arm-smmu-v3.c 95.8 KB
Newer Older
A
Andrew Murray 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

12 13
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
14
#include <linux/bitfield.h>
15
#include <linux/bitops.h>
16
#include <linux/crash_dump.h>
17
#include <linux/delay.h>
18
#include <linux/dma-iommu.h>
19 20
#include <linux/err.h>
#include <linux/interrupt.h>
21
#include <linux/io-pgtable.h>
22 23
#include <linux/iommu.h>
#include <linux/iopoll.h>
24 25
#include <linux/init.h>
#include <linux/moduleparam.h>
26
#include <linux/msi.h>
27 28
#include <linux/of.h>
#include <linux/of_address.h>
29
#include <linux/of_iommu.h>
30
#include <linux/of_platform.h>
31
#include <linux/pci.h>
32
#include <linux/pci-ats.h>
33 34
#include <linux/platform_device.h>

35 36
#include <linux/amba/bus.h>

37 38
/* MMIO registers */
#define ARM_SMMU_IDR0			0x0
39 40 41 42 43 44 45 46 47
#define IDR0_ST_LVL			GENMASK(28, 27)
#define IDR0_ST_LVL_2LVL		1
#define IDR0_STALL_MODEL		GENMASK(25, 24)
#define IDR0_STALL_MODEL_STALL		0
#define IDR0_STALL_MODEL_FORCE		2
#define IDR0_TTENDIAN			GENMASK(22, 21)
#define IDR0_TTENDIAN_MIXED		0
#define IDR0_TTENDIAN_LE		2
#define IDR0_TTENDIAN_BE		3
48 49 50 51 52 53 54 55 56
#define IDR0_CD2L			(1 << 19)
#define IDR0_VMID16			(1 << 18)
#define IDR0_PRI			(1 << 16)
#define IDR0_SEV			(1 << 14)
#define IDR0_MSI			(1 << 13)
#define IDR0_ASID16			(1 << 12)
#define IDR0_ATS			(1 << 10)
#define IDR0_HYP			(1 << 9)
#define IDR0_COHACC			(1 << 4)
57 58 59
#define IDR0_TTF			GENMASK(3, 2)
#define IDR0_TTF_AARCH64		2
#define IDR0_TTF_AARCH32_64		3
60 61 62 63 64 65 66
#define IDR0_S1P			(1 << 1)
#define IDR0_S2P			(1 << 0)

#define ARM_SMMU_IDR1			0x4
#define IDR1_TABLES_PRESET		(1 << 30)
#define IDR1_QUEUES_PRESET		(1 << 29)
#define IDR1_REL			(1 << 28)
67 68 69 70 71
#define IDR1_CMDQS			GENMASK(25, 21)
#define IDR1_EVTQS			GENMASK(20, 16)
#define IDR1_PRIQS			GENMASK(15, 11)
#define IDR1_SSIDSIZE			GENMASK(10, 6)
#define IDR1_SIDSIZE			GENMASK(5, 0)
72 73

#define ARM_SMMU_IDR5			0x14
74
#define IDR5_STALL_MAX			GENMASK(31, 16)
75 76 77
#define IDR5_GRAN64K			(1 << 6)
#define IDR5_GRAN16K			(1 << 5)
#define IDR5_GRAN4K			(1 << 4)
78 79 80 81 82 83 84
#define IDR5_OAS			GENMASK(2, 0)
#define IDR5_OAS_32_BIT			0
#define IDR5_OAS_36_BIT			1
#define IDR5_OAS_40_BIT			2
#define IDR5_OAS_42_BIT			3
#define IDR5_OAS_44_BIT			4
#define IDR5_OAS_48_BIT			5
85
#define IDR5_OAS_52_BIT			6
86 87
#define IDR5_VAX			GENMASK(11, 10)
#define IDR5_VAX_52_BIT			1
88 89

#define ARM_SMMU_CR0			0x20
90
#define CR0_ATSCHK			(1 << 4)
91 92 93 94 95 96 97 98
#define CR0_CMDQEN			(1 << 3)
#define CR0_EVTQEN			(1 << 2)
#define CR0_PRIQEN			(1 << 1)
#define CR0_SMMUEN			(1 << 0)

#define ARM_SMMU_CR0ACK			0x24

#define ARM_SMMU_CR1			0x28
99 100 101 102 103 104 105
#define CR1_TABLE_SH			GENMASK(11, 10)
#define CR1_TABLE_OC			GENMASK(9, 8)
#define CR1_TABLE_IC			GENMASK(7, 6)
#define CR1_QUEUE_SH			GENMASK(5, 4)
#define CR1_QUEUE_OC			GENMASK(3, 2)
#define CR1_QUEUE_IC			GENMASK(1, 0)
/* CR1 cacheability fields don't quite follow the usual TCR-style encoding */
106 107 108 109 110 111 112 113 114
#define CR1_CACHE_NC			0
#define CR1_CACHE_WB			1
#define CR1_CACHE_WT			2

#define ARM_SMMU_CR2			0x2c
#define CR2_PTM				(1 << 2)
#define CR2_RECINVSID			(1 << 1)
#define CR2_E2H				(1 << 0)

115 116
#define ARM_SMMU_GBPA			0x44
#define GBPA_UPDATE			(1 << 31)
117
#define GBPA_ABORT			(1 << 20)
118

119 120
#define ARM_SMMU_IRQ_CTRL		0x50
#define IRQ_CTRL_EVTQ_IRQEN		(1 << 2)
121
#define IRQ_CTRL_PRIQ_IRQEN		(1 << 1)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#define IRQ_CTRL_GERROR_IRQEN		(1 << 0)

#define ARM_SMMU_IRQ_CTRLACK		0x54

#define ARM_SMMU_GERROR			0x60
#define GERROR_SFM_ERR			(1 << 8)
#define GERROR_MSI_GERROR_ABT_ERR	(1 << 7)
#define GERROR_MSI_PRIQ_ABT_ERR		(1 << 6)
#define GERROR_MSI_EVTQ_ABT_ERR		(1 << 5)
#define GERROR_MSI_CMDQ_ABT_ERR		(1 << 4)
#define GERROR_PRIQ_ABT_ERR		(1 << 3)
#define GERROR_EVTQ_ABT_ERR		(1 << 2)
#define GERROR_CMDQ_ERR			(1 << 0)
#define GERROR_ERR_MASK			0xfd

#define ARM_SMMU_GERRORN		0x64

#define ARM_SMMU_GERROR_IRQ_CFG0	0x68
#define ARM_SMMU_GERROR_IRQ_CFG1	0x70
#define ARM_SMMU_GERROR_IRQ_CFG2	0x74

#define ARM_SMMU_STRTAB_BASE		0x80
#define STRTAB_BASE_RA			(1UL << 62)
145
#define STRTAB_BASE_ADDR_MASK		GENMASK_ULL(51, 6)
146 147

#define ARM_SMMU_STRTAB_BASE_CFG	0x88
148 149 150 151 152
#define STRTAB_BASE_CFG_FMT		GENMASK(17, 16)
#define STRTAB_BASE_CFG_FMT_LINEAR	0
#define STRTAB_BASE_CFG_FMT_2LVL	1
#define STRTAB_BASE_CFG_SPLIT		GENMASK(10, 6)
#define STRTAB_BASE_CFG_LOG2SIZE	GENMASK(5, 0)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

#define ARM_SMMU_CMDQ_BASE		0x90
#define ARM_SMMU_CMDQ_PROD		0x98
#define ARM_SMMU_CMDQ_CONS		0x9c

#define ARM_SMMU_EVTQ_BASE		0xa0
#define ARM_SMMU_EVTQ_PROD		0x100a8
#define ARM_SMMU_EVTQ_CONS		0x100ac
#define ARM_SMMU_EVTQ_IRQ_CFG0		0xb0
#define ARM_SMMU_EVTQ_IRQ_CFG1		0xb8
#define ARM_SMMU_EVTQ_IRQ_CFG2		0xbc

#define ARM_SMMU_PRIQ_BASE		0xc0
#define ARM_SMMU_PRIQ_PROD		0x100c8
#define ARM_SMMU_PRIQ_CONS		0x100cc
#define ARM_SMMU_PRIQ_IRQ_CFG0		0xd0
#define ARM_SMMU_PRIQ_IRQ_CFG1		0xd8
#define ARM_SMMU_PRIQ_IRQ_CFG2		0xdc

/* Common MSI config fields */
173
#define MSI_CFG0_ADDR_MASK		GENMASK_ULL(51, 2)
174 175 176 177 178 179 180 181
#define MSI_CFG2_SH			GENMASK(5, 4)
#define MSI_CFG2_MEMATTR		GENMASK(3, 0)

/* Common memory attribute values */
#define ARM_SMMU_SH_NSH			0
#define ARM_SMMU_SH_OSH			2
#define ARM_SMMU_SH_ISH			3
#define ARM_SMMU_MEMATTR_DEVICE_nGnRE	0x1
182
#define ARM_SMMU_MEMATTR_OIWB		0xf
183

184 185
#define Q_IDX(llq, p)			((p) & ((1 << (llq)->max_n_shift) - 1))
#define Q_WRP(llq, p)			((p) & (1 << (llq)->max_n_shift))
186
#define Q_OVERFLOW_FLAG			(1U << 31)
187
#define Q_OVF(p)			((p) & Q_OVERFLOW_FLAG)
188
#define Q_ENT(q, p)			((q)->base +			\
189 190
					 Q_IDX(&((q)->llq), p) *	\
					 (q)->ent_dwords)
191 192

#define Q_BASE_RWA			(1UL << 62)
193
#define Q_BASE_ADDR_MASK		GENMASK_ULL(51, 5)
194
#define Q_BASE_LOG2SIZE			GENMASK(4, 0)
195 196 197

/* Ensure DMA allocations are naturally aligned */
#ifdef CONFIG_CMA_ALIGNMENT
198
#define Q_MAX_SZ_SHIFT			(PAGE_SHIFT + CONFIG_CMA_ALIGNMENT)
199 200 201
#else
#define Q_MAX_SZ_SHIFT			(PAGE_SHIFT + MAX_ORDER - 1)
#endif
202 203 204 205 206

