arm-smmu-v3.c 82.1 KB
Newer Older
A
Andrew Murray 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

12 13
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
14
#include <linux/bitfield.h>
15
#include <linux/bitops.h>
16
#include <linux/crash_dump.h>
17
#include <linux/delay.h>
18
#include <linux/dma-iommu.h>
19 20
#include <linux/err.h>
#include <linux/interrupt.h>
21
#include <linux/io-pgtable.h>
22 23
#include <linux/iommu.h>
#include <linux/iopoll.h>
24 25
#include <linux/init.h>
#include <linux/moduleparam.h>
26
#include <linux/msi.h>
27 28
#include <linux/of.h>
#include <linux/of_address.h>
29
#include <linux/of_iommu.h>
30
#include <linux/of_platform.h>
31
#include <linux/pci.h>
32
#include <linux/pci-ats.h>
33 34
#include <linux/platform_device.h>

35 36
#include <linux/amba/bus.h>

37 38
/* MMIO registers */
#define ARM_SMMU_IDR0			0x0
39 40 41 42 43 44 45 46 47
#define IDR0_ST_LVL			GENMASK(28, 27)
#define IDR0_ST_LVL_2LVL		1
#define IDR0_STALL_MODEL		GENMASK(25, 24)
#define IDR0_STALL_MODEL_STALL		0
#define IDR0_STALL_MODEL_FORCE		2
#define IDR0_TTENDIAN			GENMASK(22, 21)
#define IDR0_TTENDIAN_MIXED		0
#define IDR0_TTENDIAN_LE		2
#define IDR0_TTENDIAN_BE		3
48 49 50 51 52 53 54 55 56
#define IDR0_CD2L			(1 << 19)
#define IDR0_VMID16			(1 << 18)
#define IDR0_PRI			(1 << 16)
#define IDR0_SEV			(1 << 14)
#define IDR0_MSI			(1 << 13)
#define IDR0_ASID16			(1 << 12)
#define IDR0_ATS			(1 << 10)
#define IDR0_HYP			(1 << 9)
#define IDR0_COHACC			(1 << 4)
57 58 59
#define IDR0_TTF			GENMASK(3, 2)
#define IDR0_TTF_AARCH64		2
#define IDR0_TTF_AARCH32_64		3
60 61 62 63 64 65 66
#define IDR0_S1P			(1 << 1)
#define IDR0_S2P			(1 << 0)

#define ARM_SMMU_IDR1			0x4
#define IDR1_TABLES_PRESET		(1 << 30)
#define IDR1_QUEUES_PRESET		(1 << 29)
#define IDR1_REL			(1 << 28)
67 68 69 70 71
#define IDR1_CMDQS			GENMASK(25, 21)
#define IDR1_EVTQS			GENMASK(20, 16)
#define IDR1_PRIQS			GENMASK(15, 11)
#define IDR1_SSIDSIZE			GENMASK(10, 6)
#define IDR1_SIDSIZE			GENMASK(5, 0)
72 73

#define ARM_SMMU_IDR5			0x14
74
#define IDR5_STALL_MAX			GENMASK(31, 16)
75 76 77
#define IDR5_GRAN64K			(1 << 6)
#define IDR5_GRAN16K			(1 << 5)
#define IDR5_GRAN4K			(1 << 4)
78 79 80 81 82 83 84
#define IDR5_OAS			GENMASK(2, 0)
#define IDR5_OAS_32_BIT			0
#define IDR5_OAS_36_BIT			1
#define IDR5_OAS_40_BIT			2
#define IDR5_OAS_42_BIT			3
#define IDR5_OAS_44_BIT			4
#define IDR5_OAS_48_BIT			5
85
#define IDR5_OAS_52_BIT			6
86 87
#define IDR5_VAX			GENMASK(11, 10)
#define IDR5_VAX_52_BIT			1
88 89

#define ARM_SMMU_CR0			0x20
90
#define CR0_ATSCHK			(1 << 4)
91 92 93 94 95 96 97 98
#define CR0_CMDQEN			(1 << 3)
#define CR0_EVTQEN			(1 << 2)
#define CR0_PRIQEN			(1 << 1)
#define CR0_SMMUEN			(1 << 0)

#define ARM_SMMU_CR0ACK			0x24

#define ARM_SMMU_CR1			0x28
99 100 101 102 103 104 105
#define CR1_TABLE_SH			GENMASK(11, 10)
#define CR1_TABLE_OC			GENMASK(9, 8)
#define CR1_TABLE_IC			GENMASK(7, 6)
#define CR1_QUEUE_SH			GENMASK(5, 4)
#define CR1_QUEUE_OC			GENMASK(3, 2)
#define CR1_QUEUE_IC			GENMASK(1, 0)
/* CR1 cacheability fields don't quite follow the usual TCR-style encoding */
106 107 108 109 110 111 112 113 114
#define CR1_CACHE_NC			0
#define CR1_CACHE_WB			1
#define CR1_CACHE_WT			2

#define ARM_SMMU_CR2			0x2c
#define CR2_PTM				(1 << 2)
#define CR2_RECINVSID			(1 << 1)
#define CR2_E2H				(1 << 0)

115 116
#define ARM_SMMU_GBPA			0x44
#define GBPA_UPDATE			(1 << 31)
117
#define GBPA_ABORT			(1 << 20)
118

119 120
#define ARM_SMMU_IRQ_CTRL		0x50
#define IRQ_CTRL_EVTQ_IRQEN		(1 << 2)
121
#define IRQ_CTRL_PRIQ_IRQEN		(1 << 1)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#define IRQ_CTRL_GERROR_IRQEN		(1 << 0)

#define ARM_SMMU_IRQ_CTRLACK		0x54

#define ARM_SMMU_GERROR			0x60
#define GERROR_SFM_ERR			(1 << 8)
#define GERROR_MSI_GERROR_ABT_ERR	(1 << 7)
#define GERROR_MSI_PRIQ_ABT_ERR		(1 << 6)
#define GERROR_MSI_EVTQ_ABT_ERR		(1 << 5)
#define GERROR_MSI_CMDQ_ABT_ERR		(1 << 4)
#define GERROR_PRIQ_ABT_ERR		(1 << 3)
#define GERROR_EVTQ_ABT_ERR		(1 << 2)
#define GERROR_CMDQ_ERR			(1 << 0)
#define GERROR_ERR_MASK			0xfd

#define ARM_SMMU_GERRORN		0x64

#define ARM_SMMU_GERROR_IRQ_CFG0	0x68
#define ARM_SMMU_GERROR_IRQ_CFG1	0x70
#define ARM_SMMU_GERROR_IRQ_CFG2	0x74

#define ARM_SMMU_STRTAB_BASE		0x80
#define STRTAB_BASE_RA			(1UL << 62)
145
#define STRTAB_BASE_ADDR_MASK		GENMASK_ULL(51, 6)
146 147

#define ARM_SMMU_STRTAB_BASE_CFG	0x88
148 149 150 151 152
#define STRTAB_BASE_CFG_FMT		GENMASK(17, 16)
#define STRTAB_BASE_CFG_FMT_LINEAR	0
#define STRTAB_BASE_CFG_FMT_2LVL	1
#define STRTAB_BASE_CFG_SPLIT		GENMASK(10, 6)
#define STRTAB_BASE_CFG_LOG2SIZE	GENMASK(5, 0)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

#define ARM_SMMU_CMDQ_BASE		0x90
#define ARM_SMMU_CMDQ_PROD		0x98
#define ARM_SMMU_CMDQ_CONS		0x9c

#define ARM_SMMU_EVTQ_BASE		0xa0
#define ARM_SMMU_EVTQ_PROD		0x100a8
#define ARM_SMMU_EVTQ_CONS		0x100ac
#define ARM_SMMU_EVTQ_IRQ_CFG0		0xb0
#define ARM_SMMU_EVTQ_IRQ_CFG1		0xb8
#define ARM_SMMU_EVTQ_IRQ_CFG2		0xbc

#define ARM_SMMU_PRIQ_BASE		0xc0
#define ARM_SMMU_PRIQ_PROD		0x100c8
#define ARM_SMMU_PRIQ_CONS		0x100cc
#define ARM_SMMU_PRIQ_IRQ_CFG0		0xd0
#define ARM_SMMU_PRIQ_IRQ_CFG1		0xd8
#define ARM_SMMU_PRIQ_IRQ_CFG2		0xdc

