zram_drv.c 36.0 KB
Newer Older
1
/*
2
 * Compressed RAM block device
3
 *
4
 * Copyright (C) 2008, 2009, 2010  Nitin Gupta
M
Minchan Kim 已提交
5
 *               2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13 14
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the licence that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 *
 */

15
#define KMSG_COMPONENT "zram"
16 17 18 19
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

#include <linux/module.h>
#include <linux/kernel.h>
20
#include <linux/bio.h>
21 22 23 24 25 26
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
27
#include <linux/slab.h>
28
#include <linux/backing-dev.h>
29 30
#include <linux/string.h>
#include <linux/vmalloc.h>
31
#include <linux/err.h>
32
#include <linux/idr.h>
33
#include <linux/sysfs.h>
34
#include <linux/cpuhotplug.h>
35

36
#include "zram_drv.h"
37

38
static DEFINE_IDR(zram_index_idr);
39 40 41
/* idr index must be protected */
static DEFINE_MUTEX(zram_index_mutex);

42
static int zram_major;
43
static const char *default_compressor = "lzo";
44 45

/* Module params (documentation at end) */
46
static unsigned int num_devices = 1;
47

48 49 50 51 52 53 54 55 56
static inline void deprecated_attr_warn(const char *name)
{
	pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
			task_pid_nr(current),
			current->comm,
			name,
			"See zram documentation.");
}

57
#define ZRAM_ATTR_RO(name)						\
58
static ssize_t name##_show(struct device *d,				\
59 60 61
				struct device_attribute *attr, char *b)	\
{									\
	struct zram *zram = dev_to_zram(d);				\
62 63
									\
	deprecated_attr_warn(__stringify(name));			\
64
	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
65 66
		(u64)atomic64_read(&zram->stats.name));			\
}									\
67
static DEVICE_ATTR_RO(name);
68

69
static inline bool init_done(struct zram *zram)
70
{
71
	return zram->disksize;
72 73
}

74 75 76 77 78
static inline struct zram *dev_to_zram(struct device *dev)
{
	return (struct zram *)dev_to_disk(dev)->private_data;
}

79
/* flag operations require table entry bit_spin_lock() being held */
80 81
static int zram_test_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
82
{
83 84
	return meta->table[index].value & BIT(flag);
}
85

86 87 88 89 90
static void zram_set_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
{
	meta->table[index].value |= BIT(flag);
}
91

92 93 94 95 96
static void zram_clear_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
{
	meta->table[index].value &= ~BIT(flag);
}
97

98 99 100
static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
{
	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
101 102
}

103 104
static void zram_set_obj_size(struct zram_meta *meta,
					u32 index, size_t size)
105
{
106
	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
107

108 109 110
	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
}

111
static inline bool is_partial_io(struct bio_vec *bvec)
112 113 114 115
{
	return bvec->bv_len != PAGE_SIZE;
}

116 117 118 119 120 121 122 123
static void zram_revalidate_disk(struct zram *zram)
{
	revalidate_disk(zram->disk);
	/* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
	zram->disk->queue->backing_dev_info.capabilities |=
		BDI_CAP_STABLE_WRITES;
}

124 125 126
/*
 * Check if request is within bounds and aligned on zram logical blocks.
 */
127
static inline bool valid_io_request(struct zram *zram,
128 129 130 131 132 133
		sector_t start, unsigned int size)
{
	u64 end, bound;

	/* unaligned request */
	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
134
		return false;
135
	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
136
		return false;
137 138 139 140 141

	end = start + (size >> SECTOR_SHIFT);
	bound = zram->disksize >> SECTOR_SHIFT;
	/* out of range range */
	if (unlikely(start >= bound || end > bound || start > end))
142
		return false;
143 144

	/* I/O request is valid */
145
	return true;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
{
	if (*offset + bvec->bv_len >= PAGE_SIZE)
		(*index)++;
	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
}

static inline void update_used_max(struct zram *zram,
					const unsigned long pages)
{
	unsigned long old_max, cur_max;

	old_max = atomic_long_read(&zram->stats.max_used_pages);

	do {
		cur_max = old_max;
		if (pages > cur_max)
			old_max = atomic_long_cmpxchg(
				&zram->stats.max_used_pages, cur_max, pages);
	} while (old_max != cur_max);
}

170
static bool page_zero_filled(void *ptr)
171 172 173 174 175 176 177 178
{
	unsigned int pos;
	unsigned long *page;

	page = (unsigned long *)ptr;

	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
		if (page[pos])
179
			return false;
180 181
	}

182
	return true;
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
}

static void handle_zero_page(struct bio_vec *bvec)
{
	struct page *page = bvec->bv_page;
	void *user_mem;

	user_mem = kmap_atomic(page);
	if (is_partial_io(bvec))
		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
	else
		clear_page(user_mem);
	kunmap_atomic(user_mem);

	flush_dcache_page(page);
198 199 200 201 202
}

static ssize_t initstate_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
203
	u32 val;
204 205
	struct zram *zram = dev_to_zram(dev);

206 207 208
	down_read(&zram->init_lock);
	val = init_done(zram);
	up_read(&zram->init_lock);
209

210
	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
211 212
}

213 214 215 216 217 218 219 220
static ssize_t disksize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct zram *zram = dev_to_zram(dev);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
}

221 222 223 224 225
static ssize_t orig_data_size_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct zram *zram = dev_to_zram(dev);

226
	deprecated_attr_warn("orig_data_size");
227
	return scnprintf(buf, PAGE_SIZE, "%llu\n",
228
		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
229 230 231 232 233 234 235 236
}

static ssize_t mem_used_total_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	u64 val = 0;
	struct zram *zram = dev_to_zram(dev);

