interrupt.c 70.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * handling kvm guest interrupts
4
 *
5
 * Copyright IBM Corp. 2008, 2015
6 7 8 9
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 */

10
#include <linux/interrupt.h>
11
#include <linux/kvm_host.h>
12
#include <linux/hrtimer.h>
13
#include <linux/mmu_context.h>
14
#include <linux/signal.h>
15
#include <linux/slab.h>
16
#include <linux/bitmap.h>
17
#include <linux/vmalloc.h>
18
#include <asm/asm-offsets.h>
19
#include <asm/dis.h>
20
#include <linux/uaccess.h>
21
#include <asm/sclp.h>
22
#include <asm/isc.h>
23
#include <asm/gmap.h>
24
#include <asm/switch_to.h>
25
#include <asm/nmi.h>
26 27
#include "kvm-s390.h"
#include "gaccess.h"
28
#include "trace-s390.h"
29

30
#define PFAULT_INIT 0x0600
31 32
#define PFAULT_DONE 0x0680
#define VIRTIO_PARAM 0x0d00
33

34 35 36
/* handle external calls via sigp interpretation facility */
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
{
37 38
	int c, scn;

39 40 41
	if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
		return 0;

42
	BUG_ON(!kvm_s390_use_sca_entries());
43
	read_lock(&vcpu->kvm->arch.sca_lock);
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	}
59
	read_unlock(&vcpu->kvm->arch.sca_lock);
60 61

	if (src_id)
62
		*src_id = scn;
63

64
	return c;
65 66 67 68
}

static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
{
69
	int expect, rc;
70

71
	BUG_ON(!kvm_s390_use_sca_entries());
72
	read_lock(&vcpu->kvm->arch.sca_lock);
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;

		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
90

91 92 93 94 95 96 97
		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	}
98
	read_unlock(&vcpu->kvm->arch.sca_lock);
99 100

	if (rc != expect) {
101 102 103 104 105 106 107 108 109 110
		/* another external call is pending */
		return -EBUSY;
	}
	atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
	return 0;
}

static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
111
	int rc, expect;
112

113 114
	if (!kvm_s390_use_sca_entries())
		return;
115
	atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
116
	read_lock(&vcpu->kvm->arch.sca_lock);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	}
134
	read_unlock(&vcpu->kvm->arch.sca_lock);
135
	WARN_ON(rc != expect); /* cannot clear? */
136 137
}

138
int psw_extint_disabled(struct kvm_vcpu *vcpu)
139 140 141 142
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
}

143 144 145 146 147
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
}

148 149 150 151 152
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
}

153 154
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
{
155 156 157
	return psw_extint_disabled(vcpu) &&
	       psw_ioint_disabled(vcpu) &&
	       psw_mchk_disabled(vcpu);
158 159
}

160 161 162 163 164
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	if (psw_extint_disabled(vcpu) ||
	    !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		return 0;
165 166 167
	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
		/* No timer interrupts when single stepping */
		return 0;
168 169 170
	return 1;
}

171 172
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
{
173
	if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
174 175 176 177 178 179 180 181 182 183 184 185
		return 0;
	return ckc_interrupts_enabled(vcpu);
}

static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	return !psw_extint_disabled(vcpu) &&
	       (vcpu->arch.sie_block->gcr[0] & 0x400ul);
}

static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
{
186 187 188
	if (!cpu_timer_interrupts_enabled(vcpu))
		return 0;
	return kvm_s390_get_cpu_timer(vcpu) >> 63;
189 190
}

191
static inline int is_ioirq(unsigned long irq_type)
C
Cornelia Huck 已提交
192
{
193 194 195
	return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
		(irq_type <= IRQ_PEND_IO_ISC_7));
}
C
Cornelia Huck 已提交
196

197 198
static uint64_t isc_to_isc_bits(int isc)
{
C
Cornelia Huck 已提交
199 200 201
	return (0x80 >> isc) << 24;
}

202
static inline u8 int_word_to_isc(u32 int_word)
203
{
204 205 206
	return (int_word & 0x38000000) >> 27;
}

207
static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
208
{
209 210
	return vcpu->kvm->arch.float_int.pending_irqs |
	       vcpu->arch.local_int.pending_irqs;
211 212
}

213 214 215 216 217 218 219 220 221 222
static inline int isc_to_irq_type(unsigned long isc)
{
	return IRQ_PEND_IO_ISC_0 + isc;
}

static inline int irq_type_to_isc(unsigned long irq_type)
{
	return irq_type - IRQ_PEND_IO_ISC_0;
}

223 224 225 226 227 228 229
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
				   unsigned long active_mask)
{
	int i;

	for (i = 0; i <= MAX_ISC; i++)
		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
230
			active_mask &= ~(1UL << (isc_to_irq_type(i)));
231 232 233 234 235

	return active_mask;
}

static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
236
{
237 238
	unsigned long active_mask;

239
	active_mask = pending_irqs(vcpu);
240 241
	if (!active_mask)
		return 0;
242 243 244

	if (psw_extint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_EXT_MASK;
245 246 247 248
	if (psw_ioint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_IO_MASK;
	else
		active_mask = disable_iscs(vcpu, active_mask);
249 250 251 252 253 254 255 256
	if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
257 258
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
259 260
	if (psw_mchk_disabled(vcpu))
		active_mask &= ~IRQ_PEND_MCHK_MASK;
261 262 263 264
	/*
	 * Check both floating and local interrupt's cr14 because
	 * bit IRQ_PEND_MCHK_REP could be set in both cases.
	 */
265
	if (!(vcpu->arch.sie_block->gcr[14] &
266 267
	   (vcpu->kvm->arch.float_int.mchk.cr14 |
	   vcpu->arch.local_int.irq.mchk.cr14)))
268
		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
269

270 271 272 273 274 275
	/*
	 * STOP irqs will never be actively delivered. They are triggered via
	 * intercept requests and cleared when the stop intercept is performed.
	 */
	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);

276 277 278
	return active_mask;
}

279 280
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
{
281
	atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
282 283 284 285 286
	set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
{
287
	atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
288 289 290 291 292
	clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
{
293 294
	atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
		    &vcpu->arch.sie_block->cpuflags);
295
	vcpu->arch.sie_block->lctl = 0x0000;
296 297 298 299 300 301 302
	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);

	if (guestdbg_enabled(vcpu)) {
		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
					       LCTL_CR10 | LCTL_CR11);
		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
	}
303 304 305 306
}

static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
{
307
	atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
308 309
}

310 311
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
{
312
	if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
313 314 315 316 317 318 319
		return;
	else if (psw_ioint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_IO_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR6;
}

320 321
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
{
322
	if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
323 324 325 326 327 328 329 330 331
		return;
	if (psw_extint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_EXT_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR0;
}

static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
{
332
	if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
333 334 335 336 337 338 339
		return;
	if (psw_mchk_disabled(vcpu))
		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR14;
}

340 341 342 343 344 345
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
{
	if (kvm_s390_is_stop_irq_pending(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
}

346 347
/* Set interception request for non-deliverable interrupts */
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
348
{
349
	set_intercept_indicators_io(vcpu);
350 351
	set_intercept_indicators_ext(vcpu);
	set_intercept_indicators_mchk(vcpu);
352
	set_intercept_indicators_stop(vcpu);
353 354
}

355 356
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
{
357
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
358 359 360 361 362 363 364
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
			   (u16 *)__LC_EXT_INT_CODE);
365
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
366 367 368 369
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
370
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
371
	return rc ? -EFAULT : 0;
372 373 374 375
}

static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
{
376
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
377 378 379 380 381 382 383
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
			   (u16 __user *)__LC_EXT_INT_CODE);
384
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
385 386 387 388
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
389
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
390
	return rc ? -EFAULT : 0;
391 392
}

393
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
394
{
395 396
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_ext_info ext;
397 398
	int rc;

399 400 401 402 403 404
	spin_lock(&li->lock);
	ext = li->irq.ext;
	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
	li->irq.ext.ext_params2 = 0;
	spin_unlock(&li->lock);

405 406
	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
		   ext.ext_params2);
407 408
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_PFAULT_INIT,
409
					 0, ext.ext_params2);
410 411 412 413 414 415 416

