iommu.c 157.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25 26 27
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
K
Kay, Allen M 已提交
34
#include <linux/intel-iommu.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
39
#include <linux/memblock.h>
A
Akinobu Mita 已提交
40
#include <linux/dma-contiguous.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <linux/swiotlb.h>
45
#include <asm/irq_remapping.h>
46
#include <asm/cacheflush.h>
47
#include <asm/iommu.h>
48
#include <trace/events/intel_iommu.h>
49

50
#include "../irq_remapping.h"
51
#include "pasid.h"
52

F
Fenghua Yu 已提交
53 54 55
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

56
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60 61 62 63 64

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

65
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66

F
Fenghua Yu 已提交
67
#define MAX_AGAW_WIDTH 64
68
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
69

70 71 72 73 74 75 76 77
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78

79 80 81
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

82
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
83

84 85 86 87
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

106 107 108 109 110 111 112
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
113
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 115 116 117
}

static inline int width_to_agaw(int width)
{
118
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 120 121 122 123 124 125
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

126
static inline int pfn_level_offset(u64 pfn, int level)
127 128 129 130
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

131
static inline u64 level_mask(int level)
132
{
133
	return -1ULL << level_to_offset_bits(level);
134 135
}

136
static inline u64 level_size(int level)
137
{
138
	return 1ULL << level_to_offset_bits(level);
139 140
}

141
static inline u64 align_to_level(u64 pfn, int level)
142 143 144
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
145

146 147
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
148
	return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
171 172 173
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

174
static void __init check_tylersburg_isoch(void);
175 176
static int rwbf_quirk;

177 178 179 180 181
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
182
int intel_iommu_tboot_noforce;
183
static int no_platform_optin;
184

185 186
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
207

208 209
	return re->hi & VTD_PAGE_MASK;
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
232 233 234
{
	return (context->lo & 1);
}
235

236
bool context_present(struct context_entry *context)
237 238 239 240 241 242
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
263
	context->lo &= ~VTD_PAGE_MASK;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

279 280 281 282 283
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

284 285 286 287 288
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
289

290 291 292 293 294 295
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
296 297
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
298

299 300 301 302
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

303 304 305 306 307
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
308
	struct dmar_dev_scope *devices;	/* target devices */
309 310 311 312 313 314
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
315
	struct dmar_dev_scope *devices;	/* target devices */
316 317 318 319 320 321 322 323 324 325
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
326 327 328
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

329
static void domain_exit(struct dmar_domain *domain);
330
static void domain_remove_dev_info(struct dmar_domain *domain);
331
static void dmar_remove_one_dev_info(struct device *dev);
332
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
333 334
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
335 336
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
337

338
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
339 340 341
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
342
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
343

344
#ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
345 346
int intel_iommu_sm = 1;
#else
347
int intel_iommu_sm;
348
#endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
349

350 351 352
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

353
static int dmar_map_gfx = 1;
354
static int dmar_forcedac;
M
mark gross 已提交
355
static int intel_iommu_strict;
356
static int intel_iommu_superpage = 1;
357
static int iommu_identity_mapping;
358
static int intel_no_bounce;
359
static int iommu_skip_te_disable;
360

361 362
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
363

364 365 366
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

367
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
368 369 370 371 372 373 374
struct device_domain_info *get_domain_info(struct device *dev)
{
	struct device_domain_info *info;

	if (!dev)
		return NULL;

375
	info = dev_iommu_priv_get(dev);
376
	if (unlikely(info == DEFER_DEVICE_DOMAIN_INFO))
377 378 379 380 381
		return NULL;

	return info;
}

382
DEFINE_SPINLOCK(device_domain_lock);
383 384
static LIST_HEAD(device_domain_list);

385 386 387
#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
				to_pci_dev(d)->untrusted)

388 389
/*
 * Iterate over elements in device_domain_list and call the specified
390
 * callback @fn against each element.
391 392 393 394 395
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
396
	unsigned long flags;
397 398
	struct device_domain_info *info;

399
	spin_lock_irqsave(&device_domain_lock, flags);
400 401
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
402 403
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
404
			return ret;
405
		}
406
	}
407
	spin_unlock_irqrestore(&device_domain_lock, flags);
408 409 410 411

	return 0;
}

412
const struct iommu_ops intel_iommu_ops;
413

414 415 416 417 418
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

419 420 421 422 423
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

424 425 426 427 428 429 430 431 432
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

433 434 435 436 437
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
438 439
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
440
			pr_info("IOMMU enabled\n");
441
		} else if (!strncmp(str, "off", 3)) {
442
			dmar_disabled = 1;
443
			no_platform_optin = 1;
J
Joerg Roedel 已提交
444
			pr_info("IOMMU disabled\n");
445 446
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
447
			pr_info("Disable GFX device mapping\n");
448
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
449
			pr_info("Forcing DAC for PCI devices\n");
450
			dmar_forcedac = 1;
M
mark gross 已提交
451
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
452
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
453
			intel_iommu_strict = 1;
454
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
455
			pr_info("Disable supported super page\n");
456
			intel_iommu_superpage = 0;
457 458 459
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
460
		} else if (!strncmp(str, "tboot_noforce", 13)) {
461
			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
462
			intel_iommu_tboot_noforce = 1;
463 464 465
		} else if (!strncmp(str, "nobounce", 8)) {
			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
			intel_no_bounce = 1;
466 467 468 469 470 471 472 473 474 475 476 477 478
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

479 480
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
481 482 483 484 485 486 487 488
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
489 490 491 492 493
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
494 495 496 497 498 499 500 501 502 503 504 505 506
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
507 508
}

509
void *alloc_pgtable_page(int node)
510
{
511 512
	struct page *page;
	void *vaddr = NULL;
513

514 515 516
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
517
	return vaddr;
518 519
}

520
void free_pgtable_page(void *vaddr)
521 522 523 524 525 526
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
527
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
528 529
}

K
Kay, Allen M 已提交
530
static void free_domain_mem(void *vaddr)
531 532 533 534 535 536
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
537
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
538 539 540 541 542 543 544
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

545 546 547 548 549
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

550 551 552 553 554
static inline bool domain_use_first_level(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
}

555 556 557 558 559 560 561 562
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
563
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
564 565 566 567 568
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
569
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
570 571 572 573 574 575 576 577
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

596
/* This functionin only returns single iommu in a domain */
597
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
598 599 600
{
	int iommu_id;

601
	/* si_domain and vm domain should not get here. */
602 603 604
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

605 606 607
	for_each_domain_iommu(iommu_id, domain)
		break;

608 609 610 611 612 613
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

614 615 616 617 618 619
static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
{
	return sm_supported(iommu) ?
			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
}

W
Weidong Han 已提交
620 621
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
622 623
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
624 625
	bool found = false;
	int i;
626

627
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
628

629
	for_each_domain_iommu(i, domain) {
630
		found = true;
631
		if (!iommu_paging_structure_coherency(g_iommus[i])) {
W
Weidong Han 已提交
632 633 634 635
			domain->iommu_coherency = 0;
			break;
		}
	}
636 637 638 639 640 641
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
642
		if (!iommu_paging_structure_coherency(iommu)) {
643 644 645 646 647
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
648 649
}

650
static int domain_update_iommu_snooping(struct intel_iommu *skip)
651
{
652 653 654
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
655

656 657 658 659 660 661 662
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
663 664
		}
	}
665 666 667
	rcu_read_unlock();

	return ret;
668 669
}

670 671
static int domain_update_iommu_superpage(struct dmar_domain *domain,
					 struct intel_iommu *skip)
672
{
673
	struct dmar_drhd_unit *drhd;
674
	struct intel_iommu *iommu;
675
	int mask = 0x3;
676 677

	if (!intel_iommu_superpage) {
678
		return 0;
679 680
	}

681
	/* set iommu_superpage to the smallest common denominator */
682
	rcu_read_lock();
683
	for_each_active_iommu(iommu, drhd) {
684
		if (iommu != skip) {
685 686 687 688 689 690 691
			if (domain && domain_use_first_level(domain)) {
				if (!cap_fl1gp_support(iommu->cap))
					mask = 0x1;
			} else {
				mask &= cap_super_page_val(iommu->cap);
			}

692 693
			if (!mask)
				break;
694 695
		}
	}
696 697
	rcu_read_unlock();

698
	return fls(mask);
699 700
}

701 702 703 704
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
705
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
706
	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
707 708
}

709 710
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
711 712 713 714 715
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

716
	entry = &root->lo;
717
	if (sm_supported(iommu)) {
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

743 744
static bool attach_deferred(struct device *dev)
{
745
	return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO;
746 747
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return false;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
		return true;
	}

	return false;
}

static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || iommu->drhd->ignored)
		return true;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
		    pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
		    quirk_ioat_snb_local_iommu(pdev))
			return true;
	}

	return false;
}

822
struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
823 824
{
	struct dmar_drhd_unit *drhd = NULL;
825
	struct pci_dev *pdev = NULL;
826
	struct intel_iommu *iommu;
827
	struct device *tmp;
828
	u16 segment = 0;
829 830
	int i;

831
	if (!dev)
832 833
		return NULL;

834
	if (dev_is_pci(dev)) {
835 836
		struct pci_dev *pf_pdev;

837
		pdev = pci_real_dma_dev(to_pci_dev(dev));
838

839 840 841 842
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
843
		segment = pci_domain_nr(pdev->bus);
844
	} else if (has_acpi_companion(dev))
845 846
		dev = &ACPI_COMPANION(dev)->dev;

847
	rcu_read_lock();
848
	for_each_iommu(iommu, drhd) {
849
		if (pdev && segment != drhd->segment)
850
			continue;
851

852
		for_each_active_dev_scope(drhd->devices,
853 854
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
855 856 857 858
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
859
				if (pdev && pdev->is_virtfn)
860 861
					goto got_pdev;

862 863 864 865
				if (bus && devfn) {
					*bus = drhd->devices[i].bus;
					*devfn = drhd->devices[i].devfn;
				}
866
				goto out;
867 868
			}

869
			if (is_downstream_to_pci_bridge(dev, tmp))
870
				goto got_pdev;
871
		}
872

873 874
		if (pdev && drhd->include_all) {
		got_pdev:
875 876 877 878
			if (bus && devfn) {
				*bus = pdev->bus->number;
				*devfn = pdev->devfn;
			}
879
			goto out;
880
		}
881
	}
882
	iommu = NULL;
883
 out:
884 885 886
	if (iommu_is_dummy(iommu, dev))
		iommu = NULL;

887
	rcu_read_unlock();
888

889
	return iommu;
890 891
}

W
Weidong Han 已提交
892 893 894 895 896 897 898
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

899 900 901
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
902
	int ret = 0;
903 904 905
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
906 907 908
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
924
		context = iommu_context_addr(iommu, i, 0, 0);
925 926
		if (context)
			free_pgtable_page(context);
927