237
	deprecated_attr_warn("mem_used_total");
238
	down_read(&zram->init_lock);
239 240
	if (init_done(zram)) {
		struct zram_meta *meta = zram->meta;
241
		val = zs_get_total_pages(meta->mem_pool);
242
	}
243 244
	up_read(&zram->init_lock);

245
	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
246 247
}

M
Minchan Kim 已提交
248 249 250 251 252 253
static ssize_t mem_limit_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	u64 val;
	struct zram *zram = dev_to_zram(dev);

254
	deprecated_attr_warn("mem_limit");
M
Minchan Kim 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	down_read(&zram->init_lock);
	val = zram->limit_pages;
	up_read(&zram->init_lock);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}

static ssize_t mem_limit_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	u64 limit;
	char *tmp;
	struct zram *zram = dev_to_zram(dev);

	limit = memparse(buf, &tmp);
	if (buf == tmp) /* no chars parsed, invalid input */
		return -EINVAL;

	down_write(&zram->init_lock);
	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
	up_write(&zram->init_lock);

	return len;
}

M
Minchan Kim 已提交
280 281 282 283 284 285
static ssize_t mem_used_max_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	u64 val = 0;
	struct zram *zram = dev_to_zram(dev);

286
	deprecated_attr_warn("mem_used_max");
M
Minchan Kim 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	down_read(&zram->init_lock);
	if (init_done(zram))
		val = atomic_long_read(&zram->stats.max_used_pages);
	up_read(&zram->init_lock);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}

static ssize_t mem_used_max_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	int err;
	unsigned long val;
	struct zram *zram = dev_to_zram(dev);

	err = kstrtoul(buf, 10, &val);
	if (err || val != 0)
		return -EINVAL;

	down_read(&zram->init_lock);
307 308
	if (init_done(zram)) {
		struct zram_meta *meta = zram->meta;
M
Minchan Kim 已提交
309 310
		atomic_long_set(&zram->stats.max_used_pages,
				zs_get_total_pages(meta->mem_pool));
311
	}
M
Minchan Kim 已提交
312 313 314 315 316
	up_read(&zram->init_lock);

	return len;
}

317 318 319 320 321 322 323 324 325
/*
 * We switched to per-cpu streams and this attr is not needed anymore.
 * However, we will keep it around for some time, because:
 * a) we may revert per-cpu streams in the future
 * b) it's visible to user space and we need to follow our 2 years
 *    retirement rule; but we already have a number of 'soon to be
 *    altered' attrs, so max_comp_streams need to wait for the next
 *    layoff cycle.
 */
326 327 328
static ssize_t max_comp_streams_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
329
	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
330 331
}

332 333 334
static ssize_t max_comp_streams_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
335
	return len;
336 337
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static ssize_t comp_algorithm_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	size_t sz;
	struct zram *zram = dev_to_zram(dev);

	down_read(&zram->init_lock);
	sz = zcomp_available_show(zram->compressor, buf);
	up_read(&zram->init_lock);

	return sz;
}

static ssize_t comp_algorithm_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	struct zram *zram = dev_to_zram(dev);
355
	char compressor[CRYPTO_MAX_ALG_NAME];
356 357
	size_t sz;

358 359 360 361 362 363 364
	strlcpy(compressor, buf, sizeof(compressor));
	/* ignore trailing newline */
	sz = strlen(compressor);
	if (sz > 0 && compressor[sz - 1] == '\n')
		compressor[sz - 1] = 0x00;

	if (!zcomp_available_algorithm(compressor))
365 366
		return -EINVAL;

367 368 369 370 371 372
	down_write(&zram->init_lock);
	if (init_done(zram)) {
		up_write(&zram->init_lock);
		pr_info("Can't change algorithm for initialized device\n");
		return -EBUSY;
	}
373

374
	strlcpy(zram->compressor, compressor, sizeof(compressor));
375 376 377 378
	up_write(&zram->init_lock);
	return len;
}

379 380
static ssize_t compact_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
381
{
382 383
	struct zram *zram = dev_to_zram(dev);
	struct zram_meta *meta;
384

385 386 387 388 389
	down_read(&zram->init_lock);
	if (!init_done(zram)) {
		up_read(&zram->init_lock);
		return -EINVAL;
	}
390

391
	meta = zram->meta;
392
	zs_compact(meta->mem_pool);
393
	up_read(&zram->init_lock);
394

395
	return len;
396 397
}

398 399
static ssize_t io_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
400
{
401 402
	struct zram *zram = dev_to_zram(dev);
	ssize_t ret;
403

404 405 406 407 408 409 410 411
	down_read(&zram->init_lock);
	ret = scnprintf(buf, PAGE_SIZE,
			"%8llu %8llu %8llu %8llu\n",
			(u64)atomic64_read(&zram->stats.failed_reads),
			(u64)atomic64_read(&zram->stats.failed_writes),
			(u64)atomic64_read(&zram->stats.invalid_io),
			(u64)atomic64_read(&zram->stats.notify_free));
	up_read(&zram->init_lock);
412

413
	return ret;
414 415
}

416 417
static ssize_t mm_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
418
{
419
	struct zram *zram = dev_to_zram(dev);
420
	struct zs_pool_stats pool_stats;
421 422 423
	u64 orig_size, mem_used = 0;
	long max_used;
	ssize_t ret;
424

425 426
	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));

427
	down_read(&zram->init_lock);
428
	if (init_done(zram)) {
429
		mem_used = zs_get_total_pages(zram->meta->mem_pool);
430 431
		zs_pool_stats(zram->meta->mem_pool, &pool_stats);
	}
432

433 434
	orig_size = atomic64_read(&zram->stats.pages_stored);
	max_used = atomic_long_read(&zram->stats.max_used_pages);
435