	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
417
	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
418
	return rc ? -EFAULT : 0;
419 420
}

421 422 423 424
static int __write_machine_check(struct kvm_vcpu *vcpu,
				 struct kvm_s390_mchk_info *mchk)
{
	unsigned long ext_sa_addr;
F
Fan Zhang 已提交
425
	unsigned long lc;
426
	freg_t fprs[NUM_FPRS];
427
	union mci mci;
428 429
	int rc;

430
	mci.val = mchk->mcic;
431
	/* take care of lazy register loading */
432 433
	save_fpu_regs();
	save_access_regs(vcpu->run->s.regs.acrs);
434 435
	if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
		save_gs_cb(current->thread.gs_cb);
436

437
	/* Extended save area */
438 439
	rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
			   sizeof(unsigned long));
F
Fan Zhang 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	/* Only bits 0 through 63-LC are used for address formation */
	lc = ext_sa_addr & MCESA_LC_MASK;
	if (test_kvm_facility(vcpu->kvm, 133)) {
		switch (lc) {
		case 0:
		case 10:
			ext_sa_addr &= ~0x3ffUL;
			break;
		case 11:
			ext_sa_addr &= ~0x7ffUL;
			break;
		case 12:
			ext_sa_addr &= ~0xfffUL;
			break;
		default:
			ext_sa_addr = 0;
			break;
		}
	} else {
		ext_sa_addr &= ~0x3ffUL;
	}

462 463 464 465 466 467 468
	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
				    512))
			mci.vr = 0;
	} else {
		mci.vr = 0;
	}
F
Fan Zhang 已提交
469 470 471 472 473 474 475 476
	if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
	    && (lc == 11 || lc == 12)) {
		if (write_guest_abs(vcpu, ext_sa_addr + 1024,
				    &vcpu->run->s.regs.gscb, 32))
			mci.gs = 0;
	} else {
		mci.gs = 0;
	}
477 478

	/* General interruption information */
479
	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
480 481 482 483
	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
484
	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
485 486

	/* Register-save areas */
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	if (MACHINE_HAS_VX) {
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
	} else {
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
				     vcpu->run->s.regs.fprs, 128);
	}
	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
			     vcpu->run->s.regs.gprs, 128);
	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
			     &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
			     &vcpu->arch.sie_block->gcr, 128);
508 509

	/* Extended interruption information */
510 511
	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
512 513 514 515 516 517 518
	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
			     sizeof(mchk->fixed_logout));
	return rc ? -EFAULT : 0;
}

519
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
520
{
521
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
522
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
523 524 525
	struct kvm_s390_mchk_info mchk = {};
	int deliver = 0;
	int rc = 0;
526

527
	spin_lock(&fi->lock);
528
	spin_lock(&li->lock);
529 530 531 532 533 534 535 536 537 538 539 540 541 542
	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
		/*
		 * If there was an exigent machine check pending, then any
		 * repressible machine checks that might have been pending
		 * are indicated along with it, so always clear bits for
		 * repressible and exigent interrupts
		 */
		mchk = li->irq.mchk;
		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
		memset(&li->irq.mchk, 0, sizeof(mchk));
		deliver = 1;
	}
543
	/*
544 545 546 547
	 * We indicate floating repressible conditions along with
	 * other pending conditions. Channel Report Pending and Channel
	 * Subsystem damage are the only two and and are indicated by
	 * bits in mcic and masked in cr14.
548
	 */
549 550 551 552 553 554
	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		mchk.mcic |= fi->mchk.mcic;
		mchk.cr14 |= fi->mchk.cr14;
		memset(&fi->mchk, 0, sizeof(mchk));
		deliver = 1;
	}
555
	spin_unlock(&li->lock);
556
	spin_unlock(&fi->lock);
557

558
	if (deliver) {
559
		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
560 561 562 563
			   mchk.mcic);
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_MCHK,
						 mchk.cr14, mchk.mcic);
564
		rc = __write_machine_check(vcpu, &mchk);
565
	}
566
	return rc;
567 568 569 570
}

static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
{
571
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
572 573
	int rc;

574
	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
575 576 577 578
	vcpu->stat.deliver_restart_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);

	rc  = write_guest_lc(vcpu,
579
			     offsetof(struct lowcore, restart_old_psw),
580
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
581
	rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
582
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
583
	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
584
	return rc ? -EFAULT : 0;
585 586
}

587
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
588
{
589 590 591 592 593 594 595 596
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_prefix_info prefix;

	spin_lock(&li->lock);
	prefix = li->irq.prefix;
	li->irq.prefix.address = 0;
	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
	spin_unlock(&li->lock);
597 598 599 600

	vcpu->stat.deliver_prefix_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_SIGP_SET_PREFIX,
601
					 prefix.address, 0);
602

603
	kvm_s390_set_prefix(vcpu, prefix.address);
604 605 606
	return 0;
}

607
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
608
{
609
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
610
	int rc;
611 612 613 614 615 616 617 618
	int cpu_addr;

	spin_lock(&li->lock);
	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	clear_bit(cpu_addr, li->sigp_emerg_pending);
	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
	spin_unlock(&li->lock);
619

620
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
621
	vcpu->stat.deliver_emergency_signal++;
622 623
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
					 cpu_addr, 0);
624 625 626

	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
			   (u16 *)__LC_EXT_INT_CODE);
627
	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
628 629 630 631
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
632
	return rc ? -EFAULT : 0;
633 634
}

635
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
636
{
637 638
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_extcall_info extcall;
639 640
	int rc;

641 642 643 644 645 646
	spin_lock(&li->lock);
	extcall = li->irq.extcall;
	li->irq.extcall.code = 0;
	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
	spin_unlock(&li->lock);

647
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
648 649 650
	vcpu->stat.deliver_external_call++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_EXTERNAL_CALL,
651
					 extcall.code, 0);
652 653 654

	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
			   (u16 *)__LC_EXT_INT_CODE);
655
	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
656 657 658 659
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
			    sizeof(psw_t));
660
	return rc ? -EFAULT : 0;
661 662
}

663
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
664
{
665 666
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_pgm_info pgm_info;
667
	int rc = 0, nullifying = false;
668
	u16 ilen;
669

670 671 672 673 674 675
	spin_lock(&li->lock);
	pgm_info = li->irq.pgm;
	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
	memset(&li->irq.pgm, 0, sizeof(pgm_info));
	spin_unlock(&li->lock);

676
	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
677 678
	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
		   pgm_info.code, ilen);
679 680
	vcpu->stat.deliver_program_int++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
681
					 pgm_info.code, 0);
682

683
	switch (pgm_info.code & ~PGM_PER) {
684 685 686 687 688 689 690 691 692
	case PGM_AFX_TRANSLATION:
	case PGM_ASX_TRANSLATION:
	case PGM_EX_TRANSLATION:
	case PGM_LFX_TRANSLATION:
	case PGM_LSTE_SEQUENCE:
	case PGM_LSX_TRANSLATION:
	case PGM_LX_TRANSLATION:
	case PGM_PRIMARY_AUTHORITY:
	case PGM_SECONDARY_AUTHORITY:
693 694
		nullifying = true;
		/* fall through */
695
	case PGM_SPACE_SWITCH:
696
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
697 698 699 700 701 702 703 704
				  (u64 *)__LC_TRANS_EXC_CODE);
		break;
	case PGM_ALEN_TRANSLATION:
	case PGM_ALE_SEQUENCE:
	case PGM_ASTE_INSTANCE:
	case PGM_ASTE_SEQUENCE:
	case PGM_ASTE_VALIDITY:
	case PGM_EXTENDED_AUTHORITY:
705
		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
706
				  (u8 *)__LC_EXC_ACCESS_ID);
707
		nullifying = true;
708 709 710 711 712 713 714
		break;
	case PGM_ASCE_TYPE:
	case PGM_PAGE_TRANSLATION:
	case PGM_REGION_FIRST_TRANS:
	case PGM_REGION_SECOND_TRANS:
	case PGM_REGION_THIRD_TRANS:
	case PGM_SEGMENT_TRANSLATION:
715
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
716
				  (u64 *)__LC_TRANS_EXC_CODE);
717
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
718
				   (u8 *)__LC_EXC_ACCESS_ID);
719
		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
720
				   (u8 *)__LC_OP_ACCESS_ID);
721
		nullifying = true;
722 723
		break;
	case PGM_MONITOR:
724
		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
725
				  (u16 *)__LC_MON_CLASS_NR);
726
		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
727 728
				   (u64 *)__LC_MON_CODE);
		break;
E
Eric Farman 已提交
729
	case PGM_VECTOR_PROCESSING:
730
	case PGM_DATA:
731
		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
732 733 734
				  (u32 *)__LC_DATA_EXC_CODE);
		break;
	case PGM_PROTECTION:
735
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
736
				  (u64 *)__LC_TRANS_EXC_CODE);
737
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
738 739
				   (u8 *)__LC_EXC_ACCESS_ID);
		break;
740 741 742 743 744 745 746 747 748
	case PGM_STACK_FULL:
	case PGM_STACK_EMPTY:
	case PGM_STACK_SPECIFICATION:
	case PGM_STACK_TYPE:
	case PGM_STACK_OPERATION:
	case PGM_TRACE_TABEL:
	case PGM_CRYPTO_OPERATION:
		nullifying = true;
		break;
749 750
	}