928
		if (!sm_supported(iommu))
929 930 931 932 933 934
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

935 936 937 938 939 940 941
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

942
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
943
				      unsigned long pfn, int *target_level)
944
{
945
	struct dma_pte *parent, *pte;
946
	int level = agaw_to_level(domain->agaw);
947
	int offset;
948 949

	BUG_ON(!domain->pgd);
950

951
	if (!domain_pfn_supported(domain, pfn))
952 953 954
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

955 956
	parent = domain->pgd;

957
	while (1) {
958 959
		void *tmp_page;

960
		offset = pfn_level_offset(pfn, level);
961
		pte = &parent[offset];
962
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
963
			break;
964
		if (level == *target_level)
965 966
			break;

967
		if (!dma_pte_present(pte)) {
968 969
			uint64_t pteval;

970
			tmp_page = alloc_pgtable_page(domain->nid);
971

972
			if (!tmp_page)
973
				return NULL;
974

975
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
976
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
977
			if (domain_use_first_level(domain))
978
				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
979
			if (cmpxchg64(&pte->val, 0ULL, pteval))
980 981
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
982
			else
983
				domain_flush_cache(domain, pte, sizeof(*pte));
984
		}
985 986 987
		if (level == 1)
			break;

988
		parent = phys_to_virt(dma_pte_addr(pte));
989 990 991
		level--;
	}

992 993 994
	if (!*target_level)
		*target_level = level;

995 996 997 998
	return pte;
}

/* return address's pte at specific level */
999 1000
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
1001
					 int level, int *large_page)
1002
{
1003
	struct dma_pte *parent, *pte;
1004 1005 1006 1007 1008
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
1009
		offset = pfn_level_offset(pfn, total);
1010 1011 1012 1013
		pte = &parent[offset];
		if (level == total)
			return pte;

1014 1015
		if (!dma_pte_present(pte)) {
			*large_page = total;
1016
			break;
1017 1018
		}

1019
		if (dma_pte_superpage(pte)) {
1020 1021 1022 1023
			*large_page = total;
			return pte;
		}

1024
		parent = phys_to_virt(dma_pte_addr(pte));
1025 1026 1027 1028 1029 1030
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
1031
static void dma_pte_clear_range(struct dmar_domain *domain,
1032 1033
				unsigned long start_pfn,
				unsigned long last_pfn)
1034
{
1035
	unsigned int large_page;
1036
	struct dma_pte *first_pte, *pte;
1037

1038 1039
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1040
	BUG_ON(start_pfn > last_pfn);
1041

1042
	/* we don't need lock here; nobody else touches the iova range */
1043
	do {
1044 1045
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1046
		if (!pte) {
1047
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1048 1049
			continue;
		}
1050
		do {
1051
			dma_clear_pte(pte);
1052
			start_pfn += lvl_to_nr_pages(large_page);
1053
			pte++;
1054 1055
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1056 1057
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1058 1059

	} while (start_pfn && start_pfn <= last_pfn);
1060 1061
}

1062
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1063 1064 1065
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1077
		level_pfn = pfn & level_mask(level);
1078 1079
		level_pte = phys_to_virt(dma_pte_addr(pte));

1080 1081 1082 1083 1084
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1085

1086 1087 1088 1089 1090
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1091
		      last_pfn < level_pfn + level_size(level) - 1)) {
1092 1093 1094 1095 1096 1097 1098 1099 1100
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1101 1102 1103 1104
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1105
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1106
				   unsigned long start_pfn,
1107 1108
				   unsigned long last_pfn,
				   int retain_level)
1109
{
1110 1111
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1112
	BUG_ON(start_pfn > last_pfn);
1113

1114 1115
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1116
	/* We don't need lock here; nobody else touches the iova range */
1117
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1118
			   domain->pgd, 0, start_pfn, last_pfn);
1119

1120
	/* free pgd */
1121
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1122 1123 1124 1125 1126
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1146 1147
	pte = page_address(pg);
	do {
1148 1149 1150
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1151 1152
		pte++;
	} while (!first_pte_in_page(pte));
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1209 1210 1211
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1212
{
1213
	struct page *freelist;
1214

1215 1216
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1235
static void dma_free_pagelist(struct page *freelist)
1236 1237 1238 1239 1240 1241 1242 1243 1244
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1245 1246 1247 1248 1249 1250 1251
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1252 1253 1254 1255 1256 1257
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1258
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1259
	if (!root) {
J
Joerg Roedel 已提交
1260
		pr_err("Allocating root entry for %s failed\n",
1261
			iommu->name);
1262
		return -ENOMEM;
1263
	}
1264

F
Fenghua Yu 已提交
1265
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1276
	u64 addr;
1277
	u32 sts;
1278 1279
	unsigned long flag;

1280
	addr = virt_to_phys(iommu->root_entry);
1281 1282
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1283

1284
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1285
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1286

1287
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1288 1289 1290

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1291
		      readl, (sts & DMA_GSTS_RTPS), sts);
1292

1293
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1294 1295
}

1296
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1297 1298 1299 1300
{
	u32 val;
	unsigned long flag;

1301
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1302 1303
		return;

1304
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1305
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1306 1307 1308

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1309
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1310

1311
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1312 1313 1314
}

/* return value determine if we need a write buffer flush */
1315 1316 1317
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1338
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1339 1340 1341 1342 1343 1344
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1345
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1346 1347 1348
}

/* return value determine if we need a write buffer flush */
1349 1350
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1366
		/* IH bit is passed in as part of address */
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1384
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1385 1386 1387 1388 1389 1390 1391 1392 1393
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1394
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1395 1396 1397

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1398
		pr_err("Flush IOTLB failed\n");
1399
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1400
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1401 1402
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1403 1404
}

1405 1406 1407
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1408 1409 1410
{
	struct device_domain_info *info;

1411 1412
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1413 1414 1415 1416
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1417 1418
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1419 1420
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1421 1422 1423
			break;
		}

1424
	return NULL;
Y
Yu Zhao 已提交
1425 1426
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1450
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1451
{
1452 1453
	struct pci_dev *pdev;

1454 1455
	assert_spin_locked(&device_domain_lock);

1456
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1457 1458
		return;

1459
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1472
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1473
	}
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1484 1485 1486
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1487 1488
		info->pri_enabled = 1;
#endif
1489
	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1490
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1491
		info->ats_enabled = 1;
1492
		domain_update_iotlb(info->domain);
1493 1494
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1495 1496 1497 1498
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1499 1500
	struct pci_dev *pdev;

1501 1502
	assert_spin_locked(&device_domain_lock);

1503
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1504 1505
		return;

1506 1507 1508 1509 1510
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1511
		domain_update_iotlb(info->domain);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1532 1533 1534
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1535 1536
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1537
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1538 1539 1540
			continue;

		sid = info->bus << 8 | info->devfn;
1541
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1542 1543
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1544 1545 1546 1547
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
static void domain_flush_piotlb(struct intel_iommu *iommu,
				struct dmar_domain *domain,
				u64 addr, unsigned long npages, bool ih)
{
	u16 did = domain->iommu_did[iommu->seq_id];

	if (domain->default_pasid)
		qi_flush_piotlb(iommu, did, domain->default_pasid,
				addr, npages, ih);

	if (!list_empty(&domain->devices))
		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
}

1562 1563 1564 1565
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1566
{
1567
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1568
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1569
	u16 did = domain->iommu_did[iommu->seq_id];
1570 1571 1572

	BUG_ON(pages == 0);

1573 1574
	if (ih)
		ih = 1 << 6;
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

	if (domain_use_first_level(domain)) {
		domain_flush_piotlb(iommu, domain, addr, pages, ih);
	} else {
		/*
		 * Fallback to domain selective flush if no PSI support or
		 * the size is too big. PSI requires page size to be 2 ^ x,
		 * and the base address is naturally aligned to the size.
		 */
		if (!cap_pgsel_inv(iommu->cap) ||
		    mask > cap_max_amask_val(iommu->cap))
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
							DMA_TLB_DSI_FLUSH);
		else
			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
							DMA_TLB_PSI_FLUSH);
	}
1592 1593

	/*
1594 1595
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1596
	 */
1597
	if (!cap_caching_mode(iommu->cap) || !map)
1598
		iommu_flush_dev_iotlb(domain, addr, mask);
1599 1600
}

1601 1602 1603 1604 1605
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
1606 1607 1608 1609 1610
	/*
	 * It's a non-present to present mapping. Only flush if caching mode
	 * and second level.
	 */
	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1611 1612 1613 1614 1615
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

1627 1628 1629 1630 1631
		if (domain_use_first_level(domain))
			domain_flush_piotlb(iommu, domain, 0, -1, 0);
		else
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
						 DMA_TLB_DSI_FLUSH);
1632 1633 1634 1635 1636 1637 1638

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1639 1640 1641 1642 1643
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1644 1645 1646
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1647
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1648 1649 1650 1651 1652 1653 1654 1655
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1656
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1657 1658
}

1659
static void iommu_enable_translation(struct intel_iommu *iommu)
1660 1661 1662 1663
{
	u32 sts;
	unsigned long flags;

1664
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1665 1666
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1667 1668 1669

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1670
		      readl, (sts & DMA_GSTS_TES), sts);
1671

1672
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1673 1674
}

1675
static void iommu_disable_translation(struct intel_iommu *iommu)
1676 1677 1678 1679
{
	u32 sts;
	unsigned long flag;

1680 1681 1682 1683
	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
		return;

1684
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1685 1686 1687 1688 1689
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1690
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1691

1692
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1693 1694 1695 1696
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1697 1698
	u32 ndomains, nlongs;
	size_t size;
1699 1700

	ndomains = cap_ndoms(iommu->cap);
1701
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1702
		 iommu->name, ndomains);
1703 1704
	nlongs = BITS_TO_LONGS(ndomains);

1705 1706
	spin_lock_init(&iommu->lock);

1707 1708
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1709 1710
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1711 1712
		return -ENOMEM;
	}
1713

1714
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1715 1716 1717 1718 1719 1720 1721 1722
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1723 1724
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1725
		kfree(iommu->domain_ids);
1726
		kfree(iommu->domains);
1727
		iommu->domain_ids = NULL;
1728
		iommu->domains    = NULL;
1729 1730 1731 1732
		return -ENOMEM;
	}

	/*
1733 1734 1735 1736
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1737
	 */
1738 1739
	set_bit(0, iommu->domain_ids);

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1750 1751 1752
	return 0;
}

1753
static void disable_dmar_iommu(struct intel_iommu *iommu)
1754
{
1755
	struct device_domain_info *info, *tmp;
1756
	unsigned long flags;
1757

1758 1759
	if (!iommu->domains || !iommu->domain_ids)
		return;
1760

1761
	spin_lock_irqsave(&device_domain_lock, flags);
1762 1763 1764 1765 1766 1767 1768
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1769
		__dmar_remove_one_dev_info(info);
1770
	}
1771
	spin_unlock_irqrestore(&device_domain_lock, flags);
1772 1773 1774

