spi.c 97.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
M
Mark Brown 已提交
2 3 4 5
// SPI init/core code
//
// Copyright (C) 2005 David Brownell
// Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
11 12
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
13
#include <linux/mutex.h>
14
#include <linux/of_device.h>
15
#include <linux/of_irq.h>
16
#include <linux/clk/clk-conf.h>
17
#include <linux/slab.h>
18
#include <linux/mod_devicetable.h>
19
#include <linux/spi/spi.h>
20
#include <linux/spi/spi-mem.h>
21
#include <linux/of_gpio.h>
M
Mark Brown 已提交
22
#include <linux/pm_runtime.h>
23
#include <linux/pm_domain.h>
24
#include <linux/property.h>
25
#include <linux/export.h>
26
#include <linux/sched/rt.h>
27
#include <uapi/linux/sched/types.h>
28 29
#include <linux/delay.h>
#include <linux/kthread.h>
30 31
#include <linux/ioport.h>
#include <linux/acpi.h>
32
#include <linux/highmem.h>
33
#include <linux/idr.h>
34
#include <linux/platform_data/x86/apple.h>
35

36 37
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>
38

39 40
#include "internals.h"

41
static DEFINE_IDR(spi_master_idr);
42

43 44
static void spidev_release(struct device *dev)
{
45
	struct spi_device	*spi = to_spi_device(dev);
46

47 48 49
	/* spi controllers may cleanup for released devices */
	if (spi->controller->cleanup)
		spi->controller->cleanup(spi);
50

51
	spi_controller_put(spi->controller);
52
	kfree(spi->driver_override);
53
	kfree(spi);
54 55 56 57 58 59
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
60 61 62 63 64
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
65

66
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67
}
68
static DEVICE_ATTR_RO(modalias);
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *a,
				     const char *buf, size_t count)
{
	struct spi_device *spi = to_spi_device(dev);
	const char *end = memchr(buf, '\n', count);
	const size_t len = end ? end - buf : count;
	const char *driver_override, *old;

	/* We need to keep extra room for a newline when displaying value */
	if (len >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, len, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	device_lock(dev);
	old = spi->driver_override;
	if (len) {
		spi->driver_override = driver_override;
	} else {
		/* Emptry string, disable driver override */
		spi->driver_override = NULL;
		kfree(driver_override);
	}
	device_unlock(dev);
	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *a, char *buf)
{
	const struct spi_device *spi = to_spi_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
	device_unlock(dev);
	return len;
}
static DEVICE_ATTR_RW(driver_override);

115
#define SPI_STATISTICS_ATTRS(field, file)				\
116 117 118
static ssize_t spi_controller_##field##_show(struct device *dev,	\
					     struct device_attribute *attr, \
					     char *buf)			\
119
{									\
120 121 122
	struct spi_controller *ctlr = container_of(dev,			\
					 struct spi_controller, dev);	\
	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
123
}									\
124
static struct device_attribute dev_attr_spi_controller_##field = {	\
125
	.attr = { .name = file, .mode = 0444 },				\
126
	.show = spi_controller_##field##_show,				\
127 128 129 130 131
};									\
static ssize_t spi_device_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					char *buf)			\
{									\
G
Geliang Tang 已提交
132
	struct spi_device *spi = to_spi_device(dev);			\
133 134 135
	return spi_statistics_##field##_show(&spi->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_device_##field = {		\
136
	.attr = { .name = file, .mode = 0444 },				\
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
	.show = spi_device_##field##_show,				\
}

#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
					    char *buf)			\
{									\
	unsigned long flags;						\
	ssize_t len;							\
	spin_lock_irqsave(&stat->lock, flags);				\
	len = sprintf(buf, format_string, stat->field);			\
	spin_unlock_irqrestore(&stat->lock, flags);			\
	return len;							\
}									\
SPI_STATISTICS_ATTRS(name, file)

#define SPI_STATISTICS_SHOW(field, format_string)			\
	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
				 field, format_string)

SPI_STATISTICS_SHOW(messages, "%lu");
SPI_STATISTICS_SHOW(transfers, "%lu");
SPI_STATISTICS_SHOW(errors, "%lu");
SPI_STATISTICS_SHOW(timedout, "%lu");

SPI_STATISTICS_SHOW(spi_sync, "%lu");
SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
SPI_STATISTICS_SHOW(spi_async, "%lu");

SPI_STATISTICS_SHOW(bytes, "%llu");
SPI_STATISTICS_SHOW(bytes_rx, "%llu");
SPI_STATISTICS_SHOW(bytes_tx, "%llu");

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
				 "transfer_bytes_histo_" number,	\
				 transfer_bytes_histo[index],  "%lu")
SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");

192 193
SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");

194 195
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
196
	&dev_attr_driver_override.attr,
197
	NULL,
198
};
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

static const struct attribute_group spi_dev_group = {
	.attrs  = spi_dev_attrs,
};

static struct attribute *spi_device_statistics_attrs[] = {
	&dev_attr_spi_device_messages.attr,
	&dev_attr_spi_device_transfers.attr,
	&dev_attr_spi_device_errors.attr,
	&dev_attr_spi_device_timedout.attr,
	&dev_attr_spi_device_spi_sync.attr,
	&dev_attr_spi_device_spi_sync_immediate.attr,
	&dev_attr_spi_device_spi_async.attr,
	&dev_attr_spi_device_bytes.attr,
	&dev_attr_spi_device_bytes_rx.attr,
	&dev_attr_spi_device_bytes_tx.attr,
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	&dev_attr_spi_device_transfer_bytes_histo0.attr,
	&dev_attr_spi_device_transfer_bytes_histo1.attr,
	&dev_attr_spi_device_transfer_bytes_histo2.attr,
	&dev_attr_spi_device_transfer_bytes_histo3.attr,
	&dev_attr_spi_device_transfer_bytes_histo4.attr,
	&dev_attr_spi_device_transfer_bytes_histo5.attr,
	&dev_attr_spi_device_transfer_bytes_histo6.attr,
	&dev_attr_spi_device_transfer_bytes_histo7.attr,
	&dev_attr_spi_device_transfer_bytes_histo8.attr,
	&dev_attr_spi_device_transfer_bytes_histo9.attr,
	&dev_attr_spi_device_transfer_bytes_histo10.attr,
	&dev_attr_spi_device_transfer_bytes_histo11.attr,
	&dev_attr_spi_device_transfer_bytes_histo12.attr,
	&dev_attr_spi_device_transfer_bytes_histo13.attr,
	&dev_attr_spi_device_transfer_bytes_histo14.attr,
	&dev_attr_spi_device_transfer_bytes_histo15.attr,
	&dev_attr_spi_device_transfer_bytes_histo16.attr,
232
	&dev_attr_spi_device_transfers_split_maxsize.attr,
233 234 235 236 237 238 239 240 241 242 243 244 245 246
	NULL,
};

static const struct attribute_group spi_device_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_device_statistics_attrs,
};

static const struct attribute_group *spi_dev_groups[] = {
	&spi_dev_group,
	&spi_device_statistics_group,
	NULL,
};

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static struct attribute *spi_controller_statistics_attrs[] = {
	&dev_attr_spi_controller_messages.attr,
	&dev_attr_spi_controller_transfers.attr,
	&dev_attr_spi_controller_errors.attr,
	&dev_attr_spi_controller_timedout.attr,
	&dev_attr_spi_controller_spi_sync.attr,
	&dev_attr_spi_controller_spi_sync_immediate.attr,
	&dev_attr_spi_controller_spi_async.attr,
	&dev_attr_spi_controller_bytes.attr,
	&dev_attr_spi_controller_bytes_rx.attr,
	&dev_attr_spi_controller_bytes_tx.attr,
	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
	&dev_attr_spi_controller_transfers_split_maxsize.attr,
276 277 278
	NULL,
};

279
static const struct attribute_group spi_controller_statistics_group = {
280
	.name  = "statistics",
281
	.attrs  = spi_controller_statistics_attrs,
282 283 284
};

static const struct attribute_group *spi_master_groups[] = {
285
	&spi_controller_statistics_group,
286 287 288 289 290
	NULL,
};

void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
				       struct spi_transfer *xfer,
291
				       struct spi_controller *ctlr)
292 293
{
	unsigned long flags;
294 295 296 297
	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;

	if (l2len < 0)
		l2len = 0;
298 299 300 301

	spin_lock_irqsave(&stats->lock, flags);

	stats->transfers++;
302
	stats->transfer_bytes_histo[l2len]++;
303 304 305

	stats->bytes += xfer->len;
	if ((xfer->tx_buf) &&
306
	    (xfer->tx_buf != ctlr->dummy_tx))
307 308
		stats->bytes_tx += xfer->len;
	if ((xfer->rx_buf) &&
309
	    (xfer->rx_buf != ctlr->dummy_rx))
310 311 312 313 314
		stats->bytes_rx += xfer->len;

	spin_unlock_irqrestore(&stats->lock, flags);
}
EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
315 316 317 318 319

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

339 340 341
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
342 343
	const struct spi_driver	*sdrv = to_spi_driver(drv);

344 345 346 347
	/* Check override first, and if set, only use the named driver */
	if (spi->driver_override)
		return strcmp(spi->driver_override, drv->name) == 0;

348 349 350 351
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

352 353 354 355
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

356 357
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
358

359
	return strcmp(spi->modalias, drv->name) == 0;
360 361
}

362
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
363 364
{
	const struct spi_device		*spi = to_spi_device(dev);
365 366 367 368 369
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
370

371
	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
372 373 374 375
}

struct bus_type spi_bus_type = {
	.name		= "spi",
376
	.dev_groups	= spi_dev_groups,
377 378 379 380 381
	.match		= spi_match_device,
	.uevent		= spi_uevent,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

382 383 384 385

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
386
	struct spi_device		*spi = to_spi_device(dev);
387 388
	int ret;

389 390 391 392
	ret = of_clk_set_defaults(dev->of_node, false);
	if (ret)
		return ret;

393 394 395 396 397 398 399 400
	if (dev->of_node) {
		spi->irq = of_irq_get(dev->of_node, 0);
		if (spi->irq == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		if (spi->irq < 0)
			spi->irq = 0;
	}

401
	ret = dev_pm_domain_attach(dev, true);
402 403 404 405 406 407
	if (ret)
		return ret;

	ret = sdrv->probe(spi);
	if (ret)
		dev_pm_domain_detach(dev, true);
408

409
	return ret;
410 411 412 413 414
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
415 416
	int ret;

417
	ret = sdrv->remove(to_spi_device(dev));
418
	dev_pm_domain_detach(dev, true);
419

420
	return ret;
421 422 423 424 425 426 427 428 429
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
430
/**
431
 * __spi_register_driver - register a SPI driver
432
 * @owner: owner module of the driver to register
D
David Brownell 已提交
433 434
 * @sdrv: the driver to register
 * Context: can sleep
435 436
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
437
 */
438
int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
439
{
440
	sdrv->driver.owner = owner;
441 442 443 444 445 446 447 448 449
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
450
EXPORT_SYMBOL_GPL(__spi_register_driver);
451

452 453 454
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
455
 * would make them board-specific.  Similarly with SPI controller drivers.
456 457 458 459 460 461
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
462
	struct spi_board_info	board_info;
463 464 465
};

static LIST_HEAD(board_list);
466
static LIST_HEAD(spi_controller_list);
467 468 469

