zram_drv.c 33.7 KB
Newer Older
1
/*
2
 * Compressed RAM block device
3
 *
4
 * Copyright (C) 2008, 2009, 2010  Nitin Gupta
M
Minchan Kim 已提交
5
 *               2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13 14
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the licence that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 *
 */

15
#define KMSG_COMPONENT "zram"
16 17 18 19
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

#include <linux/module.h>
#include <linux/kernel.h>
20
#include <linux/bio.h>
21 22 23 24 25 26
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
27
#include <linux/slab.h>
28
#include <linux/backing-dev.h>
29 30
#include <linux/string.h>
#include <linux/vmalloc.h>
31
#include <linux/err.h>
32
#include <linux/idr.h>
33
#include <linux/sysfs.h>
34
#include <linux/cpuhotplug.h>
35

36
#include "zram_drv.h"
37

38
static DEFINE_IDR(zram_index_idr);
39 40 41
/* idr index must be protected */
static DEFINE_MUTEX(zram_index_mutex);

42
static int zram_major;
43
static const char *default_compressor = "lzo";
44 45

/* Module params (documentation at end) */
46
static unsigned int num_devices = 1;
47

48
static inline bool init_done(struct zram *zram)
49
{
50
	return zram->disksize;
51 52
}

53 54 55 56 57
static inline struct zram *dev_to_zram(struct device *dev)
{
	return (struct zram *)dev_to_disk(dev)->private_data;
}

58
/* flag operations require table entry bit_spin_lock() being held */
59 60
static int zram_test_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
61
{
62 63
	return meta->table[index].value & BIT(flag);
}
64

65 66 67 68 69
static void zram_set_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
{
	meta->table[index].value |= BIT(flag);
}
70

71 72 73 74 75
static void zram_clear_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
{
	meta->table[index].value &= ~BIT(flag);
}
76

77 78 79 80 81 82 83 84 85 86 87
static inline void zram_set_element(struct zram_meta *meta, u32 index,
			unsigned long element)
{
	meta->table[index].element = element;
}

static inline void zram_clear_element(struct zram_meta *meta, u32 index)
{
	meta->table[index].element = 0;
}

88 89 90
static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
{
	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
91 92
}

93 94
static void zram_set_obj_size(struct zram_meta *meta,
					u32 index, size_t size)
95
{
96
	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
97

98 99 100
	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
}

101
static inline bool is_partial_io(struct bio_vec *bvec)
102 103 104 105
{
	return bvec->bv_len != PAGE_SIZE;
}

106 107 108 109
static void zram_revalidate_disk(struct zram *zram)
{
	revalidate_disk(zram->disk);
	/* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
110
	zram->disk->queue->backing_dev_info->capabilities |=
111 112 113
		BDI_CAP_STABLE_WRITES;
}

114 115 116
/*
 * Check if request is within bounds and aligned on zram logical blocks.
 */
117
static inline bool valid_io_request(struct zram *zram,
118 119 120 121 122 123
		sector_t start, unsigned int size)
{
	u64 end, bound;

	/* unaligned request */
	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124
		return false;
125
	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126
		return false;
127 128 129 130 131

	end = start + (size >> SECTOR_SHIFT);
	bound = zram->disksize >> SECTOR_SHIFT;
	/* out of range range */
	if (unlikely(start >= bound || end > bound || start > end))
132
		return false;
133 134

	/* I/O request is valid */
135
	return true;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
}

static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
{
	if (*offset + bvec->bv_len >= PAGE_SIZE)
		(*index)++;
	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
}

static inline void update_used_max(struct zram *zram,
					const unsigned long pages)
{
	unsigned long old_max, cur_max;

	old_max = atomic_long_read(&zram->stats.max_used_pages);

	do {
		cur_max = old_max;
		if (pages > cur_max)
			old_max = atomic_long_cmpxchg(
				&zram->stats.max_used_pages, cur_max, pages);
	} while (old_max != cur_max);
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static inline void zram_fill_page(char *ptr, unsigned long len,
					unsigned long value)
{
	int i;
	unsigned long *page = (unsigned long *)ptr;

	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));

	if (likely(value == 0)) {
		memset(ptr, 0, len);
	} else {
		for (i = 0; i < len / sizeof(*page); i++)
			page[i] = value;
	}
}

static bool page_same_filled(void *ptr, unsigned long *element)
177 178 179 180 181 182
{
	unsigned int pos;
	unsigned long *page;

	page = (unsigned long *)ptr;

183 184
	for (pos = 0; pos < PAGE_SIZE / sizeof(*page) - 1; pos++) {
		if (page[pos] != page[pos + 1])
185
			return false;
186 187
	}

188 189
	*element = page[pos];

190
	return true;
191 192
}

193
static void handle_same_page(struct bio_vec *bvec, unsigned long element)
194 195 196 197 198
{
	struct page *page = bvec->bv_page;
	void *user_mem;

	user_mem = kmap_atomic(page);
199
	zram_fill_page(user_mem + bvec->bv_offset, bvec->bv_len, element);
200 201 202
	kunmap_atomic(user_mem);

	flush_dcache_page(page);
203 204 205 206 207
}

static ssize_t initstate_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
208
	u32 val;
209 210
	struct zram *zram = dev_to_zram(dev);

211 212 213
	down_read(&zram->init_lock);
	val = init_done(zram);
	up_read(&zram->init_lock);
214