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1775
}
1776

1777 1778 1779
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1780
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1781 1782 1783 1784
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1785 1786 1787 1788 1789
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1790

W
Weidong Han 已提交
1791 1792
	g_iommus[iommu->seq_id] = NULL;

1793 1794
	/* free context mapping */
	free_context_table(iommu);
1795 1796

#ifdef CONFIG_INTEL_IOMMU_SVM
1797
	if (pasid_supported(iommu)) {
1798 1799 1800
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1801 1802 1803
	if (ecap_vcs(iommu->ecap) && vccap_pasid(iommu->vccap))
		ioasid_unregister_allocator(&iommu->pasid_allocator);

1804
#endif
1805 1806
}

1807 1808
/*
 * Check and return whether first level is used by default for
L
Lu Baolu 已提交
1809
 * DMA translation.
1810 1811 1812 1813 1814
 */
static bool first_level_by_default(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
L
Lu Baolu 已提交
1815
	static int first_level_support = -1;
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

	if (likely(first_level_support != -1))
		return first_level_support;

	first_level_support = 1;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
			first_level_support = 0;
			break;
		}
	}
	rcu_read_unlock();

	return first_level_support;
}

1834
static struct dmar_domain *alloc_domain(int flags)
1835 1836 1837 1838 1839 1840 1841
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1842
	memset(domain, 0, sizeof(*domain));
1843
	domain->nid = NUMA_NO_NODE;
1844
	domain->flags = flags;
1845 1846
	if (first_level_by_default())
		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1847
	domain->has_iotlb_device = false;
1848
	INIT_LIST_HEAD(&domain->devices);
1849 1850 1851 1852

	return domain;
}

1853 1854
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1855 1856
			       struct intel_iommu *iommu)
{
1857
	unsigned long ndomains;
1858
	int num;
1859

1860
	assert_spin_locked(&device_domain_lock);
1861
	assert_spin_locked(&iommu->lock);
1862

1863 1864 1865
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1866
		ndomains = cap_ndoms(iommu->cap);
1867 1868 1869 1870 1871 1872
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1873
			return -ENOSPC;
1874
		}
1875

1876 1877 1878 1879 1880
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1881 1882 1883

		domain_update_iommu_cap(domain);
	}
1884

1885
	return 0;
1886 1887 1888 1889 1890
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1891
	int num, count;
1892

1893
	assert_spin_locked(&device_domain_lock);
1894
	assert_spin_locked(&iommu->lock);
1895

1896 1897 1898
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1899 1900 1901
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1902 1903

		domain_update_iommu_cap(domain);
1904
		domain->iommu_did[iommu->seq_id] = 0;
1905 1906 1907 1908 1909
	}

	return count;
}

1910
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1911
static struct lock_class_key reserved_rbtree_key;
1912

1913
static int dmar_init_reserved_ranges(void)
1914 1915 1916 1917 1918
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1919
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1920

M
Mark Gross 已提交
1921 1922 1923
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1924 1925 1926
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1927
	if (!iova) {
J
Joerg Roedel 已提交
1928
		pr_err("Reserve IOAPIC range failed\n");
1929 1930
		return -ENODEV;
	}
1931 1932 1933 1934 1935 1936 1937 1938 1939

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1940 1941 1942
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1943
			if (!iova) {
1944
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1945 1946
				return -ENODEV;
			}
1947 1948
		}
	}
1949
	return 0;
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static void domain_exit(struct dmar_domain *domain)
{

1969
	/* Remove associated devices and clear attached or cached domains */
1970
	domain_remove_dev_info(domain);
1971

1972
	/* destroy iovas */
1973 1974
	if (domain->domain.type == IOMMU_DOMAIN_DMA)
		put_iova_domain(&domain->iovad);
1975

1976 1977
	if (domain->pgd) {
		struct page *freelist;
1978

1979 1980 1981
		freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
		dma_free_pagelist(freelist);
	}
1982

1983 1984 1985
	free_domain_mem(domain);
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

2035 2036
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
2037
				      struct pasid_table *table,
2038
				      u8 bus, u8 devfn)
2039
{
2040
	u16 did = domain->iommu_did[iommu->seq_id];
2041 2042
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
2043 2044
	struct context_entry *context;
	unsigned long flags;
2045
	int ret;
2046

2047 2048
	WARN_ON(did == 0);

2049 2050
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
2051 2052 2053

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
2054

2055
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
2056

2057 2058 2059 2060
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2061
	context = iommu_context_addr(iommu, bus, devfn, 1);
2062
	if (!context)
2063
		goto out_unlock;
2064

2065 2066 2067
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2081
		if (did_old < cap_ndoms(iommu->cap)) {
2082 2083 2084 2085
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2086 2087 2088
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2089 2090
	}

2091
	context_clear_entry(context);
2092

2093 2094
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2095

2096 2097 2098 2099 2100 2101 2102 2103 2104
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2105 2106

		/*
2107 2108
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2109
		 */
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2149 2150

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2151
	}
F
Fenghua Yu 已提交
2152

2153 2154
	context_set_fault_enable(context);
	context_set_present(context);
2155 2156
	if (!ecap_coherent(iommu->ecap))
		clflush_cache_range(context, sizeof(*context));
2157

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2169
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2170
	} else {
2171
		iommu_flush_write_buffer(iommu);
2172
	}
Y
Yu Zhao 已提交
2173
	iommu_enable_dev_iotlb(info);
2174

2175 2176 2177 2178 2179
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2180

2181
	return ret;
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2200
static int
2201
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2202
{
2203
	struct domain_context_mapping_data data;
2204
	struct pasid_table *table;
2205
	struct intel_iommu *iommu;
2206
	u8 bus, devfn;
2207

2208
	iommu = device_to_iommu(dev, &bus, &devfn);
2209 2210
	if (!iommu)
		return -ENODEV;
2211

2212
	table = intel_pasid_get_table(dev);
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2224 2225 2226 2227 2228 2229 2230 2231
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2232 2233
}

2234
static int domain_context_mapped(struct device *dev)
2235
{
W
Weidong Han 已提交
2236
	struct intel_iommu *iommu;
2237
	u8 bus, devfn;
W
Weidong Han 已提交
2238

2239
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2240 2241
	if (!iommu)
		return -ENODEV;
2242

2243 2244
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2245

2246 2247
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2248 2249
}

2250 2251 2252 2253 2254 2255 2256 2257
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2286 2287 2288
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2289 2290
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2291
	phys_addr_t pteval;
2292
	unsigned long sg_res = 0;
2293 2294
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2295
	u64 attr;
2296

2297
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2298 2299 2300 2301

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

2302 2303
	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
	if (domain_use_first_level(domain))
2304
		attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US;
2305

2306 2307
	if (!sg) {
		sg_res = nr_pages;
2308
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2309 2310
	}

2311
	while (nr_pages > 0) {
2312 2313
		uint64_t tmp;

2314
		if (!sg_res) {
2315 2316
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2317
			sg_res = aligned_nrpages(sg->offset, sg->length);
2318
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2319
			sg->dma_length = sg->length;
2320
			pteval = (sg_phys(sg) - pgoff) | attr;
2321
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2322
		}
2323

2324
		if (!pte) {
2325 2326
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2327
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2328 2329
			if (!pte)
				return -ENOMEM;
2330
			/* It is large page*/
2331
			if (largepage_lvl > 1) {
2332 2333
				unsigned long nr_superpages, end_pfn;

2334
				pteval |= DMA_PTE_LARGE_PAGE;
2335
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2336 2337 2338 2339

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2340 2341
				/*
				 * Ensure that old small page tables are
2342
				 * removed to make room for superpage(s).
2343 2344
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2345
				 */
2346 2347
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2348
			} else {
2349
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2350
			}
2351

2352 2353 2354 2355
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2356
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2357
		if (tmp) {
2358
			static int dumps = 5;
J
Joerg Roedel 已提交
2359 2360
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2361 2362 2363 2364 2365 2366
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2390
		pte++;
2391 2392
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2393 2394 2395 2396
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2397 2398

		if (!sg_res && nr_pages)
2399 2400 2401 2402 2403
			sg = sg_next(sg);
	}
	return 0;
}

2404
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2405 2406 2407
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2408
	int iommu_id, ret;
2409 2410 2411 2412 2413 2414 2415
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2416 2417
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2418 2419 2420 2421
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2422 2423
}

2424 2425 2426
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2427
{
2428
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2429
}
2430

2431 2432 2433 2434
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2435
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2436 2437
}

2438
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2439
{
2440 2441 2442 2443
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2444 2445
	if (!iommu)
		return;
2446

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2467 2468
}

2469 2470 2471 2472 2473 2474
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2475
		dev_iommu_priv_set(info->dev, NULL);
2476 2477
}

2478 2479
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2480
	struct device_domain_info *info, *tmp;
2481
	unsigned long flags;
2482 2483

	spin_lock_irqsave(&device_domain_lock, flags);
2484
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2485
		__dmar_remove_one_dev_info(info);
2486 2487 2488
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2489
struct dmar_domain *find_domain(struct device *dev)
2490 2491 2492
{
	struct device_domain_info *info;

2493
	if (unlikely(attach_deferred(dev)))
2494 2495 2496
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
2497
	info = get_domain_info(dev);
2498 2499 2500 2501 2502 2503
	if (likely(info))
		return info->domain;

	return NULL;
}

2504
static void do_deferred_attach(struct device *dev)
2505
{
2506
	struct iommu_domain *domain;
2507

2508
	dev_iommu_priv_set(dev, NULL);
2509 2510 2511 2512 2513
	domain = iommu_get_domain_for_dev(dev);
	if (domain)
		intel_iommu_attach_device(domain, dev);
}

2514
static inline struct device_domain_info *
2515 2516 2517 2518 2519
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2520
		if (info->segment == segment && info->bus == bus &&
2521
		    info->devfn == devfn)
2522
			return info;
2523 2524 2525 2526

	return NULL;
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
static int domain_setup_first_level(struct intel_iommu *iommu,
				    struct dmar_domain *domain,
				    struct device *dev,
				    int pasid)
{
	int flags = PASID_FLAG_SUPERVISOR_MODE;
	struct dma_pte *pgd = domain->pgd;
	int agaw, level;

	/*
	 * Skip top levels of page tables for iommu which has
	 * less agaw than default. Unnecessary for PT mode.
	 */
	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
		pgd = phys_to_virt(dma_pte_addr(pgd));
		if (!dma_pte_present(pgd))
			return -ENOMEM;
	}

	level = agaw_to_level(agaw);
	if (level != 4 && level != 5)
		return -EINVAL;

	flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;

	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
					     domain->iommu_did[iommu->seq_id],
					     flags);
}