/*
 * Used to protect add/del opertion for board_info list and
470
 * spi_controller list, and their matching process
S
Suniel Mahesh 已提交
471
 * also used to protect object of type struct idr
472
 */
473
static DEFINE_MUTEX(board_lock);
474

475 476
/**
 * spi_alloc_device - Allocate a new SPI device
477
 * @ctlr: Controller to which device is connected
478 479 480 481 482 483 484 485
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
486
 * spi_device structure to add it to the SPI controller.  If the caller
487 488 489
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
490
 * Return: a pointer to the new device, or NULL.
491
 */
492
struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
493 494 495
{
	struct spi_device	*spi;

496
	if (!spi_controller_get(ctlr))
497 498
		return NULL;

J
Jingoo Han 已提交
499
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
500
	if (!spi) {
501
		spi_controller_put(ctlr);
502 503 504
		return NULL;
	}

505 506
	spi->master = spi->controller = ctlr;
	spi->dev.parent = &ctlr->dev;
507 508
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
509
	spi->cs_gpio = -ENOENT;
510 511 512

	spin_lock_init(&spi->statistics.lock);

513 514 515 516 517
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

518 519 520 521 522 523 524 525 526
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

527
	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
528 529 530
		     spi->chip_select);
}

531 532 533 534 535
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

536
	if (spi->controller == new_spi->controller &&
537 538 539 540 541
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

542 543 544 545 546 547 548
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
549
 * Return: 0 on success; negative errno on failure
550 551 552
 */
int spi_add_device(struct spi_device *spi)
{
553
	static DEFINE_MUTEX(spi_add_lock);
554 555
	struct spi_controller *ctlr = spi->controller;
	struct device *dev = ctlr->dev.parent;
556 557 558
	int status;

	/* Chipselects are numbered 0..max; validate. */
559 560 561
	if (spi->chip_select >= ctlr->num_chipselect) {
		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
			ctlr->num_chipselect);
562 563 564 565
		return -EINVAL;
	}

	/* Set the bus ID string */
566
	spi_dev_set_name(spi);
567 568 569 570 571 572 573

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

574 575
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
576 577 578 579 580
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

581 582
	if (ctlr->cs_gpios)
		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
583

584 585 586 587
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
588
	status = spi_setup(spi);
589
	if (status < 0) {
590 591
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
592
		goto done;
593 594
	}

595
	/* Device may be bound to an active driver when this returns */
596
	status = device_add(&spi->dev);
597
	if (status < 0)
598 599
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
600
	else
601
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
602

603 604 605
done:
	mutex_unlock(&spi_add_lock);
	return status;
606 607
}
EXPORT_SYMBOL_GPL(spi_add_device);
608

D
David Brownell 已提交
609 610
/**
 * spi_new_device - instantiate one new SPI device
611
 * @ctlr: Controller to which device is connected
D
David Brownell 已提交
612 613 614 615
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
616 617 618 619
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
620
 *
621
 * Return: the new device, or NULL.
622
 */
623
struct spi_device *spi_new_device(struct spi_controller *ctlr,
624
				  struct spi_board_info *chip)
625 626 627 628
{
	struct spi_device	*proxy;
	int			status;

629 630 631 632 633 634 635
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

636
	proxy = spi_alloc_device(ctlr);
637
	if (!proxy)
638 639
		return NULL;

640 641
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

642 643
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
644
	proxy->mode = chip->mode;
645
	proxy->irq = chip->irq;
646
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
647 648 649 650
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

651 652 653
	if (chip->properties) {
		status = device_add_properties(&proxy->dev, chip->properties);
		if (status) {
654
			dev_err(&ctlr->dev,
655 656 657 658
				"failed to add properties to '%s': %d\n",
				chip->modalias, status);
			goto err_dev_put;
		}
659 660
	}

661 662 663 664
	status = spi_add_device(proxy);
	if (status < 0)
		goto err_remove_props;

665
	return proxy;
666 667 668 669 670 671 672

err_remove_props:
	if (chip->properties)
		device_remove_properties(&proxy->dev);
err_dev_put:
	spi_dev_put(proxy);
	return NULL;
673 674 675
}
EXPORT_SYMBOL_GPL(spi_new_device);

676 677 678 679 680
/**
 * spi_unregister_device - unregister a single SPI device
 * @spi: spi_device to unregister
 *
 * Start making the passed SPI device vanish. Normally this would be handled
681
 * by spi_unregister_controller().
682 683 684
 */
void spi_unregister_device(struct spi_device *spi)
{
685 686 687
	if (!spi)
		return;

J
Johan Hovold 已提交
688
	if (spi->dev.of_node) {
689
		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
J
Johan Hovold 已提交
690 691
		of_node_put(spi->dev.of_node);
	}
692 693
	if (ACPI_COMPANION(&spi->dev))
		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
694
	device_unregister(&spi->dev);
695 696 697
}
EXPORT_SYMBOL_GPL(spi_unregister_device);

698 699
static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
					      struct spi_board_info *bi)
700 701 702
{
	struct spi_device *dev;

703
	if (ctlr->bus_num != bi->bus_num)
704 705
		return;

706
	dev = spi_new_device(ctlr, bi);
707
	if (!dev)
708
		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
709 710 711
			bi->modalias);
}

D
David Brownell 已提交
712 713 714 715 716 717
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
718 719 720 721 722 723 724 725 726 727 728 729
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
730
 * Device properties are deep-copied though.
731 732
 *
 * Return: zero on success, else a negative error code.
733
 */
734
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
735
{
736 737
	struct boardinfo *bi;
	int i;
738

739
	if (!n)
740
		return 0;
741

742
	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
743 744 745
	if (!bi)
		return -ENOMEM;

746
	for (i = 0; i < n; i++, bi++, info++) {
747
		struct spi_controller *ctlr;
748

749
		memcpy(&bi->board_info, info, sizeof(*info));
750 751 752 753 754 755 756
		if (info->properties) {
			bi->board_info.properties =
					property_entries_dup(info->properties);
			if (IS_ERR(bi->board_info.properties))
				return PTR_ERR(bi->board_info.properties);
		}

757 758
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
759 760 761
		list_for_each_entry(ctlr, &spi_controller_list, list)
			spi_match_controller_to_boardinfo(ctlr,
							  &bi->board_info);
762
		mutex_unlock(&board_lock);
763
	}
764 765

	return 0;
766 767 768 769
}

/*-------------------------------------------------------------------------*/

770 771 772 773 774
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

775
	if (gpio_is_valid(spi->cs_gpio)) {
776 777 778
		/* Honour the SPI_NO_CS flag */
		if (!(spi->mode & SPI_NO_CS))
			gpio_set_value(spi->cs_gpio, !enable);
779
		/* Some SPI masters need both GPIO CS & slave_select */
780 781 782 783 784
		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
		    spi->controller->set_cs)
			spi->controller->set_cs(spi, !enable);
	} else if (spi->controller->set_cs) {
		spi->controller->set_cs(spi, !enable);
785
	}
786 787
}

788
#ifdef CONFIG_HAS_DMA
789 790 791
int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
		struct sg_table *sgt, void *buf, size_t len,
		enum dma_data_direction dir)
792 793
{
	const bool vmalloced_buf = is_vmalloc_addr(buf);
794
	unsigned int max_seg_size = dma_get_max_seg_size(dev);
795 796 797 798 799 800 801
#ifdef CONFIG_HIGHMEM
	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
				(unsigned long)buf < (PKMAP_BASE +
					(LAST_PKMAP * PAGE_SIZE)));
#else
	const bool kmap_buf = false;
#endif
802 803
	int desc_len;
	int sgs;
804
	struct page *vm_page;
805
	struct scatterlist *sg;
806 807 808 809
	void *sg_buf;
	size_t min;
	int i, ret;

810
	if (vmalloced_buf || kmap_buf) {
811
		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
812
		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
813
	} else if (virt_addr_valid(buf)) {
814
		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
815
		sgs = DIV_ROUND_UP(len, desc_len);
816 817
	} else {
		return -EINVAL;
818 819
	}

820 821 822 823
	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
	if (ret != 0)
		return ret;

824
	sg = &sgt->sgl[0];
825 826
	for (i = 0; i < sgs; i++) {

827
		if (vmalloced_buf || kmap_buf) {
828 829 830 831 832 833 834 835
			/*
			 * Next scatterlist entry size is the minimum between
			 * the desc_len and the remaining buffer length that
			 * fits in a page.
			 */
			min = min_t(size_t, desc_len,
				    min_t(size_t, len,
					  PAGE_SIZE - offset_in_page(buf)));
836 837 838 839
			if (vmalloced_buf)
				vm_page = vmalloc_to_page(buf);
			else
				vm_page = kmap_to_page(buf);
840 841 842 843
			if (!vm_page) {
				sg_free_table(sgt);
				return -ENOMEM;
			}
844
			sg_set_page(sg, vm_page,
845
				    min, offset_in_page(buf));
846
		} else {
847
			min = min_t(size_t, len, desc_len);
848
			sg_buf = buf;
849
			sg_set_buf(sg, sg_buf, min);
850 851 852 853
		}

		buf += min;
		len -= min;
854
		sg = sg_next(sg);
855 856 857
	}

	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
858 859
	if (!ret)
		ret = -ENOMEM;
860 861 862 863 864 865 866 867 868 869
	if (ret < 0) {
		sg_free_table(sgt);
		return ret;
	}

	sgt->nents = ret;

	return 0;
}

870 871
void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
		   struct sg_table *sgt, enum dma_data_direction dir)
872 873 874 875 876 877 878
{
	if (sgt->orig_nents) {
		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
		sg_free_table(sgt);
	}
}

879
static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
880 881 882
{
	struct device *tx_dev, *rx_dev;
	struct spi_transfer *xfer;
883
	int ret;
884

885
	if (!ctlr->can_dma)
886 887
		return 0;

888 889
	if (ctlr->dma_tx)
		tx_dev = ctlr->dma_tx->device->dev;
890
	else
891
		tx_dev = ctlr->dev.parent;
892

893 894
	if (ctlr->dma_rx)
		rx_dev = ctlr->dma_rx->device->dev;
895
	else
896
		rx_dev = ctlr->dev.parent;
897 898

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
899
		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
900 901 902
			continue;

		if (xfer->tx_buf != NULL) {
903
			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
904 905 906 907
					  (void *)xfer->tx_buf, xfer->len,
					  DMA_TO_DEVICE);
			if (ret != 0)
				return ret;
908 909 910
		}

		if (xfer->rx_buf != NULL) {
911
			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
912 913 914
					  xfer->rx_buf, xfer->len,
					  DMA_FROM_DEVICE);
			if (ret != 0) {
915
				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
916 917
					      DMA_TO_DEVICE);
				return ret;
918 919 920 921
			}
		}
	}

922
	ctlr->cur_msg_mapped = true;
923 924 925 926

	return 0;
}

927
static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
928 929 930 931
{
	struct spi_transfer *xfer;
	struct device *tx_dev, *rx_dev;

932
	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
933 934
		return 0;

935 936
	if (ctlr->dma_tx)
		tx_dev = ctlr->dma_tx->device->dev;
937
	else
938
		tx_dev = ctlr->dev.parent;
939

