interrupt.c 86.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * handling kvm guest interrupts
4
 *
5
 * Copyright IBM Corp. 2008, 2020
6 7 8 9
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 */

10 11 12
#define KMSG_COMPONENT "kvm-s390"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

13
#include <linux/interrupt.h>
14
#include <linux/kvm_host.h>
15
#include <linux/hrtimer.h>
16
#include <linux/mmu_context.h>
17
#include <linux/nospec.h>
18
#include <linux/signal.h>
19
#include <linux/slab.h>
20
#include <linux/bitmap.h>
21
#include <linux/vmalloc.h>
22
#include <asm/asm-offsets.h>
23
#include <asm/dis.h>
24
#include <linux/uaccess.h>
25
#include <asm/sclp.h>
26
#include <asm/isc.h>
27
#include <asm/gmap.h>
28
#include <asm/switch_to.h>
29
#include <asm/nmi.h>
30
#include <asm/airq.h>
31 32
#include "kvm-s390.h"
#include "gaccess.h"
33
#include "trace-s390.h"
34

35
#define PFAULT_INIT 0x0600
36 37
#define PFAULT_DONE 0x0680
#define VIRTIO_PARAM 0x0d00
38

39 40
static struct kvm_s390_gib *gib;

41 42 43
/* handle external calls via sigp interpretation facility */
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
{
44 45
	int c, scn;

46
	if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
47 48
		return 0;

49
	BUG_ON(!kvm_s390_use_sca_entries());
50
	read_lock(&vcpu->kvm->arch.sca_lock);
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	}
66
	read_unlock(&vcpu->kvm->arch.sca_lock);
67 68

	if (src_id)
69
		*src_id = scn;
70

71
	return c;
72 73 74 75
}

static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
{
76
	int expect, rc;
77

78
	BUG_ON(!kvm_s390_use_sca_entries());
79
	read_lock(&vcpu->kvm->arch.sca_lock);
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;

		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
97

98 99 100 101 102 103 104
		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	}
105
	read_unlock(&vcpu->kvm->arch.sca_lock);
106 107

	if (rc != expect) {
108 109 110
		/* another external call is pending */
		return -EBUSY;
	}
111
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
112 113 114 115 116
	return 0;
}

static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
{
117
	int rc, expect;
118

119 120
	if (!kvm_s390_use_sca_entries())
		return;
121
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
122
	read_lock(&vcpu->kvm->arch.sca_lock);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	}
140
	read_unlock(&vcpu->kvm->arch.sca_lock);
141
	WARN_ON(rc != expect); /* cannot clear? */
142 143
}

144
int psw_extint_disabled(struct kvm_vcpu *vcpu)
145 146 147 148
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
}

149 150 151 152 153
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
}

154 155 156 157 158
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
}

159 160
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
{
161 162 163
	return psw_extint_disabled(vcpu) &&
	       psw_ioint_disabled(vcpu) &&
	       psw_mchk_disabled(vcpu);
164 165
}

166 167 168
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	if (psw_extint_disabled(vcpu) ||
169
	    !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
170
		return 0;
171 172 173
	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
		/* No timer interrupts when single stepping */
		return 0;
174 175 176
	return 1;
}

177 178
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
{
179 180 181
	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
	const u64 ckc = vcpu->arch.sie_block->ckc;

182
	if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
183 184 185
		if ((s64)ckc >= (s64)now)
			return 0;
	} else if (ckc >= now) {
186
		return 0;
187
	}
188 189 190 191 192 193
	return ckc_interrupts_enabled(vcpu);
}

static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	return !psw_extint_disabled(vcpu) &&
194
	       (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
195 196 197 198
}

static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
{
199 200 201
	if (!cpu_timer_interrupts_enabled(vcpu))
		return 0;
	return kvm_s390_get_cpu_timer(vcpu) >> 63;
202 203
}

204 205
static uint64_t isc_to_isc_bits(int isc)
{
C
Cornelia Huck 已提交
206 207 208
	return (0x80 >> isc) << 24;
}

209 210 211 212 213
static inline u32 isc_to_int_word(u8 isc)
{
	return ((u32)isc << 27) | 0x80000000;
}

214
static inline u8 int_word_to_isc(u32 int_word)
215
{
216 217 218
	return (int_word & 0x38000000) >> 27;
}

219 220 221 222 223 224 225 226
/*
 * To use atomic bitmap functions, we have to provide a bitmap address
 * that is u64 aligned. However, the ipm might be u32 aligned.
 * Therefore, we logically start the bitmap at the very beginning of the
 * struct and fixup the bit number.
 */
#define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/**
 * gisa_set_iam - change the GISA interruption alert mask
 *
 * @gisa: gisa to operate on
 * @iam: new IAM value to use
 *
 * Change the IAM atomically with the next alert address and the IPM
 * of the GISA if the GISA is not part of the GIB alert list. All three
 * fields are located in the first long word of the GISA.
 *
 * Returns: 0 on success
 *          -EBUSY in case the gisa is part of the alert list
 */
static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
{
	u64 word, _word;

	do {
		word = READ_ONCE(gisa->u64.word[0]);
		if ((u64)gisa != word >> 32)
			return -EBUSY;
		_word = (word & ~0xffUL) | iam;
	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);

	return 0;
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/**
 * gisa_clear_ipm - clear the GISA interruption pending mask
 *
 * @gisa: gisa to operate on
 *
 * Clear the IPM atomically with the next alert address and the IAM
 * of the GISA unconditionally. All three fields are located in the
 * first long word of the GISA.
 */
static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
{
	u64 word, _word;

	do {
		word = READ_ONCE(gisa->u64.word[0]);
		_word = word & ~(0xffUL << 24);
	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/**
 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
 *
 * @gi: gisa interrupt struct to work on
 *
 * Atomically restores the interruption alert mask if none of the
 * relevant ISCs are pending and return the IPM.
 *
 * Returns: the relevant pending ISCs
 */
static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
{
	u8 pending_mask, alert_mask;
	u64 word, _word;

	do {
		word = READ_ONCE(gi->origin->u64.word[0]);
		alert_mask = READ_ONCE(gi->alert.mask);
		pending_mask = (u8)(word >> 24) & alert_mask;
		if (pending_mask)
			return pending_mask;
		_word = (word & ~0xffUL) | alert_mask;
	} while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word);

	return 0;
}

static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa)
{
	return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa;
}

305
static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
306 307 308 309
{
	set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
}

310
static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
311 312 313 314
{
	return READ_ONCE(gisa->ipm);
}

315
static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
316 317 318 319
{
	clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
}

320
static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
321 322 323 324
{
	return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
}

325
static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
326
{
327
	return vcpu->kvm->arch.float_int.pending_irqs |
328 329 330 331 332
		vcpu->arch.local_int.pending_irqs;
}

static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
{
333 334 335 336 337 338 339
	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
	unsigned long pending_mask;

	pending_mask = pending_irqs_no_gisa(vcpu);
	if (gi->origin)
		pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
	return pending_mask;
340 341
}

342 343
static inline int isc_to_irq_type(unsigned long isc)
{
344
	return IRQ_PEND_IO_ISC_0 - isc;
345 346 347 348
}

static inline int irq_type_to_isc(unsigned long irq_type)
{
349
	return IRQ_PEND_IO_ISC_0 - irq_type;
350 351
}

352 353 354 355 356 357 358
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
				   unsigned long active_mask)
{
	int i;

	for (i = 0; i <= MAX_ISC; i++)
		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
359
			active_mask &= ~(1UL << (isc_to_irq_type(i)));
360 361 362 363 364

	return active_mask;
}

static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
365
{
366 367
	unsigned long active_mask;

368
	active_mask = pending_irqs(vcpu);
369 370
	if (!active_mask)
		return 0;
371 372 373

	if (psw_extint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_EXT_MASK;
374 375 376 377
	if (psw_ioint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_IO_MASK;
	else
		active_mask = disable_iscs(vcpu, active_mask);
378
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
379
		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
380
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
381
		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
382
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
383
		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
384
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
385
		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
386
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
387
		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
388 389
	if (psw_mchk_disabled(vcpu))
		active_mask &= ~IRQ_PEND_MCHK_MASK;
390 391 392 393 394 395
	/* PV guest cpus can have a single interruption injected at a time. */
	if (kvm_s390_pv_cpu_is_protected(vcpu) &&
	    vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
		active_mask &= ~(IRQ_PEND_EXT_II_MASK |
				 IRQ_PEND_IO_MASK |
				 IRQ_PEND_MCHK_MASK);
396 397 398 399
	/*
	 * Check both floating and local interrupt's cr14 because
	 * bit IRQ_PEND_MCHK_REP could be set in both cases.
	 */
400
	if (!(vcpu->arch.sie_block->gcr[14] &
401 402
	   (vcpu->kvm->arch.float_int.mchk.cr14 |
	   vcpu->arch.local_int.irq.mchk.cr14)))
403
		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
404

405 406 407 408 409 410
	/*
	 * STOP irqs will never be actively delivered. They are triggered via
	 * intercept requests and cleared when the stop intercept is performed.
	 */
	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);

411 412 413
	return active_mask;
}

414 415
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
{
416
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
417
	set_bit(vcpu->vcpu_id, vcpu->kvm->arch.idle_mask);
418 419 420 421
}

static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
{
422
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
423
	clear_bit(vcpu->vcpu_id, vcpu->kvm->arch.idle_mask);
424 425 426 427
}

static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
{
428 429
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
				      CPUSTAT_STOP_INT);
430
	vcpu->arch.sie_block->lctl = 0x0000;
431 432 433 434 435 436 437
	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);

	if (guestdbg_enabled(vcpu)) {
		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
					       LCTL_CR10 | LCTL_CR11);
		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
	}
438 439
}

440 441
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
{
442
	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
443
		return;
444
	if (psw_ioint_disabled(vcpu))
445
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
446 447 448 449
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR6;
}

450 451
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
{
452
	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
453 454
		return;
	if (psw_extint_disabled(vcpu))
455
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
456 457 458 459 460 461
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR0;
}

static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
{
462
	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
463 464 465 466 467 468 469
		return;
	if (psw_mchk_disabled(vcpu))
		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR14;
}

470 471 472
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
{
	if (kvm_s390_is_stop_irq_pending(vcpu))
473
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
474 475
}

476 477
/* Set interception request for non-deliverable interrupts */
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
478
{
479
	set_intercept_indicators_io(vcpu);
480 481
	set_intercept_indicators_ext(vcpu);
	set_intercept_indicators_mchk(vcpu);
482
	set_intercept_indicators_stop(vcpu);
483 484
}