2557 2558 2559 2560 2561 2562
static bool dev_is_real_dma_subdevice(struct device *dev)
{
	return dev && dev_is_pci(dev) &&
	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
}

2563 2564 2565 2566
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2567
{
2568
	struct dmar_domain *found = NULL;
2569 2570
	struct device_domain_info *info;
	unsigned long flags;
2571
	int ret;
2572 2573 2574

	info = alloc_devinfo_mem();
	if (!info)
2575
		return NULL;
2576

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
	if (!dev_is_real_dma_subdevice(dev)) {
		info->bus = bus;
		info->devfn = devfn;
		info->segment = iommu->segment;
	} else {
		struct pci_dev *pdev = to_pci_dev(dev);

		info->bus = pdev->bus->number;
		info->devfn = pdev->devfn;
		info->segment = pci_domain_nr(pdev->bus);
	}

2589 2590 2591
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2592 2593
	info->dev = dev;
	info->domain = domain;
2594
	info->iommu = iommu;
2595
	info->pasid_table = NULL;
2596
	info->auxd_enabled = 0;
2597
	INIT_LIST_HEAD(&info->auxiliary_domains);
2598

2599 2600 2601
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2602 2603
		if (ecap_dev_iotlb_support(iommu->ecap) &&
		    pci_ats_supported(pdev) &&
2604 2605 2606
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2607 2608
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2609 2610 2611 2612 2613 2614
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
2615
			    pci_pri_supported(pdev))
2616 2617 2618 2619
				info->pri_supported = 1;
		}
	}

2620 2621
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2622
		found = find_domain(dev);
2623 2624

	if (!found) {
2625
		struct device_domain_info *info2;
2626 2627
		info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
						       info->devfn);
2628 2629 2630 2631
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2632
	}
2633

2634 2635 2636
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2637 2638
		/* Caller must free the original domain */
		return found;
2639 2640
	}

2641 2642 2643 2644 2645
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2646
		spin_unlock_irqrestore(&device_domain_lock, flags);
2647
		free_devinfo_mem(info);
2648 2649 2650
		return NULL;
	}

2651 2652 2653
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
2654
		dev_iommu_priv_set(dev, info);
2655
	spin_unlock_irqrestore(&device_domain_lock, flags);
2656

2657 2658
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2659 2660
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2661
			dev_err(dev, "PASID table allocation failed\n");
2662
			dmar_remove_one_dev_info(dev);
2663
			return NULL;
2664
		}
2665 2666

		/* Setup the PASID entry for requests without PASID: */
2667
		spin_lock_irqsave(&iommu->lock, flags);
2668 2669 2670
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
2671 2672 2673
		else if (domain_use_first_level(domain))
			ret = domain_setup_first_level(iommu, domain, dev,
					PASID_RID2PASID);
2674 2675 2676
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
2677
		spin_unlock_irqrestore(&iommu->lock, flags);
2678
		if (ret) {
2679
			dev_err(dev, "Setup RID2PASID failed\n");
2680
			dmar_remove_one_dev_info(dev);
2681
			return NULL;
2682 2683
		}
	}
2684

2685
	if (dev && domain_context_mapping(domain, dev)) {
2686
		dev_err(dev, "Domain context map failed\n");
2687
		dmar_remove_one_dev_info(dev);
2688 2689 2690
		return NULL;
	}

2691
	return domain;
2692 2693
}

2694
static int iommu_domain_identity_map(struct dmar_domain *domain,
2695 2696
				     unsigned long first_vpfn,
				     unsigned long last_vpfn)
2697 2698 2699 2700 2701
{
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2702
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2703

2704 2705 2706
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2707 2708
}

2709 2710
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2711
static int __init si_domain_init(int hw)
2712
{
2713 2714 2715
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2716

2717
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2718 2719 2720
	if (!si_domain)
		return -EFAULT;

2721
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2722 2723 2724 2725
		domain_exit(si_domain);
		return -EFAULT;
	}

2726 2727 2728
	if (hw)
		return 0;

2729
	for_each_online_node(nid) {
2730 2731 2732 2733 2734
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
2735 2736
					mm_to_dma_pfn(start_pfn),
					mm_to_dma_pfn(end_pfn));
2737 2738 2739
			if (ret)
				return ret;
		}
2740 2741
	}

2742
	/*
2743 2744
	 * Identity map the RMRRs so that devices with RMRRs could also use
	 * the si_domain.
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

2756 2757 2758
			ret = iommu_domain_identity_map(si_domain,
					mm_to_dma_pfn(start >> PAGE_SHIFT),
					mm_to_dma_pfn(end >> PAGE_SHIFT));
2759 2760 2761 2762 2763
			if (ret)
				return ret;
		}
	}

2764 2765 2766
	return 0;
}

2767
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2768
{
2769
	struct dmar_domain *ndomain;
2770
	struct intel_iommu *iommu;
2771
	u8 bus, devfn;
2772

2773
	iommu = device_to_iommu(dev, &bus, &devfn);
2774 2775 2776
	if (!iommu)
		return -ENODEV;

2777
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2778 2779
	if (ndomain != domain)
		return -EBUSY;
2780 2781 2782 2783

	return 0;
}

2784
static bool device_has_rmrr(struct device *dev)
2785 2786
{
	struct dmar_rmrr_unit *rmrr;
2787
	struct device *tmp;
2788 2789
	int i;

2790
	rcu_read_lock();
2791
	for_each_rmrr_units(rmrr) {
2792 2793 2794 2795 2796 2797
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2798 2799
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2800
				rcu_read_unlock();
2801
				return true;
2802
			}
2803
	}
2804
	rcu_read_unlock();
2805 2806 2807
	return false;
}

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2851 2852
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2853 2854 2855 2856 2857 2858
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2859 2860
	if (device_rmrr_is_relaxable(dev))
		return false;
2861 2862 2863 2864

	return true;
}

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2876
static int device_def_domain_type(struct device *dev)
2877
{
2878 2879
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2880

2881 2882 2883 2884 2885
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
2886
			return IOMMU_DOMAIN_DMA;
2887

2888
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2889
			return IOMMU_DOMAIN_IDENTITY;
2890

2891
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2892
			return IOMMU_DOMAIN_IDENTITY;
2893
	}
2894

2895
	return 0;
2896 2897
}

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2924
		pr_info("%s: Using Register based invalidation\n",
2925 2926 2927 2928
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
2929
		pr_info("%s: Using Queued invalidation\n", iommu->name);
2930 2931 2932
	}
}

2933
static int copy_context_table(struct intel_iommu *iommu,
2934
			      struct root_entry *old_re,
2935 2936 2937
			      struct context_entry **tbl,
			      int bus, bool ext)
{
2938
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2939
	struct context_entry *new_ce = NULL, ce;
2940
	struct context_entry *old_ce = NULL;
2941
	struct root_entry re;
2942 2943 2944
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
2945
	memcpy(&re, old_re, sizeof(re));
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
2961
				memunmap(old_ce);
2962 2963 2964

			ret = 0;
			if (devfn < 0x80)
2965
				old_ce_phys = root_entry_lctp(&re);
2966
			else
2967
				old_ce_phys = root_entry_uctp(&re);
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
2980 2981
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
2993
		memcpy(&ce, old_ce + idx, sizeof(ce));
2994

2995
		if (!__context_present(&ce))
2996 2997
			continue;

2998 2999 3000 3001
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

3021 3022 3023 3024 3025 3026 3027 3028
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
3029
	memunmap(old_ce);
3030 3031 3032 3033 3034 3035 3036 3037

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
3038
	struct root_entry *old_rt;
3039 3040 3041 3042 3043
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
3044
	bool new_ext, ext;
3045 3046 3047

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3058 3059 3060 3061 3062

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3063
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3064 3065 3066 3067 3068 3069
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3070
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3112
	memunmap(old_rt);
3113 3114 3115 3116

	return ret;
}

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
#ifdef CONFIG_INTEL_IOMMU_SVM
static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
{
	struct intel_iommu *iommu = data;
	ioasid_t ioasid;

	if (!iommu)
		return INVALID_IOASID;
	/*
	 * VT-d virtual command interface always uses the full 20 bit
	 * PASID range. Host can partition guest PASID range based on
	 * policies but it is out of guest's control.
	 */
	if (min < PASID_MIN || max > intel_pasid_max_id)
		return INVALID_IOASID;

	if (vcmd_alloc_pasid(iommu, &ioasid))
		return INVALID_IOASID;

	return ioasid;
}

static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
{
	struct intel_iommu *iommu = data;

	if (!iommu)
		return;
	/*
	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
	 * We can only free the PASID when all the devices are unbound.
	 */
	if (ioasid_find(NULL, ioasid, NULL)) {
		pr_alert("Cannot free active IOASID %d\n", ioasid);
		return;
	}
	vcmd_free_pasid(iommu, ioasid);
}

static void register_pasid_allocator(struct intel_iommu *iommu)
{
	/*
	 * If we are running in the host, no need for custom allocator
	 * in that PASIDs are allocated from the host system-wide.
	 */
	if (!cap_caching_mode(iommu->cap))
		return;

	if (!sm_supported(iommu)) {
		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
		return;
	}

	/*
	 * Register a custom PASID allocator if we are running in a guest,
	 * guest PASID must be obtained via virtual command interface.
	 * There can be multiple vIOMMUs in each guest but only one allocator
	 * is active. All vIOMMU allocators will eventually be calling the same
	 * host allocator.
	 */
	if (!ecap_vcs(iommu->ecap) || !vccap_pasid(iommu->vccap))
		return;

	pr_info("Register custom PASID allocator\n");
	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
	iommu->pasid_allocator.pdata = (void *)iommu;
	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
		/*
		 * Disable scalable mode on this IOMMU if there
		 * is no custom allocator. Mixing SM capable vIOMMU
		 * and non-SM vIOMMU are not supported.
		 */
		intel_iommu_sm = 0;
	}
}
#endif

3196
static int __init init_dmars(void)
3197 3198 3199
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3200
	int ret;
3201

3202 3203 3204 3205 3206 3207 3208
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3209 3210 3211 3212 3213
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3214
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3215 3216 3217
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3218
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3219 3220
	}

3221 3222 3223 3224
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3225 3226 3227
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3228
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3229 3230 3231 3232
		ret = -ENOMEM;
		goto error;
	}

3233 3234 3235 3236 3237 3238
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3239 3240 3241 3242 3243
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3244
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3245 3246 3247 3248 3249 3250
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3251
		g_iommus[iommu->seq_id] = iommu;
3252

3253 3254
		intel_iommu_init_qi(iommu);

3255 3256
		ret = iommu_init_domains(iommu);
		if (ret)
3257
			goto free_iommu;
3258

3259 3260
		init_translation_status(iommu);

3261 3262 3263 3264 3265 3266
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3267