751 752
	if (pgm_info.code & PGM_PER) {
		rc |= put_guest_lc(vcpu, pgm_info.per_code,
753
				   (u8 *) __LC_PER_CODE);
754
		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
755
				   (u8 *)__LC_PER_ATMID);
756
		rc |= put_guest_lc(vcpu, pgm_info.per_address,
757
				   (u64 *) __LC_PER_ADDRESS);
758
		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
759 760 761
				   (u8 *) __LC_PER_ACCESS_ID);
	}

762
	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
763
		kvm_s390_rewind_psw(vcpu, ilen);
764

765 766
	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
767 768
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
				 (u64 *) __LC_LAST_BREAK);
769
	rc |= put_guest_lc(vcpu, pgm_info.code,
770 771 772 773 774
			   (u16 *)__LC_PGM_INT_CODE);
	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
775
	return rc ? -EFAULT : 0;
776 777
}

778
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
779
{
780 781 782 783 784 785 786 787 788 789 790 791 792
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_ext_info ext;
	int rc = 0;

	spin_lock(&fi->lock);
	if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
		spin_unlock(&fi->lock);
		return 0;
	}
	ext = fi->srv_signal;
	memset(&fi->srv_signal, 0, sizeof(ext));
	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
793

794
	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
795
		   ext.ext_params);
796
	vcpu->stat.deliver_service_signal++;
797 798
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
					 ext.ext_params, 0);
799 800

	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
801
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
802 803 804 805
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
806
	rc |= put_guest_lc(vcpu, ext.ext_params,
807
			   (u32 *)__LC_EXT_PARAMS);
808

809
	return rc ? -EFAULT : 0;
810 811
}

812
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
813
{
814 815 816
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
817

818 819 820 821 822 823 824 825 826 827 828
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
829

830
	if (inti) {
831 832 833 834 835 836
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_INT_PFAULT_DONE, 0,
						 inti->ext.ext_params2);
		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
			   inti->ext.ext_params2);

837 838 839 840 841 842 843 844 845 846 847 848 849 850
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, PFAULT_DONE,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
851
	return rc ? -EFAULT : 0;
852 853
}

854
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
855
{
856 857 858
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
859

860 861 862 863 864 865
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		VCPU_EVENT(vcpu, 4,
866
			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
867 868 869 870 871 872 873 874 875 876 877 878
			   inti->ext.ext_params, inti->ext.ext_params2);
		vcpu->stat.deliver_virtio_interrupt++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				inti->ext.ext_params,
				inti->ext.ext_params2);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
879

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	if (inti) {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
				(u32 *)__LC_EXT_PARAMS);
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
897
	return rc ? -EFAULT : 0;
898 899 900
}

static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
901
				     unsigned long irq_type)
902
{
903 904 905 906
	struct list_head *isc_list;
	struct kvm_s390_float_interrupt *fi;
	struct kvm_s390_interrupt_info *inti = NULL;
	int rc = 0;
907

908
	fi = &vcpu->kvm->arch.float_int;
909

910
	spin_lock(&fi->lock);
911
	isc_list = &fi->lists[irq_type_to_isc(irq_type)];
912 913 914 915
	inti = list_first_entry_or_null(isc_list,
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
916 917 918 919 920 921 922 923
		if (inti->type & KVM_S390_INT_IO_AI_MASK)
			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
		else
			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
		vcpu->stat.deliver_io_int++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				((__u32)inti->io.subchannel_id << 16) |
				inti->io.subchannel_nr,
				((__u64)inti->io.io_int_parm << 32) |
				inti->io.io_int_word);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
	}
	if (list_empty(isc_list))
		clear_bit(irq_type, &fi->pending_irqs);
	spin_unlock(&fi->lock);

	if (inti) {
		rc  = put_guest_lc(vcpu, inti->io.subchannel_id,
				(u16 *)__LC_SUBCHANNEL_ID);
		rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
				(u16 *)__LC_SUBCHANNEL_NR);
		rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
				(u32 *)__LC_IO_INT_PARM);
		rc |= put_guest_lc(vcpu, inti->io.io_int_word,
				(u32 *)__LC_IO_INT_WORD);
		rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		kfree(inti);
	}
955

956
	return rc ? -EFAULT : 0;
957 958 959 960 961 962
}

typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);

static const deliver_irq_t deliver_irq_funcs[] = {
	[IRQ_PEND_MCHK_EX]        = __deliver_machine_check,
963
	[IRQ_PEND_MCHK_REP]       = __deliver_machine_check,
964 965 966 967 968 969 970 971
	[IRQ_PEND_PROG]           = __deliver_prog,
	[IRQ_PEND_EXT_EMERGENCY]  = __deliver_emergency_signal,
	[IRQ_PEND_EXT_EXTERNAL]   = __deliver_external_call,
	[IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
	[IRQ_PEND_EXT_CPU_TIMER]  = __deliver_cpu_timer,
	[IRQ_PEND_RESTART]        = __deliver_restart,
	[IRQ_PEND_SET_PREFIX]     = __deliver_set_prefix,
	[IRQ_PEND_PFAULT_INIT]    = __deliver_pfault_init,
972 973 974
	[IRQ_PEND_EXT_SERVICE]    = __deliver_service,
	[IRQ_PEND_PFAULT_DONE]    = __deliver_pfault_done,
	[IRQ_PEND_VIRTIO]         = __deliver_virtio,
975 976
};

977 978
/* Check whether an external call is pending (deliverable or not) */
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
979
{
980
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
981

982
	if (!sclp.has_sigpif)
983
		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
984

985
	return sca_ext_call_pending(vcpu, NULL);
986 987
}

988
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
989
{
990 991
	if (deliverable_irqs(vcpu))
		return 1;
992

993 994
	if (kvm_cpu_has_pending_timer(vcpu))
		return 1;
995

996
	/* external call pending and deliverable */
997
	if (kvm_s390_ext_call_pending(vcpu) &&
998 999
	    !psw_extint_disabled(vcpu) &&
	    (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
1000
		return 1;
1001

1002 1003 1004
	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
		return 1;
	return 0;
1005 1006
}

1007 1008
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
1009
	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1010 1011
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
{
	u64 now, cputm, sltime = 0;

	if (ckc_interrupts_enabled(vcpu)) {
		now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
		sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
		/* already expired or overflow? */
		if (!sltime || vcpu->arch.sie_block->ckc <= now)
			return 0;
		if (cpu_timer_interrupts_enabled(vcpu)) {
			cputm = kvm_s390_get_cpu_timer(vcpu);
			/* already expired? */
			if (cputm >> 63)
				return 0;
			return min(sltime, tod_to_ns(cputm));
		}
	} else if (cpu_timer_interrupts_enabled(vcpu)) {
		sltime = kvm_s390_get_cpu_timer(vcpu);
		/* already expired? */
		if (sltime >> 63)
			return 0;
	}
	return sltime;
}

1038 1039
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
{
1040
	u64 sltime;
1041 1042 1043

	vcpu->stat.exit_wait_state++;

1044
	/* fast path */
1045
	if (kvm_arch_vcpu_runnable(vcpu))
1046
		return 0;
1047