436
	ret = scnprintf(buf, PAGE_SIZE,
437
			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
438 439 440 441 442 443
			orig_size << PAGE_SHIFT,
			(u64)atomic64_read(&zram->stats.compr_data_size),
			mem_used << PAGE_SHIFT,
			zram->limit_pages << PAGE_SHIFT,
			max_used << PAGE_SHIFT,
			(u64)atomic64_read(&zram->stats.zero_pages),
444
			pool_stats.pages_compacted);
445
	up_read(&zram->init_lock);
446

447 448 449
	return ret;
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static ssize_t debug_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int version = 1;
	struct zram *zram = dev_to_zram(dev);
	ssize_t ret;

	down_read(&zram->init_lock);
	ret = scnprintf(buf, PAGE_SIZE,
			"version: %d\n%8llu\n",
			version,
			(u64)atomic64_read(&zram->stats.writestall));
	up_read(&zram->init_lock);

	return ret;
}

467 468
static DEVICE_ATTR_RO(io_stat);
static DEVICE_ATTR_RO(mm_stat);
469
static DEVICE_ATTR_RO(debug_stat);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
ZRAM_ATTR_RO(num_reads);
ZRAM_ATTR_RO(num_writes);
ZRAM_ATTR_RO(failed_reads);
ZRAM_ATTR_RO(failed_writes);
ZRAM_ATTR_RO(invalid_io);
ZRAM_ATTR_RO(notify_free);
ZRAM_ATTR_RO(zero_pages);
ZRAM_ATTR_RO(compr_data_size);

static inline bool zram_meta_get(struct zram *zram)
{
	if (atomic_inc_not_zero(&zram->refcount))
		return true;
	return false;
}

static inline void zram_meta_put(struct zram *zram)
{
	atomic_dec(&zram->refcount);
}

static void zram_meta_free(struct zram_meta *meta, u64 disksize)
{
	size_t num_pages = disksize >> PAGE_SHIFT;
	size_t index;
495 496 497 498 499 500 501 502 503 504 505

	/* Free all pages that are still in this zram device */
	for (index = 0; index < num_pages; index++) {
		unsigned long handle = meta->table[index].handle;

		if (!handle)
			continue;

		zs_free(meta->mem_pool, handle);
	}

506 507 508 509 510
	zs_destroy_pool(meta->mem_pool);
	vfree(meta->table);
	kfree(meta);
}

511
static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
512 513 514
{
	size_t num_pages;
	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
515

516
	if (!meta)
517
		return NULL;
518 519 520 521 522

	num_pages = disksize >> PAGE_SHIFT;
	meta->table = vzalloc(num_pages * sizeof(*meta->table));
	if (!meta->table) {
		pr_err("Error allocating zram address table\n");
523
		goto out_error;
524 525
	}

526
	meta->mem_pool = zs_create_pool(pool_name);
527 528
	if (!meta->mem_pool) {
		pr_err("Error creating memory pool\n");
529
		goto out_error;
530 531 532 533
	}

	return meta;

534
out_error:
535 536
	vfree(meta->table);
	kfree(meta);
537
	return NULL;
538 539
}

540 541 542 543 544
/*
 * To protect concurrent access to the same index entry,
 * caller should hold this table index entry's bit_spinlock to
 * indicate this index entry is accessing.
 */
545
static void zram_free_page(struct zram *zram, size_t index)
546
{
M
Minchan Kim 已提交
547 548
	struct zram_meta *meta = zram->meta;
	unsigned long handle = meta->table[index].handle;
549

550
	if (unlikely(!handle)) {
551 552 553 554
		/*
		 * No memory is allocated for zero filled pages.
		 * Simply clear zero page flag.
		 */
M
Minchan Kim 已提交
555 556
		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
			zram_clear_flag(meta, index, ZRAM_ZERO);
557
			atomic64_dec(&zram->stats.zero_pages);
558 559 560 561
		}
		return;
	}

M
Minchan Kim 已提交
562
	zs_free(meta->mem_pool, handle);
563

564 565
	atomic64_sub(zram_get_obj_size(meta, index),
			&zram->stats.compr_data_size);
566
	atomic64_dec(&zram->stats.pages_stored);
567

M
Minchan Kim 已提交
568
	meta->table[index].handle = 0;
569
	zram_set_obj_size(meta, index, 0);
570 571
}

572
static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
573
{
574
	int ret = 0;
575
	unsigned char *cmem;
M
Minchan Kim 已提交
576
	struct zram_meta *meta = zram->meta;
M
Minchan Kim 已提交
577
	unsigned long handle;
578
	unsigned int size;
M
Minchan Kim 已提交
579

580
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
M
Minchan Kim 已提交
581
	handle = meta->table[index].handle;
582
	size = zram_get_obj_size(meta, index);
583

M
Minchan Kim 已提交
584
	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
585
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
586
		clear_page(mem);
587 588
		return 0;
	}
589

M
Minchan Kim 已提交
590
	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
591
	if (size == PAGE_SIZE) {
592
		copy_page(mem, cmem);
593 594 595 596 597 598
	} else {
		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);

		ret = zcomp_decompress(zstrm, cmem, size, mem);
		zcomp_stream_put(zram->comp);
	}
M
Minchan Kim 已提交
599
	zs_unmap_object(meta->mem_pool, handle);
600
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
601

602
	/* Should NEVER happen. Return bio error if it does. */
603
	if (unlikely(ret)) {
604 605
		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
		return ret;
606
	}
607

608
	return 0;
609 610
}

611
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
612
			  u32 index, int offset)
613 614
{
	int ret;
615 616
	struct page *page;
	unsigned char *user_mem, *uncmem = NULL;
M
Minchan Kim 已提交
617
	struct zram_meta *meta = zram->meta;
618 619
	page = bvec->bv_page;