3268 3269 3270
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3271
		 * among all IOMMU's. Need to Split it later.
3272 3273
		 */
		ret = iommu_alloc_root_entry(iommu);
3274
		if (ret)
3275
			goto free_iommu;
3276

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3301
		if (!ecap_pass_through(iommu->ecap))
3302
			hw_pass_through = 0;
3303
		intel_svm_check(iommu);
3304 3305
	}

3306 3307 3308 3309 3310 3311 3312
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
3313 3314 3315
#ifdef CONFIG_INTEL_IOMMU_SVM
		register_pasid_allocator(iommu);
#endif
3316 3317 3318 3319 3320
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3321
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3322
	dmar_map_gfx = 0;
3323
#endif
3324

3325 3326 3327
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3328 3329
	check_tylersburg_isoch();

3330 3331 3332
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3333

3334 3335 3336 3337 3338 3339 3340
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3341
	for_each_iommu(iommu, drhd) {
3342 3343 3344 3345 3346 3347
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3348
				iommu_disable_protect_mem_regions(iommu);
3349
			continue;
3350
		}
3351 3352 3353

		iommu_flush_write_buffer(iommu);

3354
#ifdef CONFIG_INTEL_IOMMU_SVM
3355
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3356 3357 3358 3359 3360
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3361
			ret = intel_svm_enable_prq(iommu);
3362
			down_write(&dmar_global_lock);
3363 3364 3365 3366
			if (ret)
				goto free_iommu;
		}
#endif
3367 3368
		ret = dmar_set_interrupt(iommu);
		if (ret)
3369
			goto free_iommu;
3370 3371 3372
	}

	return 0;
3373 3374

free_iommu:
3375 3376
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3377
		free_dmar_iommu(iommu);
3378
	}
3379

W
Weidong Han 已提交
3380
	kfree(g_iommus);
3381

3382
error:
3383 3384 3385
	return ret;
}

3386
/* This takes a number of _MM_ pages, not VTD pages */
3387
static unsigned long intel_alloc_iova(struct device *dev,
3388 3389
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3390
{
3391
	unsigned long iova_pfn;
3392

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	/*
	 * Restrict dma_mask to the width that the iommu can handle.
	 * First-level translation restricts the input-address to a
	 * canonical address (i.e., address bits 63:N have the same
	 * value as address bit [N-1], where N is 48-bits with 4-level
	 * paging and 57-bits with 5-level paging). Hence, skip bit
	 * [N-1].
	 */
	if (domain_use_first_level(domain))
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1),
				 dma_mask);
	else
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw),
				 dma_mask);

3408 3409
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3410 3411

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3412 3413
		/*
		 * First try to allocate an io virtual address in
3414
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3415
		 * from higher range
3416
		 */
3417
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3418
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3419 3420
		if (iova_pfn)
			return iova_pfn;
3421
	}
3422 3423
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3424
	if (unlikely(!iova_pfn)) {
3425 3426
		dev_err_once(dev, "Allocating %ld-page iova failed\n",
			     nrpages);
3427
		return 0;
3428 3429
	}

3430
	return iova_pfn;
3431 3432
}

3433 3434
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3435 3436
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3437
	phys_addr_t start_paddr;
3438
	unsigned long iova_pfn;
3439
	int prot = 0;
I
Ingo Molnar 已提交
3440
	int ret;
3441
	struct intel_iommu *iommu;
3442
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3443 3444

	BUG_ON(dir == DMA_NONE);
3445

L
Lu Baolu 已提交
3446 3447 3448
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3449
	domain = find_domain(dev);
3450
	if (!domain)
3451
		return DMA_MAPPING_ERROR;
3452

3453
	iommu = domain_get_iommu(domain);
3454
	size = aligned_nrpages(paddr, size);
3455

3456 3457
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3458 3459
		goto error;

3460 3461 3462 3463 3464
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3465
			!cap_zlr(iommu->cap))
3466 3467 3468 3469
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3470
	 * paddr - (paddr + size) might be partial page, we should map the whole
3471
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3472
	 * might have two guest_addr mapping to the same host paddr, but this
3473 3474
	 * is not a big problem
	 */
3475
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3476
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3477 3478 3479
	if (ret)
		goto error;

3480
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3481
	start_paddr += paddr & ~PAGE_MASK;
3482 3483 3484

	trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);

3485
	return start_paddr;
3486 3487

error:
3488
	if (iova_pfn)
3489
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3490 3491
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3492
	return DMA_MAPPING_ERROR;
3493 3494
}

3495 3496 3497
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3498
				 unsigned long attrs)
3499
{
L
Lu Baolu 已提交
3500 3501
	return __intel_map_single(dev, page_to_phys(page) + offset,
				  size, dir, *dev->dma_mask);
3502 3503 3504 3505 3506 3507
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
L
Lu Baolu 已提交
3508
	return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask);
3509 3510
}

3511
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3512
{
3513
	struct dmar_domain *domain;
3514
	unsigned long start_pfn, last_pfn;
3515
	unsigned long nrpages;
3516
	unsigned long iova_pfn;
3517
	struct intel_iommu *iommu;
3518
	struct page *freelist;
3519
	struct pci_dev *pdev = NULL;
3520

3521
	domain = find_domain(dev);
3522 3523
	BUG_ON(!domain);

3524 3525
	iommu = domain_get_iommu(domain);

3526
	iova_pfn = IOVA_PFN(dev_addr);
3527

3528
	nrpages = aligned_nrpages(dev_addr, size);
3529
	start_pfn = mm_to_dma_pfn(iova_pfn);
3530
	last_pfn = start_pfn + nrpages - 1;
3531

3532 3533 3534
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3535
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3536 3537
	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
			!has_iova_flush_queue(&domain->iovad)) {
3538
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3539
				      nrpages, !freelist, 0);
M
mark gross 已提交
3540
		/* free iova */
3541
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3542
		dma_free_pagelist(freelist);
M
mark gross 已提交
3543
	} else {
3544 3545
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3546 3547 3548 3549 3550
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3551 3552

	trace_unmap_single(dev, dev_addr, size);
3553 3554
}

3555 3556
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3557
			     unsigned long attrs)
3558
{
L
Lu Baolu 已提交
3559
	intel_unmap(dev, dev_addr, size);
3560 3561 3562 3563 3564
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
L
Lu Baolu 已提交
3565
	intel_unmap(dev, dev_addr, size);
3566 3567
}

3568
static void *intel_alloc_coherent(struct device *dev, size_t size,
3569
				  dma_addr_t *dma_handle, gfp_t flags,
3570
				  unsigned long attrs)
3571
{
3572 3573
	struct page *page = NULL;
	int order;
3574

L
Lu Baolu 已提交
3575 3576
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3577

3578 3579 3580 3581 3582 3583
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3584 3585
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3586 3587 3588 3589 3590 3591 3592 3593
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3594 3595 3596
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3597
	if (*dma_handle != DMA_MAPPING_ERROR)
3598 3599 3600
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3601

3602 3603 3604
	return NULL;
}

3605
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3606
				dma_addr_t dma_handle, unsigned long attrs)
3607
{
3608 3609 3610 3611 3612 3613 3614 3615 3616
	int order;
	struct page *page = virt_to_page(vaddr);

	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3617 3618
}

3619
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3620
			   int nelems, enum dma_data_direction dir,
3621
			   unsigned long attrs)
3622
{
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3633 3634

	trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3635 3636
}

3637
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3638
			enum dma_data_direction dir, unsigned long attrs)
3639 3640 3641
{
	int i;
	struct dmar_domain *domain;
3642 3643
	size_t size = 0;
	int prot = 0;
3644
	unsigned long iova_pfn;
3645
	int ret;
F
FUJITA Tomonori 已提交
3646
	struct scatterlist *sg;
3647
	unsigned long start_vpfn;
3648
	struct intel_iommu *iommu;
3649 3650

	BUG_ON(dir == DMA_NONE);
L
Lu Baolu 已提交
3651 3652 3653

	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);
3654

3655
	domain = find_domain(dev);
3656 3657 3658
	if (!domain)
		return 0;

3659 3660
	iommu = domain_get_iommu(domain);

3661
	for_each_sg(sglist, sg, nelems, i)
3662
		size += aligned_nrpages(sg->offset, sg->length);
3663

3664
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3665
				*dev->dma_mask);
3666
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3667
		sglist->dma_length = 0;
3668 3669 3670 3671 3672 3673 3674 3675
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3676
			!cap_zlr(iommu->cap))
3677 3678 3679 3680
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3681
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3682

3683
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3684 3685
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3686 3687
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3688
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3689
		return 0;
3690 3691
	}

3692 3693
	for_each_sg(sglist, sg, nelems, i)
		trace_map_sg(dev, i + 1, nelems, sg);
3694

3695 3696 3697
	return nelems;
}

3698 3699 3700 3701 3702
static u64 intel_get_required_mask(struct device *dev)
{
	return DMA_BIT_MASK(32);
}

3703
static const struct dma_map_ops intel_dma_ops = {
3704 3705
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3706 3707
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3708 3709
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3710
	.map_resource = intel_map_resource,
3711
	.unmap_resource = intel_unmap_resource,
3712
	.dma_supported = dma_direct_supported,
3713 3714
	.mmap = dma_common_mmap,
	.get_sgtable = dma_common_get_sgtable,
3715
	.get_required_mask = intel_get_required_mask,
3716 3717
};

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
static void
bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
		   enum dma_data_direction dir, enum dma_sync_target target)
{
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
}

static dma_addr_t
bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs,
		  u64 dma_mask)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	unsigned long iova_pfn;
	unsigned long nrpages;
	phys_addr_t tlb_addr;
	int prot = 0;
	int ret;

3748 3749 3750
	if (unlikely(attach_deferred(dev)))
		do_deferred_attach(dev);

3751
	domain = find_domain(dev);
3752

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
	if (WARN_ON(dir == DMA_NONE || !domain))
		return DMA_MAPPING_ERROR;

	iommu = domain_get_iommu(domain);
	if (WARN_ON(!iommu))
		return DMA_MAPPING_ERROR;

	nrpages = aligned_nrpages(0, size);
	iova_pfn = intel_alloc_iova(dev, domain,
				    dma_to_mm_pfn(nrpages), dma_mask);
	if (!iova_pfn)
		return DMA_MAPPING_ERROR;