940 941
	if (ctlr->dma_rx)
		rx_dev = ctlr->dma_rx->device->dev;
942
	else
943
		rx_dev = ctlr->dev.parent;
944 945

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
946
		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
947 948
			continue;

949 950
		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
951 952 953 954
	}

	return 0;
}
955
#else /* !CONFIG_HAS_DMA */
956
static inline int __spi_map_msg(struct spi_controller *ctlr,
957 958 959 960 961
				struct spi_message *msg)
{
	return 0;
}

962
static inline int __spi_unmap_msg(struct spi_controller *ctlr,
963
				  struct spi_message *msg)
964 965 966 967 968
{
	return 0;
}
#endif /* !CONFIG_HAS_DMA */

969
static inline int spi_unmap_msg(struct spi_controller *ctlr,
970 971 972 973 974 975 976 977 978
				struct spi_message *msg)
{
	struct spi_transfer *xfer;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		/*
		 * Restore the original value of tx_buf or rx_buf if they are
		 * NULL.
		 */
979
		if (xfer->tx_buf == ctlr->dummy_tx)
980
			xfer->tx_buf = NULL;
981
		if (xfer->rx_buf == ctlr->dummy_rx)
982 983 984
			xfer->rx_buf = NULL;
	}

985
	return __spi_unmap_msg(ctlr, msg);
986 987
}

988
static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
989 990 991 992 993
{
	struct spi_transfer *xfer;
	void *tmp;
	unsigned int max_tx, max_rx;

994
	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
995 996 997 998
		max_tx = 0;
		max_rx = 0;

		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
999
			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1000 1001
			    !xfer->tx_buf)
				max_tx = max(xfer->len, max_tx);
1002
			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1003 1004 1005 1006 1007
			    !xfer->rx_buf)
				max_rx = max(xfer->len, max_rx);
		}

		if (max_tx) {
1008
			tmp = krealloc(ctlr->dummy_tx, max_tx,
1009 1010 1011
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
1012
			ctlr->dummy_tx = tmp;
1013 1014 1015 1016
			memset(tmp, 0, max_tx);
		}

		if (max_rx) {
1017
			tmp = krealloc(ctlr->dummy_rx, max_rx,
1018 1019 1020
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
1021
			ctlr->dummy_rx = tmp;
1022 1023 1024 1025 1026 1027
		}

		if (max_tx || max_rx) {
			list_for_each_entry(xfer, &msg->transfers,
					    transfer_list) {
				if (!xfer->tx_buf)
1028
					xfer->tx_buf = ctlr->dummy_tx;
1029
				if (!xfer->rx_buf)
1030
					xfer->rx_buf = ctlr->dummy_rx;
1031 1032 1033 1034
			}
		}
	}

1035
	return __spi_map_msg(ctlr, msg);
1036
}
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static int spi_transfer_wait(struct spi_controller *ctlr,
			     struct spi_message *msg,
			     struct spi_transfer *xfer)
{
	struct spi_statistics *statm = &ctlr->statistics;
	struct spi_statistics *stats = &msg->spi->statistics;
	unsigned long long ms = 1;

	if (spi_controller_is_slave(ctlr)) {
		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
			return -EINTR;
		}
	} else {
		ms = 8LL * 1000LL * xfer->len;
		do_div(ms, xfer->speed_hz);
		ms += ms + 200; /* some tolerance */

		if (ms > UINT_MAX)
			ms = UINT_MAX;

		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
						 msecs_to_jiffies(ms));

		if (ms == 0) {
			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
			dev_err(&msg->spi->dev,
				"SPI transfer timed out\n");
			return -ETIMEDOUT;
		}
	}

	return 0;
}

1074 1075 1076 1077
/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
1078
 * drivers which implement a transfer_one() operation.  It provides
1079 1080
 * standard handling of delays and chip select management.
 */
1081
static int spi_transfer_one_message(struct spi_controller *ctlr,
1082 1083 1084 1085 1086
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool keep_cs = false;
	int ret = 0;
1087
	struct spi_statistics *statm = &ctlr->statistics;
1088
	struct spi_statistics *stats = &msg->spi->statistics;
1089 1090 1091

	spi_set_cs(msg->spi, true);

1092 1093 1094
	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);

1095 1096 1097
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

1098 1099
		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1100

1101
		if (xfer->tx_buf || xfer->rx_buf) {
1102
			reinit_completion(&ctlr->xfer_completion);
1103

1104
			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1105
			if (ret < 0) {
1106 1107 1108 1109
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       errors);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       errors);
1110 1111 1112 1113
				dev_err(&msg->spi->dev,
					"SPI transfer failed: %d\n", ret);
				goto out;
			}
1114

1115 1116 1117 1118 1119
			if (ret > 0) {
				ret = spi_transfer_wait(ctlr, msg, xfer);
				if (ret < 0)
					msg->status = ret;
			}
1120 1121 1122 1123 1124
		} else {
			if (xfer->len)
				dev_err(&msg->spi->dev,
					"Bufferless transfer has length %u\n",
					xfer->len);
1125
		}
1126 1127 1128 1129 1130 1131

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

1132 1133 1134 1135 1136 1137 1138 1139
		if (xfer->delay_usecs) {
			u16 us = xfer->delay_usecs;

			if (us <= 10)
				udelay(us);
			else
				usleep_range(us, us + DIV_ROUND_UP(us, 10));
		}
1140 1141 1142 1143 1144 1145

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
1146 1147 1148
				spi_set_cs(msg->spi, false);
				udelay(10);
				spi_set_cs(msg->spi, true);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

1162 1163
	if (msg->status && ctlr->handle_err)
		ctlr->handle_err(ctlr, msg);
1164

1165
	spi_res_release(ctlr, msg);
1166

1167
	spi_finalize_current_message(ctlr);
1168 1169 1170 1171 1172 1173

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
1174
 * @ctlr: the controller reporting completion
1175 1176 1177
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
1178
 * transfer has finished and the next one may be scheduled.
1179
 */
1180
void spi_finalize_current_transfer(struct spi_controller *ctlr)
1181
{
1182
	complete(&ctlr->xfer_completion);
1183 1184 1185
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

1186
/**
1187
 * __spi_pump_messages - function which processes spi message queue
1188
 * @ctlr: controller to process queue for
1189
 * @in_kthread: true if we are in the context of the message pump thread
1190 1191 1192 1193 1194
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
1195 1196 1197
 * Note that it is called both from the kthread itself and also from
 * inside spi_sync(); the queue extraction handling at the top of the
 * function should deal with this safely.
1198
 */
1199
static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1200 1201 1202 1203 1204
{
	unsigned long flags;
	bool was_busy = false;
	int ret;

1205
	/* Lock queue */
1206
	spin_lock_irqsave(&ctlr->queue_lock, flags);
1207 1208

	/* Make sure we are not already running a message */
1209 1210
	if (ctlr->cur_msg) {
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1211 1212 1213
		return;
	}

1214
	/* If another context is idling the device then defer */
1215 1216 1217
	if (ctlr->idling) {
		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1218 1219 1220
		return;
	}

1221
	/* Check if the queue is idle */
1222 1223 1224
	if (list_empty(&ctlr->queue) || !ctlr->running) {
		if (!ctlr->busy) {
			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1225
			return;
1226
		}
1227 1228 1229

		/* Only do teardown in the thread */
		if (!in_kthread) {
1230 1231 1232
			kthread_queue_work(&ctlr->kworker,
					   &ctlr->pump_messages);
			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1233 1234 1235
			return;
		}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		ctlr->busy = false;
		ctlr->idling = true;
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);

		kfree(ctlr->dummy_rx);
		ctlr->dummy_rx = NULL;
		kfree(ctlr->dummy_tx);
		ctlr->dummy_tx = NULL;
		if (ctlr->unprepare_transfer_hardware &&
		    ctlr->unprepare_transfer_hardware(ctlr))
			dev_err(&ctlr->dev,
1247
				"failed to unprepare transfer hardware\n");
1248 1249 1250
		if (ctlr->auto_runtime_pm) {
			pm_runtime_mark_last_busy(ctlr->dev.parent);
			pm_runtime_put_autosuspend(ctlr->dev.parent);
1251
		}
1252
		trace_spi_controller_idle(ctlr);
1253

1254 1255 1256
		spin_lock_irqsave(&ctlr->queue_lock, flags);
		ctlr->idling = false;
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1257 1258 1259 1260
		return;
	}

	/* Extract head of queue */
1261 1262
	ctlr->cur_msg =
		list_first_entry(&ctlr->queue, struct spi_message, queue);
1263

1264 1265
	list_del_init(&ctlr->cur_msg->queue);
	if (ctlr->busy)
1266 1267
		was_busy = true;
	else
1268 1269
		ctlr->busy = true;
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1270

1271
	mutex_lock(&ctlr->io_mutex);
M
Mark Brown 已提交
1272

1273 1274
	if (!was_busy && ctlr->auto_runtime_pm) {
		ret = pm_runtime_get_sync(ctlr->dev.parent);
1275
		if (ret < 0) {
1276
			pm_runtime_put_noidle(ctlr->dev.parent);
1277
			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1278
				ret);
1279
			mutex_unlock(&ctlr->io_mutex);
1280 1281 1282 1283
			return;
		}
	}

1284
	if (!was_busy)
1285
		trace_spi_controller_busy(ctlr);
1286

1287 1288
	if (!was_busy && ctlr->prepare_transfer_hardware) {
		ret = ctlr->prepare_transfer_hardware(ctlr);
1289
		if (ret) {
1290
			dev_err(&ctlr->dev,
1291
				"failed to prepare transfer hardware\n");
1292

1293 1294 1295
			if (ctlr->auto_runtime_pm)
				pm_runtime_put(ctlr->dev.parent);
			mutex_unlock(&ctlr->io_mutex);
1296 1297 1298 1299
			return;
		}
	}

1300
	trace_spi_message_start(ctlr->cur_msg);
1301

1302 1303
	if (ctlr->prepare_message) {
		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1304
		if (ret) {
1305 1306 1307 1308
			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
				ret);
			ctlr->cur_msg->status = ret;
			spi_finalize_current_message(ctlr);
1309
			goto out;
1310
		}
1311
		ctlr->cur_msg_prepared = true;
1312 1313
	}

1314
	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1315
	if (ret) {
1316 1317
		ctlr->cur_msg->status = ret;
		spi_finalize_current_message(ctlr);
1318
		goto out;
1319 1320
	}

1321
	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1322
	if (ret) {
1323
		dev_err(&ctlr->dev,
1324
			"failed to transfer one message from queue\n");
1325
		goto out;
1326
	}
1327 1328

out:
1329
	mutex_unlock(&ctlr->io_mutex);
1330 1331

	/* Prod the scheduler in case transfer_one() was busy waiting */
1332 1333
	if (!ret)
		cond_resched();
1334 1335
}

1336 1337
/**
 * spi_pump_messages - kthread work function which processes spi message queue
1338
 * @work: pointer to kthread work struct contained in the controller struct
1339 1340 1341
 */
static void spi_pump_messages(struct kthread_work *work)
{
1342 1343
	struct spi_controller *ctlr =
		container_of(work, struct spi_controller, pump_messages);
1344

1345
	__spi_pump_messages(ctlr, true);
1346 1347
}

1348
static int spi_init_queue(struct spi_controller *ctlr)
1349 1350 1351
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