485 486
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
{
487
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
488
	int rc = 0;
489

490
	vcpu->stat.deliver_cputm++;
491 492
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
					 0, 0);
493 494 495 496 497 498 499 500 501 502 503 504
	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
		vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
	} else {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
				   (u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	}
505
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
506
	return rc ? -EFAULT : 0;
507 508 509 510
}

static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
{
511
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
512
	int rc = 0;
513

514
	vcpu->stat.deliver_ckc++;
515 516
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
					 0, 0);
517 518 519 520 521 522 523 524 525 526 527 528
	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
		vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
	} else {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
				   (u16 __user *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	}
529
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
530
	return rc ? -EFAULT : 0;
531 532
}

533
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
534
{
535 536
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_ext_info ext;
537 538
	int rc;

539 540 541 542 543 544
	spin_lock(&li->lock);
	ext = li->irq.ext;
	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
	li->irq.ext.ext_params2 = 0;
	spin_unlock(&li->lock);

545 546
	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
		   ext.ext_params2);
547 548
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_PFAULT_INIT,
549
					 0, ext.ext_params2);
550 551 552 553 554 555 556

	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
557
	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
558
	return rc ? -EFAULT : 0;
559 560
}

561 562 563 564
static int __write_machine_check(struct kvm_vcpu *vcpu,
				 struct kvm_s390_mchk_info *mchk)
{
	unsigned long ext_sa_addr;
F
Fan Zhang 已提交
565
	unsigned long lc;
566
	freg_t fprs[NUM_FPRS];
567
	union mci mci;
568 569
	int rc;

570 571 572 573 574 575 576 577 578 579 580 581 582 583
	/*
	 * All other possible payload for a machine check (e.g. the register
	 * contents in the save area) will be handled by the ultravisor, as
	 * the hypervisor does not not have the needed information for
	 * protected guests.
	 */
	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
		vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
		vcpu->arch.sie_block->mcic = mchk->mcic;
		vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
		vcpu->arch.sie_block->edc = mchk->ext_damage_code;
		return 0;
	}

584
	mci.val = mchk->mcic;
585
	/* take care of lazy register loading */
586 587
	save_fpu_regs();
	save_access_regs(vcpu->run->s.regs.acrs);
588 589
	if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
		save_gs_cb(current->thread.gs_cb);
590

591
	/* Extended save area */
592 593
	rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
			   sizeof(unsigned long));
F
Fan Zhang 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	/* Only bits 0 through 63-LC are used for address formation */
	lc = ext_sa_addr & MCESA_LC_MASK;
	if (test_kvm_facility(vcpu->kvm, 133)) {
		switch (lc) {
		case 0:
		case 10:
			ext_sa_addr &= ~0x3ffUL;
			break;
		case 11:
			ext_sa_addr &= ~0x7ffUL;
			break;
		case 12:
			ext_sa_addr &= ~0xfffUL;
			break;
		default:
			ext_sa_addr = 0;
			break;
		}
	} else {
		ext_sa_addr &= ~0x3ffUL;
	}

616 617 618 619 620 621 622
	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
				    512))
			mci.vr = 0;
	} else {
		mci.vr = 0;
	}
F
Fan Zhang 已提交
623 624 625 626 627 628 629 630
	if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
	    && (lc == 11 || lc == 12)) {
		if (write_guest_abs(vcpu, ext_sa_addr + 1024,
				    &vcpu->run->s.regs.gscb, 32))
			mci.gs = 0;
	} else {
		mci.gs = 0;
	}
631 632

	/* General interruption information */
633
	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
634 635 636 637
	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
638
	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
639 640

	/* Register-save areas */
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	if (MACHINE_HAS_VX) {
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
	} else {
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
				     vcpu->run->s.regs.fprs, 128);
	}
	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
			     vcpu->run->s.regs.gprs, 128);
	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
			     &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
			     &vcpu->arch.sie_block->gcr, 128);
662 663

	/* Extended interruption information */
664 665
	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
666 667 668 669 670 671 672
	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
			     sizeof(mchk->fixed_logout));
	return rc ? -EFAULT : 0;
}

673
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
674
{
675
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
676
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
677 678 679
	struct kvm_s390_mchk_info mchk = {};
	int deliver = 0;
	int rc = 0;
680

681
	spin_lock(&fi->lock);
682
	spin_lock(&li->lock);
683 684 685 686 687 688 689 690 691 692 693 694 695 696
	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
		/*
		 * If there was an exigent machine check pending, then any
		 * repressible machine checks that might have been pending
		 * are indicated along with it, so always clear bits for
		 * repressible and exigent interrupts
		 */
		mchk = li->irq.mchk;
		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
		memset(&li->irq.mchk, 0, sizeof(mchk));
		deliver = 1;
	}
697
	/*
698 699 700 701
	 * We indicate floating repressible conditions along with
	 * other pending conditions. Channel Report Pending and Channel
	 * Subsystem damage are the only two and and are indicated by
	 * bits in mcic and masked in cr14.
702
	 */
703 704 705 706 707 708
	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		mchk.mcic |= fi->mchk.mcic;
		mchk.cr14 |= fi->mchk.cr14;
		memset(&fi->mchk, 0, sizeof(mchk));
		deliver = 1;
	}
709
	spin_unlock(&li->lock);
710
	spin_unlock(&fi->lock);
711

712
	if (deliver) {
713
		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
714 715 716 717
			   mchk.mcic);
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_MCHK,
						 mchk.cr14, mchk.mcic);
718
		vcpu->stat.deliver_machine_check++;
719
		rc = __write_machine_check(vcpu, &mchk);
720
	}
721
	return rc;
722 723 724 725
}

static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
{
726
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
727
	int rc = 0;
728

729
	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
730 731 732
	vcpu->stat.deliver_restart_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);

733 734 735 736 737 738 739 740 741
	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
		vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
	} else {
		rc  = write_guest_lc(vcpu,
				     offsetof(struct lowcore, restart_old_psw),
				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
		rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	}
742
	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
743
	return rc ? -EFAULT : 0;
744 745
}

746
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
747
{
748 749 750 751 752 753 754 755
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_prefix_info prefix;

	spin_lock(&li->lock);
	prefix = li->irq.prefix;
	li->irq.prefix.address = 0;
	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
	spin_unlock(&li->lock);
756 757 758 759

	vcpu->stat.deliver_prefix_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_SIGP_SET_PREFIX,
760
					 prefix.address, 0);
761

762
	kvm_s390_set_prefix(vcpu, prefix.address);
763 764 765
	return 0;
}

766
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
767
{
768
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
769
	int rc;
770 771 772 773 774 775 776 777
	int cpu_addr;

	spin_lock(&li->lock);
	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	clear_bit(cpu_addr, li->sigp_emerg_pending);
	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
	spin_unlock(&li->lock);
778

779
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
780
	vcpu->stat.deliver_emergency_signal++;
781 782
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
					 cpu_addr, 0);
783 784 785 786 787 788
	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
		vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
		vcpu->arch.sie_block->extcpuaddr = cpu_addr;
		return 0;
	}
789 790 791

	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
			   (u16 *)__LC_EXT_INT_CODE);
792
	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
793 794 795 796
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
797
	return rc ? -EFAULT : 0;
798 799
}

800
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
801
{
802 803
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_extcall_info extcall;
804 805
	int rc;

806 807 808 809 810 811
	spin_lock(&li->lock);
	extcall = li->irq.extcall;
	li->irq.extcall.code = 0;
	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
	spin_unlock(&li->lock);

812
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
813 814 815
	vcpu->stat.deliver_external_call++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_EXTERNAL_CALL,
816
					 extcall.code, 0);
817 818 819 820 821 822
	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
		vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
		vcpu->arch.sie_block->extcpuaddr = extcall.code;
		return 0;
	}
823 824 825

	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
			   (u16 *)__LC_EXT_INT_CODE);
826
	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
827 828 829 830
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
			    sizeof(psw_t));
831
	return rc ? -EFAULT : 0;
832 833
}

834
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
835
{
836 837
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_pgm_info pgm_info;
838
	int rc = 0, nullifying = false;
839
	u16 ilen;
840

841 842 843 844 845 846
	spin_lock(&li->lock);
	pgm_info = li->irq.pgm;
	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
	memset(&li->irq.pgm, 0, sizeof(pgm_info));
	spin_unlock(&li->lock);

847
	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
848 849
	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
		   pgm_info.code, ilen);
850
	vcpu->stat.deliver_program++;
851
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
852
					 pgm_info.code, 0);
853

854
	switch (pgm_info.code & ~PGM_PER) {
855 856 857 858 859 860 861 862 863
	case PGM_AFX_TRANSLATION:
	case PGM_ASX_TRANSLATION:
	case PGM_EX_TRANSLATION:
	case PGM_LFX_TRANSLATION:
	case PGM_LSTE_SEQUENCE:
	case PGM_LSX_TRANSLATION:
	case PGM_LX_TRANSLATION:
	case PGM_PRIMARY_AUTHORITY:
	case PGM_SECONDARY_AUTHORITY:
864 865
		nullifying = true;
		/* fall through */
866
	case PGM_SPACE_SWITCH:
867
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
868 869 870 871 872 873 874 875
				  (u64 *)__LC_TRANS_EXC_CODE);
		break;
	case PGM_ALEN_TRANSLATION:
	case PGM_ALE_SEQUENCE:
	case PGM_ASTE_INSTANCE:
	case PGM_ASTE_SEQUENCE:
	case PGM_ASTE_VALIDITY:
	case PGM_EXTENDED_AUTHORITY:
876
		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
877
				  (u8 *)__LC_EXC_ACCESS_ID);
878
		nullifying = true;
879 880 881 882 883 884 885
		break;
	case PGM_ASCE_TYPE:
	case PGM_PAGE_TRANSLATION:
	case PGM_REGION_FIRST_TRANS:
	case PGM_REGION_SECOND_TRANS:
	case PGM_REGION_THIRD_TRANS:
	case PGM_SEGMENT_TRANSLATION:
886
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
887
				  (u64 *)__LC_TRANS_EXC_CODE);
888
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
889
				   (u8 *)__LC_EXC_ACCESS_ID);
890
		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
891
				   (u8 *)__LC_OP_ACCESS_ID);
892
		nullifying = true;
893 894
		break;
	case PGM_MONITOR:
895
		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
896
				  (u16 *)__LC_MON_CLASS_NR);
897
		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
898 899
				   (u64 *)__LC_MON_CODE);
		break;
E
Eric Farman 已提交
900
	case PGM_VECTOR_PROCESSING:
901
	case PGM_DATA:
902
		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
903 904 905
				  (u32 *)__LC_DATA_EXC_CODE);
		break;
	case PGM_PROTECTION:
906
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
907
				  (u64 *)__LC_TRANS_EXC_CODE);
908
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
909 910
				   (u8 *)__LC_EXC_ACCESS_ID);
		break;
911 912 913 914 915 916 917 918 919
	case PGM_STACK_FULL:
	case PGM_STACK_EMPTY:
	case PGM_STACK_SPECIFICATION:
	case PGM_STACK_TYPE:
	case PGM_STACK_OPERATION:
	case PGM_TRACE_TABEL:
	case PGM_CRYPTO_OPERATION:
		nullifying = true;
		break;
920 921
	}