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
			!cap_zlr(iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	/*
	 * If both the physical buffer start address and size are
	 * page aligned, we don't need to use a bounce page.
	 */
	if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
		tlb_addr = swiotlb_tbl_map_single(dev,
				__phys_to_dma(dev, io_tlb_start),
				paddr, size, aligned_size, dir, attrs);
		if (tlb_addr == DMA_MAPPING_ERROR) {
			goto swiotlb_error;
		} else {
			/* Cleanup the padding area. */
			void *padding_start = phys_to_virt(tlb_addr);
			size_t padding_size = aligned_size;

			if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
			    (dir == DMA_TO_DEVICE ||
			     dir == DMA_BIDIRECTIONAL)) {
				padding_start += size;
				padding_size -= size;
			}

			memset(padding_start, 0, padding_size);
		}
	} else {
		tlb_addr = paddr;
	}

	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
				 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
	if (ret)
		goto mapping_error;

	trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);

	return (phys_addr_t)iova_pfn << PAGE_SHIFT;

mapping_error:
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);
swiotlb_error:
	free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
	dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);

	return DMA_MAPPING_ERROR;
}

static void
bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
	if (WARN_ON(!tlb_addr))
		return;

	intel_unmap(dev, dev_addr, size);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);

	trace_bounce_unmap_single(dev, dev_addr, size);
}

static dma_addr_t
bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, page_to_phys(page) + offset,
				 size, dir, attrs, *dev->dma_mask);
}

static dma_addr_t
bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, phys_addr, size,
				 dir, attrs, *dev->dma_mask);
}

static void
bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
		      enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_unmap_page(dev, sg->dma_address,
				  sg_dma_len(sg), dir, attrs);
}

static int
bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
	      enum dma_data_direction dir, unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i) {
		sg->dma_address = bounce_map_page(dev, sg_page(sg),
						  sg->offset, sg->length,
						  dir, attrs);
		if (sg->dma_address == DMA_MAPPING_ERROR)
			goto out_unmap;
		sg_dma_len(sg) = sg->length;
	}

3907 3908 3909
	for_each_sg(sglist, sg, nelems, i)
		trace_bounce_map_sg(dev, i + 1, nelems, sg);

3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
	return nelems;

out_unmap:
	bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
	return 0;
}

static void
bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
			   size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
}

static void
bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
			      size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
}

static void
bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
		       int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_CPU);
}

static void
bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
			  int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
}

static const struct dma_map_ops bounce_dma_ops = {
	.alloc			= intel_alloc_coherent,
	.free			= intel_free_coherent,
	.map_sg			= bounce_map_sg,
	.unmap_sg		= bounce_unmap_sg,
	.map_page		= bounce_map_page,
	.unmap_page		= bounce_unmap_page,
	.sync_single_for_cpu	= bounce_sync_single_for_cpu,
	.sync_single_for_device	= bounce_sync_single_for_device,
	.sync_sg_for_cpu	= bounce_sync_sg_for_cpu,
	.sync_sg_for_device	= bounce_sync_sg_for_device,
	.map_resource		= bounce_map_resource,
	.unmap_resource		= bounce_unmap_resource,
	.dma_supported		= dma_direct_supported,
};

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
3982
		pr_err("Couldn't create iommu_domain cache\n");
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
3999
		pr_err("Couldn't create devinfo cache\n");
4000 4001 4002 4003 4004 4005 4006 4007 4008
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
4009
	ret = iova_cache_get();
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
4023
	iova_cache_put();
4024 4025 4026 4027 4028 4029 4030 4031

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
4032
	iova_cache_put();
4033 4034 4035 4036 4037
}

static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
4038
	struct device *dev;
4039
	int i;
4040 4041 4042

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
4043 4044 4045
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
4046
			/* ignore DMAR unit if no devices exist */
4047 4048 4049 4050 4051
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

4052 4053
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
4054 4055
			continue;

4056 4057
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
4058
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4059 4060 4061 4062
				break;
		if (i < drhd->devices_cnt)
			continue;

4063 4064
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
4065
		drhd->gfx_dedicated = 1;
4066
		if (!dmar_map_gfx)
4067
			drhd->ignored = 1;
4068 4069 4070
	}
}

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
4091

4092 4093 4094 4095 4096
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
4097
					   DMA_CCMD_GLOBAL_INVL);
4098 4099
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
4100
		iommu_disable_protect_mem_regions(iommu);
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
4113
					   DMA_CCMD_GLOBAL_INVL);
4114
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4115
					 DMA_TLB_GLOBAL_FLUSH);
4116 4117 4118
	}
}

4119
static int iommu_suspend(void)
4120 4121 4122 4123 4124 4125
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
4126
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

4137
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

4148
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4159
static void iommu_resume(void)
4160 4161 4162 4163 4164 4165
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4166 4167 4168 4169
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4170
		return;
4171 4172 4173 4174
	}

	for_each_active_iommu(iommu, drhd) {

4175
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4186
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4187 4188 4189 4190 4191 4192
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4193
static struct syscore_ops iommu_syscore_ops = {
4194 4195 4196 4197
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4198
static void __init init_iommu_pm_ops(void)
4199
{
4200
	register_syscore_ops(&iommu_syscore_ops);
4201 4202 4203
}

#else
4204
static inline void init_iommu_pm_ops(void) {}
4205 4206
#endif	/* CONFIG_PM */

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
{
	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
	    rmrr->end_address <= rmrr->base_address ||
	    arch_rmrr_sanity_check(rmrr))
		return -EINVAL;

	return 0;
}

4218
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4219 4220 4221
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
4222 4223

	rmrr = (struct acpi_dmar_reserved_memory *)header;
4224 4225
	if (rmrr_sanity_check(rmrr)) {
		pr_warn(FW_BUG
4226 4227 4228 4229 4230 4231
			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   rmrr->base_address, rmrr->end_address,
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
4232 4233
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
	}
4234 4235 4236

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4237
		goto out;
4238 4239

	rmrru->hdr = header;
4240

4241 4242
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4243

4244 4245 4246
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4247
	if (rmrru->devices_cnt && rmrru->devices == NULL)
4248
		goto free_rmrru;
4249

4250
	list_add(&rmrru->list, &dmar_rmrr_units);
4251

4252
	return 0;
4253 4254 4255 4256
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4257 4258
}

4259 4260 4261 4262 4263
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

4264 4265
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
				dmar_rcu_check()) {
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4279 4280 4281 4282
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4283
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4284 4285
		return 0;

4286
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4287 4288 4289 4290 4291
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4292 4293 4294
	if (!atsru)
		return -ENOMEM;

4295 4296 4297 4298 4299 4300 4301
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4302
	atsru->include_all = atsr->flags & 0x1;
4303 4304 4305 4306 4307 4308 4309 4310 4311
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4312

4313
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4314 4315 4316 4317

	return 0;
}

4318 4319 4320 4321 4322 4323
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4352
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4353 4354 4355
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4356
	}
4357 4358 4359 4360

	return 0;
}

4361 4362
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4363
	int sp, ret;
4364 4365 4366 4367 4368 4369
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4370
		pr_warn("%s: Doesn't support hardware pass through.\n",
4371 4372 4373 4374 4375
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4376
		pr_warn("%s: Doesn't support snooping.\n",
4377 4378 4379
			iommu->name);
		return -ENXIO;
	}
4380
	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
4381
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4382
		pr_warn("%s: Doesn't support large page.\n",
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4400
	intel_svm_check(iommu);
4401

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4413 4414

#ifdef CONFIG_INTEL_IOMMU_SVM
4415
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4416 4417 4418 4419 4420
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4440 4441
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4458 4459
}

4460 4461 4462 4463 4464 4465 4466 4467 4468
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
4469 4470
	}

4471 4472 4473 4474
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4475 4476 4477 4478
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4479
	int i, ret = 1;
4480
	struct pci_bus *bus;
4481 4482
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4483 4484 4485 4486 4487
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4488
		bridge = bus->self;
4489 4490 4491 4492 4493
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4494
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4495
			return 0;
4496
		/* If we found the root port, look it up in the ATSR */
4497
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4498 4499 4500
			break;
	}

4501
	rcu_read_lock();
4502 4503 4504 4505 4506
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4507
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4508
			if (tmp == &bridge->dev)
4509
				goto out;
4510 4511

		if (atsru->include_all)
4512
			goto out;
4513
	}
4514 4515
	ret = 0;
out:
4516
	rcu_read_unlock();
4517

4518
	return ret;
4519 4520
}

4521 4522
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4523
	int ret;
4524 4525 4526 4527 4528
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4529
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4540
			if (ret < 0)
4541
				return ret;
4542
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4543 4544
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4560
			else if (ret < 0)
4561
				return ret;
4562
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4563 4564 4565 4566 4567 4568 4569 4570 4571
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4572 4573 4574 4575
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
4576 4577 4578
	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
			mhp->nr_pages - 1);
4579 4580 4581

	switch (val) {
	case MEM_GOING_ONLINE:
4582 4583 4584 4585
		if (iommu_domain_identity_map(si_domain,
					      start_vpfn, last_vpfn)) {
			pr_warn("Failed to build identity map for [%lx-%lx]\n",
				start_vpfn, last_vpfn);
4586 4587 4588 4589 4590 4591
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
4592
		{
4593 4594
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4595
			struct page *freelist;
4596

4597 4598
			freelist = domain_unmap(si_domain,
						start_vpfn, last_vpfn);
4599

4600 4601
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4602
				iommu_flush_iotlb_psi(iommu, si_domain,
4603
					start_vpfn, mhp->nr_pages,
4604
					!freelist, 0);
4605
			rcu_read_unlock();
4606
			dma_free_pagelist(freelist);
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4619 4620 4621 4622 4623 4624 4625
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4626
		int did;
4627 4628 4629 4630

		if (!iommu)
			continue;

4631
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4632
			domain = get_iommu_domain(iommu, (u16)did);
4633

4634
			if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
4635
				continue;
4636

4637 4638 4639 4640 4641
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4642
static int intel_iommu_cpu_dead(unsigned int cpu)
4643
{
4644 4645
	free_all_cpu_cached_iovas(cpu);
	return 0;
4646 4647
}

4648 4649 4650 4651 4652 4653 4654 4655 4656
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4677 4678
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4679 4680 4681
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4682 4683
}

4684 4685 4686 4687
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4688
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4699
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4700 4701 4702 4703 4704 4705 4706 4707
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4708
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4709 4710 4711 4712 4713 4714 4715 4716
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4717
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4718 4719 4720 4721
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4722 4723 4724 4725
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4726
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4727 4728 4729 4730 4731 4732 4733 4734
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4735
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4736 4737 4738 4739 4740
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4741 4742 4743 4744 4745
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4746 4747
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4761
static inline bool has_external_pci(void)
4762 4763 4764
{
	struct pci_dev *pdev = NULL;

4765
	for_each_pci_dev(pdev)
4766
		if (pdev->external_facing)
4767
			return true;
4768

4769 4770
	return false;
}
4771

4772 4773
static int __init platform_optin_force_iommu(void)
{
4774
	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
4785
		iommu_set_default_passthrough(false);
4786 4787 4788 4789 4790 4791 4792

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4793 4794 4795
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4796 4797
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4836 4837
int __init intel_iommu_init(void)
{
4838
	int ret = -ENODEV;
4839
	struct dmar_drhd_unit *drhd;
4840
	struct intel_iommu *iommu;
4841