1352 1353
	ctlr->running = false;
	ctlr->busy = false;
1354

1355 1356 1357 1358 1359 1360
	kthread_init_worker(&ctlr->kworker);
	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
					 "%s", dev_name(&ctlr->dev));
	if (IS_ERR(ctlr->kworker_task)) {
		dev_err(&ctlr->dev, "failed to create message pump task\n");
		return PTR_ERR(ctlr->kworker_task);
1361
	}
1362
	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1363 1364

	/*
1365
	 * Controller config will indicate if this controller should run the
1366 1367 1368 1369 1370
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
1371 1372
	if (ctlr->rt) {
		dev_info(&ctlr->dev,
1373
			"will run message pump with realtime priority\n");
1374
		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1375 1376 1377 1378 1379 1380 1381 1382
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
1383
 * @ctlr: the controller to check for queued messages
1384 1385 1386
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
1387 1388
 *
 * Return: the next message in the queue, else NULL if the queue is empty.
1389
 */
1390
struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1391 1392 1393 1394 1395
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
1396 1397
	spin_lock_irqsave(&ctlr->queue_lock, flags);
	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1398
					queue);
1399
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1400 1401 1402 1403 1404 1405 1406

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
1407
 * @ctlr: the controller to return the message to
1408 1409 1410 1411
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
1412
void spi_finalize_current_message(struct spi_controller *ctlr)
1413 1414 1415
{
	struct spi_message *mesg;
	unsigned long flags;
1416
	int ret;
1417

1418 1419 1420
	spin_lock_irqsave(&ctlr->queue_lock, flags);
	mesg = ctlr->cur_msg;
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1421

1422
	spi_unmap_msg(ctlr, mesg);
1423

1424 1425
	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
		ret = ctlr->unprepare_message(ctlr, mesg);
1426
		if (ret) {
1427 1428
			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
				ret);
1429 1430
		}
	}
1431

1432 1433 1434 1435 1436
	spin_lock_irqsave(&ctlr->queue_lock, flags);
	ctlr->cur_msg = NULL;
	ctlr->cur_msg_prepared = false;
	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1437 1438

	trace_spi_message_done(mesg);
1439

1440 1441 1442 1443 1444 1445
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

1446
static int spi_start_queue(struct spi_controller *ctlr)
1447 1448 1449
{
	unsigned long flags;

1450
	spin_lock_irqsave(&ctlr->queue_lock, flags);
1451

1452 1453
	if (ctlr->running || ctlr->busy) {
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1454 1455 1456
		return -EBUSY;
	}

1457 1458 1459
	ctlr->running = true;
	ctlr->cur_msg = NULL;
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1460

1461
	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1462 1463 1464 1465

	return 0;
}

1466
static int spi_stop_queue(struct spi_controller *ctlr)
1467 1468 1469 1470 1471
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

1472
	spin_lock_irqsave(&ctlr->queue_lock, flags);
1473 1474 1475

	/*
	 * This is a bit lame, but is optimized for the common execution path.
1476
	 * A wait_queue on the ctlr->busy could be used, but then the common
1477 1478 1479
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
1480 1481
	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1482
		usleep_range(10000, 11000);
1483
		spin_lock_irqsave(&ctlr->queue_lock, flags);
1484 1485
	}

1486
	if (!list_empty(&ctlr->queue) || ctlr->busy)
1487 1488
		ret = -EBUSY;
	else
1489
		ctlr->running = false;
1490

1491
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492 1493

	if (ret) {
1494
		dev_warn(&ctlr->dev, "could not stop message queue\n");
1495 1496 1497 1498 1499
		return ret;
	}
	return ret;
}

1500
static int spi_destroy_queue(struct spi_controller *ctlr)
1501 1502 1503
{
	int ret;

1504
	ret = spi_stop_queue(ctlr);
1505 1506

	/*
P
Petr Mladek 已提交
1507
	 * kthread_flush_worker will block until all work is done.
1508 1509 1510 1511 1512
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
1513
		dev_err(&ctlr->dev, "problem destroying queue\n");
1514 1515 1516
		return ret;
	}

1517 1518
	kthread_flush_worker(&ctlr->kworker);
	kthread_stop(ctlr->kworker_task);
1519 1520 1521 1522

	return 0;
}

1523 1524 1525
static int __spi_queued_transfer(struct spi_device *spi,
				 struct spi_message *msg,
				 bool need_pump)
1526
{
1527
	struct spi_controller *ctlr = spi->controller;
1528 1529
	unsigned long flags;

1530
	spin_lock_irqsave(&ctlr->queue_lock, flags);
1531

1532 1533
	if (!ctlr->running) {
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1534 1535 1536 1537 1538
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

1539 1540 1541
	list_add_tail(&msg->queue, &ctlr->queue);
	if (!ctlr->busy && need_pump)
		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1542

1543
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1544 1545 1546
	return 0;
}

1547 1548 1549 1550
/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
1551 1552
 *
 * Return: zero on success, else a negative error code.
1553 1554 1555 1556 1557 1558
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	return __spi_queued_transfer(spi, msg, true);
}

1559
static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1560 1561 1562
{
	int ret;

1563 1564 1565
	ctlr->transfer = spi_queued_transfer;
	if (!ctlr->transfer_one_message)
		ctlr->transfer_one_message = spi_transfer_one_message;
1566 1567

	/* Initialize and start queue */
1568
	ret = spi_init_queue(ctlr);
1569
	if (ret) {
1570
		dev_err(&ctlr->dev, "problem initializing queue\n");
1571 1572
		goto err_init_queue;
	}
1573 1574
	ctlr->queued = true;
	ret = spi_start_queue(ctlr);
1575
	if (ret) {
1576
		dev_err(&ctlr->dev, "problem starting queue\n");
1577 1578 1579 1580 1581 1582
		goto err_start_queue;
	}

	return 0;

err_start_queue:
1583
	spi_destroy_queue(ctlr);
1584
err_init_queue:
1585 1586 1587
	return ret;
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
/**
 * spi_flush_queue - Send all pending messages in the queue from the callers'
 *		     context
 * @ctlr: controller to process queue for
 *
 * This should be used when one wants to ensure all pending messages have been
 * sent before doing something. Is used by the spi-mem code to make sure SPI
 * memory operations do not preempt regular SPI transfers that have been queued
 * before the spi-mem operation.
 */
void spi_flush_queue(struct spi_controller *ctlr)
{
	if (ctlr->transfer == spi_queued_transfer)
		__spi_pump_messages(ctlr, false);
}

1604 1605
/*-------------------------------------------------------------------------*/

1606
#if defined(CONFIG_OF)
1607
static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1608
			   struct device_node *nc)
1609 1610
{
	u32 value;
1611
	int rc;
1612 1613

	/* Mode (clock phase/polarity/etc.) */
1614
	if (of_property_read_bool(nc, "spi-cpha"))
1615
		spi->mode |= SPI_CPHA;
1616
	if (of_property_read_bool(nc, "spi-cpol"))
1617
		spi->mode |= SPI_CPOL;
1618
	if (of_property_read_bool(nc, "spi-cs-high"))
1619
		spi->mode |= SPI_CS_HIGH;
1620
	if (of_property_read_bool(nc, "spi-3wire"))
1621
		spi->mode |= SPI_3WIRE;
1622
	if (of_property_read_bool(nc, "spi-lsb-first"))
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		spi->mode |= SPI_LSB_FIRST;

	/* Device DUAL/QUAD mode */
	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_TX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_TX_QUAD;
			break;
1636 1637 1638
		case 8:
			spi->mode |= SPI_TX_OCTAL;
			break;
1639
		default:
1640
			dev_warn(&ctlr->dev,
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
				"spi-tx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_RX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_RX_QUAD;
			break;
1657 1658 1659
		case 8:
			spi->mode |= SPI_RX_OCTAL;
			break;
1660
		default:
1661
			dev_warn(&ctlr->dev,
1662 1663 1664 1665 1666 1667
				"spi-rx-bus-width %d not supported\n",
				value);
			break;
		}
	}

1668
	if (spi_controller_is_slave(ctlr)) {
1669
		if (!of_node_name_eq(nc, "slave")) {
1670 1671
			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
				nc);
1672 1673 1674 1675 1676 1677 1678 1679
			return -EINVAL;
		}
		return 0;
	}

	/* Device address */
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
1680 1681
		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
			nc, rc);
1682 1683 1684 1685
		return rc;
	}
	spi->chip_select = value;

1686 1687 1688
	/* Device speed */
	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
	if (rc) {
1689
		dev_err(&ctlr->dev,
1690
			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1691
		return rc;
1692 1693 1694
	}
	spi->max_speed_hz = value;

1695 1696 1697 1698
	return 0;
}

static struct spi_device *
1699
of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1700 1701 1702 1703 1704
{
	struct spi_device *spi;
	int rc;

	/* Alloc an spi_device */
1705
	spi = spi_alloc_device(ctlr);
1706
	if (!spi) {
1707
		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1708 1709 1710 1711 1712 1713 1714 1715
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver */
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
1716
		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1717 1718 1719
		goto err_out;
	}

1720
	rc = of_spi_parse_dt(ctlr, spi, nc);
1721 1722 1723
	if (rc)
		goto err_out;

1724 1725 1726 1727 1728 1729 1730
	/* Store a pointer to the node in the device structure */
	of_node_get(nc);
	spi->dev.of_node = nc;

	/* Register the new device */
	rc = spi_add_device(spi);
	if (rc) {
1731
		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
J
Johan Hovold 已提交
1732
		goto err_of_node_put;
1733 1734 1735 1736
	}

	return spi;

J
Johan Hovold 已提交
1737 1738
err_of_node_put:
	of_node_put(nc);
1739 1740 1741 1742 1743
err_out:
	spi_dev_put(spi);
	return ERR_PTR(rc);
}

1744 1745
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
1746
 * @ctlr:	Pointer to spi_controller device
1747
 *
1748 1749
 * Registers an spi_device for each child node of controller node which
 * represents a valid SPI slave.
1750
 */
1751
static void of_register_spi_devices(struct spi_controller *ctlr)
1752 1753 1754 1755
{
	struct spi_device *spi;
	struct device_node *nc;

1756
	if (!ctlr->dev.of_node)
1757 1758
		return;

1759
	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1760 1761
		if (of_node_test_and_set_flag(nc, OF_POPULATED))
			continue;
1762
		spi = of_register_spi_device(ctlr, nc);
1763
		if (IS_ERR(spi)) {
1764
			dev_warn(&ctlr->dev,
1765
				 "Failed to create SPI device for %pOF\n", nc);
1766 1767
			of_node_clear_flag(nc, OF_POPULATED);
		}
1768 1769 1770
	}
}
#else
1771
static void of_register_spi_devices(struct spi_controller *ctlr) { }
1772 1773
#endif

1774
#ifdef CONFIG_ACPI
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
static void acpi_spi_parse_apple_properties(struct spi_device *spi)
{
	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
	const union acpi_object *obj;

	if (!x86_apple_machine)
		return;

	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
	    && obj->buffer.length >= 4)
		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;

	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
	    && obj->buffer.length == 8)
		spi->bits_per_word = *(u64 *)obj->buffer.pointer;

	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
		spi->mode |= SPI_LSB_FIRST;

	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
		spi->mode |= SPI_CPOL;