922 923
	if (pgm_info.code & PGM_PER) {
		rc |= put_guest_lc(vcpu, pgm_info.per_code,
924
				   (u8 *) __LC_PER_CODE);
925
		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
926
				   (u8 *)__LC_PER_ATMID);
927
		rc |= put_guest_lc(vcpu, pgm_info.per_address,
928
				   (u64 *) __LC_PER_ADDRESS);
929
		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
930 931 932
				   (u8 *) __LC_PER_ACCESS_ID);
	}

933
	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
934
		kvm_s390_rewind_psw(vcpu, ilen);
935

936 937
	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
938 939
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
				 (u64 *) __LC_LAST_BREAK);
940
	rc |= put_guest_lc(vcpu, pgm_info.code,
941 942 943 944 945
			   (u16 *)__LC_PGM_INT_CODE);
	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
946
	return rc ? -EFAULT : 0;
947 948
}

949
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
950
{
951 952 953 954 955 956 957 958 959 960 961 962 963
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_ext_info ext;
	int rc = 0;

	spin_lock(&fi->lock);
	if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
		spin_unlock(&fi->lock);
		return 0;
	}
	ext = fi->srv_signal;
	memset(&fi->srv_signal, 0, sizeof(ext));
	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
964

965
	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
966
		   ext.ext_params);
967
	vcpu->stat.deliver_service_signal++;
968 969
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
					 ext.ext_params, 0);
970 971

	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
972
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
973 974 975 976
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
977
	rc |= put_guest_lc(vcpu, ext.ext_params,
978
			   (u32 *)__LC_EXT_PARAMS);
979

980
	return rc ? -EFAULT : 0;
981 982
}

983
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
984
{
985 986 987
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
988

989 990 991 992 993 994 995 996 997 998 999
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
1000

1001
	if (inti) {
1002 1003 1004 1005 1006 1007
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_INT_PFAULT_DONE, 0,
						 inti->ext.ext_params2);
		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
			   inti->ext.ext_params2);

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, PFAULT_DONE,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
1022
	return rc ? -EFAULT : 0;
1023 1024
}

1025
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1026
{
1027 1028 1029
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
1030

1031 1032 1033 1034 1035 1036
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		VCPU_EVENT(vcpu, 4,
1037
			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
1038
			   inti->ext.ext_params, inti->ext.ext_params2);
1039
		vcpu->stat.deliver_virtio++;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				inti->ext.ext_params,
				inti->ext.ext_params2);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (inti) {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
				(u32 *)__LC_EXT_PARAMS);
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
1068
	return rc ? -EFAULT : 0;
1069 1070
}

1071 1072 1073 1074
static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
{
	int rc;

1075 1076 1077 1078 1079 1080 1081 1082 1083
	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
		vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
		vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
		vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
		vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
		vcpu->arch.sie_block->io_int_word = io->io_int_word;
		return 0;
	}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	rc  = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
	rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
	rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
	rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
	rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw,
			     sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw,
			    sizeof(psw_t));
	return rc ? -EFAULT : 0;
}

1097
static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1098
				     unsigned long irq_type)
1099
{
1100 1101
	struct list_head *isc_list;
	struct kvm_s390_float_interrupt *fi;
1102
	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1103
	struct kvm_s390_interrupt_info *inti = NULL;
1104 1105
	struct kvm_s390_io_info io;
	u32 isc;
1106
	int rc = 0;
1107

1108
	fi = &vcpu->kvm->arch.float_int;
1109

1110
	spin_lock(&fi->lock);
1111 1112
	isc = irq_type_to_isc(irq_type);
	isc_list = &fi->lists[isc];
1113 1114 1115 1116
	inti = list_first_entry_or_null(isc_list,
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
1117 1118 1119 1120 1121 1122 1123 1124
		if (inti->type & KVM_S390_INT_IO_AI_MASK)
			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
		else
			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);

1125
		vcpu->stat.deliver_io++;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				((__u32)inti->io.subchannel_id << 16) |
				inti->io.subchannel_nr,
				((__u64)inti->io.io_int_parm << 32) |
				inti->io.io_int_word);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
	}
	if (list_empty(isc_list))
		clear_bit(irq_type, &fi->pending_irqs);
	spin_unlock(&fi->lock);

	if (inti) {
1140
		rc = __do_deliver_io(vcpu, &(inti->io));
1141
		kfree(inti);
1142
		goto out;
1143
	}
1144

1145
	if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1146 1147 1148 1149 1150 1151
		/*
		 * in case an adapter interrupt was not delivered
		 * in SIE context KVM will handle the delivery
		 */
		VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
		memset(&io, 0, sizeof(io));
1152
		io.io_int_word = isc_to_int_word(isc);
1153
		vcpu->stat.deliver_io++;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
			KVM_S390_INT_IO(1, 0, 0, 0),
			((__u32)io.subchannel_id << 16) |
			io.subchannel_nr,
			((__u64)io.io_int_parm << 32) |
			io.io_int_word);
		rc = __do_deliver_io(vcpu, &io);
	}
out:
	return rc;
1164 1165
}

1166 1167
/* Check whether an external call is pending (deliverable or not) */
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1168
{
1169
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1170

1171
	if (!sclp.has_sigpif)
1172
		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1173

1174
	return sca_ext_call_pending(vcpu, NULL);
1175 1176
}

1177
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1178
{
1179 1180
	if (deliverable_irqs(vcpu))
		return 1;
1181

1182 1183
	if (kvm_cpu_has_pending_timer(vcpu))
		return 1;
1184

1185
	/* external call pending and deliverable */
1186
	if (kvm_s390_ext_call_pending(vcpu) &&
1187
	    !psw_extint_disabled(vcpu) &&
1188
	    (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1189
		return 1;
1190

1191 1192 1193
	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
		return 1;
	return 0;
1194 1195
}

1196 1197
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
1198
	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1199 1200
}

1201 1202
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
{
1203 1204 1205
	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
	const u64 ckc = vcpu->arch.sie_block->ckc;
	u64 cputm, sltime = 0;
1206 1207

	if (ckc_interrupts_enabled(vcpu)) {
1208
		if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1209 1210 1211 1212 1213 1214 1215
			if ((s64)now < (s64)ckc)
				sltime = tod_to_ns((s64)ckc - (s64)now);
		} else if (now < ckc) {
			sltime = tod_to_ns(ckc - now);
		}
		/* already expired */
		if (!sltime)
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
			return 0;
		if (cpu_timer_interrupts_enabled(vcpu)) {
			cputm = kvm_s390_get_cpu_timer(vcpu);
			/* already expired? */
			if (cputm >> 63)
				return 0;
			return min(sltime, tod_to_ns(cputm));
		}
	} else if (cpu_timer_interrupts_enabled(vcpu)) {
		sltime = kvm_s390_get_cpu_timer(vcpu);
		/* already expired? */
		if (sltime >> 63)
			return 0;
	}
	return sltime;
}

1233 1234
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
{
1235
	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1236
	u64 sltime;
1237 1238 1239

	vcpu->stat.exit_wait_state++;

1240
	/* fast path */
1241
	if (kvm_arch_vcpu_runnable(vcpu))
1242
		return 0;
1243

1244 1245
	if (psw_interrupts_disabled(vcpu)) {
		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1246
		return -EOPNOTSUPP; /* disabled wait */
1247 1248
	}

1249 1250 1251 1252 1253
	if (gi->origin &&
	    (gisa_get_ipm_or_restore_iam(gi) &
	     vcpu->arch.sie_block->gcr[6] >> 24))
		return 0;

1254 1255
	if (!ckc_interrupts_enabled(vcpu) &&
	    !cpu_timer_interrupts_enabled(vcpu)) {
1256
		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1257
		__set_cpu_idle(vcpu);
1258 1259 1260
		goto no_timer;
	}

1261 1262
	sltime = __calculate_sltime(vcpu);
	if (!sltime)
1263 1264 1265
		return 0;

	__set_cpu_idle(vcpu);
T
Thomas Gleixner 已提交
1266
	hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1267
	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1268
no_timer:
1269
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1270
	kvm_vcpu_block(vcpu);
1271
	__unset_cpu_idle(vcpu);
1272 1273
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

1274
	hrtimer_cancel(&vcpu->arch.ckc_timer);
1275 1276 1277
	return 0;
}

1278 1279
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
{
1280
	vcpu->valid_wakeup = true;
1281 1282
	kvm_vcpu_wake_up(vcpu);

1283
	/*
1284
	 * The VCPU might not be sleeping but rather executing VSIE. Let's
1285 1286 1287
	 * kick it, so it leaves the SIE to process the request.
	 */
	kvm_s390_vsie_kick(vcpu);
1288 1289
}

1290 1291 1292
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
	struct kvm_vcpu *vcpu;
1293
	u64 sltime;
1294 1295

	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1296
	sltime = __calculate_sltime(vcpu);
1297

1298 1299 1300 1301
	/*
	 * If the monotonic clock runs faster than the tod clock we might be
	 * woken up too early and have to go back to sleep to avoid deadlocks.
	 */
1302
	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1303 1304
		return HRTIMER_RESTART;
	kvm_s390_vcpu_wakeup(vcpu);
1305 1306
	return HRTIMER_NORESTART;
}
1307

1308 1309 1310 1311
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1312
	spin_lock(&li->lock);
1313 1314 1315
	li->pending_irqs = 0;
	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	memset(&li->irq, 0, sizeof(li->irq));
1316
	spin_unlock(&li->lock);
1317

1318
	sca_clear_ext_call(vcpu);
1319 1320
}

1321
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1322
{
1323
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1324
	int rc = 0;
1325
	unsigned long irq_type;
1326
	unsigned long irqs;
1327 1328 1329

	__reset_intercept_indicators(vcpu);

1330 1331
	/* pending ckc conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1332
	if (ckc_irq_pending(vcpu))
1333 1334
		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);