/*
 * Stream table.
 *
 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
207 208
 * 2lvl: 128k L1 entries,
 *       256 lazy entries per table (each table covers a PCI bus)
209
 */
210
#define STRTAB_L1_SZ_SHIFT		20
211 212 213
#define STRTAB_SPLIT			8

#define STRTAB_L1_DESC_DWORDS		1
214
#define STRTAB_L1_DESC_SPAN		GENMASK_ULL(4, 0)
215
#define STRTAB_L1_DESC_L2PTR_MASK	GENMASK_ULL(51, 6)
216 217 218

#define STRTAB_STE_DWORDS		8
#define STRTAB_STE_0_V			(1UL << 0)
219 220 221 222 223 224 225 226
#define STRTAB_STE_0_CFG		GENMASK_ULL(3, 1)
#define STRTAB_STE_0_CFG_ABORT		0
#define STRTAB_STE_0_CFG_BYPASS		4
#define STRTAB_STE_0_CFG_S1_TRANS	5
#define STRTAB_STE_0_CFG_S2_TRANS	6

#define STRTAB_STE_0_S1FMT		GENMASK_ULL(5, 4)
#define STRTAB_STE_0_S1FMT_LINEAR	0
227
#define STRTAB_STE_0_S1CTXPTR_MASK	GENMASK_ULL(51, 6)
228
#define STRTAB_STE_0_S1CDMAX		GENMASK_ULL(63, 59)
229 230 231 232 233

#define STRTAB_STE_1_S1C_CACHE_NC	0UL
#define STRTAB_STE_1_S1C_CACHE_WBRA	1UL
#define STRTAB_STE_1_S1C_CACHE_WT	2UL
#define STRTAB_STE_1_S1C_CACHE_WB	3UL
234 235 236
#define STRTAB_STE_1_S1CIR		GENMASK_ULL(3, 2)
#define STRTAB_STE_1_S1COR		GENMASK_ULL(5, 4)
#define STRTAB_STE_1_S1CSH		GENMASK_ULL(7, 6)
237 238 239

#define STRTAB_STE_1_S1STALLD		(1UL << 27)

240
#define STRTAB_STE_1_EATS		GENMASK_ULL(29, 28)
241 242 243 244
#define STRTAB_STE_1_EATS_ABT		0UL
#define STRTAB_STE_1_EATS_TRANS		1UL
#define STRTAB_STE_1_EATS_S1CHK		2UL

245
#define STRTAB_STE_1_STRW		GENMASK_ULL(31, 30)
246 247 248
#define STRTAB_STE_1_STRW_NSEL1		0UL
#define STRTAB_STE_1_STRW_EL2		2UL

249
#define STRTAB_STE_1_SHCFG		GENMASK_ULL(45, 44)
250 251
#define STRTAB_STE_1_SHCFG_INCOMING	1UL

252 253
#define STRTAB_STE_2_S2VMID		GENMASK_ULL(15, 0)
#define STRTAB_STE_2_VTCR		GENMASK_ULL(50, 32)
254 255 256 257 258
#define STRTAB_STE_2_S2AA64		(1UL << 51)
#define STRTAB_STE_2_S2ENDI		(1UL << 52)
#define STRTAB_STE_2_S2PTW		(1UL << 54)
#define STRTAB_STE_2_S2R		(1UL << 58)

259
#define STRTAB_STE_3_S2TTB_MASK		GENMASK_ULL(51, 4)
260 261 262

/* Context descriptor (stage-1 only) */
#define CTXDESC_CD_DWORDS		8
263 264 265 266 267 268 269 270 271 272 273 274 275 276
#define CTXDESC_CD_0_TCR_T0SZ		GENMASK_ULL(5, 0)
#define ARM64_TCR_T0SZ			GENMASK_ULL(5, 0)
#define CTXDESC_CD_0_TCR_TG0		GENMASK_ULL(7, 6)
#define ARM64_TCR_TG0			GENMASK_ULL(15, 14)
#define CTXDESC_CD_0_TCR_IRGN0		GENMASK_ULL(9, 8)
#define ARM64_TCR_IRGN0			GENMASK_ULL(9, 8)
#define CTXDESC_CD_0_TCR_ORGN0		GENMASK_ULL(11, 10)
#define ARM64_TCR_ORGN0			GENMASK_ULL(11, 10)
#define CTXDESC_CD_0_TCR_SH0		GENMASK_ULL(13, 12)
#define ARM64_TCR_SH0			GENMASK_ULL(13, 12)
#define CTXDESC_CD_0_TCR_EPD0		(1ULL << 14)
#define ARM64_TCR_EPD0			(1ULL << 7)
#define CTXDESC_CD_0_TCR_EPD1		(1ULL << 30)
#define ARM64_TCR_EPD1			(1ULL << 23)
277 278 279 280

#define CTXDESC_CD_0_ENDI		(1UL << 15)
#define CTXDESC_CD_0_V			(1UL << 31)

281 282 283 284
#define CTXDESC_CD_0_TCR_IPS		GENMASK_ULL(34, 32)
#define ARM64_TCR_IPS			GENMASK_ULL(34, 32)
#define CTXDESC_CD_0_TCR_TBI0		(1ULL << 38)
#define ARM64_TCR_TBI0			(1ULL << 37)
285 286

#define CTXDESC_CD_0_AA64		(1UL << 41)
287
#define CTXDESC_CD_0_S			(1UL << 44)
288 289
#define CTXDESC_CD_0_R			(1UL << 45)
#define CTXDESC_CD_0_A			(1UL << 46)
290 291
#define CTXDESC_CD_0_ASET		(1UL << 47)
#define CTXDESC_CD_0_ASID		GENMASK_ULL(63, 48)
292

293
#define CTXDESC_CD_1_TTB0_MASK		GENMASK_ULL(51, 4)
294 295

/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
296 297
#define ARM_SMMU_TCR2CD(tcr, fld)	FIELD_PREP(CTXDESC_CD_0_TCR_##fld, \
					FIELD_GET(ARM64_TCR_##fld, tcr))
298 299

/* Command queue */
300 301 302
#define CMDQ_ENT_SZ_SHIFT		4
#define CMDQ_ENT_DWORDS			((1 << CMDQ_ENT_SZ_SHIFT) >> 3)
#define CMDQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - CMDQ_ENT_SZ_SHIFT)
303

304
#define CMDQ_CONS_ERR			GENMASK(30, 24)
305 306 307
#define CMDQ_ERR_CERROR_NONE_IDX	0
#define CMDQ_ERR_CERROR_ILL_IDX		1
#define CMDQ_ERR_CERROR_ABT_IDX		2
308
#define CMDQ_ERR_CERROR_ATC_INV_IDX	3
309

310 311
#define CMDQ_PROD_OWNED_FLAG		Q_OVERFLOW_FLAG

312 313 314 315 316 317 318
/*
 * This is used to size the command queue and therefore must be at least
 * BITS_PER_LONG so that the valid_map works correctly (it relies on the
 * total number of queue entries being a multiple of BITS_PER_LONG).
 */
#define CMDQ_BATCH_ENTRIES		BITS_PER_LONG

319
#define CMDQ_0_OP			GENMASK_ULL(7, 0)
320 321
#define CMDQ_0_SSV			(1UL << 11)

322 323
#define CMDQ_PREFETCH_0_SID		GENMASK_ULL(63, 32)
#define CMDQ_PREFETCH_1_SIZE		GENMASK_ULL(4, 0)
324
#define CMDQ_PREFETCH_1_ADDR_MASK	GENMASK_ULL(63, 12)
325

326
#define CMDQ_CFGI_0_SID			GENMASK_ULL(63, 32)
327
#define CMDQ_CFGI_1_LEAF		(1UL << 0)
328
#define CMDQ_CFGI_1_RANGE		GENMASK_ULL(4, 0)
329

330 331
#define CMDQ_TLBI_0_VMID		GENMASK_ULL(47, 32)
#define CMDQ_TLBI_0_ASID		GENMASK_ULL(63, 48)
332
#define CMDQ_TLBI_1_LEAF		(1UL << 0)
333
#define CMDQ_TLBI_1_VA_MASK		GENMASK_ULL(63, 12)
334
#define CMDQ_TLBI_1_IPA_MASK		GENMASK_ULL(51, 12)
335

336 337 338 339 340 341
#define CMDQ_ATC_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_ATC_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_ATC_0_GLOBAL		(1UL << 9)
#define CMDQ_ATC_1_SIZE			GENMASK_ULL(5, 0)
#define CMDQ_ATC_1_ADDR_MASK		GENMASK_ULL(63, 12)

342 343 344 345 346 347 348 349 350 351 352 353
#define CMDQ_PRI_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_PRI_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_PRI_1_GRPID		GENMASK_ULL(8, 0)
#define CMDQ_PRI_1_RESP			GENMASK_ULL(13, 12)

#define CMDQ_SYNC_0_CS			GENMASK_ULL(13, 12)
#define CMDQ_SYNC_0_CS_NONE		0
#define CMDQ_SYNC_0_CS_IRQ		1
#define CMDQ_SYNC_0_CS_SEV		2
#define CMDQ_SYNC_0_MSH			GENMASK_ULL(23, 22)
#define CMDQ_SYNC_0_MSIATTR		GENMASK_ULL(27, 24)
#define CMDQ_SYNC_0_MSIDATA		GENMASK_ULL(63, 32)
354
#define CMDQ_SYNC_1_MSIADDR_MASK	GENMASK_ULL(51, 2)
355 356

/* Event queue */
357 358 359
#define EVTQ_ENT_SZ_SHIFT		5
#define EVTQ_ENT_DWORDS			((1 << EVTQ_ENT_SZ_SHIFT) >> 3)
#define EVTQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - EVTQ_ENT_SZ_SHIFT)
360