4842 4843 4844 4845 4846
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
4847

4848 4849 4850 4851 4852 4853 4854
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4855 4856 4857
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4858
		goto out_free_dmar;
4859
	}
4860

4861
	if (dmar_dev_scope_init() < 0) {
4862 4863
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4864
		goto out_free_dmar;
4865
	}
4866

4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4877 4878 4879
	if (!no_iommu)
		intel_iommu_debugfs_init();

4880
	if (no_iommu || dmar_disabled) {
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4894 4895 4896 4897 4898 4899
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4900
		goto out_free_dmar;
4901
	}
4902

4903
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4904
		pr_info("No RMRR found\n");
4905 4906

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4907
		pr_info("No ATSR found\n");
4908

4909 4910 4911
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
4912
		goto out_free_reserved_range;
4913
	}
4914

4915 4916 4917
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4918 4919
	init_no_remapping_devices();

4920
	ret = init_dmars();
4921
	if (ret) {
4922 4923
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4924
		pr_err("Initialization failed\n");
4925
		goto out_free_reserved_range;
4926
	}
4927
	up_write(&dmar_global_lock);
4928

4929
	init_iommu_pm_ops();
4930

4931
	down_read(&dmar_global_lock);
4932 4933 4934 4935 4936 4937 4938
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4939
	up_read(&dmar_global_lock);
4940

4941
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4942 4943
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4944 4945
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4946

4947
	down_read(&dmar_global_lock);
4948 4949 4950
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");

4951 4952
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
4953
		if (!drhd->ignored && !translation_pre_enabled(iommu))
4954 4955 4956 4957
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
4958 4959
	up_read(&dmar_global_lock);

4960 4961
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

4962 4963
	intel_iommu_enabled = 1;

4964
	return 0;
4965 4966 4967 4968 4969

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
4970 4971
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4972
	return ret;
4973
}
4974

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

4997
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4998
{
4999
	struct dmar_domain *domain;
5000 5001 5002
	struct intel_iommu *iommu;
	unsigned long flags;

5003 5004
	assert_spin_locked(&device_domain_lock);

5005
	if (WARN_ON(!info))
5006 5007
		return;

5008
	iommu = info->iommu;
5009
	domain = info->domain;
5010

5011
	if (info->dev) {
5012 5013
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
5014
					PASID_RID2PASID, false);
5015

5016
		iommu_disable_dev_iotlb(info);
5017 5018
		if (!dev_is_real_dma_subdevice(info->dev))
			domain_context_clear(iommu, info->dev);
5019
		intel_pasid_free_table(info->dev);
5020
	}
5021

5022
	unlink_domain_info(info);
5023

5024
	spin_lock_irqsave(&iommu->lock, flags);
5025
	domain_detach_iommu(domain, iommu);
5026
	spin_unlock_irqrestore(&iommu->lock, flags);
5027

5028
	free_devinfo_mem(info);
5029 5030
}

5031
static void dmar_remove_one_dev_info(struct device *dev)
5032
{
5033
	struct device_domain_info *info;
5034
	unsigned long flags;
5035

5036
	spin_lock_irqsave(&device_domain_lock, flags);
5037 5038
	info = get_domain_info(dev);
	if (info)
5039
		__dmar_remove_one_dev_info(info);
5040
	spin_unlock_irqrestore(&device_domain_lock, flags);
5041 5042
}

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
static void intel_init_iova_domain(struct dmar_domain *dmar_domain)
{
	init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
	copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad);

	if (!intel_iommu_strict &&
	    init_iova_flush_queue(&dmar_domain->iovad,
				  iommu_flush_iova, iova_entry_free))
		pr_info("iova flush queue initialization failed\n");
}

5076
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
5077
{
5078
	struct dmar_domain *dmar_domain;
5079 5080
	struct iommu_domain *domain;

5081
	switch (type) {
5082
	case IOMMU_DOMAIN_DMA:
5083
	case IOMMU_DOMAIN_UNMANAGED:
5084
		dmar_domain = alloc_domain(0);
5085 5086 5087 5088
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
5089
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5090 5091 5092 5093
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
5094

5095 5096
		if (type == IOMMU_DOMAIN_DMA)
			intel_init_iova_domain(dmar_domain);
5097

5098
		domain_update_iommu_cap(dmar_domain);
K
Kay, Allen M 已提交
5099

5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
5110
		return NULL;
K
Kay, Allen M 已提交
5111
	}
5112

5113
	return NULL;
K
Kay, Allen M 已提交
5114 5115
}

5116
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
5117
{
5118 5119
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
5120 5121
}

5122 5123 5124 5125 5126 5127 5128
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
5129
	struct device_domain_info *info = get_domain_info(dev);
5130 5131 5132 5133 5134 5135 5136 5137

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
5138
	struct device_domain_info *info = get_domain_info(dev);
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
5151
	struct device_domain_info *info = get_domain_info(dev);
5152 5153 5154 5155 5156 5157 5158 5159 5160

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5161
		ioasid_free(domain->default_pasid);
5162 5163 5164 5165 5166 5167 5168 5169 5170
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	unsigned long flags;
	struct intel_iommu *iommu;

5171
	iommu = device_to_iommu(dev, NULL, NULL);
5172 5173 5174 5175 5176 5177
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
		int pasid;

5178 5179 5180 5181 5182
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
5200 5201 5202 5203 5204 5205
	if (domain_use_first_level(domain))
		ret = domain_setup_first_level(iommu, domain, dev,
					       domain->default_pasid);
	else
		ret = intel_pasid_setup_second_level(iommu, domain, dev,
						     domain->default_pasid);
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5222
		ioasid_free(domain->default_pasid);
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
5238
	info = get_domain_info(dev);
5239 5240 5241 5242 5243
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
5244
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false);
5245 5246 5247 5248 5249 5250
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5251 5252
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5253
{
5254
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5255 5256
	struct intel_iommu *iommu;
	int addr_width;
5257

5258
	iommu = device_to_iommu(dev, NULL, NULL);
5259 5260 5261 5262 5263
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5264 5265 5266 5267
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5268 5269 5270
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5271 5272
		return -EFAULT;
	}
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5283 5284
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5285
			free_pgtable_page(pte);
5286 5287 5288
		}
		dmar_domain->agaw--;
	}
5289

5290 5291 5292 5293 5294 5295 5296 5297
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

5298 5299
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
5300 5301 5302 5303
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5304 5305 5306
	if (is_aux_domain(dev, domain))
		return -EPERM;

5307 5308 5309 5310 5311
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5312
		if (old_domain)
5313 5314 5315 5316 5317 5318 5319 5320
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5321 5322
}

5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5338 5339
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5340
{
5341
	dmar_remove_one_dev_info(dev);
5342
}
5343

5344 5345 5346 5347 5348 5349
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
/*
 * 2D array for converting and sanitizing IOMMU generic TLB granularity to
 * VT-d granularity. Invalidation is typically included in the unmap operation
 * as a result of DMA or VFIO unmap. However, for assigned devices guest
 * owns the first level page tables. Invalidations of translation caches in the
 * guest are trapped and passed down to the host.
 *
 * vIOMMU in the guest will only expose first level page tables, therefore
 * we do not support IOTLB granularity for request without PASID (second level).
 *
 * For example, to find the VT-d granularity encoding for IOTLB
 * type and page selective granularity within PASID:
 * X: indexed by iommu cache type
 * Y: indexed by enum iommu_inv_granularity
 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
 */

Q
Qian Cai 已提交
5367
static const int
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
	/*
	 * PASID based IOTLB invalidation: PASID selective (per PASID),
	 * page selective (address granularity)
	 */
	{-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
	/* PASID based dev TLBs */
	{-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
	/* PASID cache */
	{-EINVAL, -EINVAL, -EINVAL}
};

static inline int to_vtd_granularity(int type, int granu)
{
	return inv_type_granu_table[type][granu];
}

static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
{
	u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;

	/* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
	 * IOMMU cache invalidate API passes granu_size in bytes, and number of
	 * granu size in contiguous memory.
	 */
	return order_base_2(nr_pages);
}

#ifdef CONFIG_INTEL_IOMMU_SVM
static int
intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
			   struct iommu_cache_invalidate_info *inv_info)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int cache_type;
	u8 bus, devfn;
	u16 did, sid;
	int ret = 0;
	u64 size = 0;

	if (!inv_info || !dmar_domain ||
	    inv_info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
		return -EINVAL;

	if (!dev || !dev_is_pci(dev))
		return -ENODEV;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);
5427
	info = get_domain_info(dev);
5428 5429 5430 5431 5432 5433 5434 5435
	if (!info) {
		ret = -EINVAL;
		goto out_unlock;
	}
	did = dmar_domain->iommu_did[iommu->seq_id];
	sid = PCI_DEVID(bus, devfn);

	/* Size is only valid in address selective invalidation */
L
Liu Yi L 已提交
5436
	if (inv_info->granularity == IOMMU_INV_GRANU_ADDR)
5437 5438 5439 5440 5441 5442 5443 5444
		size = to_vtd_size(inv_info->addr_info.granule_size,
				   inv_info->addr_info.nb_granules);

	for_each_set_bit(cache_type,
			 (unsigned long *)&inv_info->cache,
			 IOMMU_CACHE_INV_TYPE_NR) {
		int granu = 0;
		u64 pasid = 0;
L
Liu Yi L 已提交
5445
		u64 addr = 0;
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466

		granu = to_vtd_granularity(cache_type, inv_info->granularity);
		if (granu == -EINVAL) {
			pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
					   cache_type, inv_info->granularity);
			break;
		}

		/*
		 * PASID is stored in different locations based on the
		 * granularity.
		 */
		if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
		    (inv_info->pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
			pasid = inv_info->pasid_info.pasid;
		else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			 (inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
			pasid = inv_info->addr_info.pasid;

		switch (BIT(cache_type)) {
		case IOMMU_CACHE_INV_TYPE_IOTLB:
5467
			/* HW will ignore LSB bits based on address mask */
5468 5469 5470
			if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
			    size &&
			    (inv_info->addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
5471
				pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n",
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
						   inv_info->addr_info.addr, size);
			}

			/*
			 * If granu is PASID-selective, address is ignored.
			 * We use npages = -1 to indicate that.
			 */
			qi_flush_piotlb(iommu, did, pasid,
					mm_to_dma_pfn(inv_info->addr_info.addr),
					(granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
					inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);