1335 1336 1337 1338 1339
	/* pending cpu timer conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
	if (cpu_timer_irq_pending(vcpu))
		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);

1340
	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1341 1342
		/* bits are in the reverse order of interrupt priority */
		irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1343 1344 1345 1346 1347 1348 1349 1350 1351
		switch (irq_type) {
		case IRQ_PEND_IO_ISC_0:
		case IRQ_PEND_IO_ISC_1:
		case IRQ_PEND_IO_ISC_2:
		case IRQ_PEND_IO_ISC_3:
		case IRQ_PEND_IO_ISC_4:
		case IRQ_PEND_IO_ISC_5:
		case IRQ_PEND_IO_ISC_6:
		case IRQ_PEND_IO_ISC_7:
1352
			rc = __deliver_io(vcpu, irq_type);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
			break;
		case IRQ_PEND_MCHK_EX:
		case IRQ_PEND_MCHK_REP:
			rc = __deliver_machine_check(vcpu);
			break;
		case IRQ_PEND_PROG:
			rc = __deliver_prog(vcpu);
			break;
		case IRQ_PEND_EXT_EMERGENCY:
			rc = __deliver_emergency_signal(vcpu);
			break;
		case IRQ_PEND_EXT_EXTERNAL:
			rc = __deliver_external_call(vcpu);
			break;
		case IRQ_PEND_EXT_CLOCK_COMP:
			rc = __deliver_ckc(vcpu);
			break;
		case IRQ_PEND_EXT_CPU_TIMER:
			rc = __deliver_cpu_timer(vcpu);
			break;
		case IRQ_PEND_RESTART:
			rc = __deliver_restart(vcpu);
			break;
		case IRQ_PEND_SET_PREFIX:
			rc = __deliver_set_prefix(vcpu);
			break;
		case IRQ_PEND_PFAULT_INIT:
			rc = __deliver_pfault_init(vcpu);
			break;
		case IRQ_PEND_EXT_SERVICE:
			rc = __deliver_service(vcpu);
			break;
		case IRQ_PEND_PFAULT_DONE:
			rc = __deliver_pfault_done(vcpu);
			break;
		case IRQ_PEND_VIRTIO:
			rc = __deliver_virtio(vcpu);
			break;
		default:
			WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
			clear_bit(irq_type, &li->pending_irqs);
1394
		}
1395
	}
1396

1397
	set_intercept_indicators(vcpu);
1398 1399

	return rc;
1400 1401
}

1402
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1403 1404 1405
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1406
	vcpu->stat.inject_program++;
1407 1408 1409 1410
	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
				   irq->u.pgm.code, 0);

1411 1412 1413 1414 1415 1416 1417
	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
		/* auto detection if no valid ILC was given */
		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
	}

1418 1419
	if (irq->u.pgm.code == PGM_PER) {
		li->irq.pgm.code |= PGM_PER;
1420
		li->irq.pgm.flags = irq->u.pgm.flags;
1421 1422 1423 1424 1425 1426 1427 1428
		/* only modify PER related information */
		li->irq.pgm.per_address = irq->u.pgm.per_address;
		li->irq.pgm.per_code = irq->u.pgm.per_code;
		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
	} else if (!(irq->u.pgm.code & PGM_PER)) {
		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
				   irq->u.pgm.code;
1429
		li->irq.pgm.flags = irq->u.pgm.flags;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		/* only modify non-PER information */
		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
	} else {
		li->irq.pgm = irq->u.pgm;
	}
1440
	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1441 1442 1443
	return 0;
}

1444
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1445 1446 1447
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1448
	vcpu->stat.inject_pfault_init++;
1449 1450
	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
		   irq->u.ext.ext_params2);
1451 1452
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
				   irq->u.ext.ext_params,
1453
				   irq->u.ext.ext_params2);
1454 1455 1456

	li->irq.ext = irq->u.ext;
	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1457
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1458 1459 1460
	return 0;
}

1461
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1462 1463
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1464
	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1465
	uint16_t src_id = irq->u.extcall.code;
1466

1467
	vcpu->stat.inject_external_call++;
1468
	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1469
		   src_id);
1470
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1471
				   src_id, 0);
1472 1473

	/* sending vcpu invalid */
1474
	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1475 1476
		return -EINVAL;

1477
	if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu))
1478
		return sca_inject_ext_call(vcpu, src_id);
1479

1480
	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1481
		return -EBUSY;
1482
	*extcall = irq->u.extcall;
1483
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1484 1485 1486
	return 0;
}

1487
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1488 1489
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1490
	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1491

1492
	vcpu->stat.inject_set_prefix++;
1493
	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1494
		   irq->u.prefix.address);
1495
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1496
				   irq->u.prefix.address, 0);
1497

1498 1499 1500
	if (!is_vcpu_stopped(vcpu))
		return -EBUSY;

1501 1502
	*prefix = irq->u.prefix;
	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1503 1504 1505
	return 0;
}

1506
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1507
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1508 1509
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1510
	struct kvm_s390_stop_info *stop = &li->irq.stop;
1511
	int rc = 0;
1512

1513
	vcpu->stat.inject_stop_signal++;
1514
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1515

1516 1517 1518
	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
		return -EINVAL;

1519 1520 1521 1522 1523 1524 1525 1526 1527
	if (is_vcpu_stopped(vcpu)) {
		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
			rc = kvm_s390_store_status_unloaded(vcpu,
						KVM_S390_STORE_STATUS_NOADDR);
		return rc;
	}

	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
		return -EBUSY;
1528
	stop->flags = irq->u.stop.flags;
1529
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1530 1531 1532
	return 0;
}

1533
static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1534 1535 1536
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1537
	vcpu->stat.inject_restart++;
1538
	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1539
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1540 1541

	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1542 1543 1544 1545
	return 0;
}

static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1546
				   struct kvm_s390_irq *irq)
1547 1548 1549
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1550
	vcpu->stat.inject_emergency_signal++;
1551
	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1552 1553
		   irq->u.emerg.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1554
				   irq->u.emerg.code, 0);
1555

1556 1557 1558 1559
	/* sending vcpu invalid */
	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
		return -EINVAL;

1560
	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1561
	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1562
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1563 1564 1565
	return 0;
}

1566
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1567 1568
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1569
	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1570

1571
	vcpu->stat.inject_mchk++;
1572
	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1573
		   irq->u.mchk.mcic);
1574
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1575
				   irq->u.mchk.mcic);
1576 1577

	/*
1578 1579 1580 1581 1582 1583
	 * Because repressible machine checks can be indicated along with
	 * exigent machine checks (PoP, Chapter 11, Interruption action)
	 * we need to combine cr14, mcic and external damage code.
	 * Failing storage address and the logout area should not be or'ed
	 * together, we just indicate the last occurrence of the corresponding
	 * machine check
1584
	 */
1585
	mchk->cr14 |= irq->u.mchk.cr14;
1586
	mchk->mcic |= irq->u.mchk.mcic;
1587 1588 1589 1590
	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
	       sizeof(mchk->fixed_logout));
1591 1592 1593 1594
	if (mchk->mcic & MCHK_EX_MASK)
		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
	else if (mchk->mcic & MCHK_REP_MASK)
		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1595 1596 1597
	return 0;
}

1598
static int __inject_ckc(struct kvm_vcpu *vcpu)
1599 1600 1601
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1602
	vcpu->stat.inject_ckc++;
1603
	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1604
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1605
				   0, 0);
1606 1607

	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1608
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1609 1610 1611
	return 0;
}

1612
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1613 1614 1615
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1616
	vcpu->stat.inject_cputm++;
1617
	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1618
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1619
				   0, 0);
1620 1621

	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1622
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1623 1624 1625
	return 0;
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
						  int isc, u32 schid)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	struct kvm_s390_interrupt_info *iter;
	u16 id = (schid & 0xffff0000U) >> 16;
	u16 nr = schid & 0x0000ffffU;

	spin_lock(&fi->lock);
	list_for_each_entry(iter, isc_list, list) {
		if (schid && (id != iter->io.subchannel_id ||
			      nr != iter->io.subchannel_nr))
			continue;
		/* found an appropriate entry */
		list_del_init(&iter->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
		if (list_empty(isc_list))
1644
			clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1645 1646 1647 1648 1649 1650
		spin_unlock(&fi->lock);
		return iter;
	}
	spin_unlock(&fi->lock);
	return NULL;
}
1651

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
						      u64 isc_mask, u32 schid)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int isc;

	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
		if (isc_mask & isc_to_isc_bits(isc))
			inti = get_io_int(kvm, isc, schid);
	}
	return inti;
}

static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
{
1667
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1668 1669 1670 1671 1672
	unsigned long active_mask;
	int isc;

	if (schid)
		goto out;
1673
	if (!gi->origin)
1674 1675
		goto out;

1676
	active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1677 1678
	while (active_mask) {
		isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1679
		if (gisa_tac_ipm_gisc(gi->origin, isc))
1680 1681 1682 1683 1684 1685 1686
			return isc;
		clear_bit_inv(isc, &active_mask);
	}
out:
	return -EINVAL;
}

1687 1688 1689
/*
 * Dequeue and return an I/O interrupt matching any of the interruption
 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1690 1691 1692 1693 1694 1695 1696 1697
 * Take into account the interrupts pending in the interrupt list and in GISA.
 *
 * Note that for a guest that does not enable I/O interrupts
 * but relies on TPI, a flood of classic interrupts may starve
 * out adapter interrupts on the same isc. Linux does not do
 * that, and it is possible to work around the issue by configuring
 * different iscs for classic and adapter interrupts in the guest,
 * but we may want to revisit this in the future.
1698
 */
1699
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1700 1701
						    u64 isc_mask, u32 schid)
{
1702
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1703
	struct kvm_s390_interrupt_info *inti, *tmp_inti;
1704 1705
	int isc;

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	inti = get_top_io_int(kvm, isc_mask, schid);

	isc = get_top_gisa_isc(kvm, isc_mask, schid);
	if (isc < 0)
		/* no AI in GISA */
		goto out;

	if (!inti)
		/* AI in GISA but no classical IO int */
		goto gisa_out;

	/* both types of interrupts present */
	if (int_word_to_isc(inti->io.io_int_word) <= isc) {
		/* classical IO int with higher priority */
1720
		gisa_set_ipm_gisc(gi->origin, isc);
1721
		goto out;
1722
	}
1723 1724 1725 1726 1727 1728 1729 1730 1731
gisa_out:
	tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL);
	if (tmp_inti) {
		tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
		tmp_inti->io.io_int_word = isc_to_int_word(isc);
		if (inti)
			kvm_s390_reinject_io_int(kvm, inti);
		inti = tmp_inti;
	} else
1732
		gisa_set_ipm_gisc(gi->origin, isc);
1733
out:
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	return inti;
}