1048 1049
	if (psw_interrupts_disabled(vcpu)) {
		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1050
		return -EOPNOTSUPP; /* disabled wait */
1051 1052
	}

1053 1054
	if (!ckc_interrupts_enabled(vcpu) &&
	    !cpu_timer_interrupts_enabled(vcpu)) {
1055
		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1056
		__set_cpu_idle(vcpu);
1057 1058 1059
		goto no_timer;
	}

1060 1061
	sltime = __calculate_sltime(vcpu);
	if (!sltime)
1062 1063 1064
		return 0;

	__set_cpu_idle(vcpu);
T
Thomas Gleixner 已提交
1065
	hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1066
	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1067
no_timer:
1068
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1069
	kvm_vcpu_block(vcpu);
1070
	__unset_cpu_idle(vcpu);
1071 1072
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

1073
	hrtimer_cancel(&vcpu->arch.ckc_timer);
1074 1075 1076
	return 0;
}

1077 1078
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
{
1079 1080 1081 1082 1083
	/*
	 * We cannot move this into the if, as the CPU might be already
	 * in kvm_vcpu_block without having the waitqueue set (polling)
	 */
	vcpu->valid_wakeup = true;
1084 1085 1086 1087 1088 1089
	/*
	 * This is mostly to document, that the read in swait_active could
	 * be moved before other stores, leading to subtle races.
	 * All current users do not store or use an atomic like update
	 */
	smp_mb__after_atomic();
1090
	if (swait_active(&vcpu->wq)) {
1091 1092 1093 1094 1095
		/*
		 * The vcpu gave up the cpu voluntarily, mark it as a good
		 * yield-candidate.
		 */
		vcpu->preempted = true;
1096
		swake_up(&vcpu->wq);
1097
		vcpu->stat.halt_wakeup++;
1098
	}
1099 1100 1101 1102 1103
	/*
	 * The VCPU might not be sleeping but is executing the VSIE. Let's
	 * kick it, so it leaves the SIE to process the request.
	 */
	kvm_s390_vsie_kick(vcpu);
1104 1105
}

1106 1107 1108
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
	struct kvm_vcpu *vcpu;
1109
	u64 sltime;
1110 1111

	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1112
	sltime = __calculate_sltime(vcpu);
1113

1114 1115 1116 1117
	/*
	 * If the monotonic clock runs faster than the tod clock we might be
	 * woken up too early and have to go back to sleep to avoid deadlocks.
	 */
1118
	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1119 1120
		return HRTIMER_RESTART;
	kvm_s390_vcpu_wakeup(vcpu);
1121 1122
	return HRTIMER_NORESTART;
}
1123

1124 1125 1126 1127
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1128
	spin_lock(&li->lock);
1129 1130 1131
	li->pending_irqs = 0;
	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	memset(&li->irq, 0, sizeof(li->irq));
1132
	spin_unlock(&li->lock);
1133

1134
	sca_clear_ext_call(vcpu);
1135 1136
}

1137
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1138
{
1139
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1140
	deliver_irq_t func;
1141
	int rc = 0;
1142
	unsigned long irq_type;
1143
	unsigned long irqs;
1144 1145 1146

	__reset_intercept_indicators(vcpu);

1147 1148
	/* pending ckc conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1149
	if (ckc_irq_pending(vcpu))
1150 1151
		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);

1152 1153 1154 1155 1156
	/* pending cpu timer conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
	if (cpu_timer_irq_pending(vcpu))
		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);

1157
	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1158
		/* bits are in the order of interrupt priority */
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
		if (is_ioirq(irq_type)) {
			rc = __deliver_io(vcpu, irq_type);
		} else {
			func = deliver_irq_funcs[irq_type];
			if (!func) {
				WARN_ON_ONCE(func == NULL);
				clear_bit(irq_type, &li->pending_irqs);
				continue;
			}
			rc = func(vcpu);
1170
		}
1171
	}
1172

1173
	set_intercept_indicators(vcpu);
1174 1175

	return rc;
1176 1177
}

1178
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1179 1180 1181
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1182 1183 1184 1185
	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
				   irq->u.pgm.code, 0);

1186 1187 1188 1189 1190 1191 1192
	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
		/* auto detection if no valid ILC was given */
		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
	}

1193 1194
	if (irq->u.pgm.code == PGM_PER) {
		li->irq.pgm.code |= PGM_PER;
1195
		li->irq.pgm.flags = irq->u.pgm.flags;
1196 1197 1198 1199 1200 1201 1202 1203
		/* only modify PER related information */
		li->irq.pgm.per_address = irq->u.pgm.per_address;
		li->irq.pgm.per_code = irq->u.pgm.per_code;
		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
	} else if (!(irq->u.pgm.code & PGM_PER)) {
		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
				   irq->u.pgm.code;
1204
		li->irq.pgm.flags = irq->u.pgm.flags;
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		/* only modify non-PER information */
		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
	} else {
		li->irq.pgm = irq->u.pgm;
	}
1215
	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1216 1217 1218
	return 0;
}

1219
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1220 1221 1222
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1223 1224
	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
		   irq->u.ext.ext_params2);
1225 1226
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
				   irq->u.ext.ext_params,
1227
				   irq->u.ext.ext_params2);
1228 1229 1230

	li->irq.ext = irq->u.ext;
	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1231
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1232 1233 1234
	return 0;
}

1235
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1236 1237
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1238
	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1239
	uint16_t src_id = irq->u.extcall.code;
1240

1241
	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1242
		   src_id);
1243
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1244
				   src_id, 0);
1245 1246

	/* sending vcpu invalid */
1247
	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1248 1249
		return -EINVAL;

1250
	if (sclp.has_sigpif)
1251
		return sca_inject_ext_call(vcpu, src_id);
1252

1253
	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1254
		return -EBUSY;
1255
	*extcall = irq->u.extcall;
1256
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1257 1258 1259
	return 0;
}

1260
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1261 1262
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1263
	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1264

1265
	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1266
		   irq->u.prefix.address);
1267
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1268
				   irq->u.prefix.address, 0);
1269

1270 1271 1272
	if (!is_vcpu_stopped(vcpu))
		return -EBUSY;

1273 1274
	*prefix = irq->u.prefix;
	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1275 1276 1277
	return 0;
}

1278
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1279
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1280 1281
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1282
	struct kvm_s390_stop_info *stop = &li->irq.stop;
1283
	int rc = 0;
1284

1285
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1286

1287 1288 1289
	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
		return -EINVAL;

1290 1291 1292 1293 1294 1295 1296 1297 1298
	if (is_vcpu_stopped(vcpu)) {
		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
			rc = kvm_s390_store_status_unloaded(vcpu,
						KVM_S390_STORE_STATUS_NOADDR);
		return rc;
	}

	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
		return -EBUSY;
1299
	stop->flags = irq->u.stop.flags;
1300
	__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
1301 1302 1303 1304
	return 0;
}

static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
1305
				 struct kvm_s390_irq *irq)
1306 1307 1308
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1309
	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1310
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1311 1312

	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1313 1314 1315 1316
	return 0;
}

static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1317
				   struct kvm_s390_irq *irq)
1318 1319 1320
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1321
	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1322 1323
		   irq->u.emerg.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1324
				   irq->u.emerg.code, 0);
1325

1326 1327 1328 1329
	/* sending vcpu invalid */
	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
		return -EINVAL;

1330
	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1331
	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1332
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1333 1334 1335
	return 0;
}

1336
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1337 1338
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1339
	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1340

1341
	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1342
		   irq->u.mchk.mcic);
1343
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1344
				   irq->u.mchk.mcic);
1345 1346

	/*
1347 1348 1349 1350 1351 1352
	 * Because repressible machine checks can be indicated along with
	 * exigent machine checks (PoP, Chapter 11, Interruption action)
	 * we need to combine cr14, mcic and external damage code.
	 * Failing storage address and the logout area should not be or'ed
	 * together, we just indicate the last occurrence of the corresponding
	 * machine check
1353
	 */
1354
	mchk->cr14 |= irq->u.mchk.cr14;
1355
	mchk->mcic |= irq->u.mchk.mcic;
1356 1357 1358 1359
	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
	       sizeof(mchk->fixed_logout));
1360 1361 1362 1363
	if (mchk->mcic & MCHK_EX_MASK)
		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
	else if (mchk->mcic & MCHK_REP_MASK)
		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1364 1365 1366
	return 0;
}