/* Common MSI config fields */
173
#define MSI_CFG0_ADDR_MASK		GENMASK_ULL(51, 2)
174 175 176 177 178 179 180 181
#define MSI_CFG2_SH			GENMASK(5, 4)
#define MSI_CFG2_MEMATTR		GENMASK(3, 0)

/* Common memory attribute values */
#define ARM_SMMU_SH_NSH			0
#define ARM_SMMU_SH_OSH			2
#define ARM_SMMU_SH_ISH			3
#define ARM_SMMU_MEMATTR_DEVICE_nGnRE	0x1
182
#define ARM_SMMU_MEMATTR_OIWB		0xf
183 184 185 186 187 188 189 190 191

#define Q_IDX(q, p)			((p) & ((1 << (q)->max_n_shift) - 1))
#define Q_WRP(q, p)			((p) & (1 << (q)->max_n_shift))
#define Q_OVERFLOW_FLAG			(1 << 31)
#define Q_OVF(q, p)			((p) & Q_OVERFLOW_FLAG)
#define Q_ENT(q, p)			((q)->base +			\
					 Q_IDX(q, p) * (q)->ent_dwords)

#define Q_BASE_RWA			(1UL << 62)
192
#define Q_BASE_ADDR_MASK		GENMASK_ULL(51, 5)
193
#define Q_BASE_LOG2SIZE			GENMASK(4, 0)
194 195 196

/* Ensure DMA allocations are naturally aligned */
#ifdef CONFIG_CMA_ALIGNMENT
197
#define Q_MAX_SZ_SHIFT			(PAGE_SHIFT + CONFIG_CMA_ALIGNMENT)
198 199 200
#else
#define Q_MAX_SZ_SHIFT			(PAGE_SHIFT + MAX_ORDER - 1)
#endif
201 202 203 204 205

/*
 * Stream table.
 *
 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
206 207
 * 2lvl: 128k L1 entries,
 *       256 lazy entries per table (each table covers a PCI bus)
208
 */
209
#define STRTAB_L1_SZ_SHIFT		20
210 211 212
#define STRTAB_SPLIT			8

#define STRTAB_L1_DESC_DWORDS		1
213
#define STRTAB_L1_DESC_SPAN		GENMASK_ULL(4, 0)
214
#define STRTAB_L1_DESC_L2PTR_MASK	GENMASK_ULL(51, 6)
215 216 217

#define STRTAB_STE_DWORDS		8
#define STRTAB_STE_0_V			(1UL << 0)
218 219 220 221 222 223 224 225
#define STRTAB_STE_0_CFG		GENMASK_ULL(3, 1)
#define STRTAB_STE_0_CFG_ABORT		0
#define STRTAB_STE_0_CFG_BYPASS		4
#define STRTAB_STE_0_CFG_S1_TRANS	5
#define STRTAB_STE_0_CFG_S2_TRANS	6

#define STRTAB_STE_0_S1FMT		GENMASK_ULL(5, 4)
#define STRTAB_STE_0_S1FMT_LINEAR	0
226
#define STRTAB_STE_0_S1CTXPTR_MASK	GENMASK_ULL(51, 6)
227
#define STRTAB_STE_0_S1CDMAX		GENMASK_ULL(63, 59)
228 229 230 231 232

#define STRTAB_STE_1_S1C_CACHE_NC	0UL
#define STRTAB_STE_1_S1C_CACHE_WBRA	1UL
#define STRTAB_STE_1_S1C_CACHE_WT	2UL
#define STRTAB_STE_1_S1C_CACHE_WB	3UL
233 234 235
#define STRTAB_STE_1_S1CIR		GENMASK_ULL(3, 2)
#define STRTAB_STE_1_S1COR		GENMASK_ULL(5, 4)
#define STRTAB_STE_1_S1CSH		GENMASK_ULL(7, 6)
236 237 238

#define STRTAB_STE_1_S1STALLD		(1UL << 27)

239
#define STRTAB_STE_1_EATS		GENMASK_ULL(29, 28)
240 241 242 243
#define STRTAB_STE_1_EATS_ABT		0UL
#define STRTAB_STE_1_EATS_TRANS		1UL
#define STRTAB_STE_1_EATS_S1CHK		2UL

244
#define STRTAB_STE_1_STRW		GENMASK_ULL(31, 30)
245 246 247
#define STRTAB_STE_1_STRW_NSEL1		0UL
#define STRTAB_STE_1_STRW_EL2		2UL

248
#define STRTAB_STE_1_SHCFG		GENMASK_ULL(45, 44)
249 250
#define STRTAB_STE_1_SHCFG_INCOMING	1UL

251 252
#define STRTAB_STE_2_S2VMID		GENMASK_ULL(15, 0)
#define STRTAB_STE_2_VTCR		GENMASK_ULL(50, 32)
253 254 255 256 257
#define STRTAB_STE_2_S2AA64		(1UL << 51)
#define STRTAB_STE_2_S2ENDI		(1UL << 52)
#define STRTAB_STE_2_S2PTW		(1UL << 54)
#define STRTAB_STE_2_S2R		(1UL << 58)

258
#define STRTAB_STE_3_S2TTB_MASK		GENMASK_ULL(51, 4)
259 260 261

/* Context descriptor (stage-1 only) */
#define CTXDESC_CD_DWORDS		8
262 263 264 265 266 267 268 269 270 271 272 273 274 275
#define CTXDESC_CD_0_TCR_T0SZ		GENMASK_ULL(5, 0)
#define ARM64_TCR_T0SZ			GENMASK_ULL(5, 0)
#define CTXDESC_CD_0_TCR_TG0		GENMASK_ULL(7, 6)
#define ARM64_TCR_TG0			GENMASK_ULL(15, 14)
#define CTXDESC_CD_0_TCR_IRGN0		GENMASK_ULL(9, 8)
#define ARM64_TCR_IRGN0			GENMASK_ULL(9, 8)
#define CTXDESC_CD_0_TCR_ORGN0		GENMASK_ULL(11, 10)
#define ARM64_TCR_ORGN0			GENMASK_ULL(11, 10)
#define CTXDESC_CD_0_TCR_SH0		GENMASK_ULL(13, 12)
#define ARM64_TCR_SH0			GENMASK_ULL(13, 12)
#define CTXDESC_CD_0_TCR_EPD0		(1ULL << 14)
#define ARM64_TCR_EPD0			(1ULL << 7)
#define CTXDESC_CD_0_TCR_EPD1		(1ULL << 30)
#define ARM64_TCR_EPD1			(1ULL << 23)
276 277 278 279

#define CTXDESC_CD_0_ENDI		(1UL << 15)
#define CTXDESC_CD_0_V			(1UL << 31)

280 281 282 283
#define CTXDESC_CD_0_TCR_IPS		GENMASK_ULL(34, 32)
#define ARM64_TCR_IPS			GENMASK_ULL(34, 32)
#define CTXDESC_CD_0_TCR_TBI0		(1ULL << 38)
#define ARM64_TCR_TBI0			(1ULL << 37)
284 285

#define CTXDESC_CD_0_AA64		(1UL << 41)
286
#define CTXDESC_CD_0_S			(1UL << 44)
287 288
#define CTXDESC_CD_0_R			(1UL << 45)
#define CTXDESC_CD_0_A			(1UL << 46)
289 290
#define CTXDESC_CD_0_ASET		(1UL << 47)
#define CTXDESC_CD_0_ASID		GENMASK_ULL(63, 48)
291

292
#define CTXDESC_CD_1_TTB0_MASK		GENMASK_ULL(51, 4)
293 294

/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
295 296
#define ARM_SMMU_TCR2CD(tcr, fld)	FIELD_PREP(CTXDESC_CD_0_TCR_##fld, \
					FIELD_GET(ARM64_TCR_##fld, tcr))
297 298

/* Command queue */
299 300 301
#define CMDQ_ENT_SZ_SHIFT		4
#define CMDQ_ENT_DWORDS			((1 << CMDQ_ENT_SZ_SHIFT) >> 3)
#define CMDQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - CMDQ_ENT_SZ_SHIFT)
302

303
#define CMDQ_CONS_ERR			GENMASK(30, 24)
304 305 306
#define CMDQ_ERR_CERROR_NONE_IDX	0
#define CMDQ_ERR_CERROR_ILL_IDX		1
#define CMDQ_ERR_CERROR_ABT_IDX		2
307
#define CMDQ_ERR_CERROR_ATC_INV_IDX	3
308

309
#define CMDQ_0_OP			GENMASK_ULL(7, 0)
310 311
#define CMDQ_0_SSV			(1UL << 11)