361
#define EVTQ_0_ID			GENMASK_ULL(7, 0)
362 363

/* PRI queue */
364 365 366
#define PRIQ_ENT_SZ_SHIFT		4
#define PRIQ_ENT_DWORDS			((1 << PRIQ_ENT_SZ_SHIFT) >> 3)
#define PRIQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - PRIQ_ENT_SZ_SHIFT)
367

368 369
#define PRIQ_0_SID			GENMASK_ULL(31, 0)
#define PRIQ_0_SSID			GENMASK_ULL(51, 32)
370 371 372 373 374 375 376
#define PRIQ_0_PERM_PRIV		(1UL << 58)
#define PRIQ_0_PERM_EXEC		(1UL << 59)
#define PRIQ_0_PERM_READ		(1UL << 60)
#define PRIQ_0_PERM_WRITE		(1UL << 61)
#define PRIQ_0_PRG_LAST			(1UL << 62)
#define PRIQ_0_SSID_V			(1UL << 63)

377
#define PRIQ_1_PRG_IDX			GENMASK_ULL(8, 0)
378
#define PRIQ_1_ADDR_MASK		GENMASK_ULL(63, 12)
379 380

/* High-level queue structures */
381 382
#define ARM_SMMU_POLL_TIMEOUT_US	1000000 /* 1s! */
#define ARM_SMMU_POLL_SPIN_COUNT	10
383

384 385 386
#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

387 388 389 390
/*
 * not really modular, but the easiest way to keep compat with existing
 * bootargs behaviour is to continue using module_param_named here.
 */
391
static bool disable_bypass = 1;
392 393 394 395 396
module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

enum pri_resp {
397 398 399
	PRI_RESP_DENY = 0,
	PRI_RESP_FAIL = 1,
	PRI_RESP_SUCC = 2,
400 401
};

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
struct arm_smmu_cmdq_ent {
	/* Common fields */
	u8				opcode;
	bool				substream_valid;

	/* Command-specific fields */
	union {
		#define CMDQ_OP_PREFETCH_CFG	0x1
		struct {
			u32			sid;
			u8			size;
			u64			addr;
		} prefetch;

		#define CMDQ_OP_CFGI_STE	0x3
		#define CMDQ_OP_CFGI_ALL	0x4
		struct {
			u32			sid;
			union {
				bool		leaf;
				u8		span;
			};
		} cfgi;

		#define CMDQ_OP_TLBI_NH_ASID	0x11
		#define CMDQ_OP_TLBI_NH_VA	0x12
		#define CMDQ_OP_TLBI_EL2_ALL	0x20
		#define CMDQ_OP_TLBI_S12_VMALL	0x28
		#define CMDQ_OP_TLBI_S2_IPA	0x2a
		#define CMDQ_OP_TLBI_NSNH_ALL	0x30
		struct {
			u16			asid;
			u16			vmid;
			bool			leaf;
			u64			addr;
		} tlbi;

464 465 466 467 468 469 470 471 472 473
		#define CMDQ_OP_ATC_INV		0x40
		#define ATC_INV_SIZE_ALL	52
		struct {
			u32			sid;
			u32			ssid;
			u64			addr;
			u8			size;
			bool			global;
		} atc;

474 475 476 477 478 479 480 481 482
		#define CMDQ_OP_PRI_RESP	0x41
		struct {
			u32			sid;
			u32			ssid;
			u16			grpid;
			enum pri_resp		resp;
		} pri;

		#define CMDQ_OP_CMD_SYNC	0x46
483 484 485
		struct {
			u64			msiaddr;
		} sync;
486 487 488
	};
};

489
struct arm_smmu_ll_queue {
490 491 492 493 494 495 496 497 498 499 500 501
	union {
		u64			val;
		struct {
			u32		prod;
			u32		cons;
		};
		struct {
			atomic_t	prod;
			atomic_t	cons;
		} atomic;
		u8			__pad[SMP_CACHE_BYTES];
	} ____cacheline_aligned_in_smp;
502 503 504
	u32				max_n_shift;
};

505
struct arm_smmu_queue {
506
	struct arm_smmu_ll_queue	llq;
507 508 509 510 511 512 513 514 515 516 517 518
	int				irq; /* Wired interrupt */

	__le64				*base;
	dma_addr_t			base_dma;
	u64				q_base;

	size_t				ent_dwords;

	u32 __iomem			*prod_reg;
	u32 __iomem			*cons_reg;
};

519 520 521 522 523 524 525
struct arm_smmu_queue_poll {
	ktime_t				timeout;
	unsigned int			delay;
	unsigned int			spin_cnt;
	bool				wfe;
};

526 527
struct arm_smmu_cmdq {
	struct arm_smmu_queue		q;
528 529 530
	atomic_long_t			*valid_map;
	atomic_t			owner_prod;
	atomic_t			lock;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
};

struct arm_smmu_evtq {
	struct arm_smmu_queue		q;
	u32				max_stalls;
};

struct arm_smmu_priq {
	struct arm_smmu_queue		q;
};

/* High-level stream table and context descriptor structures */
struct arm_smmu_strtab_l1_desc {
	u8				span;

	__le64				*l2ptr;
	dma_addr_t			l2ptr_dma;
};

struct arm_smmu_s1_cfg {
	__le64				*cdptr;
	dma_addr_t			cdptr_dma;

	struct arm_smmu_ctx_desc {
		u16	asid;
		u64	ttbr;
		u64	tcr;
		u64	mair;
	}				cd;
};

struct arm_smmu_s2_cfg {
	u16				vmid;
	u64				vttbr;
	u64				vtcr;
};

struct arm_smmu_strtab_cfg {
	__le64				*strtab;
	dma_addr_t			strtab_dma;
	struct arm_smmu_strtab_l1_desc	*l1_desc;
	unsigned int			num_l1_ents;

	u64				strtab_base;
	u32				strtab_base_cfg;
};

/* An SMMUv3 instance */
struct arm_smmu_device {
	struct device			*dev;
	void __iomem			*base;

#define ARM_SMMU_FEAT_2_LVL_STRTAB	(1 << 0)
#define ARM_SMMU_FEAT_2_LVL_CDTAB	(1 << 1)
#define ARM_SMMU_FEAT_TT_LE		(1 << 2)
#define ARM_SMMU_FEAT_TT_BE		(1 << 3)
#define ARM_SMMU_FEAT_PRI		(1 << 4)
#define ARM_SMMU_FEAT_ATS		(1 << 5)
#define ARM_SMMU_FEAT_SEV		(1 << 6)
#define ARM_SMMU_FEAT_MSI		(1 << 7)
#define ARM_SMMU_FEAT_COHERENCY		(1 << 8)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 9)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 10)
#define ARM_SMMU_FEAT_STALLS		(1 << 11)
#define ARM_SMMU_FEAT_HYP		(1 << 12)
596
#define ARM_SMMU_FEAT_STALL_FORCE	(1 << 13)
597
#define ARM_SMMU_FEAT_VAX		(1 << 14)
598 599
	u32				features;

600
#define ARM_SMMU_OPT_SKIP_PREFETCH	(1 << 0)
601
#define ARM_SMMU_OPT_PAGE0_REGS_ONLY	(1 << 1)
602 603
	u32				options;

604 605 606 607 608
	struct arm_smmu_cmdq		cmdq;
	struct arm_smmu_evtq		evtq;
	struct arm_smmu_priq		priq;

	int				gerr_irq;
609
	int				combined_irq;
610 611 612

	unsigned long			ias; /* IPA */
	unsigned long			oas; /* PA */
613
	unsigned long			pgsize_bitmap;
614 615 616 617 618 619 620 621 622 623 624 625 626

#define ARM_SMMU_MAX_ASIDS		(1 << 16)
	unsigned int			asid_bits;
	DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);

#define ARM_SMMU_MAX_VMIDS		(1 << 16)
	unsigned int			vmid_bits;
	DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);

	unsigned int			ssid_bits;
	unsigned int			sid_bits;

	struct arm_smmu_strtab_cfg	strtab_cfg;
627 628 629

	/* IOMMU core code handle */
	struct iommu_device		iommu;
630 631
};

632
/* SMMU private data for each master */
633
struct arm_smmu_master {
634
	struct arm_smmu_device		*smmu;
635
	struct device			*dev;
636
	struct arm_smmu_domain		*domain;
637
	struct list_head		domain_head;
638 639
	u32				*sids;
	unsigned int			num_sids;
640
	bool				ats_enabled;
641 642 643 644 645 646 647
};

/* SMMU private data for an IOMMU domain */
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
648
	ARM_SMMU_DOMAIN_BYPASS,
649 650 651 652 653 654 655
};

struct arm_smmu_domain {
	struct arm_smmu_device		*smmu;
	struct mutex			init_mutex; /* Protects smmu pointer */

	struct io_pgtable_ops		*pgtbl_ops;
656
	bool				non_strict;
657 658 659 660 661 662 663 664

	enum arm_smmu_domain_stage	stage;
	union {
		struct arm_smmu_s1_cfg	s1_cfg;
		struct arm_smmu_s2_cfg	s2_cfg;
	};

	struct iommu_domain		domain;
665 666 667

	struct list_head		devices;
	spinlock_t			devices_lock;
668 669
};

670 671 672 673 674 675 676
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
677
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
678 679 680
	{ 0, NULL},
};

681 682 683 684 685 686 687 688 689 690
static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
						 struct arm_smmu_device *smmu)
{
	if ((offset > SZ_64K) &&
	    (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
		offset -= SZ_64K;

	return smmu->base + offset;
}

691 692 693 694 695
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

696 697 698 699 700 701 702 703 704 705 706 707 708 709
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

710
/* Low-level queue manipulation functions */
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
{
	u32 space, prod, cons;

	prod = Q_IDX(q, q->prod);
	cons = Q_IDX(q, q->cons);

	if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
		space = (1 << q->max_n_shift) - (prod - cons);
	else
		space = cons - prod;

	return space >= n;
}

726
static bool queue_full(struct arm_smmu_ll_queue *q)
727
{
728 729
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
730 731
}