1367
static int __inject_ckc(struct kvm_vcpu *vcpu)
1368 1369 1370
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1371
	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1372
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1373
				   0, 0);
1374 1375

	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1376
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1377 1378 1379
	return 0;
}

1380
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1381 1382 1383
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1384
	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1385
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1386
				   0, 0);
1387 1388

	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1389
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1390 1391 1392
	return 0;
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
						  int isc, u32 schid)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	struct kvm_s390_interrupt_info *iter;
	u16 id = (schid & 0xffff0000U) >> 16;
	u16 nr = schid & 0x0000ffffU;

	spin_lock(&fi->lock);
	list_for_each_entry(iter, isc_list, list) {
		if (schid && (id != iter->io.subchannel_id ||
			      nr != iter->io.subchannel_nr))
			continue;
		/* found an appropriate entry */
		list_del_init(&iter->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
		if (list_empty(isc_list))
1411
			clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1412 1413 1414 1415 1416 1417
		spin_unlock(&fi->lock);
		return iter;
	}
	spin_unlock(&fi->lock);
	return NULL;
}
1418

1419 1420 1421 1422
/*
 * Dequeue and return an I/O interrupt matching any of the interruption
 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
 */
1423
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
						    u64 isc_mask, u32 schid)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int isc;

	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
		if (isc_mask & isc_to_isc_bits(isc))
			inti = get_io_int(kvm, isc, schid);
	}
	return inti;
}

#define SCCB_MASK 0xFFFFFFF8
#define SCCB_EVENT_PENDING 0x3

static int __inject_service(struct kvm *kvm,
			     struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
	/*
	 * Early versions of the QEMU s390 bios will inject several
	 * service interrupts after another without handling a
	 * condition code indicating busy.
	 * We will silently ignore those superfluous sccb values.
	 * A future version of QEMU will take care of serialization
	 * of servc requests
	 */
	if (fi->srv_signal.ext_params & SCCB_MASK)
		goto out;
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
out:
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_virtio(struct kvm *kvm,
			    struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

static int __inject_pfault_done(struct kvm *kvm,
				 struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_PFAULT] >=
		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_PFAULT] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

#define CR_PENDING_SUBCLASS 28
static int __inject_float_mchk(struct kvm *kvm,
				struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
	fi->mchk.mcic |= inti->mchk.mcic;
	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1515 1516
{
	struct kvm_s390_float_interrupt *fi;
1517 1518
	struct list_head *list;
	int isc;
1519 1520 1521

	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1522 1523 1524
	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
J
Jens Freimann 已提交
1525
	}
1526 1527
	fi->counters[FIRQ_CNTR_IO] += 1;

1528 1529 1530 1531 1532 1533 1534
	if (inti->type & KVM_S390_INT_IO_AI_MASK)
		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
	else
		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);
1535 1536 1537
	isc = int_word_to_isc(inti->io.io_int_word);
	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	list_add_tail(&inti->list, list);
1538
	set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1539
	spin_unlock(&fi->lock);
1540
	return 0;
1541
}
1542

1543 1544 1545 1546
/*
 * Find a destination VCPU for a floating irq and kick it.
 */
static void __floating_irq_kick(struct kvm *kvm, u64 type)
1547
{
1548
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1549
	struct kvm_s390_local_interrupt *li;
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	struct kvm_vcpu *dst_vcpu;
	int sigcpu, online_vcpus, nr_tries = 0;

	online_vcpus = atomic_read(&kvm->online_vcpus);
	if (!online_vcpus)
		return;

	/* find idle VCPUs first, then round robin */
	sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
	if (sigcpu == online_vcpus) {
		do {
			sigcpu = fi->next_rr_cpu;
			fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
			/* avoid endless loops if all vcpus are stopped */
			if (nr_tries++ >= online_vcpus)
				return;
		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
	}
	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);

	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
	li = &dst_vcpu->arch.local_int;
	switch (type) {
	case KVM_S390_MCHK:
1574
		atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
1575 1576
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1577
		atomic_or(CPUSTAT_IO_INT, li->cpuflags);
1578 1579
		break;
	default:
1580
		atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1581 1582 1583 1584 1585 1586 1587
		break;
	}
	kvm_s390_vcpu_wakeup(dst_vcpu);
}

static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
1588 1589
	u64 type = READ_ONCE(inti->type);
	int rc;
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	switch (type) {
	case KVM_S390_MCHK:
		rc = __inject_float_mchk(kvm, inti);
		break;
	case KVM_S390_INT_VIRTIO:
		rc = __inject_virtio(kvm, inti);
		break;
	case KVM_S390_INT_SERVICE:
		rc = __inject_service(kvm, inti);
		break;
	case KVM_S390_INT_PFAULT_DONE:
		rc = __inject_pfault_done(kvm, inti);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		rc = __inject_io(kvm, inti);
		break;
	default:
J
Jens Freimann 已提交
1608
		rc = -EINVAL;
1609
	}
1610 1611 1612
	if (rc)
		return rc;

1613
	__floating_irq_kick(kvm, type);
1614
	return 0;
1615 1616 1617 1618 1619 1620
}

int kvm_s390_inject_vm(struct kvm *kvm,
		       struct kvm_s390_interrupt *s390int)
{
	struct kvm_s390_interrupt_info *inti;
1621
	int rc;
1622

1623 1624 1625 1626
	inti = kzalloc(sizeof(*inti), GFP_KERNEL);
	if (!inti)
		return -ENOMEM;

1627 1628
	inti->type = s390int->type;
	switch (inti->type) {
1629
	case KVM_S390_INT_VIRTIO:
1630
		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1631 1632 1633 1634 1635
			 s390int->parm, s390int->parm64);
		inti->ext.ext_params = s390int->parm;
		inti->ext.ext_params2 = s390int->parm64;
		break;
	case KVM_S390_INT_SERVICE:
1636
		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1637 1638
		inti->ext.ext_params = s390int->parm;
		break;
1639 1640 1641
	case KVM_S390_INT_PFAULT_DONE:
		inti->ext.ext_params2 = s390int->parm64;
		break;
1642
	case KVM_S390_MCHK:
1643
		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1644 1645 1646 1647
			 s390int->parm64);
		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
		inti->mchk.mcic = s390int->parm64;
		break;
1648 1649 1650 1651 1652 1653
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		inti->io.subchannel_id = s390int->parm >> 16;
		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
		inti->io.io_int_parm = s390int->parm64 >> 32;
		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
		break;
1654 1655 1656 1657
	default:
		kfree(inti);
		return -EINVAL;
	}
1658 1659
	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
				 2);
1660

1661 1662 1663 1664
	rc = __inject_vm(kvm, inti);
	if (rc)
		kfree(inti);
	return rc;
1665 1666
}

1667
int kvm_s390_reinject_io_int(struct kvm *kvm,
1668 1669
			      struct kvm_s390_interrupt_info *inti)
{
1670
	return __inject_vm(kvm, inti);
1671 1672
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
		       struct kvm_s390_irq *irq)
{
	irq->type = s390int->type;
	switch (irq->type) {
	case KVM_S390_PROGRAM_INT:
		if (s390int->parm & 0xffff0000)
			return -EINVAL;
		irq->u.pgm.code = s390int->parm;
		break;
	case KVM_S390_SIGP_SET_PREFIX:
		irq->u.prefix.address = s390int->parm;
		break;
1686 1687 1688
	case KVM_S390_SIGP_STOP:
		irq->u.stop.flags = s390int->parm;
		break;
1689
	case KVM_S390_INT_EXTERNAL_CALL:
1690
		if (s390int->parm & 0xffff0000)
1691 1692 1693 1694
			return -EINVAL;
		irq->u.extcall.code = s390int->parm;
		break;
	case KVM_S390_INT_EMERGENCY:
1695
		if (s390int->parm & 0xffff0000)
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
			return -EINVAL;
		irq->u.emerg.code = s390int->parm;
		break;
	case KVM_S390_MCHK:
		irq->u.mchk.mcic = s390int->parm64;
		break;
	}
	return 0;
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
}

void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	spin_lock(&li->lock);
	li->irq.stop.flags = 0;
	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
	spin_unlock(&li->lock);
}