312 313
#define CMDQ_PREFETCH_0_SID		GENMASK_ULL(63, 32)
#define CMDQ_PREFETCH_1_SIZE		GENMASK_ULL(4, 0)
314
#define CMDQ_PREFETCH_1_ADDR_MASK	GENMASK_ULL(63, 12)
315

316
#define CMDQ_CFGI_0_SID			GENMASK_ULL(63, 32)
317
#define CMDQ_CFGI_1_LEAF		(1UL << 0)
318
#define CMDQ_CFGI_1_RANGE		GENMASK_ULL(4, 0)
319

320 321
#define CMDQ_TLBI_0_VMID		GENMASK_ULL(47, 32)
#define CMDQ_TLBI_0_ASID		GENMASK_ULL(63, 48)
322
#define CMDQ_TLBI_1_LEAF		(1UL << 0)
323
#define CMDQ_TLBI_1_VA_MASK		GENMASK_ULL(63, 12)
324
#define CMDQ_TLBI_1_IPA_MASK		GENMASK_ULL(51, 12)
325

326 327 328 329 330 331
#define CMDQ_ATC_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_ATC_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_ATC_0_GLOBAL		(1UL << 9)
#define CMDQ_ATC_1_SIZE			GENMASK_ULL(5, 0)
#define CMDQ_ATC_1_ADDR_MASK		GENMASK_ULL(63, 12)

332 333 334 335 336 337 338 339 340 341 342 343
#define CMDQ_PRI_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_PRI_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_PRI_1_GRPID		GENMASK_ULL(8, 0)
#define CMDQ_PRI_1_RESP			GENMASK_ULL(13, 12)

#define CMDQ_SYNC_0_CS			GENMASK_ULL(13, 12)
#define CMDQ_SYNC_0_CS_NONE		0
#define CMDQ_SYNC_0_CS_IRQ		1
#define CMDQ_SYNC_0_CS_SEV		2
#define CMDQ_SYNC_0_MSH			GENMASK_ULL(23, 22)
#define CMDQ_SYNC_0_MSIATTR		GENMASK_ULL(27, 24)
#define CMDQ_SYNC_0_MSIDATA		GENMASK_ULL(63, 32)
344
#define CMDQ_SYNC_1_MSIADDR_MASK	GENMASK_ULL(51, 2)
345 346

/* Event queue */
347 348 349
#define EVTQ_ENT_SZ_SHIFT		5
#define EVTQ_ENT_DWORDS			((1 << EVTQ_ENT_SZ_SHIFT) >> 3)
#define EVTQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - EVTQ_ENT_SZ_SHIFT)
350

351
#define EVTQ_0_ID			GENMASK_ULL(7, 0)
352 353

/* PRI queue */
354 355 356
#define PRIQ_ENT_SZ_SHIFT		4
#define PRIQ_ENT_DWORDS			((1 << PRIQ_ENT_SZ_SHIFT) >> 3)
#define PRIQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - PRIQ_ENT_SZ_SHIFT)
357

358 359
#define PRIQ_0_SID			GENMASK_ULL(31, 0)
#define PRIQ_0_SSID			GENMASK_ULL(51, 32)
360 361 362 363 364 365 366
#define PRIQ_0_PERM_PRIV		(1UL << 58)
#define PRIQ_0_PERM_EXEC		(1UL << 59)
#define PRIQ_0_PERM_READ		(1UL << 60)
#define PRIQ_0_PERM_WRITE		(1UL << 61)
#define PRIQ_0_PRG_LAST			(1UL << 62)
#define PRIQ_0_SSID_V			(1UL << 63)

367
#define PRIQ_1_PRG_IDX			GENMASK_ULL(8, 0)
368
#define PRIQ_1_ADDR_MASK		GENMASK_ULL(63, 12)
369 370 371

/* High-level queue structures */
#define ARM_SMMU_POLL_TIMEOUT_US	100
372
#define ARM_SMMU_CMDQ_SYNC_TIMEOUT_US	1000000 /* 1s! */
373
#define ARM_SMMU_CMDQ_SYNC_SPIN_COUNT	10
374

375 376 377
#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

378 379 380 381
/*
 * not really modular, but the easiest way to keep compat with existing
 * bootargs behaviour is to continue using module_param_named here.
 */
382
static bool disable_bypass = 1;
383 384 385 386 387
module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

enum pri_resp {
388 389 390
	PRI_RESP_DENY = 0,
	PRI_RESP_FAIL = 1,
	PRI_RESP_SUCC = 2,
391 392
};

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
struct arm_smmu_cmdq_ent {
	/* Common fields */
	u8				opcode;
	bool				substream_valid;

	/* Command-specific fields */
	union {
		#define CMDQ_OP_PREFETCH_CFG	0x1
		struct {
			u32			sid;
			u8			size;
			u64			addr;
		} prefetch;

		#define CMDQ_OP_CFGI_STE	0x3
		#define CMDQ_OP_CFGI_ALL	0x4
		struct {
			u32			sid;
			union {
				bool		leaf;
				u8		span;
			};
		} cfgi;

		#define CMDQ_OP_TLBI_NH_ASID	0x11
		#define CMDQ_OP_TLBI_NH_VA	0x12
		#define CMDQ_OP_TLBI_EL2_ALL	0x20
		#define CMDQ_OP_TLBI_S12_VMALL	0x28
		#define CMDQ_OP_TLBI_S2_IPA	0x2a
		#define CMDQ_OP_TLBI_NSNH_ALL	0x30
		struct {
			u16			asid;
			u16			vmid;
			bool			leaf;
			u64			addr;
		} tlbi;

455 456 457 458 459 460 461 462 463 464
		#define CMDQ_OP_ATC_INV		0x40
		#define ATC_INV_SIZE_ALL	52
		struct {
			u32			sid;
			u32			ssid;
			u64			addr;
			u8			size;
			bool			global;
		} atc;

465 466 467 468 469 470 471 472 473
		#define CMDQ_OP_PRI_RESP	0x41
		struct {
			u32			sid;
			u32			ssid;
			u16			grpid;
			enum pri_resp		resp;
		} pri;

		#define CMDQ_OP_CMD_SYNC	0x46
474 475 476 477
		struct {
			u32			msidata;
			u64			msiaddr;
		} sync;
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	};
};

struct arm_smmu_queue {
	int				irq; /* Wired interrupt */

	__le64				*base;
	dma_addr_t			base_dma;
	u64				q_base;

	size_t				ent_dwords;
	u32				max_n_shift;
	u32				prod;
	u32				cons;

	u32 __iomem			*prod_reg;
	u32 __iomem			*cons_reg;
};

struct arm_smmu_cmdq {
	struct arm_smmu_queue		q;
	spinlock_t			lock;
};

struct arm_smmu_evtq {
	struct arm_smmu_queue		q;
	u32				max_stalls;
};

struct arm_smmu_priq {
	struct arm_smmu_queue		q;
};

/* High-level stream table and context descriptor structures */
struct arm_smmu_strtab_l1_desc {
	u8				span;

	__le64				*l2ptr;
	dma_addr_t			l2ptr_dma;
};

struct arm_smmu_s1_cfg {
	__le64				*cdptr;
	dma_addr_t			cdptr_dma;

	struct arm_smmu_ctx_desc {
		u16	asid;
		u64	ttbr;
		u64	tcr;
		u64	mair;
	}				cd;
};

struct arm_smmu_s2_cfg {
	u16				vmid;
	u64				vttbr;
	u64				vtcr;
};

struct arm_smmu_strtab_cfg {
	__le64				*strtab;
	dma_addr_t			strtab_dma;
	struct arm_smmu_strtab_l1_desc	*l1_desc;
	unsigned int			num_l1_ents;

	u64				strtab_base;
	u32				strtab_base_cfg;
};

/* An SMMUv3 instance */
struct arm_smmu_device {
	struct device			*dev;
	void __iomem			*base;

#define ARM_SMMU_FEAT_2_LVL_STRTAB	(1 << 0)
#define ARM_SMMU_FEAT_2_LVL_CDTAB	(1 << 1)
#define ARM_SMMU_FEAT_TT_LE		(1 << 2)
#define ARM_SMMU_FEAT_TT_BE		(1 << 3)
#define ARM_SMMU_FEAT_PRI		(1 << 4)
#define ARM_SMMU_FEAT_ATS		(1 << 5)
#define ARM_SMMU_FEAT_SEV		(1 << 6)
#define ARM_SMMU_FEAT_MSI		(1 << 7)
#define ARM_SMMU_FEAT_COHERENCY		(1 << 8)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 9)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 10)
#define ARM_SMMU_FEAT_STALLS		(1 << 11)
#define ARM_SMMU_FEAT_HYP		(1 << 12)
565
#define ARM_SMMU_FEAT_STALL_FORCE	(1 << 13)
566
#define ARM_SMMU_FEAT_VAX		(1 << 14)
567 568
	u32				features;