620
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
M
Minchan Kim 已提交
621 622
	if (unlikely(!meta->table[index].handle) ||
			zram_test_flag(meta, index, ZRAM_ZERO)) {
623
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
624
		handle_zero_page(bvec);
625 626
		return 0;
	}
627
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
628

629 630
	if (is_partial_io(bvec))
		/* Use  a temporary buffer to decompress the page */
631 632 633 634
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);

	user_mem = kmap_atomic(page);
	if (!is_partial_io(bvec))
635 636 637
		uncmem = user_mem;

	if (!uncmem) {
S
Sergey Senozhatsky 已提交
638
		pr_err("Unable to allocate temp memory\n");
639 640 641
		ret = -ENOMEM;
		goto out_cleanup;
	}
642

643
	ret = zram_decompress_page(zram, uncmem, index);
644
	/* Should NEVER happen. Return bio error if it does. */
645
	if (unlikely(ret))
646
		goto out_cleanup;
647

648 649 650 651 652 653 654 655 656 657 658
	if (is_partial_io(bvec))
		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
				bvec->bv_len);

	flush_dcache_page(page);
	ret = 0;
out_cleanup:
	kunmap_atomic(user_mem);
	if (is_partial_io(bvec))
		kfree(uncmem);
	return ret;
659 660 661 662
}

static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
			   int offset)
663
{
664
	int ret = 0;
665
	unsigned int clen;
666
	unsigned long handle = 0;
667
	struct page *page;
668
	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
M
Minchan Kim 已提交
669
	struct zram_meta *meta = zram->meta;
670
	struct zcomp_strm *zstrm = NULL;
M
Minchan Kim 已提交
671
	unsigned long alloced_pages;
672

673
	page = bvec->bv_page;
674 675 676 677 678
	if (is_partial_io(bvec)) {
		/*
		 * This is a partial IO. We need to read the full page
		 * before to write the changes.
		 */
679
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
680 681 682 683
		if (!uncmem) {
			ret = -ENOMEM;
			goto out;
		}
684
		ret = zram_decompress_page(zram, uncmem, index);
685
		if (ret)
686 687 688
			goto out;
	}

689
compress_again:
690
	user_mem = kmap_atomic(page);
691
	if (is_partial_io(bvec)) {
692 693
		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
		       bvec->bv_len);
694 695 696
		kunmap_atomic(user_mem);
		user_mem = NULL;
	} else {
697
		uncmem = user_mem;
698
	}
699 700

	if (page_zero_filled(uncmem)) {
701 702
		if (user_mem)
			kunmap_atomic(user_mem);
703
		/* Free memory associated with this sector now. */
704
		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
705
		zram_free_page(zram, index);
M
Minchan Kim 已提交
706
		zram_set_flag(meta, index, ZRAM_ZERO);
707
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
708

709
		atomic64_inc(&zram->stats.zero_pages);
710 711
		ret = 0;
		goto out;
712
	}
713

714
	zstrm = zcomp_stream_get(zram->comp);
715
	ret = zcomp_compress(zstrm, uncmem, &clen);
716 717 718 719 720
	if (!is_partial_io(bvec)) {
		kunmap_atomic(user_mem);
		user_mem = NULL;
		uncmem = NULL;
	}
721

722
	if (unlikely(ret)) {
723
		pr_err("Compression failed! err=%d\n", ret);
724
		goto out;
725
	}
726

727
	src = zstrm->buffer;
728 729
	if (unlikely(clen > max_zpage_size)) {
		clen = PAGE_SIZE;
730 731
		if (is_partial_io(bvec))
			src = uncmem;
732
	}
733

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	/*
	 * handle allocation has 2 paths:
	 * a) fast path is executed with preemption disabled (for
	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
	 *  since we can't sleep;
	 * b) slow path enables preemption and attempts to allocate
	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
	 *  put per-cpu compression stream and, thus, to re-do
	 *  the compression once handle is allocated.
	 *
	 * if we have a 'non-null' handle here then we are coming
	 * from the slow path and handle has already been allocated.
	 */
	if (!handle)
		handle = zs_malloc(meta->mem_pool, clen,
				__GFP_KSWAPD_RECLAIM |
				__GFP_NOWARN |
751 752
				__GFP_HIGHMEM |
				__GFP_MOVABLE);
753
	if (!handle) {
754
		zcomp_stream_put(zram->comp);
755 756
		zstrm = NULL;

757 758
		atomic64_inc(&zram->stats.writestall);

759
		handle = zs_malloc(meta->mem_pool, clen,
760 761
				GFP_NOIO | __GFP_HIGHMEM |
				__GFP_MOVABLE);
762 763 764
		if (handle)
			goto compress_again;

765
		pr_err("Error allocating memory for compressed page: %u, size=%u\n",
766
			index, clen);
767 768
		ret = -ENOMEM;
		goto out;
769
	}
M
Minchan Kim 已提交
770

M
Minchan Kim 已提交
771
	alloced_pages = zs_get_total_pages(meta->mem_pool);
772 773
	update_used_max(zram, alloced_pages);

M
Minchan Kim 已提交
774
	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
M
Minchan Kim 已提交
775 776 777 778 779
		zs_free(meta->mem_pool, handle);
		ret = -ENOMEM;
		goto out;
	}

M
Minchan Kim 已提交
780
	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
781

782
	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
783
		src = kmap_atomic(page);
784
		copy_page(cmem, src);
785
		kunmap_atomic(src);
786 787 788
	} else {
		memcpy(cmem, src, clen);
	}
789

790
	zcomp_stream_put(zram->comp);
791
	zstrm = NULL;
M
Minchan Kim 已提交
792
	zs_unmap_object(meta->mem_pool, handle);
793