215
	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
216 217
}

218 219 220 221 222 223 224 225
static ssize_t disksize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct zram *zram = dev_to_zram(dev);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
}

M
Minchan Kim 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static ssize_t mem_limit_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	u64 limit;
	char *tmp;
	struct zram *zram = dev_to_zram(dev);

	limit = memparse(buf, &tmp);
	if (buf == tmp) /* no chars parsed, invalid input */
		return -EINVAL;

	down_write(&zram->init_lock);
	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
	up_write(&zram->init_lock);

	return len;
}

M
Minchan Kim 已提交
244 245 246 247 248 249 250 251 252 253 254 255
static ssize_t mem_used_max_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	int err;
	unsigned long val;
	struct zram *zram = dev_to_zram(dev);

	err = kstrtoul(buf, 10, &val);
	if (err || val != 0)
		return -EINVAL;

	down_read(&zram->init_lock);
256 257
	if (init_done(zram)) {
		struct zram_meta *meta = zram->meta;
M
Minchan Kim 已提交
258 259
		atomic_long_set(&zram->stats.max_used_pages,
				zs_get_total_pages(meta->mem_pool));
260
	}
M
Minchan Kim 已提交
261 262 263 264 265
	up_read(&zram->init_lock);

	return len;
}

266 267 268 269 270 271 272 273 274
/*
 * We switched to per-cpu streams and this attr is not needed anymore.
 * However, we will keep it around for some time, because:
 * a) we may revert per-cpu streams in the future
 * b) it's visible to user space and we need to follow our 2 years
 *    retirement rule; but we already have a number of 'soon to be
 *    altered' attrs, so max_comp_streams need to wait for the next
 *    layoff cycle.
 */
275 276 277
static ssize_t max_comp_streams_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
278
	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
279 280
}

281 282 283
static ssize_t max_comp_streams_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
284
	return len;
285 286
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static ssize_t comp_algorithm_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	size_t sz;
	struct zram *zram = dev_to_zram(dev);

	down_read(&zram->init_lock);
	sz = zcomp_available_show(zram->compressor, buf);
	up_read(&zram->init_lock);

	return sz;
}

static ssize_t comp_algorithm_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	struct zram *zram = dev_to_zram(dev);
304
	char compressor[CRYPTO_MAX_ALG_NAME];
305 306
	size_t sz;

307 308 309 310 311 312 313
	strlcpy(compressor, buf, sizeof(compressor));
	/* ignore trailing newline */
	sz = strlen(compressor);
	if (sz > 0 && compressor[sz - 1] == '\n')
		compressor[sz - 1] = 0x00;

	if (!zcomp_available_algorithm(compressor))
314 315
		return -EINVAL;

316 317 318 319 320 321
	down_write(&zram->init_lock);
	if (init_done(zram)) {
		up_write(&zram->init_lock);
		pr_info("Can't change algorithm for initialized device\n");
		return -EBUSY;
	}
322

323
	strlcpy(zram->compressor, compressor, sizeof(compressor));
324 325 326 327
	up_write(&zram->init_lock);
	return len;
}

328 329
static ssize_t compact_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
330
{
331 332
	struct zram *zram = dev_to_zram(dev);
	struct zram_meta *meta;
333

334 335 336 337 338
	down_read(&zram->init_lock);
	if (!init_done(zram)) {
		up_read(&zram->init_lock);
		return -EINVAL;
	}
339

340
	meta = zram->meta;
341
	zs_compact(meta->mem_pool);
342
	up_read(&zram->init_lock);
343

344
	return len;
345 346
}

347 348
static ssize_t io_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
349
{
350 351
	struct zram *zram = dev_to_zram(dev);
	ssize_t ret;
352

353 354 355 356 357 358 359 360
	down_read(&zram->init_lock);
	ret = scnprintf(buf, PAGE_SIZE,
			"%8llu %8llu %8llu %8llu\n",
			(u64)atomic64_read(&zram->stats.failed_reads),
			(u64)atomic64_read(&zram->stats.failed_writes),
			(u64)atomic64_read(&zram->stats.invalid_io),
			(u64)atomic64_read(&zram->stats.notify_free));
	up_read(&zram->init_lock);
361

362
	return ret;
363 364
}

365 366
static ssize_t mm_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
367
{
368
	struct zram *zram = dev_to_zram(dev);
369
	struct zs_pool_stats pool_stats;
370 371 372
	u64 orig_size, mem_used = 0;
	long max_used;
	ssize_t ret;
373

374 375
	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));

376
	down_read(&zram->init_lock);
377
	if (init_done(zram)) {
378
		mem_used = zs_get_total_pages(zram->meta->mem_pool);
379 380
		zs_pool_stats(zram->meta->mem_pool, &pool_stats);
	}
381

382 383
	orig_size = atomic64_read(&zram->stats.pages_stored);
	max_used = atomic_long_read(&zram->stats.max_used_pages);
384

385
	ret = scnprintf(buf, PAGE_SIZE,
386
			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
387 388 389 390 391
			orig_size << PAGE_SHIFT,
			(u64)atomic64_read(&zram->stats.compr_data_size),
			mem_used << PAGE_SHIFT,
			zram->limit_pages << PAGE_SHIFT,
			max_used << PAGE_SHIFT,
392
			(u64)atomic64_read(&zram->stats.same_pages),
393
			pool_stats.pages_compacted);
394
	up_read(&zram->init_lock);
395