1723
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1724
{
1725
	int rc;
1726

1727
	switch (irq->type) {
1728
	case KVM_S390_PROGRAM_INT:
1729
		rc = __inject_prog(vcpu, irq);
1730
		break;
1731
	case KVM_S390_SIGP_SET_PREFIX:
1732
		rc = __inject_set_prefix(vcpu, irq);
1733
		break;
1734
	case KVM_S390_SIGP_STOP:
1735
		rc = __inject_sigp_stop(vcpu, irq);
1736
		break;
1737
	case KVM_S390_RESTART:
1738
		rc = __inject_sigp_restart(vcpu, irq);
1739
		break;
1740
	case KVM_S390_INT_CLOCK_COMP:
1741
		rc = __inject_ckc(vcpu);
1742
		break;
1743
	case KVM_S390_INT_CPU_TIMER:
1744
		rc = __inject_cpu_timer(vcpu);
1745
		break;
1746
	case KVM_S390_INT_EXTERNAL_CALL:
1747
		rc = __inject_extcall(vcpu, irq);
1748
		break;
1749
	case KVM_S390_INT_EMERGENCY:
1750
		rc = __inject_sigp_emergency(vcpu, irq);
1751
		break;
1752
	case KVM_S390_MCHK:
1753
		rc = __inject_mchk(vcpu, irq);
1754
		break;
1755
	case KVM_S390_INT_PFAULT_INIT:
1756
		rc = __inject_pfault_init(vcpu, irq);
1757
		break;
1758 1759
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
1760
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1761
	default:
1762
		rc = -EINVAL;
1763
	}
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

	return rc;
}

int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	int rc;

	spin_lock(&li->lock);
	rc = do_inject_vcpu(vcpu, irq);
1775
	spin_unlock(&li->lock);
1776 1777 1778
	if (!rc)
		kvm_s390_vcpu_wakeup(vcpu);
	return rc;
1779
}
1780

1781
static inline void clear_irq_list(struct list_head *_list)
1782
{
1783
	struct kvm_s390_interrupt_info *inti, *n;
1784

1785
	list_for_each_entry_safe(inti, n, _list, list) {
1786 1787 1788 1789 1790
		list_del(&inti->list);
		kfree(inti);
	}
}

1791 1792
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
		       struct kvm_s390_irq *irq)
1793
{
1794
	irq->type = inti->type;
1795
	switch (inti->type) {
1796 1797
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1798
	case KVM_S390_INT_VIRTIO:
1799
		irq->u.ext = inti->ext;
1800 1801
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1802
		irq->u.io = inti->io;
1803 1804 1805 1806
		break;
	}
}

1807 1808 1809 1810 1811 1812
void kvm_s390_clear_float_irqs(struct kvm *kvm)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	int i;

	spin_lock(&fi->lock);
1813 1814 1815
	fi->pending_irqs = 0;
	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
	memset(&fi->mchk, 0, sizeof(fi->mchk));
1816 1817 1818 1819 1820 1821 1822
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		clear_irq_list(&fi->lists[i]);
	for (i = 0; i < FIRQ_MAX_COUNT; i++)
		fi->counters[i] = 0;
	spin_unlock(&fi->lock);
};

1823
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
1824 1825 1826
{
	struct kvm_s390_interrupt_info *inti;
	struct kvm_s390_float_interrupt *fi;
1827
	struct kvm_s390_irq *buf;
1828
	struct kvm_s390_irq *irq;
1829
	int max_irqs;
1830 1831
	int ret = 0;
	int n = 0;
1832
	int i;
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
		return -EINVAL;

	/*
	 * We are already using -ENOMEM to signal
	 * userspace it may retry with a bigger buffer,
	 * so we need to use something else for this case
	 */
	buf = vzalloc(len);
	if (!buf)
		return -ENOBUFS;

	max_irqs = len / sizeof(struct kvm_s390_irq);

1848 1849
	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
		list_for_each_entry(inti, &fi->lists[i], list) {
			if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
			}
			inti_to_irq(inti, &buf[n]);
			n++;
		}
	}
	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
1862
		if (n == max_irqs) {
1863 1864
			/* signal userspace to try again */
			ret = -ENOMEM;
1865
			goto out;
1866
		}
1867 1868 1869
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_INT_SERVICE;
		irq->u.ext = fi->srv_signal;
1870 1871
		n++;
	}
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
		}
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = fi->mchk;
		n++;
}

out:
1885
	spin_unlock(&fi->lock);
1886 1887 1888 1889 1890
	if (!ret && n > 0) {
		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
			ret = -EFAULT;
	}
	vfree(buf);
1891 1892 1893 1894

	return ret < 0 ? ret : n;
}

Y
Yi Min Zhao 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_all ais;

	if (attr->attr < sizeof(ais))
		return -EINVAL;

	if (!test_kvm_facility(kvm, 72))
		return -ENOTSUPP;

	mutex_lock(&fi->ais_lock);
	ais.simm = fi->simm;
	ais.nimm = fi->nimm;
	mutex_unlock(&fi->ais_lock);

	if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
		return -EFAULT;

	return 0;
}

1917 1918 1919 1920 1921 1922
static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r;

	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
1923
		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
1924 1925
					  attr->attr);
		break;
Y
Yi Min Zhao 已提交
1926 1927 1928
	case KVM_DEV_FLIC_AISM_ALL:
		r = flic_ais_mode_get_all(dev->kvm, attr);
		break;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	default:
		r = -EINVAL;
	}

	return r;
}

static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
				     u64 addr)
{
	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
	void *target = NULL;
	void __user *source;
	u64 size;

	if (get_user(inti->type, (u64 __user *)addr))
		return -EFAULT;

	switch (inti->type) {
1948 1949
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
		target = (void *) &inti->ext;
		source = &uptr->u.ext;
		size = sizeof(inti->ext);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		target = (void *) &inti->io;
		source = &uptr->u.io;
		size = sizeof(inti->io);
		break;
	case KVM_S390_MCHK:
		target = (void *) &inti->mchk;
		source = &uptr->u.mchk;
		size = sizeof(inti->mchk);
		break;
	default:
		return -EINVAL;
	}

	if (copy_from_user(target, source, size))
		return -EFAULT;

	return 0;
}

static int enqueue_floating_irq(struct kvm_device *dev,
				struct kvm_device_attr *attr)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int r = 0;
	int len = attr->attr;

	if (len % sizeof(struct kvm_s390_irq) != 0)
		return -EINVAL;
	else if (len > KVM_S390_FLIC_MAX_BUFFER)
		return -EINVAL;

	while (len >= sizeof(struct kvm_s390_irq)) {
		inti = kzalloc(sizeof(*inti), GFP_KERNEL);
		if (!inti)
			return -ENOMEM;

		r = copy_irq_from_user(inti, attr->addr);
		if (r) {
			kfree(inti);
			return r;
		}
J
Jens Freimann 已提交
1998 1999 2000 2001 2002
		r = __inject_vm(dev->kvm, inti);
		if (r) {
			kfree(inti);
			return r;
		}
2003 2004 2005 2006 2007 2008 2009
		len -= sizeof(struct kvm_s390_irq);
		attr->addr += sizeof(struct kvm_s390_irq);
	}

	return r;
}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
{
	if (id >= MAX_S390_IO_ADAPTERS)
		return NULL;
	return kvm->arch.adapters[id];
}

static int register_io_adapter(struct kvm_device *dev,
			       struct kvm_device_attr *attr)
{
	struct s390_io_adapter *adapter;
	struct kvm_s390_io_adapter adapter_info;

	if (copy_from_user(&adapter_info,
			   (void __user *)attr->addr, sizeof(adapter_info)))
		return -EFAULT;

	if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
	    (dev->kvm->arch.adapters[adapter_info.id] != NULL))
		return -EINVAL;

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter)
		return -ENOMEM;