569
#define ARM_SMMU_OPT_SKIP_PREFETCH	(1 << 0)
570
#define ARM_SMMU_OPT_PAGE0_REGS_ONLY	(1 << 1)
571 572
	u32				options;

573 574 575 576 577
	struct arm_smmu_cmdq		cmdq;
	struct arm_smmu_evtq		evtq;
	struct arm_smmu_priq		priq;

	int				gerr_irq;
578
	int				combined_irq;
579
	u32				sync_nr;
580
	u8				prev_cmd_opcode;
581 582 583

	unsigned long			ias; /* IPA */
	unsigned long			oas; /* PA */
584
	unsigned long			pgsize_bitmap;
585 586 587 588 589 590 591 592 593 594 595 596 597

#define ARM_SMMU_MAX_ASIDS		(1 << 16)
	unsigned int			asid_bits;
	DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);

#define ARM_SMMU_MAX_VMIDS		(1 << 16)
	unsigned int			vmid_bits;
	DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);

	unsigned int			ssid_bits;
	unsigned int			sid_bits;

	struct arm_smmu_strtab_cfg	strtab_cfg;
598

599 600 601 602 603
	/* Hi16xx adds an extra 32 bits of goodness to its MSI payload */
	union {
		u32			sync_count;
		u64			padding;
	};
604

605 606
	/* IOMMU core code handle */
	struct iommu_device		iommu;
607 608
};

609
/* SMMU private data for each master */
610
struct arm_smmu_master {
611
	struct arm_smmu_device		*smmu;
612
	struct device			*dev;
613
	struct arm_smmu_domain		*domain;
614
	struct list_head		domain_head;
615 616
	u32				*sids;
	unsigned int			num_sids;
617
	bool				ats_enabled		:1;
618 619 620 621 622 623 624
};

/* SMMU private data for an IOMMU domain */
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
625
	ARM_SMMU_DOMAIN_BYPASS,
626 627 628 629 630 631 632
};

struct arm_smmu_domain {
	struct arm_smmu_device		*smmu;
	struct mutex			init_mutex; /* Protects smmu pointer */

	struct io_pgtable_ops		*pgtbl_ops;
633
	bool				non_strict;
634 635 636 637 638 639 640 641

	enum arm_smmu_domain_stage	stage;
	union {
		struct arm_smmu_s1_cfg	s1_cfg;
		struct arm_smmu_s2_cfg	s2_cfg;
	};

	struct iommu_domain		domain;
642 643 644

	struct list_head		devices;
	spinlock_t			devices_lock;
645 646
};

647 648 649 650 651 652 653
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
654
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
655 656 657
	{ 0, NULL},
};

658 659 660 661 662 663 664 665 666 667
static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
						 struct arm_smmu_device *smmu)
{
	if ((offset > SZ_64K) &&
	    (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
		offset -= SZ_64K;

	return smmu->base + offset;
}

668 669 670 671 672
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
/* Low-level queue manipulation functions */
static bool queue_full(struct arm_smmu_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

static bool queue_empty(struct arm_smmu_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

static void queue_sync_cons(struct arm_smmu_queue *q)
{
	q->cons = readl_relaxed(q->cons_reg);
}

static void queue_inc_cons(struct arm_smmu_queue *q)
{
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;

	q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
710 711 712 713 714 715 716

	/*
	 * Ensure that all CPU accesses (reads and writes) to the queue
	 * are complete before we update the cons pointer.
	 */
	mb();
	writel_relaxed(q->cons, q->cons_reg);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
}

static int queue_sync_prod(struct arm_smmu_queue *q)
{
	int ret = 0;
	u32 prod = readl_relaxed(q->prod_reg);

	if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
		ret = -EOVERFLOW;

	q->prod = prod;
	return ret;
}

static void queue_inc_prod(struct arm_smmu_queue *q)
{
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;

	q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
	writel(q->prod, q->prod_reg);
}

739
/*
740
 * Wait for the SMMU to consume items. If sync is true, wait until the queue
741 742
 * is empty. Otherwise, wait until there is at least one free slot.
 */
743
static int queue_poll_cons(struct arm_smmu_queue *q, bool sync, bool wfe)
744
{
745
	ktime_t timeout;
746
	unsigned int delay = 1, spin_cnt = 0;
747

748 749 750
	/* Wait longer if it's a CMD_SYNC */
	timeout = ktime_add_us(ktime_get(), sync ?
					    ARM_SMMU_CMDQ_SYNC_TIMEOUT_US :
751
					    ARM_SMMU_POLL_TIMEOUT_US);
752

753
	while (queue_sync_cons(q), (sync ? !queue_empty(q) : queue_full(q))) {
754 755 756 757 758
		if (ktime_compare(ktime_get(), timeout) > 0)
			return -ETIMEDOUT;

		if (wfe) {
			wfe();
759
		} else if (++spin_cnt < ARM_SMMU_CMDQ_SYNC_SPIN_COUNT) {
760
			cpu_relax();
761 762
			continue;
		} else {
763 764
			udelay(delay);
			delay *= 2;
765
			spin_cnt = 0;
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
		}
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
{
	if (queue_full(q))
		return -ENOSPC;

	queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
	queue_inc_prod(q);
	return 0;
}

static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
	if (queue_empty(q))
		return -EAGAIN;

	queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
	queue_inc_cons(q);
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
811
	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
812
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
813 814 815 816 817 818

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
819 820
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
821 822 823
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
	case CMDQ_OP_CFGI_STE:
824 825
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
826 827 828
		break;
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
829
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
830 831
		break;
	case CMDQ_OP_TLBI_NH_VA:
832 833
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
834 835
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
836
	case CMDQ_OP_TLBI_S2_IPA:
837 838
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
839
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
840 841
		break;
	case CMDQ_OP_TLBI_NH_ASID:
842
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
843 844
		/* Fallthrough */
	case CMDQ_OP_TLBI_S12_VMALL:
845
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
846
		break;
847 848 849 850 851 852 853 854
	case CMDQ_OP_ATC_INV:
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
		break;
855
	case CMDQ_OP_PRI_RESP:
856 857 858 859
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
860 861 862 863 864 865 866 867
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
868
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
869 870
		break;
	case CMDQ_OP_CMD_SYNC:
871
		if (ent->sync.msiaddr)
872
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
873
		else
874 875 876
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
877 878 879 880 881 882 883
		/*
		 * Commands are written little-endian, but we want the SMMU to
		 * receive MSIData, and thus write it back to memory, in CPU
		 * byte order, so big-endian needs an extra byteswap here.
		 */
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIDATA,
				     cpu_to_le32(ent->sync.msidata));
884
		cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
885 886 887 888 889 890 891 892 893 894 895 896 897 898
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
899
		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
900 901 902 903 904 905
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
906
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
907 908 909 910 911
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
912
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
913 914 915 916 917 918

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
919 920 921 922 923 924 925 926
	case CMDQ_ERR_CERROR_ATC_INV_IDX:
		/*
		 * ATC Invalidation Completion timeout. CONS is still pointing
		 * at the CMD_SYNC. Attempt to complete other pending commands
		 * by repeating the CMD_SYNC, though we might well end up back
		 * here since the ATC invalidation may still be pending.
		 */
		return;
927 928 929 930
	case CMDQ_ERR_CERROR_ILL_IDX:
		/* Fallthrough */
	default:
		break;
931 932 933 934 935 936
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
937
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
938 939 940 941 942 943 944 945 946 947
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

948
	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
949 950
}

951 952 953 954 955
static void arm_smmu_cmdq_insert_cmd(struct arm_smmu_device *smmu, u64 *cmd)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);

956 957
	smmu->prev_cmd_opcode = FIELD_GET(CMDQ_0_OP, cmd[0]);

958 959 960 961 962 963
	while (queue_insert_raw(q, cmd) == -ENOSPC) {
		if (queue_poll_cons(q, false, wfe))
			dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
	}
}