#define SCCB_MASK 0xFFFFFFF8
#define SCCB_EVENT_PENDING 0x3

static int __inject_service(struct kvm *kvm,
			     struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

1745
	kvm->stat.inject_service_signal++;
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	spin_lock(&fi->lock);
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
	/*
	 * Early versions of the QEMU s390 bios will inject several
	 * service interrupts after another without handling a
	 * condition code indicating busy.
	 * We will silently ignore those superfluous sccb values.
	 * A future version of QEMU will take care of serialization
	 * of servc requests
	 */
	if (fi->srv_signal.ext_params & SCCB_MASK)
		goto out;
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
out:
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_virtio(struct kvm *kvm,
			    struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

1771
	kvm->stat.inject_virtio++;
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

static int __inject_pfault_done(struct kvm *kvm,
				 struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

1789
	kvm->stat.inject_pfault_done++;
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_PFAULT] >=
		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_PFAULT] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

#define CR_PENDING_SUBCLASS 28
static int __inject_float_mchk(struct kvm *kvm,
				struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

1809
	kvm->stat.inject_float_mchk++;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	spin_lock(&fi->lock);
	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
	fi->mchk.mcic |= inti->mchk.mcic;
	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1820
{
1821
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1822
	struct kvm_s390_float_interrupt *fi;
1823 1824
	struct list_head *list;
	int isc;
1825

1826
	kvm->stat.inject_io++;
1827 1828
	isc = int_word_to_isc(inti->io.io_int_word);

1829 1830 1831 1832 1833 1834 1835 1836
	/*
	 * Do not make use of gisa in protected mode. We do not use the lock
	 * checking variant as this is just a performance optimization and we
	 * do not hold the lock here. This is ok as the code will pick
	 * interrupts from both "lists" for delivery.
	 */
	if (!kvm_s390_pv_get_handle(kvm) &&
	    gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1837
		VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1838
		gisa_set_ipm_gisc(gi->origin, isc);
1839 1840 1841 1842
		kfree(inti);
		return 0;
	}

1843 1844
	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1845 1846 1847
	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
J
Jens Freimann 已提交
1848
	}
1849 1850
	fi->counters[FIRQ_CNTR_IO] += 1;

1851 1852 1853 1854 1855 1856 1857
	if (inti->type & KVM_S390_INT_IO_AI_MASK)
		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
	else
		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);
1858 1859
	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	list_add_tail(&inti->list, list);
1860
	set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1861
	spin_unlock(&fi->lock);
1862
	return 0;
1863
}
1864

1865 1866 1867 1868
/*
 * Find a destination VCPU for a floating irq and kick it.
 */
static void __floating_irq_kick(struct kvm *kvm, u64 type)
1869
{
1870 1871 1872 1873 1874 1875 1876 1877
	struct kvm_vcpu *dst_vcpu;
	int sigcpu, online_vcpus, nr_tries = 0;

	online_vcpus = atomic_read(&kvm->online_vcpus);
	if (!online_vcpus)
		return;

	/* find idle VCPUs first, then round robin */
1878
	sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
1879 1880
	if (sigcpu == online_vcpus) {
		do {
1881 1882
			sigcpu = kvm->arch.float_int.next_rr_cpu++;
			kvm->arch.float_int.next_rr_cpu %= online_vcpus;
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
			/* avoid endless loops if all vcpus are stopped */
			if (nr_tries++ >= online_vcpus)
				return;
		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
	}
	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);

	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
	switch (type) {
	case KVM_S390_MCHK:
1893
		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1894 1895
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1896
		if (!(type & KVM_S390_INT_IO_AI_MASK &&
1897 1898
		      kvm->arch.gisa_int.origin) ||
		      kvm_s390_pv_cpu_get_handle(dst_vcpu))
1899
			kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1900 1901
		break;
	default:
1902
		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1903 1904 1905 1906 1907 1908 1909
		break;
	}
	kvm_s390_vcpu_wakeup(dst_vcpu);
}

static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
1910 1911
	u64 type = READ_ONCE(inti->type);
	int rc;
1912

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	switch (type) {
	case KVM_S390_MCHK:
		rc = __inject_float_mchk(kvm, inti);
		break;
	case KVM_S390_INT_VIRTIO:
		rc = __inject_virtio(kvm, inti);
		break;
	case KVM_S390_INT_SERVICE:
		rc = __inject_service(kvm, inti);
		break;
	case KVM_S390_INT_PFAULT_DONE:
		rc = __inject_pfault_done(kvm, inti);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		rc = __inject_io(kvm, inti);
		break;
	default:
J
Jens Freimann 已提交
1930
		rc = -EINVAL;
1931
	}
1932 1933 1934
	if (rc)
		return rc;

1935
	__floating_irq_kick(kvm, type);
1936
	return 0;
1937 1938 1939 1940 1941 1942
}

int kvm_s390_inject_vm(struct kvm *kvm,
		       struct kvm_s390_interrupt *s390int)
{
	struct kvm_s390_interrupt_info *inti;
1943
	int rc;
1944

1945 1946 1947 1948
	inti = kzalloc(sizeof(*inti), GFP_KERNEL);
	if (!inti)
		return -ENOMEM;

1949 1950
	inti->type = s390int->type;
	switch (inti->type) {
1951
	case KVM_S390_INT_VIRTIO:
1952
		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1953 1954 1955 1956 1957
			 s390int->parm, s390int->parm64);
		inti->ext.ext_params = s390int->parm;
		inti->ext.ext_params2 = s390int->parm64;
		break;
	case KVM_S390_INT_SERVICE:
1958
		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1959 1960
		inti->ext.ext_params = s390int->parm;
		break;
1961 1962 1963
	case KVM_S390_INT_PFAULT_DONE:
		inti->ext.ext_params2 = s390int->parm64;
		break;
1964
	case KVM_S390_MCHK:
1965
		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1966 1967 1968 1969
			 s390int->parm64);
		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
		inti->mchk.mcic = s390int->parm64;
		break;
1970 1971 1972 1973 1974 1975
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		inti->io.subchannel_id = s390int->parm >> 16;
		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
		inti->io.io_int_parm = s390int->parm64 >> 32;
		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
		break;
1976 1977 1978 1979
	default:
		kfree(inti);
		return -EINVAL;
	}
1980 1981
	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
				 2);
1982

1983 1984 1985 1986
	rc = __inject_vm(kvm, inti);
	if (rc)
		kfree(inti);
	return rc;
1987 1988
}

1989
int kvm_s390_reinject_io_int(struct kvm *kvm,
1990 1991
			      struct kvm_s390_interrupt_info *inti)
{
1992
	return __inject_vm(kvm, inti);
1993 1994
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
		       struct kvm_s390_irq *irq)
{
	irq->type = s390int->type;
	switch (irq->type) {
	case KVM_S390_PROGRAM_INT:
		if (s390int->parm & 0xffff0000)
			return -EINVAL;
		irq->u.pgm.code = s390int->parm;
		break;
	case KVM_S390_SIGP_SET_PREFIX:
		irq->u.prefix.address = s390int->parm;
		break;
2008 2009 2010
	case KVM_S390_SIGP_STOP:
		irq->u.stop.flags = s390int->parm;
		break;
2011
	case KVM_S390_INT_EXTERNAL_CALL:
2012
		if (s390int->parm & 0xffff0000)
2013 2014 2015 2016
			return -EINVAL;
		irq->u.extcall.code = s390int->parm;
		break;
	case KVM_S390_INT_EMERGENCY:
2017
		if (s390int->parm & 0xffff0000)
2018 2019 2020 2021 2022 2023
			return -EINVAL;
		irq->u.emerg.code = s390int->parm;
		break;
	case KVM_S390_MCHK:
		irq->u.mchk.mcic = s390int->parm64;
		break;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	case KVM_S390_INT_PFAULT_INIT:
		irq->u.ext.ext_params = s390int->parm;
		irq->u.ext.ext_params2 = s390int->parm64;
		break;
	case KVM_S390_RESTART:
	case KVM_S390_INT_CLOCK_COMP:
	case KVM_S390_INT_CPU_TIMER:
		break;
	default:
		return -EINVAL;
2034 2035 2036 2037
	}
	return 0;
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
}

void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	spin_lock(&li->lock);
	li->irq.stop.flags = 0;
	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
	spin_unlock(&li->lock);
}

2055
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2056
{
2057
	int rc;
2058

2059
	switch (irq->type) {
2060
	case KVM_S390_PROGRAM_INT:
2061
		rc = __inject_prog(vcpu, irq);
2062
		break;
2063
	case KVM_S390_SIGP_SET_PREFIX:
2064
		rc = __inject_set_prefix(vcpu, irq);
2065
		break;
2066
	case KVM_S390_SIGP_STOP:
2067
		rc = __inject_sigp_stop(vcpu, irq);
2068
		break;
2069
	case KVM_S390_RESTART:
2070
		rc = __inject_sigp_restart(vcpu);
2071
		break;
2072
	case KVM_S390_INT_CLOCK_COMP:
2073
		rc = __inject_ckc(vcpu);
2074
		break;
2075
	case KVM_S390_INT_CPU_TIMER:
2076
		rc = __inject_cpu_timer(vcpu);
2077
		break;
2078
	case KVM_S390_INT_EXTERNAL_CALL:
2079
		rc = __inject_extcall(vcpu, irq);
2080
		break;
2081
	case KVM_S390_INT_EMERGENCY:
2082
		rc = __inject_sigp_emergency(vcpu, irq);
2083
		break;
2084
	case KVM_S390_MCHK:
2085
		rc = __inject_mchk(vcpu, irq);
2086
		break;
2087
	case KVM_S390_INT_PFAULT_INIT:
2088
		rc = __inject_pfault_init(vcpu, irq);
2089
		break;
2090 2091
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
2092
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2093
	default:
2094
		rc = -EINVAL;
2095
	}
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

	return rc;
}

int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	int rc;

	spin_lock(&li->lock);
	rc = do_inject_vcpu(vcpu, irq);
2107
	spin_unlock(&li->lock);
2108 2109 2110
	if (!rc)
		kvm_s390_vcpu_wakeup(vcpu);
	return rc;
2111
}
2112

2113
static inline void clear_irq_list(struct list_head *_list)
2114
{
2115
	struct kvm_s390_interrupt_info *inti, *n;
2116