732
static bool queue_empty(struct arm_smmu_ll_queue *q)
733
{
734 735
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
736 737
}

738
static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
739
{
740 741 742 743
	return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
	       ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
744 745
}

746
static void queue_sync_cons_out(struct arm_smmu_queue *q)
747
{
748 749 750 751 752
	/*
	 * Ensure that all CPU accesses (reads and writes) to the queue
	 * are complete before we update the cons pointer.
	 */
	mb();
753
	writel_relaxed(q->llq.cons, q->cons_reg);
754 755
}

756
static void queue_inc_cons(struct arm_smmu_ll_queue *q)
757
{
758 759
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
	q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
760 761 762
}

static int queue_sync_prod_in(struct arm_smmu_queue *q)
763 764 765 766
{
	int ret = 0;
	u32 prod = readl_relaxed(q->prod_reg);

767
	if (Q_OVF(prod) != Q_OVF(q->llq.prod))
768 769
		ret = -EOVERFLOW;

770
	q->llq.prod = prod;
771 772 773
	return ret;
}

774
static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
775
{
776 777
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
	return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
778 779
}

780 781
static void queue_poll_init(struct arm_smmu_device *smmu,
			    struct arm_smmu_queue_poll *qp)
782
{
783 784 785 786
	qp->delay = 1;
	qp->spin_cnt = 0;
	qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
787 788
}

789
static int queue_poll(struct arm_smmu_queue_poll *qp)
790
{
791 792
	if (ktime_compare(ktime_get(), qp->timeout) > 0)
		return -ETIMEDOUT;
793

794 795 796 797 798 799 800 801
	if (qp->wfe) {
		wfe();
	} else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
		cpu_relax();
	} else {
		udelay(qp->delay);
		qp->delay *= 2;
		qp->spin_cnt = 0;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
825
	if (queue_empty(&q->llq))
826 827
		return -EAGAIN;

828
	queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
829
	queue_inc_cons(&q->llq);
830
	queue_sync_cons_out(q);
831 832 833 834 835 836
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
837
	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
838
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
839 840 841 842 843 844

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
845 846
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
847 848 849
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
	case CMDQ_OP_CFGI_STE:
850 851
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
852 853 854
		break;
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
855
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
856 857
		break;
	case CMDQ_OP_TLBI_NH_VA:
858 859
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
860 861
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
862
	case CMDQ_OP_TLBI_S2_IPA:
863 864
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
865
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
866 867
		break;
	case CMDQ_OP_TLBI_NH_ASID:
868
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
869 870
		/* Fallthrough */
	case CMDQ_OP_TLBI_S12_VMALL:
871
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
872
		break;
873 874 875 876 877 878 879 880
	case CMDQ_OP_ATC_INV:
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
		break;
881
	case CMDQ_OP_PRI_RESP:
882 883 884 885
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
886 887 888 889 890 891 892 893
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
894
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
895 896
		break;
	case CMDQ_OP_CMD_SYNC:
897
		if (ent->sync.msiaddr) {
898
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
899 900
			cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
		} else {
901
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
902
		}
903 904
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
905 906 907 908 909 910 911 912
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
					 u32 prod)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	/*
	 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
	 * payload, so the write will zero the entire command on that platform.
	 */
	if (smmu->features & ARM_SMMU_FEAT_MSI &&
	    smmu->features & ARM_SMMU_FEAT_COHERENCY) {
		ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
				   q->ent_dwords * 8;
	}

	arm_smmu_cmdq_build_cmd(cmd, &ent);
}

934 935 936 937 938 939
static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
940
		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
941 942 943 944 945 946
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
947
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
948 949 950 951 952
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
953
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
954 955 956 957 958 959

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
960 961 962 963 964 965 966 967
	case CMDQ_ERR_CERROR_ATC_INV_IDX:
		/*
		 * ATC Invalidation Completion timeout. CONS is still pointing
		 * at the CMD_SYNC. Attempt to complete other pending commands
		 * by repeating the CMD_SYNC, though we might well end up back
		 * here since the ATC invalidation may still be pending.
		 */
		return;
968 969 970 971
	case CMDQ_ERR_CERROR_ILL_IDX:
		/* Fallthrough */
	default:
		break;
972 973 974 975 976 977
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
978
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
979 980 981 982 983 984 985 986 987 988
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

989
	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
990 991
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * Command queue locking.
 * This is a form of bastardised rwlock with the following major changes:
 *
 * - The only LOCK routines are exclusive_trylock() and shared_lock().
 *   Neither have barrier semantics, and instead provide only a control
 *   dependency.
 *
 * - The UNLOCK routines are supplemented with shared_tryunlock(), which
 *   fails if the caller appears to be the last lock holder (yes, this is
 *   racy). All successful UNLOCK routines have RELEASE semantics.
 */
static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
1005
{
1006
	int val;
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	/*
	 * We can try to avoid the cmpxchg() loop by simply incrementing the
	 * lock counter. When held in exclusive state, the lock counter is set
	 * to INT_MIN so these increments won't hurt as the value will remain
	 * negative.
	 */
	if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
		return;

	do {
		val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
	} while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
}

static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
{
	(void)atomic_dec_return_release(&cmdq->lock);
}

static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
{
	if (atomic_read(&cmdq->lock) == 1)
		return false;

	arm_smmu_cmdq_shared_unlock(cmdq);
	return true;
}

#define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)		\
({									\
	bool __ret;							\
	local_irq_save(flags);						\
	__ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN);	\
	if (!__ret)							\
		local_irq_restore(flags);				\
	__ret;								\
})

#define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags)		\
({									\
	atomic_set_release(&cmdq->lock, 0);				\
	local_irq_restore(flags);					\
})


/*
 * Command queue insertion.
 * This is made fiddly by our attempts to achieve some sort of scalability
 * since there is one queue shared amongst all of the CPUs in the system.  If
 * you like mixed-size concurrency, dependency ordering and relaxed atomics,
 * then you'll *love* this monstrosity.
 *
 * The basic idea is to split the queue up into ranges of commands that are
 * owned by a given CPU; the owner may not have written all of the commands
 * itself, but is responsible for advancing the hardware prod pointer when
 * the time comes. The algorithm is roughly:
 *
 * 	1. Allocate some space in the queue. At this point we also discover
 *	   whether the head of the queue is currently owned by another CPU,
 *	   or whether we are the owner.
 *
 *	2. Write our commands into our allocated slots in the queue.
 *
 *	3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
 *
 *	4. If we are an owner:
 *		a. Wait for the previous owner to finish.
 *		b. Mark the queue head as unowned, which tells us the range
 *		   that we are responsible for publishing.
 *		c. Wait for all commands in our owned range to become valid.
 *		d. Advance the hardware prod pointer.
 *		e. Tell the next owner we've finished.
 *
 *	5. If we are inserting a CMD_SYNC (we may or may not have been an
 *	   owner), then we need to stick around until it has completed:
 *		a. If we have MSIs, the SMMU can write back into the CMD_SYNC
 *		   to clear the first 4 bytes.
 *		b. Otherwise, we spin waiting for the hardware cons pointer to
 *		   advance past our command.
 *
 * The devil is in the details, particularly the use of locking for handling
 * SYNC completion and freeing up space in the queue before we think that it is
 * full.
 */
static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
					       u32 sprod, u32 eprod, bool set)
{
	u32 swidx, sbidx, ewidx, ebidx;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= sprod,
	};
1100

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	ewidx = BIT_WORD(Q_IDX(&llq, eprod));
	ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;

	while (llq.prod != eprod) {
		unsigned long mask;
		atomic_long_t *ptr;
		u32 limit = BITS_PER_LONG;

		swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
		sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;

		ptr = &cmdq->valid_map[swidx];

		if ((swidx == ewidx) && (sbidx < ebidx))
			limit = ebidx;

		mask = GENMASK(limit - 1, sbidx);

		/*
		 * The valid bit is the inverse of the wrap bit. This means
		 * that a zero-initialised queue is invalid and, after marking
		 * all entries as valid, they become invalid again when we
		 * wrap.
		 */
		if (set) {
			atomic_long_xor(mask, ptr);
		} else { /* Poll */
			unsigned long valid;

			valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
			atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
		}

		llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
1135 1136 1137
	}
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/* Mark all entries in the range [sprod, eprod) as valid */
static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
					u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
}

/* Wait for all entries in the range [sprod, eprod) to become valid */
static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
					 u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
}

/* Wait for the command queue to become non-full */
static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
					     struct arm_smmu_ll_queue *llq)
1155
{
1156
	unsigned long flags;
1157 1158 1159
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	int ret = 0;
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169
	/*
	 * Try to update our copy of cons by grabbing exclusive cmdq access. If
	 * that fails, spin until somebody else updates it for us.
	 */
	if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
		WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
		arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
		llq->val = READ_ONCE(cmdq->q.llq.val);
		return 0;
1170 1171
	}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	queue_poll_init(smmu, &qp);
	do {
		llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
		if (!queue_full(llq))
			break;

		ret = queue_poll(&qp);
	} while (!ret);

	return ret;
1182
}
1183

1184
/*
1185 1186
 * Wait until the SMMU signals a CMD_SYNC completion MSI.
 * Must be called with the cmdq lock held in some capacity.
1187
 */
1188 1189
static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
					  struct arm_smmu_ll_queue *llq)
1190
{
1191 1192 1193 1194
	int ret = 0;
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
1195

1196
	queue_poll_init(smmu, &qp);
1197

1198 1199 1200 1201 1202 1203 1204 1205
	/*
	 * The MSI won't generate an event, since it's being written back
	 * into the command queue.
	 */
	qp.wfe = false;
	smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
	llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
	return ret;
1206 1207
}

1208 1209 1210 1211 1212 1213
/*
 * Wait until the SMMU cons index passes llq->prod.
 * Must be called with the cmdq lock held in some capacity.
 */
static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
					       struct arm_smmu_ll_queue *llq)
1214
{
1215 1216 1217 1218
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 prod = llq->prod;
	int ret = 0;
1219