396 397 398
	return ret;
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static ssize_t debug_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int version = 1;
	struct zram *zram = dev_to_zram(dev);
	ssize_t ret;

	down_read(&zram->init_lock);
	ret = scnprintf(buf, PAGE_SIZE,
			"version: %d\n%8llu\n",
			version,
			(u64)atomic64_read(&zram->stats.writestall));
	up_read(&zram->init_lock);

	return ret;
}

416 417
static DEVICE_ATTR_RO(io_stat);
static DEVICE_ATTR_RO(mm_stat);
418
static DEVICE_ATTR_RO(debug_stat);
419 420 421 422 423

static void zram_meta_free(struct zram_meta *meta, u64 disksize)
{
	size_t num_pages = disksize >> PAGE_SHIFT;
	size_t index;
424 425 426 427

	/* Free all pages that are still in this zram device */
	for (index = 0; index < num_pages; index++) {
		unsigned long handle = meta->table[index].handle;
428 429 430 431 432
		/*
		 * No memory is allocated for same element filled pages.
		 * Simply clear same page flag.
		 */
		if (!handle || zram_test_flag(meta, index, ZRAM_SAME))
433 434 435 436 437
			continue;

		zs_free(meta->mem_pool, handle);
	}

438 439 440 441 442
	zs_destroy_pool(meta->mem_pool);
	vfree(meta->table);
	kfree(meta);
}

443
static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
444 445 446
{
	size_t num_pages;
	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
447

448
	if (!meta)
449
		return NULL;
450 451 452 453 454

	num_pages = disksize >> PAGE_SHIFT;
	meta->table = vzalloc(num_pages * sizeof(*meta->table));
	if (!meta->table) {
		pr_err("Error allocating zram address table\n");
455
		goto out_error;
456 457
	}

458
	meta->mem_pool = zs_create_pool(pool_name);
459 460
	if (!meta->mem_pool) {
		pr_err("Error creating memory pool\n");
461
		goto out_error;
462 463 464 465
	}

	return meta;

466
out_error:
467 468
	vfree(meta->table);
	kfree(meta);
469
	return NULL;
470 471
}

472 473 474 475 476
/*
 * To protect concurrent access to the same index entry,
 * caller should hold this table index entry's bit_spinlock to
 * indicate this index entry is accessing.
 */
477
static void zram_free_page(struct zram *zram, size_t index)
478
{
M
Minchan Kim 已提交
479 480
	struct zram_meta *meta = zram->meta;
	unsigned long handle = meta->table[index].handle;
481

482 483 484 485 486 487 488 489
	/*
	 * No memory is allocated for same element filled pages.
	 * Simply clear same page flag.
	 */
	if (zram_test_flag(meta, index, ZRAM_SAME)) {
		zram_clear_flag(meta, index, ZRAM_SAME);
		zram_clear_element(meta, index);
		atomic64_dec(&zram->stats.same_pages);
490 491 492
		return;
	}

493 494 495
	if (!handle)
		return;

M
Minchan Kim 已提交
496
	zs_free(meta->mem_pool, handle);
497

498 499
	atomic64_sub(zram_get_obj_size(meta, index),
			&zram->stats.compr_data_size);
500
	atomic64_dec(&zram->stats.pages_stored);
501

M
Minchan Kim 已提交
502
	meta->table[index].handle = 0;
503
	zram_set_obj_size(meta, index, 0);
504 505
}

506
static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
507
{
508
	int ret = 0;
509
	unsigned char *cmem;
M
Minchan Kim 已提交
510
	struct zram_meta *meta = zram->meta;
M
Minchan Kim 已提交
511
	unsigned long handle;
512
	unsigned int size;
M
Minchan Kim 已提交
513

514
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
M
Minchan Kim 已提交
515
	handle = meta->table[index].handle;
516
	size = zram_get_obj_size(meta, index);
517

518
	if (!handle || zram_test_flag(meta, index, ZRAM_SAME)) {
519
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
520
		zram_fill_page(mem, PAGE_SIZE, meta->table[index].element);
521 522
		return 0;
	}
523

M
Minchan Kim 已提交
524
	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
525
	if (size == PAGE_SIZE) {
526
		memcpy(mem, cmem, PAGE_SIZE);
527 528 529 530 531 532
	} else {
		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);

		ret = zcomp_decompress(zstrm, cmem, size, mem);
		zcomp_stream_put(zram->comp);
	}
M
Minchan Kim 已提交
533
	zs_unmap_object(meta->mem_pool, handle);
534
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
535

536
	/* Should NEVER happen. Return bio error if it does. */
537
	if (unlikely(ret)) {
538 539
		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
		return ret;
540
	}
541

542
	return 0;
543 544
}

545
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
546
			  u32 index, int offset)
547 548
{
	int ret;
549 550
	struct page *page;
	unsigned char *user_mem, *uncmem = NULL;
M
Minchan Kim 已提交
551
	struct zram_meta *meta = zram->meta;
552 553
	page = bvec->bv_page;

554
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
M
Minchan Kim 已提交
555
	if (unlikely(!meta->table[index].handle) ||
556
			zram_test_flag(meta, index, ZRAM_SAME)) {
557
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
558
		handle_same_page(bvec, meta->table[index].element);
559 560
		return 0;
	}
561
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
562