2117
	list_for_each_entry_safe(inti, n, _list, list) {
2118 2119 2120 2121 2122
		list_del(&inti->list);
		kfree(inti);
	}
}

2123 2124
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
		       struct kvm_s390_irq *irq)
2125
{
2126
	irq->type = inti->type;
2127
	switch (inti->type) {
2128 2129
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
2130
	case KVM_S390_INT_VIRTIO:
2131
		irq->u.ext = inti->ext;
2132 2133
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2134
		irq->u.io = inti->io;
2135 2136 2137 2138
		break;
	}
}

2139 2140 2141 2142 2143 2144
void kvm_s390_clear_float_irqs(struct kvm *kvm)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	int i;

	spin_lock(&fi->lock);
2145 2146 2147
	fi->pending_irqs = 0;
	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
	memset(&fi->mchk, 0, sizeof(fi->mchk));
2148 2149 2150 2151 2152
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		clear_irq_list(&fi->lists[i]);
	for (i = 0; i < FIRQ_MAX_COUNT; i++)
		fi->counters[i] = 0;
	spin_unlock(&fi->lock);
2153
	kvm_s390_gisa_clear(kvm);
2154 2155
};

2156
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2157
{
2158
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2159 2160
	struct kvm_s390_interrupt_info *inti;
	struct kvm_s390_float_interrupt *fi;
2161
	struct kvm_s390_irq *buf;
2162
	struct kvm_s390_irq *irq;
2163
	int max_irqs;
2164 2165
	int ret = 0;
	int n = 0;
2166
	int i;
2167

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
		return -EINVAL;

	/*
	 * We are already using -ENOMEM to signal
	 * userspace it may retry with a bigger buffer,
	 * so we need to use something else for this case
	 */
	buf = vzalloc(len);
	if (!buf)
		return -ENOBUFS;

	max_irqs = len / sizeof(struct kvm_s390_irq);

2182
	if (gi->origin && gisa_get_ipm(gi->origin)) {
2183 2184 2185 2186 2187 2188
		for (i = 0; i <= MAX_ISC; i++) {
			if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out_nolock;
			}
2189
			if (gisa_tac_ipm_gisc(gi->origin, i)) {
2190 2191 2192 2193 2194 2195 2196
				irq = (struct kvm_s390_irq *) &buf[n];
				irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
				irq->u.io.io_int_word = isc_to_int_word(i);
				n++;
			}
		}
	}
2197 2198
	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
		list_for_each_entry(inti, &fi->lists[i], list) {
			if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
			}
			inti_to_irq(inti, &buf[n]);
			n++;
		}
	}
	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
2211
		if (n == max_irqs) {
2212 2213
			/* signal userspace to try again */
			ret = -ENOMEM;
2214
			goto out;
2215
		}
2216 2217 2218
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_INT_SERVICE;
		irq->u.ext = fi->srv_signal;
2219 2220
		n++;
	}
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
		}
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = fi->mchk;
		n++;
}

out:
2234
	spin_unlock(&fi->lock);
2235
out_nolock:
2236 2237 2238 2239 2240
	if (!ret && n > 0) {
		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
			ret = -EFAULT;
	}
	vfree(buf);
2241 2242 2243 2244

	return ret < 0 ? ret : n;
}

Y
Yi Min Zhao 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253
static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_all ais;

	if (attr->attr < sizeof(ais))
		return -EINVAL;

	if (!test_kvm_facility(kvm, 72))
2254
		return -EOPNOTSUPP;
Y
Yi Min Zhao 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

	mutex_lock(&fi->ais_lock);
	ais.simm = fi->simm;
	ais.nimm = fi->nimm;
	mutex_unlock(&fi->ais_lock);

	if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
		return -EFAULT;

	return 0;
}

2267 2268 2269 2270 2271 2272
static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r;

	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
2273
		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2274 2275
					  attr->attr);
		break;
Y
Yi Min Zhao 已提交
2276 2277 2278
	case KVM_DEV_FLIC_AISM_ALL:
		r = flic_ais_mode_get_all(dev->kvm, attr);
		break;
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	default:
		r = -EINVAL;
	}

	return r;
}

static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
				     u64 addr)
{
	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
	void *target = NULL;
	void __user *source;
	u64 size;

	if (get_user(inti->type, (u64 __user *)addr))
		return -EFAULT;

	switch (inti->type) {
2298 2299
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
		target = (void *) &inti->ext;
		source = &uptr->u.ext;
		size = sizeof(inti->ext);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		target = (void *) &inti->io;
		source = &uptr->u.io;
		size = sizeof(inti->io);
		break;
	case KVM_S390_MCHK:
		target = (void *) &inti->mchk;
		source = &uptr->u.mchk;
		size = sizeof(inti->mchk);
		break;
	default:
		return -EINVAL;
	}

	if (copy_from_user(target, source, size))
		return -EFAULT;

	return 0;
}

static int enqueue_floating_irq(struct kvm_device *dev,
				struct kvm_device_attr *attr)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int r = 0;
	int len = attr->attr;

	if (len % sizeof(struct kvm_s390_irq) != 0)
		return -EINVAL;
	else if (len > KVM_S390_FLIC_MAX_BUFFER)
		return -EINVAL;

	while (len >= sizeof(struct kvm_s390_irq)) {
		inti = kzalloc(sizeof(*inti), GFP_KERNEL);
		if (!inti)
			return -ENOMEM;

		r = copy_irq_from_user(inti, attr->addr);
		if (r) {
			kfree(inti);
			return r;
		}
J
Jens Freimann 已提交
2348 2349 2350 2351 2352
		r = __inject_vm(dev->kvm, inti);
		if (r) {
			kfree(inti);
			return r;
		}
2353 2354 2355 2356 2357 2358 2359
		len -= sizeof(struct kvm_s390_irq);
		attr->addr += sizeof(struct kvm_s390_irq);
	}

	return r;
}

2360 2361 2362 2363
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
{
	if (id >= MAX_S390_IO_ADAPTERS)
		return NULL;
2364
	id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	return kvm->arch.adapters[id];
}

static int register_io_adapter(struct kvm_device *dev,
			       struct kvm_device_attr *attr)
{
	struct s390_io_adapter *adapter;
	struct kvm_s390_io_adapter adapter_info;

	if (copy_from_user(&adapter_info,
			   (void __user *)attr->addr, sizeof(adapter_info)))
		return -EFAULT;

2378 2379 2380 2381 2382 2383 2384
	if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
		return -EINVAL;

	adapter_info.id = array_index_nospec(adapter_info.id,
					     MAX_S390_IO_ADAPTERS);

	if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
		return -EINVAL;

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter)
		return -ENOMEM;

	adapter->id = adapter_info.id;
	adapter->isc = adapter_info.isc;
	adapter->maskable = adapter_info.maskable;
	adapter->masked = false;
	adapter->swap = adapter_info.swap;
2396 2397
	adapter->suppressible = (adapter_info.flags) &
				KVM_S390_ADAPTER_SUPPRESSIBLE;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	dev->kvm->arch.adapters[adapter->id] = adapter;

	return 0;
}

int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
{
	int ret;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter || !adapter->maskable)
		return -EINVAL;
	ret = adapter->masked;
	adapter->masked = masked;
	return ret;
}

void kvm_s390_destroy_adapters(struct kvm *kvm)
{
	int i;

2419
	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
		kfree(kvm->arch.adapters[i]);
}

static int modify_io_adapter(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct kvm_s390_io_adapter_req req;
	struct s390_io_adapter *adapter;
	int ret;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	adapter = get_io_adapter(dev->kvm, req.id);
	if (!adapter)
		return -EINVAL;
	switch (req.type) {
	case KVM_S390_IO_ADAPTER_MASK:
		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
		if (ret > 0)
			ret = 0;
		break;
2442 2443 2444 2445 2446
	/*
	 * The following operations are no longer needed and therefore no-ops.
	 * The gpa to hva translation is done when an IRQ route is set up. The
	 * set_irq code uses get_user_pages_remote() to do the actual write.
	 */
2447 2448
	case KVM_S390_IO_ADAPTER_MAP:
	case KVM_S390_IO_ADAPTER_UNMAP:
2449
		ret = 0;
2450 2451 2452 2453 2454 2455 2456 2457
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)

{
	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
	u32 schid;

	if (attr->flags)
		return -EINVAL;
	if (attr->attr != sizeof(schid))
		return -EINVAL;
	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
		return -EFAULT;
2470 2471
	if (!schid)
		return -EINVAL;
2472 2473 2474 2475 2476 2477 2478 2479 2480
	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
	/*
	 * If userspace is conforming to the architecture, we can have at most
	 * one pending I/O interrupt per subchannel, so this is effectively a
	 * clear all.
	 */
	return 0;
}

2481 2482 2483 2484 2485 2486
static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_req req;
	int ret = 0;

2487
	if (!test_kvm_facility(kvm, 72))
2488
		return -EOPNOTSUPP;
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	if (req.isc > MAX_ISC)
		return -EINVAL;

	trace_kvm_s390_modify_ais_mode(req.isc,
				       (fi->simm & AIS_MODE_MASK(req.isc)) ?
				       (fi->nimm & AIS_MODE_MASK(req.isc)) ?
				       2 : KVM_S390_AIS_MODE_SINGLE :
				       KVM_S390_AIS_MODE_ALL, req.mode);

	mutex_lock(&fi->ais_lock);
	switch (req.mode) {
	case KVM_S390_AIS_MODE_ALL:
		fi->simm &= ~AIS_MODE_MASK(req.isc);
		fi->nimm &= ~AIS_MODE_MASK(req.isc);
		break;
	case KVM_S390_AIS_MODE_SINGLE:
		fi->simm |= AIS_MODE_MASK(req.isc);
		fi->nimm &= ~AIS_MODE_MASK(req.isc);
		break;
	default:
		ret = -EINVAL;
	}
	mutex_unlock(&fi->ais_lock);

	return ret;
}

2520 2521 2522 2523 2524 2525 2526
static int kvm_s390_inject_airq(struct kvm *kvm,
				struct s390_io_adapter *adapter)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_interrupt s390int = {
		.type = KVM_S390_INT_IO(1, 0, 0, 0),
		.parm = 0,
2527
		.parm64 = isc_to_int_word(adapter->isc),
2528 2529 2530
	};
	int ret = 0;