794 795 796 797
	/*
	 * Free memory associated with this sector
	 * before overwriting unused sectors.
	 */
798
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
799 800
	zram_free_page(zram, index);

M
Minchan Kim 已提交
801
	meta->table[index].handle = handle;
802 803
	zram_set_obj_size(meta, index, clen);
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
804

805
	/* Update stats */
806 807
	atomic64_add(clen, &zram->stats.compr_data_size);
	atomic64_inc(&zram->stats.pages_stored);
808
out:
809
	if (zstrm)
810
		zcomp_stream_put(zram->comp);
811 812
	if (is_partial_io(bvec))
		kfree(uncmem);
813
	return ret;
814 815
}

J
Joonsoo Kim 已提交
816 817 818 819 820 821 822 823 824
/*
 * zram_bio_discard - handler on discard request
 * @index: physical block index in PAGE_SIZE units
 * @offset: byte offset within physical block
 */
static void zram_bio_discard(struct zram *zram, u32 index,
			     int offset, struct bio *bio)
{
	size_t n = bio->bi_iter.bi_size;
825
	struct zram_meta *meta = zram->meta;
J
Joonsoo Kim 已提交
826 827 828 829 830 831 832 833 834 835 836 837

	/*
	 * zram manages data in physical block size units. Because logical block
	 * size isn't identical with physical block size on some arch, we
	 * could get a discard request pointing to a specific offset within a
	 * certain physical block.  Although we can handle this request by
	 * reading that physiclal block and decompressing and partially zeroing
	 * and re-compressing and then re-storing it, this isn't reasonable
	 * because our intent with a discard request is to save memory.  So
	 * skipping this logical block is appropriate here.
	 */
	if (offset) {
838
		if (n <= (PAGE_SIZE - offset))
J
Joonsoo Kim 已提交
839 840
			return;

841
		n -= (PAGE_SIZE - offset);
J
Joonsoo Kim 已提交
842 843 844 845
		index++;
	}

	while (n >= PAGE_SIZE) {
846
		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
J
Joonsoo Kim 已提交
847
		zram_free_page(zram, index);
848
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
849
		atomic64_inc(&zram->stats.notify_free);
J
Joonsoo Kim 已提交
850 851 852 853 854
		index++;
		n -= PAGE_SIZE;
	}
}

855
static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
856
			int offset, bool is_write)
857
{
858
	unsigned long start_time = jiffies;
859
	int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
860 861
	int ret;

862
	generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
863
			&zram->disk->part0);
864

865
	if (!is_write) {
866 867 868 869 870
		atomic64_inc(&zram->stats.num_reads);
		ret = zram_bvec_read(zram, bvec, index, offset);
	} else {
		atomic64_inc(&zram->stats.num_writes);
		ret = zram_bvec_write(zram, bvec, index, offset);
871
	}
872

873
	generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
874

875
	if (unlikely(ret)) {
876
		if (!is_write)
877 878 879
			atomic64_inc(&zram->stats.failed_reads);
		else
			atomic64_inc(&zram->stats.failed_writes);
880
	}
881

882
	return ret;
883 884
}

885
static void __zram_make_request(struct zram *zram, struct bio *bio)
886
{
887
	int offset;
888
	u32 index;
889 890
	struct bio_vec bvec;
	struct bvec_iter iter;
891

892 893 894
	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
	offset = (bio->bi_iter.bi_sector &
		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
895

896
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
J
Joonsoo Kim 已提交
897
		zram_bio_discard(zram, index, offset, bio);
898
		bio_endio(bio);
J
Joonsoo Kim 已提交
899 900 901
		return;
	}

902
	bio_for_each_segment(bvec, bio, iter) {
903 904
		int max_transfer_size = PAGE_SIZE - offset;

905
		if (bvec.bv_len > max_transfer_size) {
906 907 908 909 910 911
			/*
			 * zram_bvec_rw() can only make operation on a single
			 * zram page. Split the bio vector.
			 */
			struct bio_vec bv;

912
			bv.bv_page = bvec.bv_page;
913
			bv.bv_len = max_transfer_size;
914
			bv.bv_offset = bvec.bv_offset;
915

916
			if (zram_bvec_rw(zram, &bv, index, offset,
917
					 op_is_write(bio_op(bio))) < 0)
918 919
				goto out;

920
			bv.bv_len = bvec.bv_len - max_transfer_size;
921
			bv.bv_offset += max_transfer_size;
922
			if (zram_bvec_rw(zram, &bv, index + 1, 0,
923
					 op_is_write(bio_op(bio))) < 0)
924 925
				goto out;
		} else
926
			if (zram_bvec_rw(zram, &bvec, index, offset,
927
					 op_is_write(bio_op(bio))) < 0)
928 929
				goto out;

930
		update_position(&index, &offset, &bvec);
931
	}
932

933
	bio_endio(bio);
934
	return;
935 936 937 938 939 940

out:
	bio_io_error(bio);
}

/*
941
 * Handler function for all zram I/O requests.
942
 */
943
static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
944
{
945
	struct zram *zram = queue->queuedata;
946

947
	if (unlikely(!zram_meta_get(zram)))
948
		goto error;
949

950 951
	blk_queue_split(queue, &bio, queue->bio_split);

952 953
	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
					bio->bi_iter.bi_size)) {
954
		atomic64_inc(&zram->stats.invalid_io);
955
		goto put_zram;
956 957
	}

958
	__zram_make_request(zram, bio);
959
	zram_meta_put(zram);
960
	return BLK_QC_T_NONE;
961 962
put_zram:
	zram_meta_put(zram);
963 964
error:
	bio_io_error(bio);
965
	return BLK_QC_T_NONE;
966 967
}