964 965 966 967
static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				    struct arm_smmu_cmdq_ent *ent)
{
	u64 cmd[CMDQ_ENT_DWORDS];
968
	unsigned long flags;
969 970 971 972 973 974 975

	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return;
	}

976
	spin_lock_irqsave(&smmu->cmdq.lock, flags);
977 978 979
	arm_smmu_cmdq_insert_cmd(smmu, cmd);
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
}
980

981 982 983 984
/*
 * The difference between val and sync_idx is bounded by the maximum size of
 * a queue at 2^20 entries, so 32 bits is plenty for wrap-safe arithmetic.
 */
985
static int __arm_smmu_sync_poll_msi(struct arm_smmu_device *smmu, u32 sync_idx)
986
{
987 988 989 990 991 992 993
	ktime_t timeout;
	u32 val;

	timeout = ktime_add_us(ktime_get(), ARM_SMMU_CMDQ_SYNC_TIMEOUT_US);
	val = smp_cond_load_acquire(&smmu->sync_count,
				    (int)(VAL - sync_idx) >= 0 ||
				    !ktime_before(ktime_get(), timeout));
994 995 996 997

	return (int)(val - sync_idx) < 0 ? -ETIMEDOUT : 0;
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static int __arm_smmu_cmdq_issue_sync_msi(struct arm_smmu_device *smmu)
{
	u64 cmd[CMDQ_ENT_DWORDS];
	unsigned long flags;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
		.sync	= {
			.msiaddr = virt_to_phys(&smmu->sync_count),
		},
	};

	spin_lock_irqsave(&smmu->cmdq.lock, flags);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

	/* Piggy-back on the previous command if it's a SYNC */
	if (smmu->prev_cmd_opcode == CMDQ_OP_CMD_SYNC) {
		ent.sync.msidata = smmu->sync_nr;
	} else {
		ent.sync.msidata = ++smmu->sync_nr;
		arm_smmu_cmdq_build_cmd(cmd, &ent);
		arm_smmu_cmdq_insert_cmd(smmu, cmd);
	}

1020 1021 1022 1023 1024 1025
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);

	return __arm_smmu_sync_poll_msi(smmu, ent.sync.msidata);
}

static int __arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
{
	u64 cmd[CMDQ_ENT_DWORDS];
	unsigned long flags;
	bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	struct arm_smmu_cmdq_ent ent = { .opcode = CMDQ_OP_CMD_SYNC };
	int ret;

	arm_smmu_cmdq_build_cmd(cmd, &ent);

	spin_lock_irqsave(&smmu->cmdq.lock, flags);
	arm_smmu_cmdq_insert_cmd(smmu, cmd);
1037
	ret = queue_poll_cons(&smmu->cmdq.q, true, wfe);
1038
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
1039

1040 1041 1042
	return ret;
}

1043
static int arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
1044 1045 1046 1047 1048 1049 1050
{
	int ret;
	bool msi = (smmu->features & ARM_SMMU_FEAT_MSI) &&
		   (smmu->features & ARM_SMMU_FEAT_COHERENCY);

	ret = msi ? __arm_smmu_cmdq_issue_sync_msi(smmu)
		  : __arm_smmu_cmdq_issue_sync(smmu);
1051 1052
	if (ret)
		dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
1053
	return ret;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
}

/* Context descriptor manipulation functions */
static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
{
	u64 val = 0;

	/* Repack the TCR. Just care about TTBR0 for now */
	val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
	val |= ARM_SMMU_TCR2CD(tcr, TG0);
	val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
	val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
	val |= ARM_SMMU_TCR2CD(tcr, SH0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD1);
	val |= ARM_SMMU_TCR2CD(tcr, IPS);

	return val;
}

static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
				    struct arm_smmu_s1_cfg *cfg)
{
	u64 val;

	/*
	 * We don't need to issue any invalidation here, as we'll invalidate
	 * the STE when installing the new entry anyway.
	 */
	val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
#ifdef __BIG_ENDIAN
	      CTXDESC_CD_0_ENDI |
#endif
1087 1088
	      CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET |
	      CTXDESC_CD_0_AA64 | FIELD_PREP(CTXDESC_CD_0_ASID, cfg->cd.asid) |
1089
	      CTXDESC_CD_0_V;
1090 1091 1092 1093 1094

	/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
	if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
		val |= CTXDESC_CD_0_S;

1095 1096
	cfg->cdptr[0] = cpu_to_le64(val);

1097
	val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK;
1098 1099
	cfg->cdptr[1] = cpu_to_le64(val);

1100
	cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair);
1101 1102 1103 1104 1105 1106 1107 1108
}

/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

1109
	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1110
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	*dst = cpu_to_le64(val);
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1126
	arm_smmu_cmdq_issue_sync(smmu);
1127 1128
}

1129 1130
static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
				      __le64 *dst)
1131 1132 1133 1134 1135
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
1136 1137 1138
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
1150 1151 1152 1153
	struct arm_smmu_device *smmu = NULL;
	struct arm_smmu_s1_cfg *s1_cfg = NULL;
	struct arm_smmu_s2_cfg *s2_cfg = NULL;
	struct arm_smmu_domain *smmu_domain = NULL;
1154 1155 1156 1157 1158 1159 1160
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	if (master) {
		smmu_domain = master->domain;
		smmu = master->smmu;
	}

	if (smmu_domain) {
		switch (smmu_domain->stage) {
		case ARM_SMMU_DOMAIN_S1:
			s1_cfg = &smmu_domain->s1_cfg;
			break;
		case ARM_SMMU_DOMAIN_S2:
		case ARM_SMMU_DOMAIN_NESTED:
			s2_cfg = &smmu_domain->s2_cfg;
			break;
		default:
			break;
		}
	}

1180
	if (val & STRTAB_STE_0_V) {
1181
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1182 1183 1184 1185 1186 1187
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
1188 1189 1190
		case STRTAB_STE_0_CFG_ABORT:
			if (disable_bypass)
				break;
1191 1192 1193 1194 1195
		default:
			BUG(); /* STE corruption */
		}
	}

1196
	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1197 1198 1199
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
1200 1201
	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
		if (!smmu_domain && disable_bypass)
1202
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1203
		else
1204
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1205 1206

		dst[0] = cpu_to_le64(val);
1207 1208
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
1209
		dst[2] = 0; /* Nuke the VMID */
1210 1211 1212 1213 1214
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
1215 1216 1217 1218
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

1219
	if (s1_cfg) {
1220 1221
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
1222 1223 1224 1225
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
			 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1226

1227 1228
		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1229 1230
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

1231
		val |= (s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1232
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS);
1233 1234
	}

1235
	if (s2_cfg) {
1236 1237
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
1238 1239
			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1240 1241 1242 1243 1244 1245
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

1246
		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1247

1248
		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1249 1250
	}

1251 1252 1253 1254
	if (master->ats_enabled)
		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
						 STRTAB_STE_1_EATS_TRANS));

1255 1256 1257 1258 1259
	arm_smmu_sync_ste_for_sid(smmu, sid);
	dst[0] = cpu_to_le64(val);
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1260 1261
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1262 1263 1264 1265 1266 1267 1268
}

static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
{
	unsigned int i;

	for (i = 0; i < nent; ++i) {
1269
		arm_smmu_write_strtab_ent(NULL, -1, strtab);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1285
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1286 1287

	desc->span = STRTAB_SPLIT + 1;
1288 1289
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
					  GFP_KERNEL | __GFP_ZERO);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
	u64 evt[EVTQ_ENT_DWORDS];

1310 1311
	do {
		while (!queue_remove_raw(q, evt)) {
1312
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
		if (queue_sync_prod(q) == -EOVERFLOW)
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
	} while (!queue_empty(q));
1328 1329 1330 1331 1332 1333

	/* Sync our overflow flag, as we believe we're up to speed */
	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
	return IRQ_HANDLED;
}

1334 1335 1336 1337 1338 1339
static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

1340 1341 1342 1343 1344
	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1345 1346 1347 1348 1349 1350 1351 1352 1353

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1354
		 evt[1] & PRIQ_1_ADDR_MASK);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};
1367

1368 1369
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
1370 1371 1372 1373 1374 1375 1376 1377
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
	u64 evt[PRIQ_ENT_DWORDS];

1378 1379 1380
	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);
1381

1382 1383 1384
		if (queue_sync_prod(q) == -EOVERFLOW)
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
	} while (!queue_empty(q));
1385 1386 1387

