_smmu_of_match[] = {
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	{ .compatible = "arm,smmu-v3", },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu-v3",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
2913
	.probe	= arm_smmu_device_probe,
2914
	.remove	= arm_smmu_device_remove,
2915
	.shutdown = arm_smmu_device_shutdown,
2916
};
2917
module_platform_driver(arm_smmu_driver);
2918

R
Robin Murphy 已提交
2919
IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3");
2920

2921 2922 2923
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");