N
Nitin Gupta 已提交
968 969
static void zram_slot_free_notify(struct block_device *bdev,
				unsigned long index)
970
{
971
	struct zram *zram;
972
	struct zram_meta *meta;
973

974
	zram = bdev->bd_disk->private_data;
975
	meta = zram->meta;
976

977
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
978
	zram_free_page(zram, index);
979
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
980
	atomic64_inc(&zram->stats.notify_free);
981 982
}

983
static int zram_rw_page(struct block_device *bdev, sector_t sector,
984
		       struct page *page, bool is_write)
985
{
986
	int offset, err = -EIO;
987 988 989 990 991
	u32 index;
	struct zram *zram;
	struct bio_vec bv;

	zram = bdev->bd_disk->private_data;
992 993 994
	if (unlikely(!zram_meta_get(zram)))
		goto out;

995 996
	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
		atomic64_inc(&zram->stats.invalid_io);
997 998
		err = -EINVAL;
		goto put_zram;
999 1000 1001 1002 1003 1004 1005 1006 1007
	}

	index = sector >> SECTORS_PER_PAGE_SHIFT;
	offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;

	bv.bv_page = page;
	bv.bv_len = PAGE_SIZE;
	bv.bv_offset = 0;

1008
	err = zram_bvec_rw(zram, &bv, index, offset, is_write);
1009 1010 1011
put_zram:
	zram_meta_put(zram);
out:
1012 1013 1014 1015 1016 1017 1018 1019 1020
	/*
	 * If I/O fails, just return error(ie, non-zero) without
	 * calling page_endio.
	 * It causes resubmit the I/O with bio request by upper functions
	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
	 * bio->bi_end_io does things to handle the error
	 * (e.g., SetPageError, set_page_dirty and extra works).
	 */
	if (err == 0)
1021
		page_endio(page, is_write, 0);
1022 1023 1024
	return err;
}

1025 1026 1027 1028 1029
static void zram_reset_device(struct zram *zram)
{
	struct zram_meta *meta;
	struct zcomp *comp;
	u64 disksize;
1030

1031
	down_write(&zram->init_lock);
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	zram->limit_pages = 0;

	if (!init_done(zram)) {
		up_write(&zram->init_lock);
		return;
	}

	meta = zram->meta;
	comp = zram->comp;
	disksize = zram->disksize;
	/*
	 * Refcount will go down to 0 eventually and r/w handler
	 * cannot handle further I/O so it will bail out by
	 * check zram_meta_get.
	 */
	zram_meta_put(zram);
	/*
	 * We want to free zram_meta in process context to avoid
	 * deadlock between reclaim path and any other locks.
	 */
	wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);

	/* Reset stats */
	memset(&zram->stats, 0, sizeof(zram->stats));
	zram->disksize = 0;

	set_capacity(zram->disk, 0);
	part_stat_set_all(&zram->disk->part0, 0);

	up_write(&zram->init_lock);
	/* I/O operation under all of CPU are done so let's free */
	zram_meta_free(meta, disksize);
	zcomp_destroy(comp);
}

static ssize_t disksize_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
1070
{
1071 1072 1073
	u64 disksize;
	struct zcomp *comp;
	struct zram_meta *meta;
1074
	struct zram *zram = dev_to_zram(dev);
1075
	int err;
1076

1077 1078 1079
	disksize = memparse(buf, NULL);
	if (!disksize)
		return -EINVAL;
1080

1081
	disksize = PAGE_ALIGN(disksize);
1082
	meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1083 1084 1085
	if (!meta)
		return -ENOMEM;

1086
	comp = zcomp_create(zram->compressor);
1087
	if (IS_ERR(comp)) {
S
Sergey Senozhatsky 已提交
1088
		pr_err("Cannot initialise %s compressing backend\n",
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
				zram->compressor);
		err = PTR_ERR(comp);
		goto out_free_meta;
	}

	down_write(&zram->init_lock);
	if (init_done(zram)) {
		pr_info("Cannot change disksize for initialized device\n");
		err = -EBUSY;
		goto out_destroy_comp;
	}

	init_waitqueue_head(&zram->io_done);
	atomic_set(&zram->refcount, 1);
	zram->meta = meta;
	zram->comp = comp;
	zram->disksize = disksize;
	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1107
	zram_revalidate_disk(zram);
1108
	up_write(&zram->init_lock);
1109 1110 1111 1112 1113 1114 1115 1116 1117

	return len;

out_destroy_comp:
	up_write(&zram->init_lock);
	zcomp_destroy(comp);
out_free_meta:
	zram_meta_free(meta, disksize);
	return err;
1118 1119
}

1120 1121
static ssize_t reset_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
1122
{
1123 1124 1125 1126
	int ret;
	unsigned short do_reset;
	struct zram *zram;
	struct block_device *bdev;
1127

1128 1129 1130 1131 1132 1133 1134
	ret = kstrtou16(buf, 10, &do_reset);
	if (ret)
		return ret;

	if (!do_reset)
		return -EINVAL;

1135 1136 1137 1138
	zram = dev_to_zram(dev);
	bdev = bdget_disk(zram->disk, 0);
	if (!bdev)
		return -ENOMEM;
1139

1140
	mutex_lock(&bdev->bd_mutex);
1141 1142 1143 1144 1145
	/* Do not reset an active device or claimed device */
	if (bdev->bd_openers || zram->claim) {
		mutex_unlock(&bdev->bd_mutex);
		bdput(bdev);
		return -EBUSY;
1146 1147
	}

1148 1149 1150
	/* From now on, anyone can't open /dev/zram[0-9] */
	zram->claim = true;
	mutex_unlock(&bdev->bd_mutex);
1151