563 564
	if (is_partial_io(bvec))
		/* Use  a temporary buffer to decompress the page */
565 566 567 568
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);

	user_mem = kmap_atomic(page);
	if (!is_partial_io(bvec))
569 570 571
		uncmem = user_mem;

	if (!uncmem) {
S
Sergey Senozhatsky 已提交
572
		pr_err("Unable to allocate temp memory\n");
573 574 575
		ret = -ENOMEM;
		goto out_cleanup;
	}
576

577
	ret = zram_decompress_page(zram, uncmem, index);
578
	/* Should NEVER happen. Return bio error if it does. */
579
	if (unlikely(ret))
580
		goto out_cleanup;
581

582 583 584 585 586 587 588 589 590 591 592
	if (is_partial_io(bvec))
		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
				bvec->bv_len);

	flush_dcache_page(page);
	ret = 0;
out_cleanup:
	kunmap_atomic(user_mem);
	if (is_partial_io(bvec))
		kfree(uncmem);
	return ret;
593 594 595 596
}

static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
			   int offset)
597
{
598
	int ret = 0;
599
	unsigned int clen;
600
	unsigned long handle = 0;
601
	struct page *page;
602
	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
M
Minchan Kim 已提交
603
	struct zram_meta *meta = zram->meta;
604
	struct zcomp_strm *zstrm = NULL;
M
Minchan Kim 已提交
605
	unsigned long alloced_pages;
606
	unsigned long element;
607

608
	page = bvec->bv_page;
609 610 611 612 613
	if (is_partial_io(bvec)) {
		/*
		 * This is a partial IO. We need to read the full page
		 * before to write the changes.
		 */
614
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
615 616 617 618
		if (!uncmem) {
			ret = -ENOMEM;
			goto out;
		}
619
		ret = zram_decompress_page(zram, uncmem, index);
620
		if (ret)
621 622 623
			goto out;
	}

624
compress_again:
625
	user_mem = kmap_atomic(page);
626
	if (is_partial_io(bvec)) {
627 628
		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
		       bvec->bv_len);
629 630 631
		kunmap_atomic(user_mem);
		user_mem = NULL;
	} else {
632
		uncmem = user_mem;
633
	}
634

635
	if (page_same_filled(uncmem, &element)) {
636 637
		if (user_mem)
			kunmap_atomic(user_mem);
638
		/* Free memory associated with this sector now. */
639
		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
640
		zram_free_page(zram, index);
641 642
		zram_set_flag(meta, index, ZRAM_SAME);
		zram_set_element(meta, index, element);
643
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
644

645
		atomic64_inc(&zram->stats.same_pages);
646 647
		ret = 0;
		goto out;
648
	}
649

650
	zstrm = zcomp_stream_get(zram->comp);
651
	ret = zcomp_compress(zstrm, uncmem, &clen);
652 653 654 655 656
	if (!is_partial_io(bvec)) {
		kunmap_atomic(user_mem);
		user_mem = NULL;
		uncmem = NULL;
	}
657

658
	if (unlikely(ret)) {
659
		pr_err("Compression failed! err=%d\n", ret);
660
		goto out;
661
	}
662

663
	src = zstrm->buffer;
664 665
	if (unlikely(clen > max_zpage_size)) {
		clen = PAGE_SIZE;
666 667
		if (is_partial_io(bvec))
			src = uncmem;
668
	}
669

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	/*
	 * handle allocation has 2 paths:
	 * a) fast path is executed with preemption disabled (for
	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
	 *  since we can't sleep;
	 * b) slow path enables preemption and attempts to allocate
	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
	 *  put per-cpu compression stream and, thus, to re-do
	 *  the compression once handle is allocated.
	 *
	 * if we have a 'non-null' handle here then we are coming
	 * from the slow path and handle has already been allocated.
	 */
	if (!handle)
		handle = zs_malloc(meta->mem_pool, clen,
				__GFP_KSWAPD_RECLAIM |
				__GFP_NOWARN |
687 688
				__GFP_HIGHMEM |
				__GFP_MOVABLE);
689
	if (!handle) {
690
		zcomp_stream_put(zram->comp);
691 692
		zstrm = NULL;

693 694
		atomic64_inc(&zram->stats.writestall);

695
		handle = zs_malloc(meta->mem_pool, clen,
696 697
				GFP_NOIO | __GFP_HIGHMEM |
				__GFP_MOVABLE);
698 699 700
		if (handle)
			goto compress_again;

701
		pr_err("Error allocating memory for compressed page: %u, size=%u\n",
702
			index, clen);
703 704
		ret = -ENOMEM;
		goto out;
705
	}
M
Minchan Kim 已提交
706

M
Minchan Kim 已提交
707
	alloced_pages = zs_get_total_pages(meta->mem_pool);
708 709
	update_used_max(zram, alloced_pages);

M
Minchan Kim 已提交
710
	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
M
Minchan Kim 已提交
711 712 713 714 715
		zs_free(meta->mem_pool, handle);
		ret = -ENOMEM;
		goto out;
	}

M
Minchan Kim 已提交
716
	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
717

718
	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
719
		src = kmap_atomic(page);
720
		memcpy(cmem, src, PAGE_SIZE);
721
		kunmap_atomic(src);
722 723 724
	} else {
		memcpy(cmem, src, clen);
	}
725

726
	zcomp_stream_put(zram->comp);
727
	zstrm = NULL;
M
Minchan Kim 已提交
728
	zs_unmap_object(meta->mem_pool, handle);
729

730 731 732 733
	/*
	 * Free memory associated with this sector
	 * before overwriting unused sectors.
	 */
734
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
735 736
	zram_free_page(zram, index);