	/* Sync our overflow flag, as we believe we're up to speed */
	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1388
	writel(q->cons, q->cons_reg);
1389 1390 1391 1392 1393 1394 1395
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
1396
	u32 gerror, gerrorn, active;
1397 1398 1399 1400 1401
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

1402 1403
	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
1404 1405 1406 1407
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
1408
		 active);
1409

1410
	if (active & GERROR_SFM_ERR) {
1411 1412 1413 1414
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

1415
	if (active & GERROR_MSI_GERROR_ABT_ERR)
1416 1417
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

1418
	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1419 1420
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

1421
	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1422 1423
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

1424
	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1425 1426
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

1427
	if (active & GERROR_PRIQ_ABT_ERR)
1428 1429
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

1430
	if (active & GERROR_EVTQ_ABT_ERR)
1431 1432
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

1433
	if (active & GERROR_CMDQ_ERR)
1434 1435 1436 1437 1438 1439
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
static void
arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
			struct arm_smmu_cmdq_ent *cmd)
{
	size_t log2_span;
	size_t span_mask;
	/* ATC invalidates are always on 4096-bytes pages */
	size_t inval_grain_shift = 12;
	unsigned long page_start, page_end;

	*cmd = (struct arm_smmu_cmdq_ent) {
		.opcode			= CMDQ_OP_ATC_INV,
		.substream_valid	= !!ssid,
		.atc.ssid		= ssid,
	};

	if (!size) {
		cmd->atc.size = ATC_INV_SIZE_ALL;
		return;
	}

	page_start	= iova >> inval_grain_shift;
	page_end	= (iova + size - 1) >> inval_grain_shift;

	/*
	 * In an ATS Invalidate Request, the address must be aligned on the
	 * range size, which must be a power of two number of page sizes. We
	 * thus have to choose between grossly over-invalidating the region, or
	 * splitting the invalidation into multiple commands. For simplicity
	 * we'll go with the first solution, but should refine it in the future
	 * if multiple commands are shown to be more efficient.
	 *
	 * Find the smallest power of two that covers the range. The most
	 * significant differing bit between the start and end addresses,
	 * fls(start ^ end), indicates the required span. For example:
	 *
	 * We want to invalidate pages [8; 11]. This is already the ideal range:
	 *		x = 0b1000 ^ 0b1011 = 0b11
	 *		span = 1 << fls(x) = 4
	 *
	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
	 *		x = 0b0111 ^ 0b1010 = 0b1101
	 *		span = 1 << fls(x) = 16
	 */
	log2_span	= fls_long(page_start ^ page_end);
	span_mask	= (1ULL << log2_span) - 1;

	page_start	&= ~span_mask;

	cmd->atc.addr	= page_start << inval_grain_shift;
	cmd->atc.size	= log2_span;
}

static int arm_smmu_atc_inv_master(struct arm_smmu_master *master,
				   struct arm_smmu_cmdq_ent *cmd)
{
	int i;

	if (!master->ats_enabled)
		return 0;

	for (i = 0; i < master->num_sids; i++) {
		cmd->atc.sid = master->sids[i];
		arm_smmu_cmdq_issue_cmd(master->smmu, cmd);
	}

	return arm_smmu_cmdq_issue_sync(master->smmu);
}

static int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain,
				   int ssid, unsigned long iova, size_t size)
{
	int ret = 0;
	unsigned long flags;
	struct arm_smmu_cmdq_ent cmd;
	struct arm_smmu_master *master;

	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
		return 0;

	arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master, &smmu_domain->devices, domain_head)
		ret |= arm_smmu_atc_inv_master(master, &cmd);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

	return ret ? -ETIMEDOUT : 0;
}

1547 1548 1549 1550
/* IO_PGTABLE API */
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
1551 1552

	arm_smmu_cmdq_issue_sync(smmu_domain->smmu);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
}

static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
		cmd.tlbi.vmid	= 0;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1570 1571 1572 1573 1574 1575
	/*
	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
	 * PTEs previously cleared by unmaps on the current CPU not yet visible
	 * to the SMMU. We are relying on the DSB implicit in queue_inc_prod()
	 * to guarantee those are observed before the TLBI. Do be careful, 007.
	 */
1576
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1577
	arm_smmu_cmdq_issue_sync(smmu);
1578 1579 1580
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1581
					  size_t granule, bool leaf, void *cookie)
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
			.addr	= iova,
		},
	};

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1600 1601 1602 1603
	do {
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
		cmd.tlbi.addr += granule;
	} while (size -= granule);
1604 1605
}

1606
static const struct iommu_gather_ops arm_smmu_gather_ops = {
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

1629 1630 1631
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

1643 1644 1645 1646 1647 1648
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1649
	mutex_init(&smmu_domain->init_mutex);
1650 1651 1652
	INIT_LIST_HEAD(&smmu_domain->devices);
	spin_lock_init(&smmu_domain->devices_lock);

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1679
	iommu_put_dma_cookie(domain);
1680
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1681 1682 1683 1684 1685 1686

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

		if (cfg->cdptr) {
1687 1688 1689 1690
			dmam_free_coherent(smmu_domain->smmu->dev,
					   CTXDESC_CD_DWORDS << 3,
					   cfg->cdptr,
					   cfg->cdptr_dma);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

			arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
		}
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
1707
	int asid;
1708 1709 1710 1711
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

	asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1712
	if (asid < 0)
1713 1714
		return asid;

1715 1716 1717
	cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
					 &cfg->cdptr_dma,
					 GFP_KERNEL | __GFP_ZERO);
1718 1719
	if (!cfg->cdptr) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1720
		ret = -ENOMEM;
1721 1722 1723
		goto out_free_asid;
	}

1724
	cfg->cd.asid	= (u16)asid;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
	cfg->cd.tcr	= pgtbl_cfg->arm_lpae_s1_cfg.tcr;
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
	return 0;

out_free_asid:
	arm_smmu_bitmap_free(smmu->asid_map, asid);
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
1738
	int vmid;
1739 1740 1741 1742
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1743
	if (vmid < 0)
1744 1745
		return vmid;

1746
	cfg->vmid	= (u16)vmid;
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
	cfg->vtcr	= pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
	return 0;
}

static int arm_smmu_domain_finalise(struct iommu_domain *domain)
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1764 1765 1766 1767 1768
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

1769 1770 1771 1772 1773 1774 1775 1776
	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
1777 1778
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
1795
		.pgsize_bitmap	= smmu->pgsize_bitmap,
1796 1797
		.ias		= ias,
		.oas		= oas,
1798
		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
1799
		.tlb		= &arm_smmu_gather_ops,
1800
		.iommu_dev	= smmu->dev,
1801 1802
	};

1803 1804 1805
	if (smmu_domain->non_strict)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_NON_STRICT;

1806 1807 1808 1809
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

1810
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1811
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
1812
	domain->geometry.force_aperture = true;
1813 1814

	ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1815
	if (ret < 0) {
1816
		free_io_pgtable_ops(pgtbl_ops);
1817 1818
		return ret;
	}
1819

1820 1821
	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

1846
static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
1847
{
1848
	int i, j;
1849
	struct arm_smmu_device *smmu = master->smmu;
1850

1851 1852
	for (i = 0; i < master->num_sids; ++i) {
		u32 sid = master->sids[i];
1853 1854
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

1855 1856
		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
1857
			if (master->sids[j] == sid)
1858 1859 1860 1861
				break;
		if (j < i)
			continue;

1862
		arm_smmu_write_strtab_ent(master, sid, step);
1863 1864 1865
	}
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
static int arm_smmu_enable_ats(struct arm_smmu_master *master)
{
	int ret;
	size_t stu;
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);

	if (!(smmu->features & ARM_SMMU_FEAT_ATS) || !dev_is_pci(master->dev) ||
	    !(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS) || pci_ats_disabled())
		return -ENXIO;

	pdev = to_pci_dev(master->dev);
	if (pdev->untrusted)
		return -EPERM;

	/* Smallest Translation Unit: log2 of the smallest supported granule */
	stu = __ffs(smmu->pgsize_bitmap);

	ret = pci_enable_ats(pdev, stu);
	if (ret)
		return ret;

	master->ats_enabled = true;
	return 0;
}

static void arm_smmu_disable_ats(struct arm_smmu_master *master)
{
1895 1896
	struct arm_smmu_cmdq_ent cmd;

1897 1898 1899
	if (!master->ats_enabled || !dev_is_pci(master->dev))
		return;