	INIT_LIST_HEAD(&adapter->maps);
	init_rwsem(&adapter->maps_lock);
	atomic_set(&adapter->nr_maps, 0);
	adapter->id = adapter_info.id;
	adapter->isc = adapter_info.isc;
	adapter->maskable = adapter_info.maskable;
	adapter->masked = false;
	adapter->swap = adapter_info.swap;
2043 2044
	adapter->suppressible = (adapter_info.flags) &
				KVM_S390_ADAPTER_SUPPRESSIBLE;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	dev->kvm->arch.adapters[adapter->id] = adapter;

	return 0;
}

int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
{
	int ret;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter || !adapter->maskable)
		return -EINVAL;
	ret = adapter->masked;
	adapter->masked = masked;
	return ret;
}

static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map;
	int ret;

	if (!adapter || !addr)
		return -EINVAL;

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (!map) {
		ret = -ENOMEM;
		goto out;
	}
	INIT_LIST_HEAD(&map->list);
	map->guest_addr = addr;
2078
	map->addr = gmap_translate(kvm->arch.gmap, addr);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	if (map->addr == -EFAULT) {
		ret = -EFAULT;
		goto out;
	}
	ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
	if (ret < 0)
		goto out;
	BUG_ON(ret != 1);
	down_write(&adapter->maps_lock);
	if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
		list_add_tail(&map->list, &adapter->maps);
		ret = 0;
	} else {
		put_page(map->page);
		ret = -EINVAL;
	}
	up_write(&adapter->maps_lock);
out:
	if (ret)
		kfree(map);
	return ret;
}

static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map, *tmp;
	int found = 0;

	if (!adapter || !addr)
		return -EINVAL;

	down_write(&adapter->maps_lock);
	list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
		if (map->guest_addr == addr) {
			found = 1;
			atomic_dec(&adapter->nr_maps);
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
			break;
		}
	}
	up_write(&adapter->maps_lock);

	return found ? 0 : -EINVAL;
}

void kvm_s390_destroy_adapters(struct kvm *kvm)
{
	int i;
	struct s390_map_info *map, *tmp;

	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
		if (!kvm->arch.adapters[i])
			continue;
		list_for_each_entry_safe(map, tmp,
					 &kvm->arch.adapters[i]->maps, list) {
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
		}
		kfree(kvm->arch.adapters[i]);
	}
}

static int modify_io_adapter(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct kvm_s390_io_adapter_req req;
	struct s390_io_adapter *adapter;
	int ret;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	adapter = get_io_adapter(dev->kvm, req.id);
	if (!adapter)
		return -EINVAL;
	switch (req.type) {
	case KVM_S390_IO_ADAPTER_MASK:
		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
		if (ret > 0)
			ret = 0;
		break;
	case KVM_S390_IO_ADAPTER_MAP:
		ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
		break;
	case KVM_S390_IO_ADAPTER_UNMAP:
		ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)

{
	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
	u32 schid;

	if (attr->flags)
		return -EINVAL;
	if (attr->attr != sizeof(schid))
		return -EINVAL;
	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
		return -EFAULT;
2189 2190
	if (!schid)
		return -EINVAL;
2191 2192 2193 2194 2195 2196 2197 2198 2199
	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
	/*
	 * If userspace is conforming to the architecture, we can have at most
	 * one pending I/O interrupt per subchannel, so this is effectively a
	 * clear all.
	 */
	return 0;
}

2200 2201 2202 2203 2204 2205
static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_req req;
	int ret = 0;

2206
	if (!test_kvm_facility(kvm, 72))
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
		return -ENOTSUPP;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	if (req.isc > MAX_ISC)
		return -EINVAL;

	trace_kvm_s390_modify_ais_mode(req.isc,
				       (fi->simm & AIS_MODE_MASK(req.isc)) ?
				       (fi->nimm & AIS_MODE_MASK(req.isc)) ?
				       2 : KVM_S390_AIS_MODE_SINGLE :
				       KVM_S390_AIS_MODE_ALL, req.mode);

	mutex_lock(&fi->ais_lock);
	switch (req.mode) {
	case KVM_S390_AIS_MODE_ALL:
		fi->simm &= ~AIS_MODE_MASK(req.isc);
		fi->nimm &= ~AIS_MODE_MASK(req.isc);
		break;
	case KVM_S390_AIS_MODE_SINGLE:
		fi->simm |= AIS_MODE_MASK(req.isc);
		fi->nimm &= ~AIS_MODE_MASK(req.isc);
		break;
	default:
		ret = -EINVAL;
	}
	mutex_unlock(&fi->ais_lock);

	return ret;
}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
static int kvm_s390_inject_airq(struct kvm *kvm,
				struct s390_io_adapter *adapter)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_interrupt s390int = {
		.type = KVM_S390_INT_IO(1, 0, 0, 0),
		.parm = 0,
		.parm64 = (adapter->isc << 27) | 0x80000000,
	};
	int ret = 0;

2250
	if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
		return kvm_s390_inject_vm(kvm, &s390int);

	mutex_lock(&fi->ais_lock);
	if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
		trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
		goto out;
	}

	ret = kvm_s390_inject_vm(kvm, &s390int);
	if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
		fi->nimm |= AIS_MODE_MASK(adapter->isc);
		trace_kvm_s390_modify_ais_mode(adapter->isc,
					       KVM_S390_AIS_MODE_SINGLE, 2);
	}
out:
	mutex_unlock(&fi->ais_lock);
	return ret;
}

static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
{
	unsigned int id = attr->attr;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter)
		return -EINVAL;

	return kvm_s390_inject_airq(kvm, adapter);
}

Y
Yi Min Zhao 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_all ais;

	if (!test_kvm_facility(kvm, 72))
		return -ENOTSUPP;

	if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
		return -EFAULT;

	mutex_lock(&fi->ais_lock);
	fi->simm = ais.simm;
	fi->nimm = ais.nimm;
	mutex_unlock(&fi->ais_lock);

	return 0;
}

2300 2301 2302
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r = 0;
2303 2304
	unsigned int i;
	struct kvm_vcpu *vcpu;
2305 2306 2307 2308 2309 2310

	switch (attr->group) {
	case KVM_DEV_FLIC_ENQUEUE:
		r = enqueue_floating_irq(dev, attr);
		break;
	case KVM_DEV_FLIC_CLEAR_IRQS:
2311
		kvm_s390_clear_float_irqs(dev->kvm);
2312
		break;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
	case KVM_DEV_FLIC_APF_ENABLE:
		dev->kvm->arch.gmap->pfault_enabled = 1;
		break;
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
		dev->kvm->arch.gmap->pfault_enabled = 0;
		/*
		 * Make sure no async faults are in transition when
		 * clearing the queues. So we don't need to worry
		 * about late coming workers.
		 */
		synchronize_srcu(&dev->kvm->srcu);
		kvm_for_each_vcpu(i, vcpu, dev->kvm)
			kvm_clear_async_pf_completion_queue(vcpu);
		break;
2327 2328 2329 2330 2331 2332
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
		r = register_io_adapter(dev, attr);
		break;
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
		r = modify_io_adapter(dev, attr);
		break;
2333 2334 2335
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
		r = clear_io_irq(dev->kvm, attr);
		break;
2336 2337 2338
	case KVM_DEV_FLIC_AISM:
		r = modify_ais_mode(dev->kvm, attr);
		break;
2339 2340 2341
	case KVM_DEV_FLIC_AIRQ_INJECT:
		r = flic_inject_airq(dev->kvm, attr);
		break;
Y
Yi Min Zhao 已提交
2342 2343 2344
	case KVM_DEV_FLIC_AISM_ALL:
		r = flic_ais_mode_set_all(dev->kvm, attr);
		break;
2345 2346 2347 2348 2349 2350 2351
	default:
		r = -EINVAL;
	}

	return r;
}

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
static int flic_has_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
	case KVM_DEV_FLIC_ENQUEUE:
	case KVM_DEV_FLIC_CLEAR_IRQS:
	case KVM_DEV_FLIC_APF_ENABLE:
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2363
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2364
	case KVM_DEV_FLIC_AISM:
2365
	case KVM_DEV_FLIC_AIRQ_INJECT:
Y
Yi Min Zhao 已提交
2366
	case KVM_DEV_FLIC_AISM_ALL:
2367 2368 2369 2370 2371
		return 0;
	}
	return -ENXIO;
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
static int flic_create(struct kvm_device *dev, u32 type)
{
	if (!dev)
		return -EINVAL;
	if (dev->kvm->arch.flic)
		return -EINVAL;
	dev->kvm->arch.flic = dev;
	return 0;
}

static void flic_destroy(struct kvm_device *dev)
{
	dev->kvm->arch.flic = NULL;
	kfree(dev);
}