2531
	if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
		return kvm_s390_inject_vm(kvm, &s390int);

	mutex_lock(&fi->ais_lock);
	if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
		trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
		goto out;
	}

	ret = kvm_s390_inject_vm(kvm, &s390int);
	if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
		fi->nimm |= AIS_MODE_MASK(adapter->isc);
		trace_kvm_s390_modify_ais_mode(adapter->isc,
					       KVM_S390_AIS_MODE_SINGLE, 2);
	}
out:
	mutex_unlock(&fi->ais_lock);
	return ret;
}

static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
{
	unsigned int id = attr->attr;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter)
		return -EINVAL;

	return kvm_s390_inject_airq(kvm, adapter);
}

Y
Yi Min Zhao 已提交
2562 2563 2564 2565 2566 2567
static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_all ais;

	if (!test_kvm_facility(kvm, 72))
2568
		return -EOPNOTSUPP;
Y
Yi Min Zhao 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

	if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
		return -EFAULT;

	mutex_lock(&fi->ais_lock);
	fi->simm = ais.simm;
	fi->nimm = ais.nimm;
	mutex_unlock(&fi->ais_lock);

	return 0;
}

2581 2582 2583
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r = 0;
2584 2585
	unsigned int i;
	struct kvm_vcpu *vcpu;
2586 2587 2588 2589 2590 2591

	switch (attr->group) {
	case KVM_DEV_FLIC_ENQUEUE:
		r = enqueue_floating_irq(dev, attr);
		break;
	case KVM_DEV_FLIC_CLEAR_IRQS:
2592
		kvm_s390_clear_float_irqs(dev->kvm);
2593
		break;
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
	case KVM_DEV_FLIC_APF_ENABLE:
		dev->kvm->arch.gmap->pfault_enabled = 1;
		break;
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
		dev->kvm->arch.gmap->pfault_enabled = 0;
		/*
		 * Make sure no async faults are in transition when
		 * clearing the queues. So we don't need to worry
		 * about late coming workers.
		 */
		synchronize_srcu(&dev->kvm->srcu);
		kvm_for_each_vcpu(i, vcpu, dev->kvm)
			kvm_clear_async_pf_completion_queue(vcpu);
		break;
2608 2609 2610 2611 2612 2613
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
		r = register_io_adapter(dev, attr);
		break;
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
		r = modify_io_adapter(dev, attr);
		break;
2614 2615 2616
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
		r = clear_io_irq(dev->kvm, attr);
		break;
2617 2618 2619
	case KVM_DEV_FLIC_AISM:
		r = modify_ais_mode(dev->kvm, attr);
		break;
2620 2621 2622
	case KVM_DEV_FLIC_AIRQ_INJECT:
		r = flic_inject_airq(dev->kvm, attr);
		break;
Y
Yi Min Zhao 已提交
2623 2624 2625
	case KVM_DEV_FLIC_AISM_ALL:
		r = flic_ais_mode_set_all(dev->kvm, attr);
		break;
2626 2627 2628 2629 2630 2631 2632
	default:
		r = -EINVAL;
	}

	return r;
}

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
static int flic_has_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
	case KVM_DEV_FLIC_ENQUEUE:
	case KVM_DEV_FLIC_CLEAR_IRQS:
	case KVM_DEV_FLIC_APF_ENABLE:
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2644
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2645
	case KVM_DEV_FLIC_AISM:
2646
	case KVM_DEV_FLIC_AIRQ_INJECT:
Y
Yi Min Zhao 已提交
2647
	case KVM_DEV_FLIC_AISM_ALL:
2648 2649 2650 2651 2652
		return 0;
	}
	return -ENXIO;
}

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
static int flic_create(struct kvm_device *dev, u32 type)
{
	if (!dev)
		return -EINVAL;
	if (dev->kvm->arch.flic)
		return -EINVAL;
	dev->kvm->arch.flic = dev;
	return 0;
}

static void flic_destroy(struct kvm_device *dev)
{
	dev->kvm->arch.flic = NULL;
	kfree(dev);
}

/* s390 floating irq controller (flic) */
struct kvm_device_ops kvm_flic_ops = {
	.name = "kvm-flic",
	.get_attr = flic_get_attr,
	.set_attr = flic_set_attr,
2674
	.has_attr = flic_has_attr,
2675 2676 2677
	.create = flic_create,
	.destroy = flic_destroy,
};
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
{
	unsigned long bit;

	bit = bit_nr + (addr % PAGE_SIZE) * 8;

	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
}

2688
static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2689
{
2690
	struct page *page = NULL;
2691

2692 2693 2694 2695 2696
	down_read(&kvm->mm->mmap_sem);
	get_user_pages_remote(NULL, kvm->mm, uaddr, 1, FOLL_WRITE,
			      &page, NULL, NULL);
	up_read(&kvm->mm->mmap_sem);
	return page;
2697 2698 2699 2700 2701 2702 2703 2704
}

static int adapter_indicators_set(struct kvm *kvm,
				  struct s390_io_adapter *adapter,
				  struct kvm_s390_adapter_int *adapter_int)
{
	unsigned long bit;
	int summary_set, idx;
2705
	struct page *ind_page, *summary_page;
2706 2707
	void *map;

2708 2709
	ind_page = get_map_page(kvm, adapter_int->ind_addr);
	if (!ind_page)
2710
		return -1;
2711 2712 2713
	summary_page = get_map_page(kvm, adapter_int->summary_addr);
	if (!summary_page) {
		put_page(ind_page);
2714 2715
		return -1;
	}
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726

	idx = srcu_read_lock(&kvm->srcu);
	map = page_address(ind_page);
	bit = get_ind_bit(adapter_int->ind_addr,
			  adapter_int->ind_offset, adapter->swap);
	set_bit(bit, map);
	mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
	set_page_dirty_lock(ind_page);
	map = page_address(summary_page);
	bit = get_ind_bit(adapter_int->summary_addr,
			  adapter_int->summary_offset, adapter->swap);
2727
	summary_set = test_and_set_bit(bit, map);
2728 2729
	mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
	set_page_dirty_lock(summary_page);
2730
	srcu_read_unlock(&kvm->srcu, idx);
2731 2732 2733

	put_page(ind_page);
	put_page(summary_page);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	return summary_set ? 0 : 1;
}

/*
 * < 0 - not injected due to error
 * = 0 - coalesced, summary indicator already active
 * > 0 - injected interrupt
 */
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
			   struct kvm *kvm, int irq_source_id, int level,
			   bool line_status)
{
	int ret;
	struct s390_io_adapter *adapter;

	/* We're only interested in the 0->1 transition. */
	if (!level)
		return 0;
	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
	if (!adapter)
		return -1;
	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
	if ((ret > 0) && !adapter->masked) {
2757
		ret = kvm_s390_inject_airq(kvm, adapter);
2758 2759 2760 2761 2762 2763
		if (ret == 0)
			ret = 1;
	}
	return ret;
}

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
/*
 * Inject the machine check to the guest.
 */
void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
				     struct mcck_volatile_info *mcck_info)
{
	struct kvm_s390_interrupt_info inti;
	struct kvm_s390_irq irq;
	struct kvm_s390_mchk_info *mchk;
	union mci mci;
	__u64 cr14 = 0;         /* upper bits are not used */
2775
	int rc;
2776 2777 2778

	mci.val = mcck_info->mcic;
	if (mci.sr)
2779
		cr14 |= CR14_RECOVERY_SUBMASK;
2780
	if (mci.dg)
2781
		cr14 |= CR14_DEGRADATION_SUBMASK;
2782
	if (mci.w)
2783
		cr14 |= CR14_WARNING_SUBMASK;
2784 2785 2786 2787 2788 2789 2790 2791 2792

	mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
	mchk->cr14 = cr14;
	mchk->mcic = mcck_info->mcic;
	mchk->ext_damage_code = mcck_info->ext_damage_code;
	mchk->failing_storage_address = mcck_info->failing_storage_address;
	if (mci.ck) {
		/* Inject the floating machine check */
		inti.type = KVM_S390_MCHK;
2793
		rc = __inject_vm(vcpu->kvm, &inti);
2794 2795 2796
	} else {
		/* Inject the machine check to specified vcpu */
		irq.type = KVM_S390_MCHK;
2797
		rc = kvm_s390_inject_vcpu(vcpu, &irq);
2798
	}
2799
	WARN_ON_ONCE(rc);
2800 2801
}

2802 2803
int kvm_set_routing_entry(struct kvm *kvm,
			  struct kvm_kernel_irq_routing_entry *e,
2804 2805
			  const struct kvm_irq_routing_entry *ue)
{
2806
	u64 uaddr;
2807 2808

	switch (ue->type) {
2809
	/* we store the userspace addresses instead of the guest addresses */
2810 2811
	case KVM_IRQ_ROUTING_S390_ADAPTER:
		e->set = set_adapter_int;
2812 2813 2814 2815 2816 2817 2818 2819
		uaddr =  gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr);
		if (uaddr == -EFAULT)
			return -EFAULT;
		e->adapter.summary_addr = uaddr;
		uaddr =  gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr);
		if (uaddr == -EFAULT)
			return -EFAULT;
		e->adapter.ind_addr = uaddr;
2820 2821 2822
		e->adapter.summary_offset = ue->u.adapter.summary_offset;
		e->adapter.ind_offset = ue->u.adapter.ind_offset;
		e->adapter.adapter_id = ue->u.adapter.adapter_id;
2823
		return 0;
2824
	default:
2825
		return -EINVAL;
2826 2827 2828 2829 2830 2831 2832 2833
	}
}

int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
		int irq_source_id, int level, bool line_status)
{
	return -EINVAL;
}
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918

int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_irq *buf;
	int r = 0;
	int n;

	buf = vmalloc(len);
	if (!buf)
		return -ENOMEM;

	if (copy_from_user((void *) buf, irqstate, len)) {
		r = -EFAULT;
		goto out_free;
	}