1900 1901
	arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd);
	arm_smmu_atc_inv_master(master, &cmd);
1902 1903 1904 1905
	pci_disable_ats(to_pci_dev(master->dev));
	master->ats_enabled = false;
}

1906
static void arm_smmu_detach_dev(struct arm_smmu_master *master)
1907
{
1908 1909 1910 1911
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = master->domain;

	if (!smmu_domain)
1912 1913
		return;

1914 1915 1916 1917
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_del(&master->domain_head);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

1918
	master->domain = NULL;
1919
	arm_smmu_install_ste_for_dev(master);
1920 1921

	arm_smmu_disable_ats(master);
1922 1923
}

1924 1925 1926
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
1927
	unsigned long flags;
1928
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1929 1930
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1931
	struct arm_smmu_master *master;
1932

1933
	if (!fwspec)
1934 1935
		return -ENOENT;

1936
	master = fwspec->iommu_priv;
1937 1938
	smmu = master->smmu;

1939
	arm_smmu_detach_dev(master);
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
		ret = arm_smmu_domain_finalise(domain);
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
	}

1959
	master->domain = smmu_domain;
1960

1961 1962 1963 1964
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_add(&master->domain_head, &smmu_domain->devices);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

1965 1966 1967
	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
		arm_smmu_enable_ats(master);

1968 1969
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
		arm_smmu_write_ctx_desc(smmu, &smmu_domain->s1_cfg);
1970

1971
	arm_smmu_install_ste_for_dev(master);
1972 1973 1974 1975 1976 1977 1978 1979
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
			phys_addr_t paddr, size_t size, int prot)
{
1980
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1981 1982 1983 1984

	if (!ops)
		return -ENODEV;

1985
	return ops->map(ops, iova, paddr, size, prot);
1986 1987 1988 1989 1990
}

static size_t
arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
{
1991 1992 1993
	int ret;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1994 1995 1996 1997

	if (!ops)
		return 0;

1998 1999 2000 2001 2002
	ret = ops->unmap(ops, iova, size);
	if (ret && arm_smmu_atc_inv_domain(smmu_domain, 0, iova, size))
		return 0;

	return ret;
2003 2004
}

2005 2006 2007 2008 2009 2010 2011 2012
static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (smmu_domain->smmu)
		arm_smmu_tlb_inv_context(smmu_domain);
}

2013 2014 2015 2016 2017
static void arm_smmu_iotlb_sync(struct iommu_domain *domain)
{
	struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;

	if (smmu)
2018
		arm_smmu_cmdq_issue_sync(smmu);
2019 2020
}

2021 2022 2023
static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
2024
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2025

2026 2027 2028
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

2029 2030 2031
	if (!ops)
		return 0;

2032
	return ops->iova_to_phys(ops, iova);
2033 2034
}

2035
static struct platform_driver arm_smmu_driver;
2036

2037
static int arm_smmu_match_node(struct device *dev, const void *data)
2038
{
2039
	return dev->fwnode == data;
2040 2041
}

2042 2043
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2044
{
2045
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
2046
						fwnode, arm_smmu_match_node);
2047 2048
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

2061 2062
static struct iommu_ops arm_smmu_ops;

2063 2064 2065 2066
static int arm_smmu_add_device(struct device *dev)
{
	int i, ret;
	struct arm_smmu_device *smmu;
2067
	struct arm_smmu_master *master;
2068
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2069
	struct iommu_group *group;
2070

2071
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2072
		return -ENODEV;
2073 2074 2075 2076 2077 2078 2079 2080
	/*
	 * We _can_ actually withstand dodgy bus code re-calling add_device()
	 * without an intervening remove_device()/of_xlate() sequence, but
	 * we're not going to do so quietly...
	 */
	if (WARN_ON_ONCE(fwspec->iommu_priv)) {
		master = fwspec->iommu_priv;
		smmu = master->smmu;
2081
	} else {
2082
		smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
2083 2084 2085 2086 2087 2088
		if (!smmu)
			return -ENODEV;
		master = kzalloc(sizeof(*master), GFP_KERNEL);
		if (!master)
			return -ENOMEM;

2089
		master->dev = dev;
2090
		master->smmu = smmu;
2091 2092
		master->sids = fwspec->ids;
		master->num_sids = fwspec->num_ids;
2093
		fwspec->iommu_priv = master;
2094 2095
	}

2096
	/* Check the SIDs are in range of the SMMU and our stream table */
2097 2098
	for (i = 0; i < master->num_sids; i++) {
		u32 sid = master->sids[i];
2099

2100 2101
		if (!arm_smmu_sid_in_range(smmu, sid))
			return -ERANGE;
2102

2103 2104 2105 2106 2107 2108
		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
				return ret;
		}
2109 2110
	}

2111
	group = iommu_group_get_for_dev(dev);
2112
	if (!IS_ERR(group)) {
2113
		iommu_group_put(group);
2114 2115
		iommu_device_link(&smmu->iommu, dev);
	}
2116

2117
	return PTR_ERR_OR_ZERO(group);
2118 2119 2120 2121
}

static void arm_smmu_remove_device(struct device *dev)
{
2122
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2123
	struct arm_smmu_master *master;
2124
	struct arm_smmu_device *smmu;
2125 2126 2127 2128 2129

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

	master = fwspec->iommu_priv;
2130
	smmu = master->smmu;
2131
	arm_smmu_detach_dev(master);
2132
	iommu_group_remove_device(dev);
2133
	iommu_device_unlink(&smmu->iommu, dev);
2134 2135
	kfree(master);
	iommu_fwspec_free(dev);
2136 2137
}

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

2155 2156 2157 2158 2159
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
			return 0;
		default:
			return -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = smmu_domain->non_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
2179
	default:
2180
		return -EINVAL;
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	mutex_lock(&smmu_domain->init_mutex);

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			if (smmu_domain->smmu) {
				ret = -EPERM;
				goto out_unlock;
			}

			if (*(int *)data)
				smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
			else
				smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
			break;
		default:
			ret = -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch(attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			smmu_domain->non_strict = *(int *)data;
			break;
		default:
			ret = -ENODEV;
2217 2218 2219
		}
		break;
	default:
2220
		ret = -EINVAL;
2221 2222 2223 2224 2225 2226 2227
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

2228 2229 2230 2231 2232
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

2233 2234 2235 2236 2237 2238 2239
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2240
					 prot, IOMMU_RESV_SW_MSI);
2241 2242 2243 2244
	if (!region)
		return;

	list_add_tail(&region->list, head);
2245 2246

	iommu_dma_get_resv_regions(dev, head);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
}

static void arm_smmu_put_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

2258 2259 2260 2261 2262 2263 2264
static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
2265
	.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
2266
	.iotlb_sync		= arm_smmu_iotlb_sync,
2267 2268 2269
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
2270
	.device_group		= arm_smmu_device_group,
2271 2272
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
2273
	.of_xlate		= arm_smmu_of_xlate,
2274 2275
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.put_resv_regions	= arm_smmu_put_resv_regions,
2276 2277 2278 2279 2280 2281 2282 2283
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
2284
				   size_t dwords, const char *name)
2285
{
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	size_t qsz;

	do {
		qsz = ((1 << q->max_n_shift) * dwords) << 3;
		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
					      GFP_KERNEL);
		if (q->base || qsz < PAGE_SIZE)
			break;

		q->max_n_shift--;
	} while (1);
2297 2298

	if (!q->base) {
2299 2300 2301
		dev_err(smmu->dev,
			"failed to allocate queue (0x%zx bytes) for %s\n",
			qsz, name);
2302 2303 2304
		return -ENOMEM;
	}

2305 2306 2307 2308 2309
	if (!WARN_ON(q->base_dma & (qsz - 1))) {
		dev_info(smmu->dev, "allocated %u entries for %s\n",
			 1 << q->max_n_shift, name);
	}

2310 2311
	q->prod_reg	= arm_smmu_page1_fixup(prod_off, smmu);
	q->cons_reg	= arm_smmu_page1_fixup(cons_off, smmu);
2312 2313 2314
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
2315
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2316
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->max_n_shift);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

	q->prod = q->cons = 0;
	return 0;
}

static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	spin_lock_init(&smmu->cmdq.lock);
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2329 2330
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS,
				      "cmdq");
2331
	if (ret)
2332
		return ret;
2333 2334 2335

	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2336 2337
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS,
				      "evtq");
2338
	if (ret)
2339
		return ret;
2340 2341 2342 2343 2344

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

2345
	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2346 2347
				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS,
				       "priq");
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
2375
	u32 size, l1size;
2376 2377
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