	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
		spi->mode |= SPI_CPHA;
}

1804 1805 1806
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;
1807
	struct spi_controller *ctlr = spi->controller;
1808 1809 1810 1811 1812 1813

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1814 1815 1816 1817 1818 1819 1820
			/*
			 * ACPI DeviceSelection numbering is handled by the
			 * host controller driver in Windows and can vary
			 * from driver to driver. In Linux we always expect
			 * 0 .. max - 1 so we need to ask the driver to
			 * translate between the two schemes.
			 */
1821 1822
			if (ctlr->fw_translate_cs) {
				int cs = ctlr->fw_translate_cs(ctlr,
1823 1824 1825 1826 1827 1828 1829 1830
						sb->device_selection);
				if (cs < 0)
					return cs;
				spi->chip_select = cs;
			} else {
				spi->chip_select = sb->device_selection;
			}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

1851
static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1852
					    struct acpi_device *adev)
1853 1854 1855 1856 1857
{
	struct list_head resource_list;
	struct spi_device *spi;
	int ret;

1858 1859
	if (acpi_bus_get_status(adev) || !adev->status.present ||
	    acpi_device_enumerated(adev))
1860 1861
		return AE_OK;

1862
	spi = spi_alloc_device(ctlr);
1863
	if (!spi) {
1864
		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1865 1866 1867 1868
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1869
	ACPI_COMPANION_SET(&spi->dev, adev);
1870 1871 1872 1873 1874 1875 1876
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

1877 1878
	acpi_spi_parse_apple_properties(spi);

1879 1880 1881 1882 1883
	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1884 1885 1886
	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
			  sizeof(spi->modalias));

1887 1888 1889
	if (spi->irq < 0)
		spi->irq = acpi_dev_gpio_irq_get(adev, 0);

1890 1891
	acpi_device_set_enumerated(adev);

1892
	adev->power.flags.ignore_parent = true;
1893
	if (spi_add_device(spi)) {
1894
		adev->power.flags.ignore_parent = false;
1895
		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1896 1897 1898 1899 1900 1901 1902
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

1903 1904 1905
static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
1906
	struct spi_controller *ctlr = data;
1907 1908 1909 1910 1911
	struct acpi_device *adev;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;

1912
	return acpi_register_spi_device(ctlr, adev);
1913 1914
}

1915
static void acpi_register_spi_devices(struct spi_controller *ctlr)
1916 1917 1918 1919
{
	acpi_status status;
	acpi_handle handle;

1920
	handle = ACPI_HANDLE(ctlr->dev.parent);
1921 1922 1923 1924
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1925
				     acpi_spi_add_device, NULL, ctlr, NULL);
1926
	if (ACPI_FAILURE(status))
1927
		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1928 1929
}
#else
1930
static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1931 1932
#endif /* CONFIG_ACPI */

1933
static void spi_controller_release(struct device *dev)
1934
{
1935
	struct spi_controller *ctlr;
1936

1937 1938
	ctlr = container_of(dev, struct spi_controller, dev);
	kfree(ctlr);
1939 1940 1941 1942 1943
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
1944
	.dev_release	= spi_controller_release,
1945
	.dev_groups	= spi_master_groups,
1946 1947
};

1948 1949 1950 1951 1952 1953 1954 1955
#ifdef CONFIG_SPI_SLAVE
/**
 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
 *		     controller
 * @spi: device used for the current transfer
 */
int spi_slave_abort(struct spi_device *spi)
{
1956
	struct spi_controller *ctlr = spi->controller;
1957

1958 1959
	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
		return ctlr->slave_abort(ctlr);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

	return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(spi_slave_abort);

static int match_true(struct device *dev, void *data)
{
	return 1;
}

static ssize_t spi_slave_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
1973 1974
	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
						   dev);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	struct device *child;

	child = device_find_child(&ctlr->dev, NULL, match_true);
	return sprintf(buf, "%s\n",
		       child ? to_spi_device(child)->modalias : NULL);
}

static ssize_t spi_slave_store(struct device *dev,
			       struct device_attribute *attr, const char *buf,
			       size_t count)
{
1986 1987
	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
						   dev);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	struct spi_device *spi;
	struct device *child;
	char name[32];
	int rc;

	rc = sscanf(buf, "%31s", name);
	if (rc != 1 || !name[0])
		return -EINVAL;

	child = device_find_child(&ctlr->dev, NULL, match_true);
	if (child) {
		/* Remove registered slave */
		device_unregister(child);
		put_device(child);
	}

	if (strcmp(name, "(null)")) {
		/* Register new slave */
		spi = spi_alloc_device(ctlr);
		if (!spi)
			return -ENOMEM;

		strlcpy(spi->modalias, name, sizeof(spi->modalias));

		rc = spi_add_device(spi);
		if (rc) {
			spi_dev_put(spi);
			return rc;
		}
	}

	return count;
}

static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);

static struct attribute *spi_slave_attrs[] = {
	&dev_attr_slave.attr,
	NULL,
};

static const struct attribute_group spi_slave_group = {
	.attrs = spi_slave_attrs,
};

static const struct attribute_group *spi_slave_groups[] = {
2034
	&spi_controller_statistics_group,
2035 2036 2037 2038 2039 2040 2041
	&spi_slave_group,
	NULL,
};

static struct class spi_slave_class = {
	.name		= "spi_slave",
	.owner		= THIS_MODULE,
2042
	.dev_release	= spi_controller_release,
2043 2044 2045 2046 2047
	.dev_groups	= spi_slave_groups,
};
#else
extern struct class spi_slave_class;	/* dummy */
#endif
2048 2049

/**
2050
 * __spi_alloc_controller - allocate an SPI master or slave controller
2051
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
2052
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
2053
 *	memory is in the driver_data field of the returned device,
2054
 *	accessible with spi_controller_get_devdata().
2055 2056
 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
 *	slave (true) controller
D
David Brownell 已提交
2057
 * Context: can sleep
2058
 *
2059
 * This call is used only by SPI controller drivers, which are the
2060
 * only ones directly touching chip registers.  It's how they allocate
2061
 * an spi_controller structure, prior to calling spi_register_controller().
2062
 *
2063
 * This must be called from context that can sleep.
2064
 *
2065
 * The caller is responsible for assigning the bus number and initializing the
2066 2067 2068
 * controller's methods before calling spi_register_controller(); and (after
 * errors adding the device) calling spi_controller_put() to prevent a memory
 * leak.
2069
 *
2070
 * Return: the SPI controller structure on success, else NULL.
2071
 */
2072 2073
struct spi_controller *__spi_alloc_controller(struct device *dev,
					      unsigned int size, bool slave)
2074
{
2075
	struct spi_controller	*ctlr;
2076

D
David Brownell 已提交
2077 2078 2079
	if (!dev)
		return NULL;

2080 2081
	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
	if (!ctlr)
2082 2083
		return NULL;

2084 2085 2086 2087
	device_initialize(&ctlr->dev);
	ctlr->bus_num = -1;
	ctlr->num_chipselect = 1;
	ctlr->slave = slave;
2088
	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2089
		ctlr->dev.class = &spi_slave_class;
2090
	else
2091 2092 2093 2094
		ctlr->dev.class = &spi_master_class;
	ctlr->dev.parent = dev;
	pm_suspend_ignore_children(&ctlr->dev, true);
	spi_controller_set_devdata(ctlr, &ctlr[1]);
2095

2096
	return ctlr;
2097
}
2098
EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2099

2100
#ifdef CONFIG_OF
2101
static int of_spi_register_master(struct spi_controller *ctlr)
2102
{
2103
	int nb, i, *cs;
2104
	struct device_node *np = ctlr->dev.of_node;
2105 2106 2107 2108 2109

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
2110
	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2111

2112 2113
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
2114
		return 0;
2115 2116
	else if (nb < 0)
		return nb;
2117

2118
	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2119
			  GFP_KERNEL);
2120
	ctlr->cs_gpios = cs;
2121

2122
	if (!ctlr->cs_gpios)
2123 2124
		return -ENOMEM;

2125
	for (i = 0; i < ctlr->num_chipselect; i++)
2126
		cs[i] = -ENOENT;
2127 2128 2129 2130 2131 2132 2133

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
2134
static int of_spi_register_master(struct spi_controller *ctlr)
2135 2136 2137 2138 2139
{
	return 0;
}
#endif

2140 2141 2142
static int spi_controller_check_ops(struct spi_controller *ctlr)
{
	/*
2143 2144 2145 2146 2147
	 * The controller may implement only the high-level SPI-memory like
	 * operations if it does not support regular SPI transfers, and this is
	 * valid use case.
	 * If ->mem_ops is NULL, we request that at least one of the
	 * ->transfer_xxx() method be implemented.
2148
	 */
2149 2150 2151 2152 2153
	if (ctlr->mem_ops) {
		if (!ctlr->mem_ops->exec_op)
			return -EINVAL;
	} else if (!ctlr->transfer && !ctlr->transfer_one &&
		   !ctlr->transfer_one_message) {
2154
		return -EINVAL;
2155
	}
2156 2157 2158 2159

	return 0;
}

2160
/**
2161 2162 2163
 * spi_register_controller - register SPI master or slave controller
 * @ctlr: initialized master, originally from spi_alloc_master() or
 *	spi_alloc_slave()
D
David Brownell 已提交
2164
 * Context: can sleep
2165
 *
2166
 * SPI controllers connect to their drivers using some non-SPI bus,
2167
 * such as the platform bus.  The final stage of probe() in that code
2168
 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2169 2170 2171 2172 2173 2174 2175 2176
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
2177
 * success, else a negative error code (dropping the controller's refcount).
D
David Brownell 已提交
2178
 * After a successful return, the caller is responsible for calling
2179
 * spi_unregister_controller().
2180 2181
 *
 * Return: zero on success, else a negative error code.
2182
 */
2183
int spi_register_controller(struct spi_controller *ctlr)
2184
{
2185
	struct device		*dev = ctlr->dev.parent;
2186
	struct boardinfo	*bi;
2187
	int			status = -ENODEV;
2188
	int			id, first_dynamic;
2189

D
David Brownell 已提交
2190 2191 2192
	if (!dev)
		return -ENODEV;

2193 2194 2195 2196 2197 2198 2199 2200
	/*
	 * Make sure all necessary hooks are implemented before registering
	 * the SPI controller.
	 */
	status = spi_controller_check_ops(ctlr);
	if (status)
		return status;

2201 2202
	if (!spi_controller_is_slave(ctlr)) {
		status = of_spi_register_master(ctlr);
2203 2204 2205
		if (status)
			return status;
	}
2206

2207 2208 2209
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
2210
	if (ctlr->num_chipselect == 0)
2211
		return -EINVAL;
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	if (ctlr->bus_num >= 0) {
		/* devices with a fixed bus num must check-in with the num */
		mutex_lock(&board_lock);
		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
			ctlr->bus_num + 1, GFP_KERNEL);
		mutex_unlock(&board_lock);
		if (WARN(id < 0, "couldn't get idr"))
			return id == -ENOSPC ? -EBUSY : id;
		ctlr->bus_num = id;
	} else if (ctlr->dev.of_node) {
		/* allocate dynamic bus number using Linux idr */
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
		id = of_alias_get_id(ctlr->dev.of_node, "spi");
		if (id >= 0) {
			ctlr->bus_num = id;
			mutex_lock(&board_lock);
			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
				       ctlr->bus_num + 1, GFP_KERNEL);
			mutex_unlock(&board_lock);
			if (WARN(id < 0, "couldn't get idr"))
				return id == -ENOSPC ? -EBUSY : id;
		}
	}
2234
	if (ctlr->bus_num < 0) {
2235 2236 2237 2238 2239 2240
		first_dynamic = of_alias_get_highest_id("spi");
		if (first_dynamic < 0)
			first_dynamic = 0;
		else
			first_dynamic++;