/* s390 floating irq controller (flic) */
struct kvm_device_ops kvm_flic_ops = {
	.name = "kvm-flic",
	.get_attr = flic_get_attr,
	.set_attr = flic_set_attr,
2393
	.has_attr = flic_has_attr,
2394 2395 2396
	.create = flic_create,
	.destroy = flic_destroy,
};
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
{
	unsigned long bit;

	bit = bit_nr + (addr % PAGE_SIZE) * 8;

	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
}

static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
					  u64 addr)
{
	struct s390_map_info *map;

	if (!adapter)
		return NULL;

	list_for_each_entry(map, &adapter->maps, list) {
		if (map->guest_addr == addr)
			return map;
	}
	return NULL;
}

static int adapter_indicators_set(struct kvm *kvm,
				  struct s390_io_adapter *adapter,
				  struct kvm_s390_adapter_int *adapter_int)
{
	unsigned long bit;
	int summary_set, idx;
	struct s390_map_info *info;
	void *map;

	info = get_map_info(adapter, adapter_int->ind_addr);
	if (!info)
		return -1;
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
	set_bit(bit, map);
	idx = srcu_read_lock(&kvm->srcu);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	info = get_map_info(adapter, adapter_int->summary_addr);
	if (!info) {
		srcu_read_unlock(&kvm->srcu, idx);
		return -1;
	}
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->summary_offset,
			  adapter->swap);
	summary_set = test_and_set_bit(bit, map);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	srcu_read_unlock(&kvm->srcu, idx);
	return summary_set ? 0 : 1;
}

/*
 * < 0 - not injected due to error
 * = 0 - coalesced, summary indicator already active
 * > 0 - injected interrupt
 */
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
			   struct kvm *kvm, int irq_source_id, int level,
			   bool line_status)
{
	int ret;
	struct s390_io_adapter *adapter;

	/* We're only interested in the 0->1 transition. */
	if (!level)
		return 0;
	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
	if (!adapter)
		return -1;
	down_read(&adapter->maps_lock);
	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
	up_read(&adapter->maps_lock);
	if ((ret > 0) && !adapter->masked) {
2477
		ret = kvm_s390_inject_airq(kvm, adapter);
2478 2479 2480 2481 2482 2483
		if (ret == 0)
			ret = 1;
	}
	return ret;
}

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/*
 * Inject the machine check to the guest.
 */
void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
				     struct mcck_volatile_info *mcck_info)
{
	struct kvm_s390_interrupt_info inti;
	struct kvm_s390_irq irq;
	struct kvm_s390_mchk_info *mchk;
	union mci mci;
	__u64 cr14 = 0;         /* upper bits are not used */
2495
	int rc;
2496 2497 2498

	mci.val = mcck_info->mcic;
	if (mci.sr)
2499
		cr14 |= CR14_RECOVERY_SUBMASK;
2500
	if (mci.dg)
2501
		cr14 |= CR14_DEGRADATION_SUBMASK;
2502
	if (mci.w)
2503
		cr14 |= CR14_WARNING_SUBMASK;
2504 2505 2506 2507 2508 2509 2510 2511 2512

	mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
	mchk->cr14 = cr14;
	mchk->mcic = mcck_info->mcic;
	mchk->ext_damage_code = mcck_info->ext_damage_code;
	mchk->failing_storage_address = mcck_info->failing_storage_address;
	if (mci.ck) {
		/* Inject the floating machine check */
		inti.type = KVM_S390_MCHK;
2513
		rc = __inject_vm(vcpu->kvm, &inti);
2514 2515 2516
	} else {
		/* Inject the machine check to specified vcpu */
		irq.type = KVM_S390_MCHK;
2517
		rc = kvm_s390_inject_vcpu(vcpu, &irq);
2518
	}
2519
	WARN_ON_ONCE(rc);
2520 2521
}

2522 2523
int kvm_set_routing_entry(struct kvm *kvm,
			  struct kvm_kernel_irq_routing_entry *e,
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
			  const struct kvm_irq_routing_entry *ue)
{
	int ret;

	switch (ue->type) {
	case KVM_IRQ_ROUTING_S390_ADAPTER:
		e->set = set_adapter_int;
		e->adapter.summary_addr = ue->u.adapter.summary_addr;
		e->adapter.ind_addr = ue->u.adapter.ind_addr;
		e->adapter.summary_offset = ue->u.adapter.summary_offset;
		e->adapter.ind_offset = ue->u.adapter.ind_offset;
		e->adapter.adapter_id = ue->u.adapter.adapter_id;
		ret = 0;
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
		int irq_source_id, int level, bool line_status)
{
	return -EINVAL;
}
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634

int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_irq *buf;
	int r = 0;
	int n;

	buf = vmalloc(len);
	if (!buf)
		return -ENOMEM;

	if (copy_from_user((void *) buf, irqstate, len)) {
		r = -EFAULT;
		goto out_free;
	}

	/*
	 * Don't allow setting the interrupt state
	 * when there are already interrupts pending
	 */
	spin_lock(&li->lock);
	if (li->pending_irqs) {
		r = -EBUSY;
		goto out_unlock;
	}

	for (n = 0; n < len / sizeof(*buf); n++) {
		r = do_inject_vcpu(vcpu, &buf[n]);
		if (r)
			break;
	}

out_unlock:
	spin_unlock(&li->lock);
out_free:
	vfree(buf);

	return r;
}

static void store_local_irq(struct kvm_s390_local_interrupt *li,
			    struct kvm_s390_irq *irq,
			    unsigned long irq_type)
{
	switch (irq_type) {
	case IRQ_PEND_MCHK_EX:
	case IRQ_PEND_MCHK_REP:
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = li->irq.mchk;
		break;
	case IRQ_PEND_PROG:
		irq->type = KVM_S390_PROGRAM_INT;
		irq->u.pgm = li->irq.pgm;
		break;
	case IRQ_PEND_PFAULT_INIT:
		irq->type = KVM_S390_INT_PFAULT_INIT;
		irq->u.ext = li->irq.ext;
		break;
	case IRQ_PEND_EXT_EXTERNAL:
		irq->type = KVM_S390_INT_EXTERNAL_CALL;
		irq->u.extcall = li->irq.extcall;
		break;
	case IRQ_PEND_EXT_CLOCK_COMP:
		irq->type = KVM_S390_INT_CLOCK_COMP;
		break;
	case IRQ_PEND_EXT_CPU_TIMER:
		irq->type = KVM_S390_INT_CPU_TIMER;
		break;
	case IRQ_PEND_SIGP_STOP:
		irq->type = KVM_S390_SIGP_STOP;
		irq->u.stop = li->irq.stop;
		break;
	case IRQ_PEND_RESTART:
		irq->type = KVM_S390_RESTART;
		break;
	case IRQ_PEND_SET_PREFIX:
		irq->type = KVM_S390_SIGP_SET_PREFIX;
		irq->u.prefix = li->irq.prefix;
		break;
	}
}

int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
{
2635
	int scn;
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	unsigned long pending_irqs;
	struct kvm_s390_irq irq;
	unsigned long irq_type;
	int cpuaddr;
	int n = 0;

	spin_lock(&li->lock);
	pending_irqs = li->pending_irqs;
	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
	       sizeof(sigp_emerg_pending));
	spin_unlock(&li->lock);

	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
		memset(&irq, 0, sizeof(irq));
		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
			continue;
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
			memset(&irq, 0, sizeof(irq));
			if (n + sizeof(irq) > len)
				return -ENOBUFS;
			irq.type = KVM_S390_INT_EMERGENCY;
			irq.u.emerg.code = cpuaddr;
			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
				return -EFAULT;
			n += sizeof(irq);
		}
	}

2675
	if (sca_ext_call_pending(vcpu, &scn)) {
2676 2677 2678 2679
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		memset(&irq, 0, sizeof(irq));
		irq.type = KVM_S390_INT_EXTERNAL_CALL;
2680
		irq.u.extcall.code = scn;
2681 2682 2683 2684 2685 2686 2687
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	return n;
}