M
Minchan Kim 已提交
737
	meta->table[index].handle = handle;
738 739
	zram_set_obj_size(meta, index, clen);
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
740

741
	/* Update stats */
742 743
	atomic64_add(clen, &zram->stats.compr_data_size);
	atomic64_inc(&zram->stats.pages_stored);
744
out:
745
	if (zstrm)
746
		zcomp_stream_put(zram->comp);
747 748
	if (is_partial_io(bvec))
		kfree(uncmem);
749
	return ret;
750 751
}

J
Joonsoo Kim 已提交
752 753 754 755 756 757 758 759 760
/*
 * zram_bio_discard - handler on discard request
 * @index: physical block index in PAGE_SIZE units
 * @offset: byte offset within physical block
 */
static void zram_bio_discard(struct zram *zram, u32 index,
			     int offset, struct bio *bio)
{
	size_t n = bio->bi_iter.bi_size;
761
	struct zram_meta *meta = zram->meta;
J
Joonsoo Kim 已提交
762 763 764 765 766 767 768 769 770 771 772 773

	/*
	 * zram manages data in physical block size units. Because logical block
	 * size isn't identical with physical block size on some arch, we
	 * could get a discard request pointing to a specific offset within a
	 * certain physical block.  Although we can handle this request by
	 * reading that physiclal block and decompressing and partially zeroing
	 * and re-compressing and then re-storing it, this isn't reasonable
	 * because our intent with a discard request is to save memory.  So
	 * skipping this logical block is appropriate here.
	 */
	if (offset) {
774
		if (n <= (PAGE_SIZE - offset))
J
Joonsoo Kim 已提交
775 776
			return;

777
		n -= (PAGE_SIZE - offset);
J
Joonsoo Kim 已提交
778 779 780 781
		index++;
	}

	while (n >= PAGE_SIZE) {
782
		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
J
Joonsoo Kim 已提交
783
		zram_free_page(zram, index);
784
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
785
		atomic64_inc(&zram->stats.notify_free);
J
Joonsoo Kim 已提交
786 787 788 789 790
		index++;
		n -= PAGE_SIZE;
	}
}

791
static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
792
			int offset, bool is_write)
793
{
794
	unsigned long start_time = jiffies;
795
	int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
796 797
	int ret;

798
	generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
799
			&zram->disk->part0);
800

801
	if (!is_write) {
802 803 804 805 806
		atomic64_inc(&zram->stats.num_reads);
		ret = zram_bvec_read(zram, bvec, index, offset);
	} else {
		atomic64_inc(&zram->stats.num_writes);
		ret = zram_bvec_write(zram, bvec, index, offset);
807
	}
808

809
	generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
810

811
	if (unlikely(ret)) {
812
		if (!is_write)
813 814 815
			atomic64_inc(&zram->stats.failed_reads);
		else
			atomic64_inc(&zram->stats.failed_writes);
816
	}
817

818
	return ret;
819 820
}

821
static void __zram_make_request(struct zram *zram, struct bio *bio)
822
{
823
	int offset;
824
	u32 index;
825 826
	struct bio_vec bvec;
	struct bvec_iter iter;
827

828 829 830
	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
	offset = (bio->bi_iter.bi_sector &
		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
831

832 833 834
	switch (bio_op(bio)) {
	case REQ_OP_DISCARD:
	case REQ_OP_WRITE_ZEROES:
J
Joonsoo Kim 已提交
835
		zram_bio_discard(zram, index, offset, bio);
836
		bio_endio(bio);
J
Joonsoo Kim 已提交
837
		return;
838 839
	default:
		break;
J
Joonsoo Kim 已提交
840 841
	}

842
	bio_for_each_segment(bvec, bio, iter) {
843 844
		int max_transfer_size = PAGE_SIZE - offset;

845
		if (bvec.bv_len > max_transfer_size) {
846 847 848 849 850 851
			/*
			 * zram_bvec_rw() can only make operation on a single
			 * zram page. Split the bio vector.
			 */
			struct bio_vec bv;

852
			bv.bv_page = bvec.bv_page;
853
			bv.bv_len = max_transfer_size;
854
			bv.bv_offset = bvec.bv_offset;
855

856
			if (zram_bvec_rw(zram, &bv, index, offset,
857
					 op_is_write(bio_op(bio))) < 0)
858 859
				goto out;

860
			bv.bv_len = bvec.bv_len - max_transfer_size;
861
			bv.bv_offset += max_transfer_size;
862
			if (zram_bvec_rw(zram, &bv, index + 1, 0,
863
					 op_is_write(bio_op(bio))) < 0)
864 865
				goto out;
		} else
866
			if (zram_bvec_rw(zram, &bvec, index, offset,
867
					 op_is_write(bio_op(bio))) < 0)
868 869
				goto out;

870
		update_position(&index, &offset, &bvec);
871
	}
872

873
	bio_endio(bio);
874
	return;
875 876 877 878 879 880

out:
	bio_io_error(bio);
}

/*
881
 * Handler function for all zram I/O requests.
882
 */
883
static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
884
{
885
	struct zram *zram = queue->queuedata;
886

887 888
	blk_queue_split(queue, &bio, queue->bio_split);

889 890
	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
					bio->bi_iter.bi_size)) {
891
		atomic64_inc(&zram->stats.invalid_io);
M
Minchan Kim 已提交
892
		goto error;
893 894
	}