S
Suniel Mahesh 已提交
2241
		mutex_lock(&board_lock);
2242 2243
		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
			       0, GFP_KERNEL);
S
Suniel Mahesh 已提交
2244 2245 2246 2247
		mutex_unlock(&board_lock);
		if (WARN(id < 0, "couldn't get idr"))
			return id;
		ctlr->bus_num = id;
2248
	}
2249 2250 2251 2252 2253 2254 2255 2256 2257
	INIT_LIST_HEAD(&ctlr->queue);
	spin_lock_init(&ctlr->queue_lock);
	spin_lock_init(&ctlr->bus_lock_spinlock);
	mutex_init(&ctlr->bus_lock_mutex);
	mutex_init(&ctlr->io_mutex);
	ctlr->bus_lock_flag = 0;
	init_completion(&ctlr->xfer_completion);
	if (!ctlr->max_dma_len)
		ctlr->max_dma_len = INT_MAX;
2258

2259 2260 2261
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
2262 2263
	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
	status = device_add(&ctlr->dev);
2264 2265 2266 2267 2268
	if (status < 0) {
		/* free bus id */
		mutex_lock(&board_lock);
		idr_remove(&spi_master_idr, ctlr->bus_num);
		mutex_unlock(&board_lock);
2269
		goto done;
2270 2271
	}
	dev_dbg(dev, "registered %s %s\n",
2272
			spi_controller_is_slave(ctlr) ? "slave" : "master",
2273
			dev_name(&ctlr->dev));
2274

2275 2276 2277 2278 2279 2280
	/*
	 * If we're using a queued driver, start the queue. Note that we don't
	 * need the queueing logic if the driver is only supporting high-level
	 * memory operations.
	 */
	if (ctlr->transfer) {
2281
		dev_info(dev, "controller is unqueued, this is deprecated\n");
2282
	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2283
		status = spi_controller_initialize_queue(ctlr);
2284
		if (status) {
2285
			device_del(&ctlr->dev);
2286 2287 2288 2289
			/* free bus id */
			mutex_lock(&board_lock);
			idr_remove(&spi_master_idr, ctlr->bus_num);
			mutex_unlock(&board_lock);
2290 2291 2292
			goto done;
		}
	}
2293
	/* add statistics */
2294
	spin_lock_init(&ctlr->statistics.lock);
2295

2296
	mutex_lock(&board_lock);
2297
	list_add_tail(&ctlr->list, &spi_controller_list);
2298
	list_for_each_entry(bi, &board_list, list)
2299
		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2300 2301
	mutex_unlock(&board_lock);

2302
	/* Register devices from the device tree and ACPI */
2303 2304
	of_register_spi_devices(ctlr);
	acpi_register_spi_devices(ctlr);
2305 2306 2307
done:
	return status;
}
2308
EXPORT_SYMBOL_GPL(spi_register_controller);
2309

2310 2311
static void devm_spi_unregister(struct device *dev, void *res)
{
2312
	spi_unregister_controller(*(struct spi_controller **)res);
2313 2314 2315
}

/**
2316 2317 2318 2319 2320
 * devm_spi_register_controller - register managed SPI master or slave
 *	controller
 * @dev:    device managing SPI controller
 * @ctlr: initialized controller, originally from spi_alloc_master() or
 *	spi_alloc_slave()
2321 2322
 * Context: can sleep
 *
2323
 * Register a SPI device as with spi_register_controller() which will
2324
 * automatically be unregistered and freed.
2325 2326
 *
 * Return: zero on success, else a negative error code.
2327
 */
2328 2329
int devm_spi_register_controller(struct device *dev,
				 struct spi_controller *ctlr)
2330
{
2331
	struct spi_controller **ptr;
2332 2333 2334 2335 2336 2337
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

2338
	ret = spi_register_controller(ctlr);
2339
	if (!ret) {
2340
		*ptr = ctlr;
2341 2342 2343 2344 2345 2346 2347
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
2348
EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2349

2350
static int __unregister(struct device *dev, void *null)
2351
{
2352
	spi_unregister_device(to_spi_device(dev));
2353 2354 2355 2356
	return 0;
}

/**
2357 2358
 * spi_unregister_controller - unregister SPI master or slave controller
 * @ctlr: the controller being unregistered
D
David Brownell 已提交
2359
 * Context: can sleep
2360
 *
2361
 * This call is used only by SPI controller drivers, which are the
2362 2363 2364
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
2365 2366
 *
 * Note that this function also drops a reference to the controller.
2367
 */
2368
void spi_unregister_controller(struct spi_controller *ctlr)
2369
{
2370
	struct spi_controller *found;
2371
	int id = ctlr->bus_num;
2372 2373
	int dummy;

2374 2375
	/* First make sure that this controller was ever added */
	mutex_lock(&board_lock);
2376
	found = idr_find(&spi_master_idr, id);
2377
	mutex_unlock(&board_lock);
2378 2379 2380
	if (ctlr->queued) {
		if (spi_destroy_queue(ctlr))
			dev_err(&ctlr->dev, "queue remove failed\n");
2381
	}
2382
	mutex_lock(&board_lock);
2383
	list_del(&ctlr->list);
2384 2385
	mutex_unlock(&board_lock);

2386 2387
	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
	device_unregister(&ctlr->dev);
2388 2389
	/* free bus id */
	mutex_lock(&board_lock);
2390 2391
	if (found == ctlr)
		idr_remove(&spi_master_idr, id);
2392
	mutex_unlock(&board_lock);
2393
}
2394
EXPORT_SYMBOL_GPL(spi_unregister_controller);
2395

2396
int spi_controller_suspend(struct spi_controller *ctlr)
2397 2398 2399
{
	int ret;

2400 2401
	/* Basically no-ops for non-queued controllers */
	if (!ctlr->queued)
2402 2403
		return 0;

2404
	ret = spi_stop_queue(ctlr);
2405
	if (ret)
2406
		dev_err(&ctlr->dev, "queue stop failed\n");
2407 2408 2409

	return ret;
}
2410
EXPORT_SYMBOL_GPL(spi_controller_suspend);
2411

2412
int spi_controller_resume(struct spi_controller *ctlr)
2413 2414 2415
{
	int ret;

2416
	if (!ctlr->queued)
2417 2418
		return 0;

2419
	ret = spi_start_queue(ctlr);
2420
	if (ret)
2421
		dev_err(&ctlr->dev, "queue restart failed\n");
2422 2423 2424

	return ret;
}
2425
EXPORT_SYMBOL_GPL(spi_controller_resume);
2426

2427
static int __spi_controller_match(struct device *dev, const void *data)
D
Dave Young 已提交
2428
{
2429
	struct spi_controller *ctlr;
2430
	const u16 *bus_num = data;
D
Dave Young 已提交
2431

2432 2433
	ctlr = container_of(dev, struct spi_controller, dev);
	return ctlr->bus_num == *bus_num;
D
Dave Young 已提交
2434 2435
}

2436 2437 2438
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
2439
 * Context: can sleep
2440 2441 2442
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
2443
 * spi_controller (which the caller must release), or NULL if there is
2444
 * no such master registered.
2445 2446
 *
 * Return: the SPI master structure on success, else NULL.
2447
 */
2448
struct spi_controller *spi_busnum_to_master(u16 bus_num)
2449
{
T
Tony Jones 已提交
2450
	struct device		*dev;
2451
	struct spi_controller	*ctlr = NULL;
D
Dave Young 已提交
2452

2453
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2454
				__spi_controller_match);
D
Dave Young 已提交
2455
	if (dev)
2456
		ctlr = container_of(dev, struct spi_controller, dev);
D
Dave Young 已提交
2457
	/* reference got in class_find_device */
2458
	return ctlr;
2459 2460 2461
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
/*-------------------------------------------------------------------------*/

/* Core methods for SPI resource management */

/**
 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 *                 during the processing of a spi_message while using
 *                 spi_transfer_one
 * @spi:     the spi device for which we allocate memory
 * @release: the release code to execute for this resource
 * @size:    size to alloc and return
 * @gfp:     GFP allocation flags
 *
 * Return: the pointer to the allocated data
 *
 * This may get enhanced in the future to allocate from a memory pool
2478
 * of the @spi_device or @spi_controller to avoid repeated allocations.
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
 */
void *spi_res_alloc(struct spi_device *spi,
		    spi_res_release_t release,
		    size_t size, gfp_t gfp)
{
	struct spi_res *sres;

	sres = kzalloc(sizeof(*sres) + size, gfp);
	if (!sres)
		return NULL;

	INIT_LIST_HEAD(&sres->entry);
	sres->release = release;

	return sres->data;
}
EXPORT_SYMBOL_GPL(spi_res_alloc);

/**
 * spi_res_free - free an spi resource
 * @res: pointer to the custom data of a resource
 *
 */
void spi_res_free(void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	if (!res)
		return;

	WARN_ON(!list_empty(&sres->entry));
	kfree(sres);
}
EXPORT_SYMBOL_GPL(spi_res_free);

/**
 * spi_res_add - add a spi_res to the spi_message
 * @message: the spi message
 * @res:     the spi_resource
 */
void spi_res_add(struct spi_message *message, void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	WARN_ON(!list_empty(&sres->entry));
	list_add_tail(&sres->entry, &message->resources);
}
EXPORT_SYMBOL_GPL(spi_res_add);

/**
 * spi_res_release - release all spi resources for this message
2530
 * @ctlr:  the @spi_controller
2531 2532
 * @message: the @spi_message
 */
2533
void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2534 2535 2536 2537 2538 2539 2540 2541
{
	struct spi_res *res;

	while (!list_empty(&message->resources)) {
		res = list_last_entry(&message->resources,
				      struct spi_res, entry);

		if (res->release)
2542
			res->release(ctlr, message, res->data);
2543 2544 2545 2546 2547 2548 2549

		list_del(&res->entry);

		kfree(res);
	}
}
EXPORT_SYMBOL_GPL(spi_res_release);
2550 2551 2552

/*-------------------------------------------------------------------------*/

2553 2554
/* Core methods for spi_message alterations */

2555
static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2556 2557 2558 2559 2560 2561 2562 2563
					    struct spi_message *msg,
					    void *res)
{
	struct spi_replaced_transfers *rxfer = res;
	size_t i;

	/* call extra callback if requested */
	if (rxfer->release)
2564
		rxfer->release(ctlr, msg, res);
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

	/* insert replaced transfers back into the message */
	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);

	/* remove the formerly inserted entries */
	for (i = 0; i < rxfer->inserted; i++)
		list_del(&rxfer->inserted_transfers[i].transfer_list);
}