L
Liu Yi L 已提交
5484 5485
			if (!info->ats_enabled)
				break;
5486 5487 5488 5489 5490
			/*
			 * Always flush device IOTLB if ATS is enabled. vIOMMU
			 * in the guest may assume IOTLB flush is inclusive,
			 * which is more efficient.
			 */
L
Liu Yi L 已提交
5491
			fallthrough;
5492
		case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
L
Liu Yi L 已提交
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
			/*
			 * PASID based device TLB invalidation does not support
			 * IOMMU_INV_GRANU_PASID granularity but only supports
			 * IOMMU_INV_GRANU_ADDR.
			 * The equivalent of that is we set the size to be the
			 * entire range of 64 bit. User only provides PASID info
			 * without address info. So we set addr to 0.
			 */
			if (inv_info->granularity == IOMMU_INV_GRANU_PASID) {
				size = 64 - VTD_PAGE_SHIFT;
				addr = 0;
			} else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) {
				addr = inv_info->addr_info.addr;
			}

5508 5509 5510
			if (info->ats_enabled)
				qi_flush_dev_iotlb_pasid(iommu, sid,
						info->pfsid, pasid,
L
Liu Yi L 已提交
5511
						info->ats_qdep, addr,
5512
						size);
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
			else
				pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
			break;
		default:
			dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
					    cache_type);
			ret = -EINVAL;
		}
	}
out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}
#endif

5530 5531
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5532
			   size_t size, int iommu_prot, gfp_t gfp)
5533
{
5534
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5535
	u64 max_addr;
5536
	int prot = 0;
5537
	int ret;
5538

5539 5540 5541 5542
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5543 5544
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5545

5546
	max_addr = iova + size;
5547
	if (dmar_domain->max_addr < max_addr) {
5548 5549 5550
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5551
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5552
		if (end < max_addr) {
J
Joerg Roedel 已提交
5553
			pr_err("%s: iommu width (%d) is not "
5554
			       "sufficient for the mapped address (%llx)\n",
5555
			       __func__, dmar_domain->gaw, max_addr);
5556 5557
			return -EFAULT;
		}
5558
		dmar_domain->max_addr = max_addr;
5559
	}
5560 5561
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5562
	size = aligned_nrpages(hpa, size);
5563 5564
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5565
	return ret;
K
Kay, Allen M 已提交
5566 5567
}

5568
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5569 5570
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
5571
{
5572
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5573 5574 5575
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5576
	int iommu_id, level = 0;
5577 5578 5579

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5580
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5581 5582 5583

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5584

5585 5586 5587 5588 5589 5590 5591
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5592
	for_each_domain_iommu(iommu_id, dmar_domain)
5593 5594
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5595 5596

	dma_free_pagelist(freelist);
5597

5598 5599
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5600

5601
	return size;
K
Kay, Allen M 已提交
5602 5603
}

5604
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5605
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5606
{
5607
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5608
	struct dma_pte *pte;
5609
	int level = 0;
5610
	u64 phys = 0;
K
Kay, Allen M 已提交
5611

5612
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5613 5614 5615 5616
	if (pte && dma_pte_present(pte))
		phys = dma_pte_addr(pte) +
			(iova & (BIT_MASK(level_to_offset_bits(level) +
						VTD_PAGE_SHIFT) - 1));
K
Kay, Allen M 已提交
5617

5618
	return phys;
K
Kay, Allen M 已提交
5619
}
5620

5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
static inline bool nested_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5675
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5676 5677
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5678
		return domain_update_iommu_snooping(NULL) == 1;
5679
	if (cap == IOMMU_CAP_INTR_REMAP)
5680
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5681

5682
	return false;
S
Sheng Yang 已提交
5683 5684
}

5685
static struct iommu_device *intel_iommu_probe_device(struct device *dev)
5686
{
5687
	struct intel_iommu *iommu;
5688

5689
	iommu = device_to_iommu(dev, NULL, NULL);
5690
	if (!iommu)
5691
		return ERR_PTR(-ENODEV);
5692

5693
	if (translation_pre_enabled(iommu))
5694
		dev_iommu_priv_set(dev, DEFER_DEVICE_DOMAIN_INFO);
5695

5696
	return &iommu->iommu;
5697
}
5698

5699
static void intel_iommu_release_device(struct device *dev)
5700
{
5701 5702
	struct intel_iommu *iommu;

5703
	iommu = device_to_iommu(dev, NULL, NULL);
5704 5705 5706
	if (!iommu)
		return;

5707 5708
	dmar_remove_one_dev_info(dev);

L
Lu Baolu 已提交
5709 5710
	set_dma_ops(dev, NULL);
}
5711

L
Lu Baolu 已提交
5712 5713 5714
static void intel_iommu_probe_finalize(struct device *dev)
{
	struct iommu_domain *domain;
5715

L
Lu Baolu 已提交
5716
	domain = iommu_get_domain_for_dev(dev);
5717
	if (device_needs_bounce(dev))
L
Lu Baolu 已提交
5718 5719 5720 5721
		set_dma_ops(dev, &bounce_dma_ops);
	else if (domain && domain->type == IOMMU_DOMAIN_DMA)
		set_dma_ops(dev, &intel_dma_ops);
	else
5722
		set_dma_ops(dev, NULL);
5723 5724
}

5725 5726 5727
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5728
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5729 5730 5731 5732 5733
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5734
	down_read(&dmar_global_lock);
5735 5736 5737
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5738
			struct iommu_resv_region *resv;
5739
			enum iommu_resv_type type;
5740 5741
			size_t length;

5742 5743
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5744 5745
				continue;

5746
			length = rmrr->end_address - rmrr->base_address + 1;
5747 5748 5749 5750

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5751
			resv = iommu_alloc_resv_region(rmrr->base_address,
5752
						       length, prot, type);
5753 5754 5755 5756
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5757 5758
		}
	}
5759
	up_read(&dmar_global_lock);
5760

5761 5762 5763 5764 5765
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5766
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5767
						   IOMMU_RESV_DIRECT_RELAXABLE);
5768 5769 5770 5771 5772 5773
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5774 5775
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5776
				      0, IOMMU_RESV_MSI);
5777 5778 5779 5780 5781
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

5782
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5783 5784 5785 5786 5787 5788 5789 5790
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5791
	domain = find_domain(dev);
5792 5793 5794 5795 5796 5797 5798
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5799
	info = get_domain_info(dev);
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5813 5814 5815
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5846 5847 5848 5849 5850 5851 5852
static struct iommu_group *intel_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);
	return generic_device_group(dev);
}

5853 5854 5855 5856 5857 5858 5859
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	int ret;

5860
	iommu = device_to_iommu(dev, NULL, NULL);
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
5872
	info = get_domain_info(dev);
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
5885
	info = get_domain_info(dev);
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

5938 5939 5940 5941 5942 5943 5944 5945
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
			info->pasid_supported && info->pri_supported &&
			info->ats_supported;
	}

5946 5947 5948 5949 5950 5951 5952 5953 5954
	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
	if (feat == IOMMU_DEV_FEAT_SVA) {
		struct device_domain_info *info = get_domain_info(dev);

		if (!info)
			return -EINVAL;

		if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
			return 0;
	}

5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
5980
	struct device_domain_info *info = get_domain_info(dev);
5981 5982 5983 5984 5985 5986 5987

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5988 5989 5990 5991 5992 5993 5994 5995 5996
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5997 5998 5999
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
6000
	return attach_deferred(dev);
6001 6002
}

6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
static int
intel_iommu_domain_set_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long flags;
	int ret = 0;

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		spin_lock_irqsave(&device_domain_lock, flags);
		if (nested_mode_support() &&
		    list_empty(&dmar_domain->devices)) {
			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
		} else {
			ret = -ENODEV;
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
/*
 * Check that the device does not live on an external facing PCI port that is
 * marked as untrusted. Such devices should not be able to apply quirks and
 * thus not be able to bypass the IOMMU restrictions.
 */
static bool risky_device(struct pci_dev *pdev)
{
	if (pdev->untrusted) {
		pci_info(pdev,
			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
			 pdev->vendor, pdev->device);
		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
		return true;
	}
	return false;
}

6051
const struct iommu_ops intel_iommu_ops = {
6052 6053 6054
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
6055
	.domain_set_attr	= intel_iommu_domain_set_attr,
6056 6057
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
6058 6059
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
6060
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
6061 6062 6063
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
6064
	.probe_device		= intel_iommu_probe_device,
L
Lu Baolu 已提交
6065
	.probe_finalize		= intel_iommu_probe_finalize,
6066
	.release_device		= intel_iommu_release_device,
6067
	.get_resv_regions	= intel_iommu_get_resv_regions,
6068
	.put_resv_regions	= generic_iommu_put_resv_regions,
6069
	.apply_resv_region	= intel_iommu_apply_resv_region,
6070
	.device_group		= intel_iommu_device_group,
6071 6072 6073 6074
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
6075
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
6076
	.def_domain_type	= device_def_domain_type,
6077
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
6078
#ifdef CONFIG_INTEL_IOMMU_SVM
6079
	.cache_invalidate	= intel_iommu_sva_invalidate,
6080 6081
	.sva_bind_gpasid	= intel_svm_bind_gpasid,
	.sva_unbind_gpasid	= intel_svm_unbind_gpasid,
6082 6083 6084
	.sva_bind		= intel_svm_bind,
	.sva_unbind		= intel_svm_unbind,
	.sva_get_pasid		= intel_svm_get_pasid,
6085
	.page_response		= intel_svm_page_response,
6086
#endif
6087
};
6088

6089
static void quirk_iommu_igfx(struct pci_dev *dev)
6090
{
6091 6092 6093
	if (risky_device(dev))
		return;

6094
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
6095 6096 6097
	dmar_map_gfx = 0;
}

6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6132

6133
static void quirk_iommu_rwbf(struct pci_dev *dev)
6134
{
6135 6136 6137
	if (risky_device(dev))
		return;

6138 6139
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
6140
	 * but needs it. Same seems to hold for the desktop versions.
6141
	 */
6142
	pci_info(dev, "Forcing write-buffer flush capability\n");
6143 6144 6145 6146
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6147 6148 6149 6150 6151 6152
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6153

6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

6164
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6165 6166 6167
{
	unsigned short ggc;

6168 6169 6170
	if (risky_device(dev))
		return;

6171
	if (pci_read_config_word(dev, GGC, &ggc))
6172 6173
		return;

6174
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6175
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6176
		dmar_map_gfx = 0;
6177 6178
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
6179
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6180 6181
		intel_iommu_strict = 1;
       }
6182 6183 6184 6185 6186 6187
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
{
	unsigned short ver;

	if (!IS_GFX_DEVICE(dev))
		return;

	ver = (dev->device >> 8) & 0xff;
	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
	    ver != 0x9a)
		return;

	if (risky_device(dev))
		return;

	pci_info(dev, "Skip IOMMU disabling for graphics\n");
	iommu_skip_te_disable = 1;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);

6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
6225 6226 6227 6228 6229 6230

	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6231 6232 6233 6234 6235 6236 6237 6238 6239
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

6240 6241 6242 6243 6244
	if (risky_device(pdev)) {
		pci_dev_put(pdev);
		return;
	}

6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
6273 6274

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6275 6276
	       vtisochctrl);
}