	/*
	 * Don't allow setting the interrupt state
	 * when there are already interrupts pending
	 */
	spin_lock(&li->lock);
	if (li->pending_irqs) {
		r = -EBUSY;
		goto out_unlock;
	}

	for (n = 0; n < len / sizeof(*buf); n++) {
		r = do_inject_vcpu(vcpu, &buf[n]);
		if (r)
			break;
	}

out_unlock:
	spin_unlock(&li->lock);
out_free:
	vfree(buf);

	return r;
}

static void store_local_irq(struct kvm_s390_local_interrupt *li,
			    struct kvm_s390_irq *irq,
			    unsigned long irq_type)
{
	switch (irq_type) {
	case IRQ_PEND_MCHK_EX:
	case IRQ_PEND_MCHK_REP:
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = li->irq.mchk;
		break;
	case IRQ_PEND_PROG:
		irq->type = KVM_S390_PROGRAM_INT;
		irq->u.pgm = li->irq.pgm;
		break;
	case IRQ_PEND_PFAULT_INIT:
		irq->type = KVM_S390_INT_PFAULT_INIT;
		irq->u.ext = li->irq.ext;
		break;
	case IRQ_PEND_EXT_EXTERNAL:
		irq->type = KVM_S390_INT_EXTERNAL_CALL;
		irq->u.extcall = li->irq.extcall;
		break;
	case IRQ_PEND_EXT_CLOCK_COMP:
		irq->type = KVM_S390_INT_CLOCK_COMP;
		break;
	case IRQ_PEND_EXT_CPU_TIMER:
		irq->type = KVM_S390_INT_CPU_TIMER;
		break;
	case IRQ_PEND_SIGP_STOP:
		irq->type = KVM_S390_SIGP_STOP;
		irq->u.stop = li->irq.stop;
		break;
	case IRQ_PEND_RESTART:
		irq->type = KVM_S390_RESTART;
		break;
	case IRQ_PEND_SET_PREFIX:
		irq->type = KVM_S390_SIGP_SET_PREFIX;
		irq->u.prefix = li->irq.prefix;
		break;
	}
}

int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
{
2919
	int scn;
2920
	DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	unsigned long pending_irqs;
	struct kvm_s390_irq irq;
	unsigned long irq_type;
	int cpuaddr;
	int n = 0;

	spin_lock(&li->lock);
	pending_irqs = li->pending_irqs;
	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
	       sizeof(sigp_emerg_pending));
	spin_unlock(&li->lock);

	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
		memset(&irq, 0, sizeof(irq));
		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
			continue;
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
			memset(&irq, 0, sizeof(irq));
			if (n + sizeof(irq) > len)
				return -ENOBUFS;
			irq.type = KVM_S390_INT_EMERGENCY;
			irq.u.emerg.code = cpuaddr;
			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
				return -EFAULT;
			n += sizeof(irq);
		}
	}

2959
	if (sca_ext_call_pending(vcpu, &scn)) {
2960 2961 2962 2963
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		memset(&irq, 0, sizeof(irq));
		irq.type = KVM_S390_INT_EXTERNAL_CALL;
2964
		irq.u.extcall.code = scn;
2965 2966 2967 2968 2969 2970 2971
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	return n;
}
2972

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
{
	int vcpu_id, online_vcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
	struct kvm_vcpu *vcpu;

	for_each_set_bit(vcpu_id, kvm->arch.idle_mask, online_vcpus) {
		vcpu = kvm_get_vcpu(kvm, vcpu_id);
		if (psw_ioint_disabled(vcpu))
			continue;
		deliverable_mask &= (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
		if (deliverable_mask) {
			/* lately kicked but not yet running */
			if (test_and_set_bit(vcpu_id, gi->kicked_mask))
				return;
			kvm_s390_vcpu_wakeup(vcpu);
			return;
		}
	}
}

static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
{
	struct kvm_s390_gisa_interrupt *gi =
		container_of(timer, struct kvm_s390_gisa_interrupt, timer);
	struct kvm *kvm =
		container_of(gi->origin, struct sie_page2, gisa)->kvm;
	u8 pending_mask;

	pending_mask = gisa_get_ipm_or_restore_iam(gi);
	if (pending_mask) {
		__airqs_kick_single_vcpu(kvm, pending_mask);
		hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
		return HRTIMER_RESTART;
	};

	return HRTIMER_NORESTART;
}

#define NULL_GISA_ADDR 0x00000000UL
#define NONE_GISA_ADDR 0x00000001UL
#define GISA_ADDR_MASK 0xfffff000UL

static void process_gib_alert_list(void)
{
	struct kvm_s390_gisa_interrupt *gi;
	struct kvm_s390_gisa *gisa;
	struct kvm *kvm;
	u32 final, origin = 0UL;

	do {
		/*
		 * If the NONE_GISA_ADDR is still stored in the alert list
		 * origin, we will leave the outer loop. No further GISA has
		 * been added to the alert list by millicode while processing
		 * the current alert list.
		 */
		final = (origin & NONE_GISA_ADDR);
		/*
		 * Cut off the alert list and store the NONE_GISA_ADDR in the
		 * alert list origin to avoid further GAL interruptions.
		 * A new alert list can be build up by millicode in parallel
		 * for guests not in the yet cut-off alert list. When in the
		 * final loop, store the NULL_GISA_ADDR instead. This will re-
		 * enable GAL interruptions on the host again.
		 */
		origin = xchg(&gib->alert_list_origin,
			      (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
		/*
		 * Loop through the just cut-off alert list and start the
		 * gisa timers to kick idle vcpus to consume the pending
		 * interruptions asap.
		 */
		while (origin & GISA_ADDR_MASK) {
			gisa = (struct kvm_s390_gisa *)(u64)origin;
			origin = gisa->next_alert;
			gisa->next_alert = (u32)(u64)gisa;
			kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
			gi = &kvm->arch.gisa_int;
			if (hrtimer_active(&gi->timer))
				hrtimer_cancel(&gi->timer);
			hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
		}
	} while (!final);

}

3060 3061
void kvm_s390_gisa_clear(struct kvm *kvm)
{
3062 3063 3064
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;

	if (!gi->origin)
3065
		return;
3066
	gisa_clear_ipm(gi->origin);
3067
	VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin);
3068 3069 3070 3071
}

void kvm_s390_gisa_init(struct kvm *kvm)
{
3072 3073
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;

3074 3075
	if (!css_general_characteristics.aiv)
		return;
3076
	gi->origin = &kvm->arch.sie_page2->gisa;
3077 3078
	gi->alert.mask = 0;
	spin_lock_init(&gi->alert.ref_lock);
3079 3080 3081
	gi->expires = 50 * 1000; /* 50 usec */
	hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	gi->timer.function = gisa_vcpu_kicker;
3082 3083
	memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
	gi->origin->next_alert = (u32)(u64)gi->origin;
3084
	VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin);
3085 3086 3087 3088
}

void kvm_s390_gisa_destroy(struct kvm *kvm)
{
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;

	if (!gi->origin)
		return;
	if (gi->alert.mask)
		KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x",
			  kvm, gi->alert.mask);
	while (gisa_in_alert_list(gi->origin))
		cpu_relax();
	hrtimer_cancel(&gi->timer);
	gi->origin = NULL;
3100
}
3101

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
/**
 * kvm_s390_gisc_register - register a guest ISC
 *
 * @kvm:  the kernel vm to work with
 * @gisc: the guest interruption sub class to register
 *
 * The function extends the vm specific alert mask to use.
 * The effective IAM mask in the GISA is updated as well
 * in case the GISA is not part of the GIB alert list.
 * It will be updated latest when the IAM gets restored
 * by gisa_get_ipm_or_restore_iam().
 *
 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
 *          has registered with the channel subsystem.
 *          -ENODEV in case the vm uses no GISA
 *          -ERANGE in case the guest ISC is invalid
 */
int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
{
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;

	if (!gi->origin)
		return -ENODEV;
	if (gisc > MAX_ISC)
		return -ERANGE;

	spin_lock(&gi->alert.ref_lock);
	gi->alert.ref_count[gisc]++;
	if (gi->alert.ref_count[gisc] == 1) {
		gi->alert.mask |= 0x80 >> gisc;
		gisa_set_iam(gi->origin, gi->alert.mask);
	}
	spin_unlock(&gi->alert.ref_lock);

	return gib->nisc;
}
EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);

/**
 * kvm_s390_gisc_unregister - unregister a guest ISC
 *
 * @kvm:  the kernel vm to work with
 * @gisc: the guest interruption sub class to register
 *
 * The function reduces the vm specific alert mask to use.
 * The effective IAM mask in the GISA is updated as well
 * in case the GISA is not part of the GIB alert list.
 * It will be updated latest when the IAM gets restored
 * by gisa_get_ipm_or_restore_iam().
 *
 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
 *          has registered with the channel subsystem.
 *          -ENODEV in case the vm uses no GISA
 *          -ERANGE in case the guest ISC is invalid
 *          -EINVAL in case the guest ISC is not registered
 */
int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
{
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
	int rc = 0;

	if (!gi->origin)
		return -ENODEV;
	if (gisc > MAX_ISC)
		return -ERANGE;

	spin_lock(&gi->alert.ref_lock);
	if (gi->alert.ref_count[gisc] == 0) {
		rc = -EINVAL;
		goto out;
	}
	gi->alert.ref_count[gisc]--;
	if (gi->alert.ref_count[gisc] == 0) {
		gi->alert.mask &= ~(0x80 >> gisc);
		gisa_set_iam(gi->origin, gi->alert.mask);
	}
out:
	spin_unlock(&gi->alert.ref_lock);

	return rc;
}
EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);

3185
static void gib_alert_irq_handler(struct airq_struct *airq, bool floating)
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
{
	inc_irq_stat(IRQIO_GAL);
	process_gib_alert_list();
}

static struct airq_struct gib_alert_irq = {
	.handler = gib_alert_irq_handler,
	.lsi_ptr = &gib_alert_irq.lsi_mask,
};

3196 3197 3198 3199 3200
void kvm_s390_gib_destroy(void)
{
	if (!gib)
		return;
	chsc_sgib(0);
3201
	unregister_adapter_interrupt(&gib_alert_irq);
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	free_page((unsigned long)gib);
	gib = NULL;
}

int kvm_s390_gib_init(u8 nisc)
{
	int rc = 0;

	if (!css_general_characteristics.aiv) {
		KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
		goto out;
	}

	gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!gib) {
		rc = -ENOMEM;
		goto out;
	}

3221 3222 3223 3224 3225 3226 3227
	gib_alert_irq.isc = nisc;
	if (register_adapter_interrupt(&gib_alert_irq)) {
		pr_err("Registering the GIB alert interruption handler failed\n");
		rc = -EIO;
		goto out_free_gib;
	}

3228 3229 3230 3231 3232 3233
	gib->nisc = nisc;
	if (chsc_sgib((u32)(u64)gib)) {
		pr_err("Associating the GIB with the AIV facility failed\n");
		free_page((unsigned long)gib);
		gib = NULL;
		rc = -EIO;
3234
		goto out_unreg_gal;
3235 3236 3237
	}

	KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc);
3238 3239 3240 3241 3242 3243 3244
	goto out;

out_unreg_gal:
	unregister_adapter_interrupt(&gib_alert_irq);
out_free_gib:
	free_page((unsigned long)gib);
	gib = NULL;
3245 3246 3247
out:
	return rc;
}