/**
 * spi_replace_transfers - replace transfers with several transfers
 *                         and register change with spi_message.resources
 * @msg:           the spi_message we work upon
 * @xfer_first:    the first spi_transfer we want to replace
 * @remove:        number of transfers to remove
 * @insert:        the number of transfers we want to insert instead
 * @release:       extra release code necessary in some circumstances
 * @extradatasize: extra data to allocate (with alignment guarantees
 *                 of struct @spi_transfer)
2584
 * @gfp:           gfp flags
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
 *
 * Returns: pointer to @spi_replaced_transfers,
 *          PTR_ERR(...) in case of errors.
 */
struct spi_replaced_transfers *spi_replace_transfers(
	struct spi_message *msg,
	struct spi_transfer *xfer_first,
	size_t remove,
	size_t insert,
	spi_replaced_release_t release,
	size_t extradatasize,
	gfp_t gfp)
{
	struct spi_replaced_transfers *rxfer;
	struct spi_transfer *xfer;
	size_t i;

	/* allocate the structure using spi_res */
	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
			      insert * sizeof(struct spi_transfer)
			      + sizeof(struct spi_replaced_transfers)
			      + extradatasize,
			      gfp);
	if (!rxfer)
		return ERR_PTR(-ENOMEM);

	/* the release code to invoke before running the generic release */
	rxfer->release = release;

	/* assign extradata */
	if (extradatasize)
		rxfer->extradata =
			&rxfer->inserted_transfers[insert];

	/* init the replaced_transfers list */
	INIT_LIST_HEAD(&rxfer->replaced_transfers);

	/* assign the list_entry after which we should reinsert
	 * the @replaced_transfers - it may be spi_message.messages!
	 */
	rxfer->replaced_after = xfer_first->transfer_list.prev;

	/* remove the requested number of transfers */
	for (i = 0; i < remove; i++) {
		/* if the entry after replaced_after it is msg->transfers
		 * then we have been requested to remove more transfers
		 * than are in the list
		 */
		if (rxfer->replaced_after->next == &msg->transfers) {
			dev_err(&msg->spi->dev,
				"requested to remove more spi_transfers than are available\n");
			/* insert replaced transfers back into the message */
			list_splice(&rxfer->replaced_transfers,
				    rxfer->replaced_after);

			/* free the spi_replace_transfer structure */
			spi_res_free(rxfer);

			/* and return with an error */
			return ERR_PTR(-EINVAL);
		}

		/* remove the entry after replaced_after from list of
		 * transfers and add it to list of replaced_transfers
		 */
		list_move_tail(rxfer->replaced_after->next,
			       &rxfer->replaced_transfers);
	}

	/* create copy of the given xfer with identical settings
	 * based on the first transfer to get removed
	 */
	for (i = 0; i < insert; i++) {
		/* we need to run in reverse order */
		xfer = &rxfer->inserted_transfers[insert - 1 - i];

		/* copy all spi_transfer data */
		memcpy(xfer, xfer_first, sizeof(*xfer));

		/* add to list */
		list_add(&xfer->transfer_list, rxfer->replaced_after);

		/* clear cs_change and delay_usecs for all but the last */
		if (i) {
			xfer->cs_change = false;
			xfer->delay_usecs = 0;
		}
	}

	/* set up inserted */
	rxfer->inserted = insert;

	/* and register it with spi_res/spi_message */
	spi_res_add(msg, rxfer);

	return rxfer;
}
EXPORT_SYMBOL_GPL(spi_replace_transfers);

2684
static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2685 2686 2687 2688
					struct spi_message *msg,
					struct spi_transfer **xferp,
					size_t maxsize,
					gfp_t gfp)
2689 2690 2691 2692 2693 2694 2695 2696
{
	struct spi_transfer *xfer = *xferp, *xfers;
	struct spi_replaced_transfers *srt;
	size_t offset;
	size_t count, i;

	/* warn once about this fact that we are splitting a transfer */
	dev_warn_once(&msg->spi->dev,
2697
		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2698 2699 2700 2701 2702 2703 2704
		      xfer->len, maxsize);

	/* calculate how many we have to replace */
	count = DIV_ROUND_UP(xfer->len, maxsize);

	/* create replacement */
	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2705 2706
	if (IS_ERR(srt))
		return PTR_ERR(srt);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	xfers = srt->inserted_transfers;

	/* now handle each of those newly inserted spi_transfers
	 * note that the replacements spi_transfers all are preset
	 * to the same values as *xferp, so tx_buf, rx_buf and len
	 * are all identical (as well as most others)
	 * so we just have to fix up len and the pointers.
	 *
	 * this also includes support for the depreciated
	 * spi_message.is_dma_mapped interface
	 */

	/* the first transfer just needs the length modified, so we
	 * run it outside the loop
	 */
F
Fabio Estevam 已提交
2722
	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

	/* all the others need rx_buf/tx_buf also set */
	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
		/* update rx_buf, tx_buf and dma */
		if (xfers[i].rx_buf)
			xfers[i].rx_buf += offset;
		if (xfers[i].rx_dma)
			xfers[i].rx_dma += offset;
		if (xfers[i].tx_buf)
			xfers[i].tx_buf += offset;
		if (xfers[i].tx_dma)
			xfers[i].tx_dma += offset;

		/* update length */
		xfers[i].len = min(maxsize, xfers[i].len - offset);
	}

	/* we set up xferp to the last entry we have inserted,
	 * so that we skip those already split transfers
	 */
	*xferp = &xfers[count - 1];

	/* increment statistics counters */
2746
	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
				       transfers_split_maxsize);
	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
				       transfers_split_maxsize);

	return 0;
}

/**
 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
 *                              when an individual transfer exceeds a
 *                              certain size
2758
 * @ctlr:    the @spi_controller for this transfer
2759 2760
 * @msg:   the @spi_message to transform
 * @maxsize:  the maximum when to apply this
2761
 * @gfp: GFP allocation flags
2762 2763 2764
 *
 * Return: status of transformation
 */
2765
int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
				struct spi_message *msg,
				size_t maxsize,
				gfp_t gfp)
{
	struct spi_transfer *xfer;
	int ret;

	/* iterate over the transfer_list,
	 * but note that xfer is advanced to the last transfer inserted
	 * to avoid checking sizes again unnecessarily (also xfer does
	 * potentiall belong to a different list by the time the
	 * replacement has happened
	 */
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (xfer->len > maxsize) {
2781 2782
			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
							   maxsize, gfp);
2783 2784 2785 2786 2787 2788 2789 2790
			if (ret)
				return ret;
		}
	}

	return 0;
}
EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2791 2792 2793

/*-------------------------------------------------------------------------*/

2794
/* Core methods for SPI controller protocol drivers.  Some of the
2795 2796 2797
 * other core methods are currently defined as inline functions.
 */

2798 2799
static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
					u8 bits_per_word)
2800
{
2801
	if (ctlr->bits_per_word_mask) {
2802 2803 2804
		/* Only 32 bits fit in the mask */
		if (bits_per_word > 32)
			return -EINVAL;
2805
		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2806 2807 2808 2809 2810 2811
			return -EINVAL;
	}

	return 0;
}

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
2829 2830
 *
 * Return: zero on success, else a negative error code.
2831 2832 2833
 */
int spi_setup(struct spi_device *spi)
{
2834
	unsigned	bad_bits, ugly_bits;
2835
	int		status;
2836

W
wangyuhang 已提交
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2848 2849
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
W
wangyuhang 已提交
2850
		return -EINVAL;
2851
	/* help drivers fail *cleanly* when they need options
2852
	 * that aren't supported with their current controller
2853 2854
	 * SPI_CS_WORD has a fallback software implementation,
	 * so it is ignored here.
2855
	 */
2856
	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
2857
	ugly_bits = bad_bits &
2858 2859
		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
2860 2861 2862 2863 2864 2865 2866
	if (ugly_bits) {
		dev_warn(&spi->dev,
			 "setup: ignoring unsupported mode bits %x\n",
			 ugly_bits);
		spi->mode &= ~ugly_bits;
		bad_bits &= ~ugly_bits;
	}
2867
	if (bad_bits) {
2868
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2869 2870 2871 2872
			bad_bits);
		return -EINVAL;
	}

2873 2874 2875
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

2876 2877
	status = __spi_validate_bits_per_word(spi->controller,
					      spi->bits_per_word);
2878 2879
	if (status)
		return status;
2880

2881
	if (!spi->max_speed_hz)
2882
		spi->max_speed_hz = spi->controller->max_speed_hz;
2883

2884 2885
	if (spi->controller->setup)
		status = spi->controller->setup(spi);
2886

2887 2888
	spi_set_cs(spi, false);

J
Jingoo Han 已提交
2889
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

2902
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2903
{
2904
	struct spi_controller *ctlr = spi->controller;
2905
	struct spi_transfer *xfer;
2906
	int w_size;
2907

2908 2909 2910
	if (list_empty(&message->transfers))
		return -EINVAL;

2911
	/* If an SPI controller does not support toggling the CS line on each
2912 2913
	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
	 * for the CS line, we can emulate the CS-per-word hardware function by
2914 2915 2916
	 * splitting transfers into one-word transfers and ensuring that
	 * cs_change is set for each transfer.
	 */
2917 2918
	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
					  gpio_is_valid(spi->cs_gpio))) {
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
		size_t maxsize;
		int ret;

		maxsize = (spi->bits_per_word + 7) / 8;

		/* spi_split_transfers_maxsize() requires message->spi */
		message->spi = spi;

		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
						  GFP_KERNEL);
		if (ret)
			return ret;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			/* don't change cs_change on the last entry in the list */
			if (list_is_last(&xfer->transfer_list, &message->transfers))
				break;
			xfer->cs_change = 1;
		}
	}

2940 2941 2942 2943 2944
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
2945 2946 2947
	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
	    (spi->mode & SPI_3WIRE)) {
		unsigned flags = ctlr->flags;
2948 2949 2950 2951

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
2952
			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2953
				return -EINVAL;
2954
			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2955 2956 2957 2958
				return -EINVAL;
		}
	}

2959
	/**
2960 2961
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
2962 2963
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2964
	 */
2965
	message->frame_length = 0;
2966
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2967
		message->frame_length += xfer->len;
2968 2969
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
2970 2971

		if (!xfer->speed_hz)
2972
			xfer->speed_hz = spi->max_speed_hz;
2973
		if (!xfer->speed_hz)
2974
			xfer->speed_hz = ctlr->max_speed_hz;
2975

2976 2977
		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
			xfer->speed_hz = ctlr->max_speed_hz;
2978

2979
		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2980
			return -EINVAL;
2981

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		/* No partial transfers accepted */
2994
		if (xfer->len % w_size)
2995 2996
			return -EINVAL;

2997 2998
		if (xfer->speed_hz && ctlr->min_speed_hz &&
		    xfer->speed_hz < ctlr->min_speed_hz)
2999
			return -EINVAL;
W
wangyuhang 已提交
3000 3001 3002 3003 3004 3005

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
3006 3007
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
W
wangyuhang 已提交
3008
		 */
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
W
wangyuhang 已提交
3021
		/* check transfer rx_nbits */
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
3034 3035
	}

3036
	message->status = -EINPROGRESS;
3037 3038 3039 3040 3041 3042

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
3043
	struct spi_controller *ctlr = spi->controller;
3044

3045 3046 3047 3048 3049 3050 3051
	/*
	 * Some controllers do not support doing regular SPI transfers. Return
	 * ENOTSUPP when this is the case.
	 */
	if (!ctlr->transfer)
		return -ENOTSUPP;