895
	__zram_make_request(zram, bio);
896
	return BLK_QC_T_NONE;
M
Minchan Kim 已提交
897

898 899
error:
	bio_io_error(bio);
900
	return BLK_QC_T_NONE;
901 902
}

N
Nitin Gupta 已提交
903 904
static void zram_slot_free_notify(struct block_device *bdev,
				unsigned long index)
905
{
906
	struct zram *zram;
907
	struct zram_meta *meta;
908

909
	zram = bdev->bd_disk->private_data;
910
	meta = zram->meta;
911

912
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
913
	zram_free_page(zram, index);
914
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
915
	atomic64_inc(&zram->stats.notify_free);
916 917
}

918
static int zram_rw_page(struct block_device *bdev, sector_t sector,
919
		       struct page *page, bool is_write)
920
{
921
	int offset, err = -EIO;
922 923 924 925 926
	u32 index;
	struct zram *zram;
	struct bio_vec bv;

	zram = bdev->bd_disk->private_data;
927

928 929
	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
		atomic64_inc(&zram->stats.invalid_io);
930
		err = -EINVAL;
M
Minchan Kim 已提交
931
		goto out;
932 933 934
	}

	index = sector >> SECTORS_PER_PAGE_SHIFT;
935
	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
936 937 938 939 940

	bv.bv_page = page;
	bv.bv_len = PAGE_SIZE;
	bv.bv_offset = 0;

941
	err = zram_bvec_rw(zram, &bv, index, offset, is_write);
942
out:
943 944 945 946 947 948 949 950 951
	/*
	 * If I/O fails, just return error(ie, non-zero) without
	 * calling page_endio.
	 * It causes resubmit the I/O with bio request by upper functions
	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
	 * bio->bi_end_io does things to handle the error
	 * (e.g., SetPageError, set_page_dirty and extra works).
	 */
	if (err == 0)
952
		page_endio(page, is_write, 0);
953 954 955
	return err;
}

956 957 958 959 960
static void zram_reset_device(struct zram *zram)
{
	struct zram_meta *meta;
	struct zcomp *comp;
	u64 disksize;
961

962
	down_write(&zram->init_lock);
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	zram->limit_pages = 0;

	if (!init_done(zram)) {
		up_write(&zram->init_lock);
		return;
	}

	meta = zram->meta;
	comp = zram->comp;
	disksize = zram->disksize;

	/* Reset stats */
	memset(&zram->stats, 0, sizeof(zram->stats));
	zram->disksize = 0;

	set_capacity(zram->disk, 0);
	part_stat_set_all(&zram->disk->part0, 0);

	up_write(&zram->init_lock);
	/* I/O operation under all of CPU are done so let's free */
	zram_meta_free(meta, disksize);
	zcomp_destroy(comp);
}

static ssize_t disksize_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
990
{
991 992 993
	u64 disksize;
	struct zcomp *comp;
	struct zram_meta *meta;
994
	struct zram *zram = dev_to_zram(dev);
995
	int err;
996

997 998 999
	disksize = memparse(buf, NULL);
	if (!disksize)
		return -EINVAL;
1000

1001
	disksize = PAGE_ALIGN(disksize);
1002
	meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1003 1004 1005
	if (!meta)
		return -ENOMEM;

1006
	comp = zcomp_create(zram->compressor);
1007
	if (IS_ERR(comp)) {
S
Sergey Senozhatsky 已提交
1008
		pr_err("Cannot initialise %s compressing backend\n",
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
				zram->compressor);
		err = PTR_ERR(comp);
		goto out_free_meta;
	}

	down_write(&zram->init_lock);
	if (init_done(zram)) {
		pr_info("Cannot change disksize for initialized device\n");
		err = -EBUSY;
		goto out_destroy_comp;
	}

	zram->meta = meta;
	zram->comp = comp;
	zram->disksize = disksize;
	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1025
	zram_revalidate_disk(zram);
1026
	up_write(&zram->init_lock);
1027 1028 1029 1030 1031 1032 1033 1034 1035

	return len;

out_destroy_comp:
	up_write(&zram->init_lock);
	zcomp_destroy(comp);
out_free_meta:
	zram_meta_free(meta, disksize);
	return err;
1036 1037
}

1038 1039
static ssize_t reset_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
1040
{
1041 1042 1043 1044
	int ret;
	unsigned short do_reset;
	struct zram *zram;
	struct block_device *bdev;
1045

1046 1047 1048 1049 1050 1051 1052
	ret = kstrtou16(buf, 10, &do_reset);
	if (ret)
		return ret;

	if (!do_reset)
		return -EINVAL;

1053 1054 1055 1056
	zram = dev_to_zram(dev);
	bdev = bdget_disk(zram->disk, 0);
	if (!bdev)
		return -ENOMEM;
1057

1058
	mutex_lock(&bdev->bd_mutex);
1059 1060 1061 1062 1063
	/* Do not reset an active device or claimed device */
	if (bdev->bd_openers || zram->claim) {
		mutex_unlock(&bdev->bd_mutex);
		bdput(bdev);
		return -EBUSY;
1064 1065
	}

1066 1067 1068
	/* From now on, anyone can't open /dev/zram[0-9] */
	zram->claim = true;
	mutex_unlock(&bdev->bd_mutex);
1069

1070
	/* Make sure all the pending I/O are finished */
1071 1072
	fsync_bdev(bdev);
	zram_reset_device(zram);
1073
	zram_revalidate_disk(zram);
1074 1075
	bdput(bdev);