2378 2379 2380
	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2381 2382 2383 2384
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
2385 2386
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
2387
			 size, smmu->sid_bits);
2388

2389
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2390 2391
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
2392 2393 2394 2395 2396 2397 2398 2399 2400
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
2401 2402 2403
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
2404 2405
	cfg->strtab_base_cfg = reg;

2406
	return arm_smmu_init_l1_strtab(smmu);
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2417 2418
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
2429 2430
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
2451
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

2468
	return arm_smmu_init_strtab(smmu);
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
2495 2496 2497 2498 2499 2500
	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);

	if (ret)
		dev_err(smmu->dev, "GBPA not responding to update\n");
	return ret;
2501 2502
}

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2517
	doorbell &= MSI_CFG0_ADDR_MASK;
2518 2519 2520

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
2521
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

2542 2543 2544 2545 2546
	if (!dev->msi_domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

2547 2548 2549
	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
2550
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

2574
static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2575
{
2576
	int irq, ret;
2577

2578
	arm_smmu_setup_msis(smmu);
2579

2580
	/* Request interrupt lines */
2581 2582
	irq = smmu->evtq.q.irq;
	if (irq) {
2583
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2584
						arm_smmu_evtq_thread,
2585 2586
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
2587
		if (ret < 0)
2588
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
2589 2590
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
2591 2592 2593 2594 2595 2596
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
2597
		if (ret < 0)
2598
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
2599 2600
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
2601 2602 2603 2604 2605
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
2606
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2607
							arm_smmu_priq_thread,
2608 2609
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
2610
							smmu);
2611
			if (ret < 0)
2612 2613
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
2614 2615
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
2616 2617
		}
	}
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
2636 2637
		 * Cavium ThunderX2 implementation doesn't support unique irq
		 * lines. Use a single irq line for all the SMMUv3 interrupts.
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2651 2652

	/* Enable interrupt generation on the SMMU */
2653
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

2672
static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2673 2674 2675 2676 2677 2678 2679
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2680
	if (reg & CR0_SMMUEN) {
2681
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2682 2683
		WARN_ON(is_kdump_kernel() && !disable_bypass);
		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
2684
	}
2685 2686 2687 2688 2689 2690

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
2691 2692 2693 2694 2695 2696
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
	writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2725
	arm_smmu_cmdq_issue_sync(smmu);
2726 2727 2728 2729 2730 2731 2732 2733 2734

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2735
	arm_smmu_cmdq_issue_sync(smmu);
2736 2737 2738

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2739 2740 2741 2742
	writel_relaxed(smmu->evtq.q.prod,
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
	writel_relaxed(smmu->evtq.q.cons,
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
		writel_relaxed(smmu->priq.q.prod,
2757
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
2758
		writel_relaxed(smmu->priq.q.cons,
2759
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	if (smmu->features & ARM_SMMU_FEAT_ATS) {
		enables |= CR0_ATSCHK;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable ATS check\n");
			return ret;
		}
	}

2780 2781 2782 2783 2784 2785
	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

2786 2787
	if (is_kdump_kernel())
		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
2788 2789 2790 2791 2792 2793

	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2794
		if (ret)
2795 2796
			return ret;
	}
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

2807
static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2808 2809
{
	u32 reg;
2810
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2811 2812 2813 2814 2815

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
2816
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
2827
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

	if (reg & IDR0_MSI)
		smmu->features |= ARM_SMMU_FEAT_MSI;

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
2862
	 * The coherency feature as set by FW is used in preference to the ID
2863 2864 2865
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
2866
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
2867 2868
			 coherent ? "true" : "false");

2869
	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
2870
	case IDR0_STALL_MODEL_FORCE:
2871 2872 2873
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
		/* Fallthrough */
	case IDR0_STALL_MODEL_STALL:
2874
		smmu->features |= ARM_SMMU_FEAT_STALLS;
2875
	}
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
2889
	switch (FIELD_GET(IDR0_TTF, reg)) {
2890 2891 2892 2893 2894 2895
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
		/* Fallthrough */
	case IDR0_TTF_AARCH64:
		break;
	default:
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

2911
	/* Queue sizes, capped to ensure natural alignment */
2912 2913
	smmu->cmdq.q.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					 FIELD_GET(IDR1_CMDQS, reg));
2914 2915 2916 2917 2918 2919
	if (!smmu->cmdq.q.max_n_shift) {
		/* Odd alignment restrictions on the base, so ignore for now */
		dev_err(smmu->dev, "unit-length command queue not supported\n");
		return -ENXIO;
	}

2920 2921 2922 2923
	smmu->evtq.q.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					 FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					 FIELD_GET(IDR1_PRIQS, reg));
2924 2925

	/* SID/SSID sizes */
2926 2927
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
2928

2929 2930 2931 2932 2933 2934 2935
	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

2936 2937 2938 2939
	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
2940
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
2941 2942 2943

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
2944
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2945
	if (reg & IDR5_GRAN16K)
2946
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2947
	if (reg & IDR5_GRAN4K)
2948
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2949

2950 2951 2952 2953
	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

2954
	/* Output address size */
2955
	switch (FIELD_GET(IDR5_OAS, reg)) {
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
2971 2972 2973 2974
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
2975 2976 2977 2978
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
		/* Fallthrough */
2979 2980 2981 2982
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

2983 2984 2985 2986 2987
	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

2988 2989 2990 2991 2992
	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

2993
	smmu->ias = max(smmu->ias, smmu->oas);
2994 2995 2996 2997 2998 2999

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

3000
#ifdef CONFIG_ACPI
3001 3002
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
3003 3004
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3005
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3006
		break;
3007
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3008 3009 3010
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}
3011 3012 3013 3014

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

3027 3028
	acpi_smmu_get_options(iort_smmu->model, smmu);

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

3042 3043
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
3044 3045
{
	struct device *dev = &pdev->dev;
3046
	u32 cells;
3047
	int ret = -EINVAL;
3048 3049 3050 3051 3052 3053

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

3064 3065 3066 3067 3068 3069 3070 3071
static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

3072 3073 3074 3075
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
3076
	resource_size_t ioaddr;
3077 3078 3079
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;
3080 3081 3082 3083 3084 3085 3086 3087

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

3099 3100
	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3101
	if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
3102 3103 3104
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
3105
	ioaddr = res->start;
3106 3107 3108 3109 3110 3111 3112

	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

	/* Interrupt lines */

3113
	irq = platform_get_irq_byname(pdev, "combined");
3114
	if (irq > 0)
3115 3116 3117 3118 3119
		smmu->combined_irq = irq;
	else {
		irq = platform_get_irq_byname(pdev, "eventq");
		if (irq > 0)
			smmu->evtq.q.irq = irq;
3120

3121 3122 3123
		irq = platform_get_irq_byname(pdev, "priq");
		if (irq > 0)
			smmu->priq.q.irq = irq;
3124

3125 3126 3127 3128
		irq = platform_get_irq_byname(pdev, "gerror");
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
3129
	/* Probe the h/w */
3130
	ret = arm_smmu_device_hw_probe(smmu);
3131 3132 3133 3134 3135 3136 3137 3138
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

3139 3140 3141
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

3142
	/* Reset the device */
3143 3144 3145 3146 3147
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
3148 3149
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
3150 3151
	if (ret)
		return ret;
3152 3153 3154 3155 3156

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
3157 3158 3159 3160
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}
3161

3162
#ifdef CONFIG_PCI
3163 3164 3165 3166 3167 3168
	if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
		pci_request_acs();
		ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
3169 3170
#endif
#ifdef CONFIG_ARM_AMBA
3171 3172 3173 3174 3175
	if (amba_bustype.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
		if (ret)
			return ret;
	}
3176
#endif
3177 3178 3179 3180 3181 3182
	if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
	return 0;
3183 3184
}

3185
static void arm_smmu_device_shutdown(struct platform_device *pdev)
3186
{
3187
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3188 3189

	arm_smmu_device_disable(smmu);
3190 3191
}

3192
static const struct of_device_id arm_smmu_of_match[] = {
3193 3194 3195 3196 3197 3198 3199 3200
	{ .compatible = "arm,smmu-v3", },
	{ },
};

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu-v3",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
3201
		.suppress_bind_attrs = true,
3202
	},
3203
	.probe	= arm_smmu_device_probe,
3204
	.shutdown = arm_smmu_device_shutdown,
3205
};
3206
builtin_platform_driver(arm_smmu_driver);