3052 3053
	message->spi = spi;

3054
	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3055 3056
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);

3057 3058
	trace_spi_message_submit(message);

3059
	return ctlr->transfer(spi, message);
3060 3061
}

D
David Brownell 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
3090 3091
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
3092 3093 3094
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
3095
	struct spi_controller *ctlr = spi->controller;
3096 3097
	int ret;
	unsigned long flags;
D
David Brownell 已提交
3098

3099 3100 3101 3102
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

3103
	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
D
David Brownell 已提交
3104

3105
	if (ctlr->bus_lock_flag)
3106 3107 3108
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
3109

3110
	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3111 3112

	return ret;
D
David Brownell 已提交
3113 3114 3115
}
EXPORT_SYMBOL_GPL(spi_async);

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
3144 3145
 *
 * Return: zero on success, else a negative error code.
3146 3147 3148
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
3149
	struct spi_controller *ctlr = spi->controller;
3150 3151 3152
	int ret;
	unsigned long flags;

3153 3154 3155 3156
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

3157
	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3158 3159 3160

	ret = __spi_async(spi, message);

3161
	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3162 3163 3164 3165 3166 3167

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

3168 3169
/*-------------------------------------------------------------------------*/

3170
/* Utility methods for SPI protocol drivers, layered on
3171 3172 3173 3174
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

3175 3176 3177 3178 3179
static void spi_complete(void *arg)
{
	complete(arg);
}

M
Mark Brown 已提交
3180
static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3181 3182 3183
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
3184
	struct spi_controller *ctlr = spi->controller;
3185 3186 3187 3188 3189
	unsigned long flags;

	status = __spi_validate(spi, message);
	if (status != 0)
		return status;
3190 3191 3192

	message->complete = spi_complete;
	message->context = &done;
3193
	message->spi = spi;
3194

3195
	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3196 3197
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);

3198 3199 3200 3201 3202
	/* If we're not using the legacy transfer method then we will
	 * try to transfer in the calling context so special case.
	 * This code would be less tricky if we could remove the
	 * support for driver implemented message queues.
	 */
3203 3204
	if (ctlr->transfer == spi_queued_transfer) {
		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3205 3206 3207 3208 3209

		trace_spi_message_submit(message);

		status = __spi_queued_transfer(spi, message, false);

3210
		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3211 3212 3213
	} else {
		status = spi_async_locked(spi, message);
	}
3214 3215

	if (status == 0) {
3216 3217 3218
		/* Push out the messages in the calling context if we
		 * can.
		 */
3219 3220
		if (ctlr->transfer == spi_queued_transfer) {
			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3221 3222 3223
						       spi_sync_immediate);
			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
						       spi_sync_immediate);
3224
			__spi_pump_messages(ctlr, false);
3225
		}
3226

3227 3228 3229 3230 3231 3232 3233
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

3234 3235 3236 3237
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
3238
 * Context: can sleep
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
3250 3251 3252
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
3253
 * Return: zero on success, else a negative error code.
3254 3255 3256
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
M
Mark Brown 已提交
3257 3258
	int ret;

3259
	mutex_lock(&spi->controller->bus_lock_mutex);
M
Mark Brown 已提交
3260
	ret = __spi_sync(spi, message);
3261
	mutex_unlock(&spi->controller->bus_lock_mutex);
M
Mark Brown 已提交
3262 3263

	return ret;
3264 3265 3266
}
EXPORT_SYMBOL_GPL(spi_sync);

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
3278
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3279 3280
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
3281
 * Return: zero on success, else a negative error code.
3282 3283 3284
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
M
Mark Brown 已提交
3285
	return __spi_sync(spi, message);
3286 3287 3288 3289 3290
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3291
 * @ctlr: SPI bus master that should be locked for exclusive bus access
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
3302
 * Return: always zero.
3303
 */
3304
int spi_bus_lock(struct spi_controller *ctlr)
3305 3306 3307
{
	unsigned long flags;

3308
	mutex_lock(&ctlr->bus_lock_mutex);
3309

3310 3311 3312
	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
	ctlr->bus_lock_flag = 1;
	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3313 3314 3315 3316 3317 3318 3319 3320 3321

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3322
 * @ctlr: SPI bus master that was locked for exclusive bus access
3323 3324 3325 3326 3327 3328 3329 3330
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
3331
 * Return: always zero.
3332
 */
3333
int spi_bus_unlock(struct spi_controller *ctlr)
3334
{
3335
	ctlr->bus_lock_flag = 0;
3336

3337
	mutex_unlock(&ctlr->bus_lock_mutex);
3338 3339 3340 3341 3342

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

3343
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
3344
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3345 3346 3347 3348 3349 3350 3351 3352

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
3353 3354
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
3355
 * Context: can sleep
3356 3357 3358 3359
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
3360
 * This call may only be used from a context that may sleep.
3361
 *
D
David Brownell 已提交
3362
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
3363 3364
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
3365
 * spi_{async,sync}() calls with dma-safe buffers.
3366 3367
 *
 * Return: zero on success, else a negative error code.
3368 3369
 */
int spi_write_then_read(struct spi_device *spi,
3370 3371
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
3372
{
D
David Brownell 已提交
3373
	static DEFINE_MUTEX(lock);
3374 3375 3376

	int			status;
	struct spi_message	message;
3377
	struct spi_transfer	x[2];
3378 3379
	u8			*local_buf;

3380 3381 3382 3383
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
3384
	 */
3385
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3386 3387
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
3388 3389 3390 3391 3392
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
3393

3394
	spi_message_init(&message);
J
Jingoo Han 已提交
3395
	memset(x, 0, sizeof(x));
3396 3397 3398 3399 3400 3401 3402 3403
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
3404

3405
	memcpy(local_buf, txbuf, n_tx);
3406 3407
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
3408 3409 3410

	/* do the i/o */
	status = spi_sync(spi, &message);
3411
	if (status == 0)
3412
		memcpy(rxbuf, x[1].rx_buf, n_rx);
3413

3414
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
3415
		mutex_unlock(&lock);
3416 3417 3418 3419 3420 3421 3422 3423 3424
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

3425
#if IS_ENABLED(CONFIG_OF)
3426 3427 3428 3429 3430 3431
static int __spi_of_device_match(struct device *dev, void *data)
{
	return dev->of_node == data;
}

/* must call put_device() when done with returned spi_device device */
3432
struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3433 3434 3435 3436 3437
{
	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
						__spi_of_device_match);
	return dev ? to_spi_device(dev) : NULL;
}
3438 3439
EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
#endif /* IS_ENABLED(CONFIG_OF) */
3440

3441
#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3442
static int __spi_of_controller_match(struct device *dev, const void *data)
3443 3444 3445 3446
{
	return dev->of_node == data;
}

3447 3448
/* the spi controllers are not using spi_bus, so we find it with another way */
static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3449 3450 3451 3452
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, node,
3453
				__spi_of_controller_match);
3454 3455
	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
		dev = class_find_device(&spi_slave_class, NULL, node,
3456
					__spi_of_controller_match);
3457 3458 3459 3460
	if (!dev)
		return NULL;

	/* reference got in class_find_device */
3461
	return container_of(dev, struct spi_controller, dev);
3462 3463 3464 3465 3466 3467
}

static int of_spi_notify(struct notifier_block *nb, unsigned long action,
			 void *arg)
{
	struct of_reconfig_data *rd = arg;
3468
	struct spi_controller *ctlr;
3469 3470 3471 3472
	struct spi_device *spi;

	switch (of_reconfig_get_state_change(action, arg)) {
	case OF_RECONFIG_CHANGE_ADD:
3473 3474
		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
		if (ctlr == NULL)
3475 3476
			return NOTIFY_OK;	/* not for us */

3477
		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3478
			put_device(&ctlr->dev);
3479 3480 3481
			return NOTIFY_OK;
		}

3482 3483
		spi = of_register_spi_device(ctlr, rd->dn);
		put_device(&ctlr->dev);
3484 3485

		if (IS_ERR(spi)) {
3486 3487
			pr_err("%s: failed to create for '%pOF'\n",
					__func__, rd->dn);
3488
			of_node_clear_flag(rd->dn, OF_POPULATED);
3489 3490 3491 3492 3493
			return notifier_from_errno(PTR_ERR(spi));
		}
		break;

	case OF_RECONFIG_CHANGE_REMOVE:
3494 3495 3496 3497
		/* already depopulated? */
		if (!of_node_check_flag(rd->dn, OF_POPULATED))
			return NOTIFY_OK;

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
		/* find our device by node */
		spi = of_find_spi_device_by_node(rd->dn);
		if (spi == NULL)
			return NOTIFY_OK;	/* no? not meant for us */

		/* unregister takes one ref away */
		spi_unregister_device(spi);

		/* and put the reference of the find */
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_of_notifier = {
	.notifier_call = of_spi_notify,
};
#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
extern struct notifier_block spi_of_notifier;
#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */

3521
#if IS_ENABLED(CONFIG_ACPI)
3522
static int spi_acpi_controller_match(struct device *dev, const void *data)
3523 3524 3525 3526 3527 3528 3529 3530 3531
{
	return ACPI_COMPANION(dev->parent) == data;
}

static int spi_acpi_device_match(struct device *dev, void *data)
{
	return ACPI_COMPANION(dev) == data;
}

3532
static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3533 3534 3535 3536
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, adev,
3537
				spi_acpi_controller_match);
3538 3539
	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
		dev = class_find_device(&spi_slave_class, NULL, adev,
3540
					spi_acpi_controller_match);
3541 3542 3543
	if (!dev)
		return NULL;

3544
	return container_of(dev, struct spi_controller, dev);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
}

static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
{
	struct device *dev;

	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);

	return dev ? to_spi_device(dev) : NULL;
}

static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
			   void *arg)
{
	struct acpi_device *adev = arg;
3560
	struct spi_controller *ctlr;
3561 3562 3563 3564
	struct spi_device *spi;

	switch (value) {
	case ACPI_RECONFIG_DEVICE_ADD:
3565 3566
		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
		if (!ctlr)
3567 3568
			break;

3569 3570
		acpi_register_spi_device(ctlr, adev);
		put_device(&ctlr->dev);
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
		break;
	case ACPI_RECONFIG_DEVICE_REMOVE:
		if (!acpi_device_enumerated(adev))
			break;

		spi = acpi_spi_find_device_by_adev(adev);
		if (!spi)
			break;

		spi_unregister_device(spi);
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_acpi_notifier = {
	.notifier_call = acpi_spi_notify,
};
#else
extern struct notifier_block spi_acpi_notifier;
#endif

3595 3596
static int __init spi_init(void)
{
3597 3598
	int	status;

3599
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3600 3601 3602 3603 3604 3605 3606 3607
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
3608

3609 3610 3611
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
3612

3613 3614 3615 3616 3617 3618
	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
		status = class_register(&spi_slave_class);
		if (status < 0)
			goto err3;
	}

3619
	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3620
		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3621 3622
	if (IS_ENABLED(CONFIG_ACPI))
		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3623

3624
	return 0;
3625

3626 3627
err3:
	class_unregister(&spi_master_class);
3628 3629 3630 3631 3632 3633 3634
err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
3635
}
3636

3637 3638
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
3639 3640 3641 3642
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
3643
 */
3644
postcore_initcall(spi_init);
3645