1152
	/* Make sure all the pending I/O are finished */
1153 1154
	fsync_bdev(bdev);
	zram_reset_device(zram);
1155
	zram_revalidate_disk(zram);
1156 1157
	bdput(bdev);

1158 1159 1160 1161
	mutex_lock(&bdev->bd_mutex);
	zram->claim = false;
	mutex_unlock(&bdev->bd_mutex);

1162
	return len;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
}

static int zram_open(struct block_device *bdev, fmode_t mode)
{
	int ret = 0;
	struct zram *zram;

	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));

	zram = bdev->bd_disk->private_data;
	/* zram was claimed to reset so open request fails */
	if (zram->claim)
		ret = -EBUSY;
1176 1177 1178 1179

	return ret;
}

1180
static const struct block_device_operations zram_devops = {
1181
	.open = zram_open,
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	.swap_slot_free_notify = zram_slot_free_notify,
	.rw_page = zram_rw_page,
	.owner = THIS_MODULE
};

static DEVICE_ATTR_WO(compact);
static DEVICE_ATTR_RW(disksize);
static DEVICE_ATTR_RO(initstate);
static DEVICE_ATTR_WO(reset);
static DEVICE_ATTR_RO(orig_data_size);
static DEVICE_ATTR_RO(mem_used_total);
static DEVICE_ATTR_RW(mem_limit);
static DEVICE_ATTR_RW(mem_used_max);
static DEVICE_ATTR_RW(max_comp_streams);
static DEVICE_ATTR_RW(comp_algorithm);
1197

1198 1199 1200 1201 1202 1203
static struct attribute *zram_disk_attrs[] = {
	&dev_attr_disksize.attr,
	&dev_attr_initstate.attr,
	&dev_attr_reset.attr,
	&dev_attr_num_reads.attr,
	&dev_attr_num_writes.attr,
1204 1205
	&dev_attr_failed_reads.attr,
	&dev_attr_failed_writes.attr,
1206
	&dev_attr_compact.attr,
1207 1208 1209 1210 1211 1212
	&dev_attr_invalid_io.attr,
	&dev_attr_notify_free.attr,
	&dev_attr_zero_pages.attr,
	&dev_attr_orig_data_size.attr,
	&dev_attr_compr_data_size.attr,
	&dev_attr_mem_used_total.attr,
M
Minchan Kim 已提交
1213
	&dev_attr_mem_limit.attr,
M
Minchan Kim 已提交
1214
	&dev_attr_mem_used_max.attr,
1215
	&dev_attr_max_comp_streams.attr,
1216
	&dev_attr_comp_algorithm.attr,
1217
	&dev_attr_io_stat.attr,
1218
	&dev_attr_mm_stat.attr,
1219
	&dev_attr_debug_stat.attr,
1220 1221 1222 1223 1224 1225 1226
	NULL,
};

static struct attribute_group zram_disk_attr_group = {
	.attrs = zram_disk_attrs,
};

1227 1228 1229 1230 1231
/*
 * Allocate and initialize new zram device. the function returns
 * '>= 0' device_id upon success, and negative value otherwise.
 */
static int zram_add(void)
1232
{
1233
	struct zram *zram;
1234
	struct request_queue *queue;
1235
	int ret, device_id;
1236 1237 1238 1239 1240

	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
	if (!zram)
		return -ENOMEM;

1241
	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1242 1243
	if (ret < 0)
		goto out_free_dev;
1244
	device_id = ret;
1245

1246
	init_rwsem(&zram->init_lock);
1247

1248 1249
	queue = blk_alloc_queue(GFP_KERNEL);
	if (!queue) {
1250 1251
		pr_err("Error allocating disk queue for device %d\n",
			device_id);
1252 1253
		ret = -ENOMEM;
		goto out_free_idr;
1254 1255
	}

1256
	blk_queue_make_request(queue, zram_make_request);
1257

1258
	/* gendisk structure */
1259 1260
	zram->disk = alloc_disk(1);
	if (!zram->disk) {
S
Sergey Senozhatsky 已提交
1261
		pr_err("Error allocating disk structure for device %d\n",
1262
			device_id);
J
Julia Lawall 已提交
1263
		ret = -ENOMEM;
1264
		goto out_free_queue;
1265 1266
	}

1267 1268 1269
	zram->disk->major = zram_major;
	zram->disk->first_minor = device_id;
	zram->disk->fops = &zram_devops;
1270 1271
	zram->disk->queue = queue;
	zram->disk->queue->queuedata = zram;
1272 1273
	zram->disk->private_data = zram;
	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1274

1275
	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1276
	set_capacity(zram->disk, 0);
1277 1278
	/* zram devices sort of resembles non-rotational disks */
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1279
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1280 1281 1282 1283
	/*
	 * To ensure that we always get PAGE_SIZE aligned
	 * and n*PAGE_SIZED sized I/O requests.
	 */
1284
	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1285 1286
	blk_queue_logical_block_size(zram->disk->queue,
					ZRAM_LOGICAL_BLOCK_SIZE);
1287 1288
	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
J
Joonsoo Kim 已提交
1289
	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1290
	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
J
Joonsoo Kim 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	/*
	 * zram_bio_discard() will clear all logical blocks if logical block
	 * size is identical with physical block size(PAGE_SIZE). But if it is
	 * different, we will skip discarding some parts of logical blocks in
	 * the part of the request range which isn't aligned to physical block
	 * size.  So we can't ensure that all discarded logical blocks are
	 * zeroed.
	 */
	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
		zram->disk->queue->limits.discard_zeroes_data = 1;
	else
		zram->disk->queue->limits.discard_zeroes_data = 0;
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1304