1220 1221 1222 1223 1224
	queue_poll_init(smmu, &qp);
	llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
	do {
		if (queue_consumed(llq, prod))
			break;
1225

1226
		ret = queue_poll(&qp);
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		/*
		 * This needs to be a readl() so that our subsequent call
		 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
		 *
		 * Specifically, we need to ensure that we observe all
		 * shared_lock()s by other CMD_SYNCs that share our owner,
		 * so that a failing call to tryunlock() means that we're
		 * the last one out and therefore we can safely advance
		 * cmdq->q.llq.cons. Roughly speaking:
		 *
		 * CPU 0		CPU1			CPU2 (us)
		 *
		 * if (sync)
		 * 	shared_lock();
		 *
		 * dma_wmb();
		 * set_valid_map();
		 *
		 * 			if (owner) {
		 *				poll_valid_map();
		 *				<control dependency>
		 *				writel(prod_reg);
		 *
		 *						readl(cons_reg);
		 *						tryunlock();
		 *
		 * Requires us to see CPU 0's shared_lock() acquisition.
		 */
		llq->cons = readl(cmdq->q.cons_reg);
	} while (!ret);
1258

1259
	return ret;
1260 1261
}

1262 1263
static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
					 struct arm_smmu_ll_queue *llq)
1264
{
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	if (smmu->features & ARM_SMMU_FEAT_MSI &&
	    smmu->features & ARM_SMMU_FEAT_COHERENCY)
		return __arm_smmu_cmdq_poll_until_msi(smmu, llq);

	return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
}

static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
					u32 prod, int n)
{
	int i;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= prod,
	};

	for (i = 0; i < n; ++i) {
		u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];

		prod = queue_inc_prod_n(&llq, i);
		queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
	}
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
/*
 * This is the actual insertion function, and provides the following
 * ordering guarantees to callers:
 *
 * - There is a dma_wmb() before publishing any commands to the queue.
 *   This can be relied upon to order prior writes to data structures
 *   in memory (such as a CD or an STE) before the command.
 *
 * - On completion of a CMD_SYNC, there is a control dependency.
 *   This can be relied upon to order subsequent writes to memory (e.g.
 *   freeing an IOVA) after completion of the CMD_SYNC.
 *
 * - Command insertion is totally ordered, so if two CPUs each race to
 *   insert their own list of commands then all of the commands from one
 *   CPU will appear before any of the commands from the other CPU.
 */
1305 1306 1307 1308 1309
static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
				       u64 *cmds, int n, bool sync)
{
	u64 cmd_sync[CMDQ_ENT_DWORDS];
	u32 prod;
1310
	unsigned long flags;
1311 1312 1313 1314 1315 1316
	bool owner;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift = cmdq->q.llq.max_n_shift,
	}, head = llq;
	int ret = 0;
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	/* 1. Allocate some space in the queue */
	local_irq_save(flags);
	llq.val = READ_ONCE(cmdq->q.llq.val);
	do {
		u64 old;

		while (!queue_has_space(&llq, n + sync)) {
			local_irq_restore(flags);
			if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
				dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
			local_irq_save(flags);
		}

		head.cons = llq.cons;
		head.prod = queue_inc_prod_n(&llq, n + sync) |
					     CMDQ_PROD_OWNED_FLAG;

		old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
		if (old == llq.val)
			break;

		llq.val = old;
	} while (1);
	owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
	head.prod &= ~CMDQ_PROD_OWNED_FLAG;
	llq.prod &= ~CMDQ_PROD_OWNED_FLAG;

	/*
	 * 2. Write our commands into the queue
	 * Dependency ordering from the cmpxchg() loop above.
	 */
	arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
	if (sync) {
		prod = queue_inc_prod_n(&llq, n);
		arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, prod);
		queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);

		/*
		 * In order to determine completion of our CMD_SYNC, we must
		 * ensure that the queue can't wrap twice without us noticing.
		 * We achieve that by taking the cmdq lock as shared before
		 * marking our slot as valid.
		 */
		arm_smmu_cmdq_shared_lock(cmdq);
	}
1363

1364 1365 1366
	/* 3. Mark our slots as valid, ensuring commands are visible first */
	dma_wmb();
	arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	/* 4. If we are the owner, take control of the SMMU hardware */
	if (owner) {
		/* a. Wait for previous owner to finish */
		atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);

		/* b. Stop gathering work by clearing the owned flag */
		prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
						   &cmdq->q.llq.atomic.prod);
		prod &= ~CMDQ_PROD_OWNED_FLAG;

		/*
		 * c. Wait for any gathered work to be written to the queue.
		 * Note that we read our own entries so that we have the control
		 * dependency required by (d).
		 */
		arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);

		/*
		 * d. Advance the hardware prod pointer
		 * Control dependency ordering from the entries becoming valid.
		 */
		writel_relaxed(prod, cmdq->q.prod_reg);

		/*
		 * e. Tell the next owner we're done
		 * Make sure we've updated the hardware first, so that we don't
		 * race to update prod and potentially move it backwards.
		 */
		atomic_set_release(&cmdq->owner_prod, prod);
	}

	/* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
	if (sync) {
		llq.prod = queue_inc_prod_n(&llq, n);
		ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
		if (ret) {
			dev_err_ratelimited(smmu->dev,
					    "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
					    llq.prod,
					    readl_relaxed(cmdq->q.prod_reg),
					    readl_relaxed(cmdq->q.cons_reg));
		}

		/*
		 * Try to unlock the cmq lock. This will fail if we're the last
		 * reader, in which case we can safely update cmdq->q.llq.cons
		 */
		if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
			WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
			arm_smmu_cmdq_shared_unlock(cmdq);
		}
	}

	local_irq_restore(flags);
1422 1423 1424
	return ret;
}

1425 1426
static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				   struct arm_smmu_cmdq_ent *ent)
1427
{
1428
	u64 cmd[CMDQ_ENT_DWORDS];
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return -EINVAL;
	}

	return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, false);
}

static int arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, NULL, 0, true);
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
}

/* Context descriptor manipulation functions */
static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
{
	u64 val = 0;

	/* Repack the TCR. Just care about TTBR0 for now */
	val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
	val |= ARM_SMMU_TCR2CD(tcr, TG0);
	val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
	val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
	val |= ARM_SMMU_TCR2CD(tcr, SH0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD1);
	val |= ARM_SMMU_TCR2CD(tcr, IPS);

	return val;
}

static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
				    struct arm_smmu_s1_cfg *cfg)
{
	u64 val;

	/*
	 * We don't need to issue any invalidation here, as we'll invalidate
	 * the STE when installing the new entry anyway.
	 */
	val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
#ifdef __BIG_ENDIAN
	      CTXDESC_CD_0_ENDI |
#endif
1475 1476
	      CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET |
	      CTXDESC_CD_0_AA64 | FIELD_PREP(CTXDESC_CD_0_ASID, cfg->cd.asid) |
1477
	      CTXDESC_CD_0_V;
1478 1479 1480 1481 1482

	/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
	if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
		val |= CTXDESC_CD_0_S;

1483 1484
	cfg->cdptr[0] = cpu_to_le64(val);

1485
	val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK;
1486 1487
	cfg->cdptr[1] = cpu_to_le64(val);

1488
	cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair);
1489 1490 1491 1492 1493 1494 1495 1496
}

/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

1497
	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1498
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	*dst = cpu_to_le64(val);
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1514
	arm_smmu_cmdq_issue_sync(smmu);
1515 1516
}

1517 1518
static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
				      __le64 *dst)
1519 1520 1521 1522 1523
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
1524 1525 1526
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
1538 1539 1540 1541
	struct arm_smmu_device *smmu = NULL;
	struct arm_smmu_s1_cfg *s1_cfg = NULL;
	struct arm_smmu_s2_cfg *s2_cfg = NULL;
	struct arm_smmu_domain *smmu_domain = NULL;
1542 1543 1544 1545 1546 1547 1548
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	if (master) {
		smmu_domain = master->domain;
		smmu = master->smmu;
	}

	if (smmu_domain) {
		switch (smmu_domain->stage) {
		case ARM_SMMU_DOMAIN_S1:
			s1_cfg = &smmu_domain->s1_cfg;
			break;
		case ARM_SMMU_DOMAIN_S2:
		case ARM_SMMU_DOMAIN_NESTED:
			s2_cfg = &smmu_domain->s2_cfg;
			break;
		default:
			break;
		}
	}

1568
	if (val & STRTAB_STE_0_V) {
1569
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1570 1571 1572 1573 1574 1575
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
1576 1577 1578
		case STRTAB_STE_0_CFG_ABORT:
			if (disable_bypass)
				break;
1579 1580 1581 1582 1583
		default:
			BUG(); /* STE corruption */
		}
	}

1584
	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1585 1586 1587
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
1588 1589
	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
		if (!smmu_domain && disable_bypass)
1590
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1591
		else
1592
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1593 1594

		dst[0] = cpu_to_le64(val);
1595 1596
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
1597
		dst[2] = 0; /* Nuke the VMID */
1598 1599 1600 1601 1602
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
1603 1604 1605 1606
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

1607
	if (s1_cfg) {
1608 1609
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
1610 1611 1612 1613
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
			 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1614

1615 1616
		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1617 1618
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

1619
		val |= (s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1620
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS);
1621 1622
	}

1623
	if (s2_cfg) {
1624 1625
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
1626 1627
			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1628 1629 1630 1631 1632 1633
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

1634
		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1635

1636
		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1637 1638
	}

1639 1640 1641 1642
	if (master->ats_enabled)
		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
						 STRTAB_STE_1_EATS_TRANS));

1643 1644 1645 1646 1647
	arm_smmu_sync_ste_for_sid(smmu, sid);
	dst[0] = cpu_to_le64(val);
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1648 1649
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1650 1651 1652 1653 1654 1655 1656
}

static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
{
	unsigned int i;

	for (i = 0; i < nent; ++i) {
1657
		arm_smmu_write_strtab_ent(NULL, -1, strtab);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1673
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1674 1675

	desc->span = STRTAB_SPLIT + 1;
1676 1677
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
					  GFP_KERNEL | __GFP_ZERO);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
1696
	struct arm_smmu_ll_queue *llq = &q->llq;
1697 1698
	u64 evt[EVTQ_ENT_DWORDS];