1076 1077 1078 1079
	mutex_lock(&bdev->bd_mutex);
	zram->claim = false;
	mutex_unlock(&bdev->bd_mutex);

1080
	return len;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
}

static int zram_open(struct block_device *bdev, fmode_t mode)
{
	int ret = 0;
	struct zram *zram;

	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));

	zram = bdev->bd_disk->private_data;
	/* zram was claimed to reset so open request fails */
	if (zram->claim)
		ret = -EBUSY;
1094 1095 1096 1097

	return ret;
}

1098
static const struct block_device_operations zram_devops = {
1099
	.open = zram_open,
1100 1101 1102 1103 1104 1105 1106 1107 1108
	.swap_slot_free_notify = zram_slot_free_notify,
	.rw_page = zram_rw_page,
	.owner = THIS_MODULE
};

static DEVICE_ATTR_WO(compact);
static DEVICE_ATTR_RW(disksize);
static DEVICE_ATTR_RO(initstate);
static DEVICE_ATTR_WO(reset);
1109 1110
static DEVICE_ATTR_WO(mem_limit);
static DEVICE_ATTR_WO(mem_used_max);
1111 1112
static DEVICE_ATTR_RW(max_comp_streams);
static DEVICE_ATTR_RW(comp_algorithm);
1113

1114 1115 1116 1117
static struct attribute *zram_disk_attrs[] = {
	&dev_attr_disksize.attr,
	&dev_attr_initstate.attr,
	&dev_attr_reset.attr,
1118
	&dev_attr_compact.attr,
M
Minchan Kim 已提交
1119
	&dev_attr_mem_limit.attr,
M
Minchan Kim 已提交
1120
	&dev_attr_mem_used_max.attr,
1121
	&dev_attr_max_comp_streams.attr,
1122
	&dev_attr_comp_algorithm.attr,
1123
	&dev_attr_io_stat.attr,
1124
	&dev_attr_mm_stat.attr,
1125
	&dev_attr_debug_stat.attr,
1126 1127 1128 1129 1130 1131 1132
	NULL,
};

static struct attribute_group zram_disk_attr_group = {
	.attrs = zram_disk_attrs,
};

1133 1134 1135 1136 1137
/*
 * Allocate and initialize new zram device. the function returns
 * '>= 0' device_id upon success, and negative value otherwise.
 */
static int zram_add(void)
1138
{
1139
	struct zram *zram;
1140
	struct request_queue *queue;
1141
	int ret, device_id;
1142 1143 1144 1145 1146

	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
	if (!zram)
		return -ENOMEM;

1147
	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1148 1149
	if (ret < 0)
		goto out_free_dev;
1150
	device_id = ret;
1151

1152
	init_rwsem(&zram->init_lock);
1153

1154 1155
	queue = blk_alloc_queue(GFP_KERNEL);
	if (!queue) {
1156 1157
		pr_err("Error allocating disk queue for device %d\n",
			device_id);
1158 1159
		ret = -ENOMEM;
		goto out_free_idr;
1160 1161
	}

1162
	blk_queue_make_request(queue, zram_make_request);
1163

1164
	/* gendisk structure */
1165 1166
	zram->disk = alloc_disk(1);
	if (!zram->disk) {
S
Sergey Senozhatsky 已提交
1167
		pr_err("Error allocating disk structure for device %d\n",
1168
			device_id);
J
Julia Lawall 已提交
1169
		ret = -ENOMEM;
1170
		goto out_free_queue;
1171 1172
	}

1173 1174 1175
	zram->disk->major = zram_major;
	zram->disk->first_minor = device_id;
	zram->disk->fops = &zram_devops;
1176 1177
	zram->disk->queue = queue;
	zram->disk->queue->queuedata = zram;
1178 1179
	zram->disk->private_data = zram;
	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1180

1181
	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1182
	set_capacity(zram->disk, 0);
1183 1184
	/* zram devices sort of resembles non-rotational disks */
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1185
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1186 1187 1188 1189
	/*
	 * To ensure that we always get PAGE_SIZE aligned
	 * and n*PAGE_SIZED sized I/O requests.
	 */
1190
	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1191 1192
	blk_queue_logical_block_size(zram->disk->queue,
					ZRAM_LOGICAL_BLOCK_SIZE);
1193 1194
	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
J
Joonsoo Kim 已提交
1195
	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1196 1197
	zram->disk->queue->limits.max_sectors = SECTORS_PER_PAGE;
	zram->disk->queue->limits.chunk_sectors = 0;
1198
	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1199 1200
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);

J
Joonsoo Kim 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209
	/*
	 * zram_bio_discard() will clear all logical blocks if logical block
	 * size is identical with physical block size(PAGE_SIZE). But if it is
	 * different, we will skip discarding some parts of logical blocks in
	 * the part of the request range which isn't aligned to physical block
	 * size.  So we can't ensure that all discarded logical blocks are
	 * zeroed.
	 */
	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1210
		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1211

1212
	add_disk(zram->disk);
1213

1214 1215 1216
	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
				&zram_disk_attr_group);
	if (ret < 0) {
S
Sergey Senozhatsky 已提交
1217 1218
		pr_err("Error creating sysfs group for device %d\n",
				device_id);
1219
		goto out_free_disk;
1220
	}
1221
	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1222
	zram->meta = NULL;
1223 1224

	pr_info("Added device: %s\n", zram->disk->disk_name);
1225
	return device_id;
1226