1305
	add_disk(zram->disk);
1306

1307 1308 1309
	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
				&zram_disk_attr_group);
	if (ret < 0) {
S
Sergey Senozhatsky 已提交
1310 1311
		pr_err("Error creating sysfs group for device %d\n",
				device_id);
1312
		goto out_free_disk;
1313
	}
1314
	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1315
	zram->meta = NULL;
1316 1317

	pr_info("Added device: %s\n", zram->disk->disk_name);
1318
	return device_id;
1319

1320 1321 1322 1323
out_free_disk:
	del_gendisk(zram->disk);
	put_disk(zram->disk);
out_free_queue:
1324
	blk_cleanup_queue(queue);
1325 1326 1327 1328
out_free_idr:
	idr_remove(&zram_index_idr, device_id);
out_free_dev:
	kfree(zram);
1329
	return ret;
1330 1331
}

1332
static int zram_remove(struct zram *zram)
1333
{
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	struct block_device *bdev;

	bdev = bdget_disk(zram->disk, 0);
	if (!bdev)
		return -ENOMEM;

	mutex_lock(&bdev->bd_mutex);
	if (bdev->bd_openers || zram->claim) {
		mutex_unlock(&bdev->bd_mutex);
		bdput(bdev);
		return -EBUSY;
	}

	zram->claim = true;
	mutex_unlock(&bdev->bd_mutex);

1350 1351
	/*
	 * Remove sysfs first, so no one will perform a disksize
1352 1353 1354 1355
	 * store while we destroy the devices. This also helps during
	 * hot_remove -- zram_reset_device() is the last holder of
	 * ->init_lock, no later/concurrent disksize_store() or any
	 * other sysfs handlers are possible.
1356 1357 1358
	 */
	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
			&zram_disk_attr_group);
1359

1360 1361
	/* Make sure all the pending I/O are finished */
	fsync_bdev(bdev);
1362
	zram_reset_device(zram);
1363 1364 1365 1366
	bdput(bdev);

	pr_info("Removed device: %s\n", zram->disk->disk_name);

1367 1368 1369 1370
	blk_cleanup_queue(zram->disk->queue);
	del_gendisk(zram->disk);
	put_disk(zram->disk);
	kfree(zram);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	return 0;
}

/* zram-control sysfs attributes */
static ssize_t hot_add_show(struct class *class,
			struct class_attribute *attr,
			char *buf)
{
	int ret;

	mutex_lock(&zram_index_mutex);
	ret = zram_add();
	mutex_unlock(&zram_index_mutex);

	if (ret < 0)
		return ret;
	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
}

static ssize_t hot_remove_store(struct class *class,
			struct class_attribute *attr,
			const char *buf,
			size_t count)
{
	struct zram *zram;
	int ret, dev_id;

	/* dev_id is gendisk->first_minor, which is `int' */
	ret = kstrtoint(buf, 10, &dev_id);
	if (ret)
		return ret;
	if (dev_id < 0)
		return -EINVAL;

	mutex_lock(&zram_index_mutex);

	zram = idr_find(&zram_index_idr, dev_id);
1408
	if (zram) {
1409
		ret = zram_remove(zram);
1410 1411
		if (!ret)
			idr_remove(&zram_index_idr, dev_id);
1412
	} else {
1413
		ret = -ENODEV;
1414
	}
1415 1416 1417

	mutex_unlock(&zram_index_mutex);
	return ret ? ret : count;
1418
}
1419

1420 1421 1422 1423 1424 1425
/*
 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
 * sense that reading from this file does alter the state of your system -- it
 * creates a new un-initialized zram device and returns back this device's
 * device_id (or an error code if it fails to create a new device).
 */
1426
static struct class_attribute zram_control_class_attrs[] = {
1427
	__ATTR(hot_add, 0400, hot_add_show, NULL),
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	__ATTR_WO(hot_remove),
	__ATTR_NULL,
};

static struct class zram_control_class = {
	.name		= "zram-control",
	.owner		= THIS_MODULE,
	.class_attrs	= zram_control_class_attrs,
};

1438 1439 1440 1441 1442
static int zram_remove_cb(int id, void *ptr, void *data)
{
	zram_remove(ptr);
	return 0;
}
1443

1444 1445
static void destroy_devices(void)
{
1446
	class_unregister(&zram_control_class);
1447 1448
	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
	idr_destroy(&zram_index_idr);
1449
	unregister_blkdev(zram_major, "zram");
1450
	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1451 1452
}

1453
static int __init zram_init(void)
1454
{
1455
	int ret;
1456

1457 1458 1459 1460 1461
	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
	if (ret < 0)
		return ret;

1462 1463
	ret = class_register(&zram_control_class);
	if (ret) {
S
Sergey Senozhatsky 已提交
1464
		pr_err("Unable to register zram-control class\n");
1465
		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1466 1467 1468
		return ret;
	}

1469 1470
	zram_major = register_blkdev(0, "zram");
	if (zram_major <= 0) {
S
Sergey Senozhatsky 已提交
1471
		pr_err("Unable to get major number\n");
1472
		class_unregister(&zram_control_class);
1473
		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1474
		return -EBUSY;
1475 1476
	}

1477
	while (num_devices != 0) {
1478
		mutex_lock(&zram_index_mutex);
1479
		ret = zram_add();
1480
		mutex_unlock(&zram_index_mutex);
1481
		if (ret < 0)
1482
			goto out_error;
1483
		num_devices--;
1484 1485
	}

1486
	return 0;
1487

1488
out_error:
1489
	destroy_devices();
1490 1491 1492
	return ret;
}

1493
static void __exit zram_exit(void)
1494
{
1495
	destroy_devices();
1496 1497
}

1498 1499
module_init(zram_init);
module_exit(zram_exit);
1500

1501
module_param(num_devices, uint, 0);
1502
MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1503

1504 1505
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1506
MODULE_DESCRIPTION("Compressed RAM Block Device");