1699 1700
	do {
		while (!queue_remove_raw(q, evt)) {
1701
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1702

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
1714
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1715
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1716
	} while (!queue_empty(llq));
1717 1718

	/* Sync our overflow flag, as we believe we're up to speed */
1719 1720
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		    Q_IDX(llq, llq->cons);
1721 1722 1723
	return IRQ_HANDLED;
}

1724 1725 1726 1727 1728 1729
static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

1730 1731 1732 1733 1734
	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1735 1736 1737 1738 1739 1740 1741 1742 1743

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1744
		 evt[1] & PRIQ_1_ADDR_MASK);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};
1757

1758 1759
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
1760 1761 1762 1763 1764 1765
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
1766
	struct arm_smmu_ll_queue *llq = &q->llq;
1767 1768
	u64 evt[PRIQ_ENT_DWORDS];

1769 1770 1771
	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);
1772

1773
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1774
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1775
	} while (!queue_empty(llq));
1776 1777

	/* Sync our overflow flag, as we believe we're up to speed */
1778 1779 1780
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		      Q_IDX(llq, llq->cons);
	queue_sync_cons_out(q);
1781 1782 1783 1784 1785 1786 1787
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
1788
	u32 gerror, gerrorn, active;
1789 1790 1791 1792 1793
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

1794 1795
	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
1796 1797 1798 1799
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
1800
		 active);
1801

1802
	if (active & GERROR_SFM_ERR) {
1803 1804 1805 1806
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

1807
	if (active & GERROR_MSI_GERROR_ABT_ERR)
1808 1809
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

1810
	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1811 1812
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

1813
	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1814 1815
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

1816
	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1817 1818
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

1819
	if (active & GERROR_PRIQ_ABT_ERR)
1820 1821
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

1822
	if (active & GERROR_EVTQ_ABT_ERR)
1823 1824
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

1825
	if (active & GERROR_CMDQ_ERR)
1826 1827 1828 1829 1830 1831
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
static void
arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
			struct arm_smmu_cmdq_ent *cmd)
{
	size_t log2_span;
	size_t span_mask;
	/* ATC invalidates are always on 4096-bytes pages */
	size_t inval_grain_shift = 12;
	unsigned long page_start, page_end;

	*cmd = (struct arm_smmu_cmdq_ent) {
		.opcode			= CMDQ_OP_ATC_INV,
		.substream_valid	= !!ssid,
		.atc.ssid		= ssid,
	};

	if (!size) {
		cmd->atc.size = ATC_INV_SIZE_ALL;
		return;
	}

	page_start	= iova >> inval_grain_shift;
	page_end	= (iova + size - 1) >> inval_grain_shift;

	/*
	 * In an ATS Invalidate Request, the address must be aligned on the
	 * range size, which must be a power of two number of page sizes. We
	 * thus have to choose between grossly over-invalidating the region, or
	 * splitting the invalidation into multiple commands. For simplicity
	 * we'll go with the first solution, but should refine it in the future
	 * if multiple commands are shown to be more efficient.
	 *
	 * Find the smallest power of two that covers the range. The most
	 * significant differing bit between the start and end addresses,
	 * fls(start ^ end), indicates the required span. For example:
	 *
	 * We want to invalidate pages [8; 11]. This is already the ideal range:
	 *		x = 0b1000 ^ 0b1011 = 0b11
	 *		span = 1 << fls(x) = 4
	 *
	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
	 *		x = 0b0111 ^ 0b1010 = 0b1101
	 *		span = 1 << fls(x) = 16
	 */
	log2_span	= fls_long(page_start ^ page_end);
	span_mask	= (1ULL << log2_span) - 1;

	page_start	&= ~span_mask;

	cmd->atc.addr	= page_start << inval_grain_shift;
	cmd->atc.size	= log2_span;
}

static int arm_smmu_atc_inv_master(struct arm_smmu_master *master,
				   struct arm_smmu_cmdq_ent *cmd)
{
	int i;

	if (!master->ats_enabled)
		return 0;

	for (i = 0; i < master->num_sids; i++) {
		cmd->atc.sid = master->sids[i];
		arm_smmu_cmdq_issue_cmd(master->smmu, cmd);
	}

	return arm_smmu_cmdq_issue_sync(master->smmu);
}

static int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain,
				   int ssid, unsigned long iova, size_t size)
{
	int ret = 0;
	unsigned long flags;
	struct arm_smmu_cmdq_ent cmd;
	struct arm_smmu_master *master;

	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
		return 0;

	arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master, &smmu_domain->devices, domain_head)
		ret |= arm_smmu_atc_inv_master(master, &cmd);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

	return ret ? -ETIMEDOUT : 0;
}

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
/* IO_PGTABLE API */
static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
		cmd.tlbi.vmid	= 0;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1955 1956 1957
	/*
	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
	 * PTEs previously cleared by unmaps on the current CPU not yet visible
1958 1959 1960
	 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
	 * insertion to guarantee those are observed before the TLBI. Do be
	 * careful, 007.
1961
	 */
1962
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1963
	arm_smmu_cmdq_issue_sync(smmu);
1964
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
1965 1966
}

1967 1968 1969
static void arm_smmu_tlb_inv_range(unsigned long iova, size_t size,
				   size_t granule, bool leaf,
				   struct arm_smmu_domain *smmu_domain)
1970
{
1971
	u64 cmds[CMDQ_BATCH_ENTRIES * CMDQ_ENT_DWORDS];
1972
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1973
	unsigned long start = iova, end = iova + size;
1974
	int i = 0;
1975 1976 1977 1978 1979 1980
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
		},
	};

1981 1982 1983
	if (!size)
		return;

1984 1985 1986 1987 1988 1989 1990 1991
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	while (iova < end) {
		if (i == CMDQ_BATCH_ENTRIES) {
			arm_smmu_cmdq_issue_cmdlist(smmu, cmds, i, false);
			i = 0;
		}

		cmd.tlbi.addr = iova;
		arm_smmu_cmdq_build_cmd(&cmds[i * CMDQ_ENT_DWORDS], &cmd);
		iova += granule;
		i++;
	}

	arm_smmu_cmdq_issue_cmdlist(smmu, cmds, i, true);
2005 2006 2007 2008 2009 2010

	/*
	 * Unfortunately, this can't be leaf-only since we may have
	 * zapped an entire table.
	 */
	arm_smmu_atc_inv_domain(smmu_domain, 0, start, size);
2011 2012
}

2013 2014
static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
					 unsigned long iova, size_t granule,
2015 2016
					 void *cookie)
{
2017 2018 2019 2020
	struct arm_smmu_domain *smmu_domain = cookie;
	struct iommu_domain *domain = &smmu_domain->domain;

	iommu_iotlb_gather_add_page(domain, gather, iova, granule);
2021 2022
}

2023 2024 2025
static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
2026
	arm_smmu_tlb_inv_range(iova, size, granule, false, cookie);
2027 2028 2029 2030 2031
}

static void arm_smmu_tlb_inv_leaf(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
2032
	arm_smmu_tlb_inv_range(iova, size, granule, true, cookie);
2033 2034
}

2035
static const struct iommu_flush_ops arm_smmu_flush_ops = {
2036
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
2037 2038
	.tlb_flush_walk = arm_smmu_tlb_inv_walk,
	.tlb_flush_leaf = arm_smmu_tlb_inv_leaf,
2039
	.tlb_add_page	= arm_smmu_tlb_inv_page_nosync,
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

2059 2060 2061
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

2073 2074 2075 2076 2077 2078
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

2079
	mutex_init(&smmu_domain->init_mutex);
2080 2081 2082
	INIT_LIST_HEAD(&smmu_domain->devices);
	spin_lock_init(&smmu_domain->devices_lock);

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

2109
	iommu_put_dma_cookie(domain);
2110
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
2111 2112 2113 2114 2115 2116

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

		if (cfg->cdptr) {
2117 2118 2119 2120
			dmam_free_coherent(smmu_domain->smmu->dev,
					   CTXDESC_CD_DWORDS << 3,
					   cfg->cdptr,
					   cfg->cdptr_dma);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

			arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
		}
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
2137
	int asid;
2138 2139 2140 2141
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

	asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
2142
	if (asid < 0)
2143 2144
		return asid;

2145 2146 2147
	cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
					 &cfg->cdptr_dma,
					 GFP_KERNEL | __GFP_ZERO);
2148 2149
	if (!cfg->cdptr) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
2150
		ret = -ENOMEM;
2151 2152 2153
		goto out_free_asid;
	}

2154
	cfg->cd.asid	= (u16)asid;
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
	cfg->cd.tcr	= pgtbl_cfg->arm_lpae_s1_cfg.tcr;
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
	return 0;

out_free_asid:
	arm_smmu_bitmap_free(smmu->asid_map, asid);
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
2168
	int vmid;
2169 2170 2171 2172
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
2173
	if (vmid < 0)
2174 2175
		return vmid;

2176
	cfg->vmid	= (u16)vmid;
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
	cfg->vtcr	= pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
	return 0;
}

static int arm_smmu_domain_finalise(struct iommu_domain *domain)
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

2194 2195 2196 2197 2198
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

2199 2200 2201 2202 2203 2204 2205 2206
	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
2207 2208
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
2225
		.pgsize_bitmap	= smmu->pgsize_bitmap,
2226 2227
		.ias		= ias,
		.oas		= oas,
2228
		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
2229
		.tlb		= &arm_smmu_flush_ops,
2230
		.iommu_dev	= smmu->dev,
2231 2232
	};

2233 2234 2235
	if (smmu_domain->non_strict)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_NON_STRICT;

2236 2237 2238 2239
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

2240
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
2241
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
2242
	domain->geometry.force_aperture = true;
2243 2244

	ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
2245
	if (ret < 0) {
2246
		free_io_pgtable_ops(pgtbl_ops);
2247 2248
		return ret;
	}
2249

2250 2251
	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

2276
static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
2277
{
2278
	int i, j;
2279
	struct arm_smmu_device *smmu = master->smmu;
2280

2281 2282
	for (i = 0; i < master->num_sids; ++i) {
		u32 sid = master->sids[i];
2283 2284
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

2285 2286
		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
2287
			if (master->sids[j] == sid)
2288 2289 2290 2291
				break;
		if (j < i)
			continue;

2292
		arm_smmu_write_strtab_ent(master, sid, step);
2293 2294 2295
	}
}

2296
static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2297 2298 2299 2300 2301 2302 2303
{
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);

	if (!(smmu->features & ARM_SMMU_FEAT_ATS) || !dev_is_pci(master->dev) ||
	    !(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS) || pci_ats_disabled())
2304
		return false;
2305 2306

	pdev = to_pci_dev(master->dev);
2307 2308
	return !pdev->untrusted && pdev->ats_cap;
}
2309

2310 2311 2312 2313 2314
static void arm_smmu_enable_ats(struct arm_smmu_master *master)
{
	size_t stu;
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
2315

2316 2317 2318
	/* Don't enable ATS at the endpoint if it's not enabled in the STE */
	if (!master->ats_enabled)
		return;
2319

2320 2321 2322 2323 2324
	/* Smallest Translation Unit: log2 of the smallest supported granule */
	stu = __ffs(smmu->pgsize_bitmap);
	pdev = to_pci_dev(master->dev);
	if (pci_enable_ats(pdev, stu))
		dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2325 2326 2327 2328
}

static void arm_smmu_disable_ats(struct arm_smmu_master *master)
{
2329 2330
	struct arm_smmu_cmdq_ent cmd;

2331
	if (!master->ats_enabled)
2332 2333
		return;

2334 2335 2336 2337 2338 2339
	pci_disable_ats(to_pci_dev(master->dev));
	/*
	 * Ensure ATS is disabled at the endpoint before we issue the
	 * ATC invalidation via the SMMU.
	 */
	wmb();
2340 2341
	arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd);
	arm_smmu_atc_inv_master(master, &cmd);
2342 2343
}

2344
static void arm_smmu_detach_dev(struct arm_smmu_master *master)
2345
{
2346 2347 2348 2349
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = master->domain;

	if (!smmu_domain)
2350 2351
		return;

2352 2353 2354 2355
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_del(&master->domain_head);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2356
	arm_smmu_disable_ats(master);
2357
	master->domain = NULL;
2358
	master->ats_enabled = false;
2359
	arm_smmu_install_ste_for_dev(master);
2360 2361
}

2362 2363 2364
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
2365
	unsigned long flags;
2366
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2367 2368
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2369
	struct arm_smmu_master *master;
2370

2371
	if (!fwspec)
2372 2373
		return -ENOENT;

2374
	master = fwspec->iommu_priv;
2375 2376
	smmu = master->smmu;

2377
	arm_smmu_detach_dev(master);
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
		ret = arm_smmu_domain_finalise(domain);
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
	}

2397
	master->domain = smmu_domain;
2398

2399 2400 2401 2402
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_add(&master->domain_head, &smmu_domain->devices);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2403
	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
2404
		master->ats_enabled = arm_smmu_ats_supported(master);
2405

2406 2407
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
		arm_smmu_write_ctx_desc(smmu, &smmu_domain->s1_cfg);
2408

2409
	arm_smmu_install_ste_for_dev(master);
2410
	arm_smmu_enable_ats(master);
2411 2412 2413 2414 2415 2416 2417 2418
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
			phys_addr_t paddr, size_t size, int prot)
{
2419
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2420 2421 2422 2423

	if (!ops)
		return -ENODEV;

2424
	return ops->map(ops, iova, paddr, size, prot);
2425 2426
}

2427 2428
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size, struct iommu_iotlb_gather *gather)
2429
{
2430 2431
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
2432 2433 2434 2435

	if (!ops)
		return 0;

2436
	return ops->unmap(ops, iova, size, gather);
2437 2438
}

2439 2440 2441 2442 2443 2444 2445 2446
static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (smmu_domain->smmu)
		arm_smmu_tlb_inv_context(smmu_domain);
}

2447 2448
static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
				struct iommu_iotlb_gather *gather)
2449
{
2450
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2451

2452 2453
	arm_smmu_tlb_inv_range(gather->start, gather->end - gather->start,
			       gather->pgsize, true, smmu_domain);
2454 2455
}

2456 2457 2458
static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
2459
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2460

2461 2462 2463
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

2464 2465 2466
	if (!ops)
		return 0;

2467
	return ops->iova_to_phys(ops, iova);
2468 2469
}

2470
static struct platform_driver arm_smmu_driver;
2471

2472
static int arm_smmu_match_node(struct device *dev, const void *data)
2473
{
2474
	return dev->fwnode == data;
2475 2476
}

2477 2478
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2479
{
2480
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
2481
						fwnode, arm_smmu_match_node);
2482 2483
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

2496 2497
static struct iommu_ops arm_smmu_ops;

2498 2499 2500 2501
static int arm_smmu_add_device(struct device *dev)
{
	int i, ret;
	struct arm_smmu_device *smmu;
2502
	struct arm_smmu_master *master;
2503
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2504
	struct iommu_group *group;
2505

2506
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2507
		return -ENODEV;
2508 2509 2510 2511 2512 2513 2514 2515
	/*
	 * We _can_ actually withstand dodgy bus code re-calling add_device()
	 * without an intervening remove_device()/of_xlate() sequence, but
	 * we're not going to do so quietly...
	 */
	if (WARN_ON_ONCE(fwspec->iommu_priv)) {
		master = fwspec->iommu_priv;
		smmu = master->smmu;
2516
	} else {
2517
		smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
2518 2519 2520 2521 2522 2523
		if (!smmu)
			return -ENODEV;
		master = kzalloc(sizeof(*master), GFP_KERNEL);
		if (!master)
			return -ENOMEM;

2524
		master->dev = dev;
2525
		master->smmu = smmu;
2526 2527
		master->sids = fwspec->ids;
		master->num_sids = fwspec->num_ids;
2528
		fwspec->iommu_priv = master;
2529 2530
	}

2531
	/* Check the SIDs are in range of the SMMU and our stream table */
2532 2533
	for (i = 0; i < master->num_sids; i++) {
		u32 sid = master->sids[i];
2534

2535 2536
		if (!arm_smmu_sid_in_range(smmu, sid))
			return -ERANGE;
2537

2538 2539 2540 2541 2542 2543
		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
				return ret;
		}
2544 2545
	}

2546
	group = iommu_group_get_for_dev(dev);
2547
	if (!IS_ERR(group)) {
2548
		iommu_group_put(group);
2549 2550
		iommu_device_link(&smmu->iommu, dev);
	}
2551

2552
	return PTR_ERR_OR_ZERO(group);
2553 2554 2555 2556
}

static void arm_smmu_remove_device(struct device *dev)
{
2557
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2558
	struct arm_smmu_master *master;
2559
	struct arm_smmu_device *smmu;
2560 2561 2562 2563 2564

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

	master = fwspec->iommu_priv;
2565
	smmu = master->smmu;
2566
	arm_smmu_detach_dev(master);
2567
	iommu_group_remove_device(dev);
2568
	iommu_device_unlink(&smmu->iommu, dev);
2569 2570
	kfree(master);
	iommu_fwspec_free(dev);
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

2590 2591 2592 2593 2594
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
			return 0;
		default:
			return -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = smmu_domain->non_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
2614
	default:
2615
		return -EINVAL;
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	mutex_lock(&smmu_domain->init_mutex);

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			if (smmu_domain->smmu) {
				ret = -EPERM;
				goto out_unlock;
			}

			if (*(int *)data)
				smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
			else
				smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
			break;
		default:
			ret = -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch(attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			smmu_domain->non_strict = *(int *)data;
			break;
		default:
			ret = -ENODEV;
2652 2653 2654
		}
		break;
	default:
2655
		ret = -EINVAL;
2656 2657 2658 2659 2660 2661 2662
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

2663 2664 2665 2666 2667
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

2668 2669 2670 2671 2672 2673 2674
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2675
					 prot, IOMMU_RESV_SW_MSI);
2676 2677 2678 2679
	if (!region)
		return;

	list_add_tail(&region->list, head);
2680 2681

	iommu_dma_get_resv_regions(dev, head);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
}

static void arm_smmu_put_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

2693 2694 2695 2696 2697 2698 2699
static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
2700
	.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
2701
	.iotlb_sync		= arm_smmu_iotlb_sync,
2702 2703 2704
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
2705
	.device_group		= arm_smmu_device_group,
2706 2707
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
2708
	.of_xlate		= arm_smmu_of_xlate,
2709 2710
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.put_resv_regions	= arm_smmu_put_resv_regions,
2711 2712 2713 2714 2715 2716 2717 2718
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
2719
				   size_t dwords, const char *name)
2720
{
2721 2722 2723
	size_t qsz;

	do {
2724
		qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
2725 2726 2727 2728 2729
		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
					      GFP_KERNEL);
		if (q->base || qsz < PAGE_SIZE)
			break;

2730
		q->llq.max_n_shift--;
2731
	} while (1);
2732 2733

	if (!q->base) {
2734 2735 2736
		dev_err(smmu->dev,
			"failed to allocate queue (0x%zx bytes) for %s\n",
			qsz, name);
2737 2738 2739
		return -ENOMEM;
	}

2740 2741
	if (!WARN_ON(q->base_dma & (qsz - 1))) {
		dev_info(smmu->dev, "allocated %u entries for %s\n",
2742
			 1 << q->llq.max_n_shift, name);
2743 2744
	}

2745 2746
	q->prod_reg	= arm_smmu_page1_fixup(prod_off, smmu);
	q->cons_reg	= arm_smmu_page1_fixup(cons_off, smmu);
2747 2748 2749
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
2750
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2751
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
2752