1227 1228 1229 1230
out_free_disk:
	del_gendisk(zram->disk);
	put_disk(zram->disk);
out_free_queue:
1231
	blk_cleanup_queue(queue);
1232 1233 1234 1235
out_free_idr:
	idr_remove(&zram_index_idr, device_id);
out_free_dev:
	kfree(zram);
1236
	return ret;
1237 1238
}

1239
static int zram_remove(struct zram *zram)
1240
{
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	struct block_device *bdev;

	bdev = bdget_disk(zram->disk, 0);
	if (!bdev)
		return -ENOMEM;

	mutex_lock(&bdev->bd_mutex);
	if (bdev->bd_openers || zram->claim) {
		mutex_unlock(&bdev->bd_mutex);
		bdput(bdev);
		return -EBUSY;
	}

	zram->claim = true;
	mutex_unlock(&bdev->bd_mutex);

1257 1258
	/*
	 * Remove sysfs first, so no one will perform a disksize
1259 1260 1261 1262
	 * store while we destroy the devices. This also helps during
	 * hot_remove -- zram_reset_device() is the last holder of
	 * ->init_lock, no later/concurrent disksize_store() or any
	 * other sysfs handlers are possible.
1263 1264 1265
	 */
	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
			&zram_disk_attr_group);
1266

1267 1268
	/* Make sure all the pending I/O are finished */
	fsync_bdev(bdev);
1269
	zram_reset_device(zram);
1270 1271 1272 1273
	bdput(bdev);

	pr_info("Removed device: %s\n", zram->disk->disk_name);

1274 1275 1276 1277
	blk_cleanup_queue(zram->disk->queue);
	del_gendisk(zram->disk);
	put_disk(zram->disk);
	kfree(zram);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	return 0;
}

/* zram-control sysfs attributes */
static ssize_t hot_add_show(struct class *class,
			struct class_attribute *attr,
			char *buf)
{
	int ret;

	mutex_lock(&zram_index_mutex);
	ret = zram_add();
	mutex_unlock(&zram_index_mutex);

	if (ret < 0)
		return ret;
	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
}

static ssize_t hot_remove_store(struct class *class,
			struct class_attribute *attr,
			const char *buf,
			size_t count)
{
	struct zram *zram;
	int ret, dev_id;

	/* dev_id is gendisk->first_minor, which is `int' */
	ret = kstrtoint(buf, 10, &dev_id);
	if (ret)
		return ret;
	if (dev_id < 0)
		return -EINVAL;

	mutex_lock(&zram_index_mutex);

	zram = idr_find(&zram_index_idr, dev_id);
1315
	if (zram) {
1316
		ret = zram_remove(zram);
1317 1318
		if (!ret)
			idr_remove(&zram_index_idr, dev_id);
1319
	} else {
1320
		ret = -ENODEV;
1321
	}
1322 1323 1324

	mutex_unlock(&zram_index_mutex);
	return ret ? ret : count;
1325
}
1326

1327 1328 1329 1330 1331 1332
/*
 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
 * sense that reading from this file does alter the state of your system -- it
 * creates a new un-initialized zram device and returns back this device's
 * device_id (or an error code if it fails to create a new device).
 */
1333
static struct class_attribute zram_control_class_attrs[] = {
1334
	__ATTR(hot_add, 0400, hot_add_show, NULL),
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	__ATTR_WO(hot_remove),
	__ATTR_NULL,
};

static struct class zram_control_class = {
	.name		= "zram-control",
	.owner		= THIS_MODULE,
	.class_attrs	= zram_control_class_attrs,
};

1345 1346 1347 1348 1349
static int zram_remove_cb(int id, void *ptr, void *data)
{
	zram_remove(ptr);
	return 0;
}
1350

1351 1352
static void destroy_devices(void)
{
1353
	class_unregister(&zram_control_class);
1354 1355
	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
	idr_destroy(&zram_index_idr);
1356
	unregister_blkdev(zram_major, "zram");
1357
	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1358 1359
}

1360
static int __init zram_init(void)
1361
{
1362
	int ret;
1363

1364 1365 1366 1367 1368
	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
	if (ret < 0)
		return ret;

1369 1370
	ret = class_register(&zram_control_class);
	if (ret) {
S
Sergey Senozhatsky 已提交
1371
		pr_err("Unable to register zram-control class\n");
1372
		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1373 1374 1375
		return ret;
	}

1376 1377
	zram_major = register_blkdev(0, "zram");
	if (zram_major <= 0) {
S
Sergey Senozhatsky 已提交
1378
		pr_err("Unable to get major number\n");
1379
		class_unregister(&zram_control_class);
1380
		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1381
		return -EBUSY;
1382 1383
	}

1384
	while (num_devices != 0) {
1385
		mutex_lock(&zram_index_mutex);
1386
		ret = zram_add();
1387
		mutex_unlock(&zram_index_mutex);
1388
		if (ret < 0)
1389
			goto out_error;
1390
		num_devices--;
1391 1392
	}

1393
	return 0;
1394

1395
out_error:
1396
	destroy_devices();
1397 1398 1399
	return ret;
}

1400
static void __exit zram_exit(void)
1401
{
1402
	destroy_devices();
1403 1404
}

1405 1406
module_init(zram_init);
module_exit(zram_exit);
1407

1408
module_param(num_devices, uint, 0);
1409
MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1410

1411 1412
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1413
MODULE_DESCRIPTION("Compressed RAM Block Device");