2753
	q->llq.prod = q->llq.cons = 0;
2754 2755 2756
	return 0;
}

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
static void arm_smmu_cmdq_free_bitmap(void *data)
{
	unsigned long *bitmap = data;
	bitmap_free(bitmap);
}

static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
{
	int ret = 0;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
	atomic_long_t *bitmap;

	atomic_set(&cmdq->owner_prod, 0);
	atomic_set(&cmdq->lock, 0);

	bitmap = (atomic_long_t *)bitmap_zalloc(nents, GFP_KERNEL);
	if (!bitmap) {
		dev_err(smmu->dev, "failed to allocate cmdq bitmap\n");
		ret = -ENOMEM;
	} else {
		cmdq->valid_map = bitmap;
		devm_add_action(smmu->dev, arm_smmu_cmdq_free_bitmap, bitmap);
	}

	return ret;
}

2785 2786 2787 2788 2789 2790
static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2791 2792
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS,
				      "cmdq");
2793
	if (ret)
2794
		return ret;
2795

2796 2797 2798 2799
	ret = arm_smmu_cmdq_init(smmu);
	if (ret)
		return ret;

2800 2801
	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2802 2803
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS,
				      "evtq");
2804
	if (ret)
2805
		return ret;
2806 2807 2808 2809 2810

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

2811
	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2812 2813
				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS,
				       "priq");
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
2841
	u32 size, l1size;
2842 2843
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

2844 2845 2846
	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2847 2848 2849 2850
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
2851 2852
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
2853
			 size, smmu->sid_bits);
2854

2855
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2856 2857
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
2858 2859 2860 2861 2862 2863 2864 2865 2866
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
2867 2868 2869
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
2870 2871
	cfg->strtab_base_cfg = reg;

2872
	return arm_smmu_init_l1_strtab(smmu);
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2883 2884
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
2895 2896
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
2917
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

2934
	return arm_smmu_init_strtab(smmu);
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
2961 2962 2963 2964 2965 2966
	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);

	if (ret)
		dev_err(smmu->dev, "GBPA not responding to update\n");
	return ret;
2967 2968
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2983
	doorbell &= MSI_CFG0_ADDR_MASK;
2984 2985 2986

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
2987
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

3008 3009 3010 3011 3012
	if (!dev->msi_domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

3013 3014 3015
	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
3016
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

3040
static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
3041
{
3042
	int irq, ret;
3043

3044
	arm_smmu_setup_msis(smmu);
3045

3046
	/* Request interrupt lines */
3047 3048
	irq = smmu->evtq.q.irq;
	if (irq) {
3049
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3050
						arm_smmu_evtq_thread,
3051 3052
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
3053
		if (ret < 0)
3054
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
3055 3056
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
3057 3058 3059 3060 3061 3062
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
3063
		if (ret < 0)
3064
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
3065 3066
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
3067 3068 3069 3070 3071
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
3072
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3073
							arm_smmu_priq_thread,
3074 3075
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
3076
							smmu);
3077
			if (ret < 0)
3078 3079
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
3080 3081
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
3082 3083
		}
	}
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
3102 3103
		 * Cavium ThunderX2 implementation doesn't support unique irq
		 * lines. Use a single irq line for all the SMMUv3 interrupts.
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
3117 3118

	/* Enable interrupt generation on the SMMU */
3119
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

3138
static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
3139 3140 3141 3142 3143 3144 3145
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
3146
	if (reg & CR0_SMMUEN) {
3147
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
3148 3149
		WARN_ON(is_kdump_kernel() && !disable_bypass);
		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
3150
	}
3151 3152 3153 3154 3155 3156

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
3157 3158 3159 3160 3161 3162
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
3177 3178
	writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3191
	arm_smmu_cmdq_issue_sync(smmu);
3192 3193 3194 3195 3196 3197 3198 3199 3200

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3201
	arm_smmu_cmdq_issue_sync(smmu);
3202 3203 3204

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
3205
	writel_relaxed(smmu->evtq.q.llq.prod,
3206
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
3207
	writel_relaxed(smmu->evtq.q.llq.cons,
3208
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
3222
		writel_relaxed(smmu->priq.q.llq.prod,
3223
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
3224
		writel_relaxed(smmu->priq.q.llq.cons,
3225
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
	if (smmu->features & ARM_SMMU_FEAT_ATS) {
		enables |= CR0_ATSCHK;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable ATS check\n");
			return ret;
		}
	}

3246 3247 3248 3249 3250 3251
	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

3252 3253
	if (is_kdump_kernel())
		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
3254 3255 3256 3257 3258 3259

	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
3260
		if (ret)
3261 3262
			return ret;
	}
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

3273
static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
3274 3275
{
	u32 reg;
3276
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
3277 3278 3279 3280 3281

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
3282
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
3293
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
3312
#if 0	/* ATS invalidation is slow and broken */
3313 3314 3315 3316 3317
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;
3318
#endif
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

	if (reg & IDR0_MSI)
		smmu->features |= ARM_SMMU_FEAT_MSI;

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
3330
	 * The coherency feature as set by FW is used in preference to the ID
3331 3332 3333
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
3334
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
3335 3336
			 coherent ? "true" : "false");

3337
	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
3338
	case IDR0_STALL_MODEL_FORCE:
3339 3340 3341
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
		/* Fallthrough */
	case IDR0_STALL_MODEL_STALL:
3342
		smmu->features |= ARM_SMMU_FEAT_STALLS;
3343
	}
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
3357
	switch (FIELD_GET(IDR0_TTF, reg)) {
3358 3359 3360 3361 3362 3363
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
		/* Fallthrough */
	case IDR0_TTF_AARCH64:
		break;
	default:
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

3379
	/* Queue sizes, capped to ensure natural alignment */
3380 3381
	smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_CMDQS, reg));
3382
	if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
3383
		/*
3384 3385 3386 3387
		 * We don't support splitting up batches, so one batch of
		 * commands plus an extra sync needs to fit inside the command
		 * queue. There's also no way we can handle the weird alignment
		 * restrictions on the base pointer for a unit-length queue.
3388
		 */
3389 3390
		dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
			CMDQ_BATCH_ENTRIES);
3391 3392 3393
		return -ENXIO;
	}

3394 3395 3396 3397
	smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_PRIQS, reg));
3398 3399

	/* SID/SSID sizes */
3400 3401
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
3402

3403 3404 3405 3406 3407 3408 3409
	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

3410 3411 3412 3413
	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
3414
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
3415 3416 3417

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
3418
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
3419
	if (reg & IDR5_GRAN16K)
3420
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
3421
	if (reg & IDR5_GRAN4K)
3422
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
3423

3424 3425 3426 3427
	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

3428
	/* Output address size */
3429
	switch (FIELD_GET(IDR5_OAS, reg)) {
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
3445 3446 3447 3448
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
3449 3450 3451 3452
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
		/* Fallthrough */
3453 3454 3455 3456
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

3457 3458 3459 3460 3461
	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

3462 3463 3464 3465 3466
	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

3467
	smmu->ias = max(smmu->ias, smmu->oas);
3468 3469 3470 3471 3472 3473

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

3474
#ifdef CONFIG_ACPI
3475 3476
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
3477 3478
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3479
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3480
		break;
3481
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3482 3483 3484
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}
3485 3486 3487 3488

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

3501 3502
	acpi_smmu_get_options(iort_smmu->model, smmu);

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

3516 3517
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
3518 3519
{
	struct device *dev = &pdev->dev;
3520
	u32 cells;
3521
	int ret = -EINVAL;
3522 3523 3524 3525 3526 3527

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

3538 3539 3540 3541 3542 3543 3544 3545
static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

3546 3547 3548 3549
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
3550
	resource_size_t ioaddr;
3551 3552 3553
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;
3554 3555 3556 3557 3558 3559 3560 3561

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

3573 3574
	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3575
	if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
3576 3577 3578
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
3579
	ioaddr = res->start;
3580 3581 3582 3583 3584 3585 3586

	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

	/* Interrupt lines */

3587
	irq = platform_get_irq_byname(pdev, "combined");
3588
	if (irq > 0)
3589 3590 3591 3592 3593
		smmu->combined_irq = irq;
	else {
		irq = platform_get_irq_byname(pdev, "eventq");
		if (irq > 0)
			smmu->evtq.q.irq = irq;
3594

3595 3596 3597
		irq = platform_get_irq_byname(pdev, "priq");
		if (irq > 0)
			smmu->priq.q.irq = irq;
3598

3599 3600 3601 3602
		irq = platform_get_irq_byname(pdev, "gerror");
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
3603
	/* Probe the h/w */
3604
	ret = arm_smmu_device_hw_probe(smmu);
3605 3606 3607 3608 3609 3610 3611 3612
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

3613 3614 3615
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

3616
	/* Reset the device */
3617 3618 3619 3620 3621
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
3622 3623
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
3624 3625
	if (ret)
		return ret;
3626 3627 3628 3629 3630

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
3631 3632 3633 3634
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}
3635

3636
#ifdef CONFIG_PCI
3637 3638 3639 3640 3641 3642
	if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
		pci_request_acs();
		ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
3643 3644
#endif
#ifdef CONFIG_ARM_AMBA
3645 3646 3647 3648 3649
	if (amba_bustype.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
		if (ret)
			return ret;
	}
3650
#endif
3651 3652 3653 3654 3655 3656
	if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
	return 0;
3657 3658
}

3659
static void arm_smmu_device_shutdown(struct platform_device *pdev)
3660
{
3661
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3662 3663

	arm_smmu_device_disable(smmu);
3664 3665
}

3666
static const struct of_device_id arm_smmu_of_match[] = {
3667 3668 3669 3670 3671 3672 3673 3674
	{ .compatible = "arm,smmu-v3", },
	{ },
};

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu-v3",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
3675
		.suppress_bind_attrs = true,
3676
	},
3677
	.probe	= arm_smmu_device_probe,
3678
	.shutdown = arm_smmu_device_shutdown,
3679
};
3680
builtin_platform_driver(arm_smmu_driver);