zram_drv.c 33.9 KB
Newer Older
1
/*
2
 * Compressed RAM block device
3
 *
4
 * Copyright (C) 2008, 2009, 2010  Nitin Gupta
M
Minchan Kim 已提交
5
 *               2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13 14
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the licence that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 *
 */

15
#define KMSG_COMPONENT "zram"
16 17 18 19
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

#include <linux/module.h>
#include <linux/kernel.h>
20
#include <linux/bio.h>
21 22 23 24 25 26
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
27
#include <linux/slab.h>
28 29
#include <linux/string.h>
#include <linux/vmalloc.h>
30
#include <linux/err.h>
31
#include <linux/idr.h>
32
#include <linux/sysfs.h>
33

34
#include "zram_drv.h"
35

36
static DEFINE_IDR(zram_index_idr);
37 38 39
/* idr index must be protected */
static DEFINE_MUTEX(zram_index_mutex);

40
static int zram_major;
41
static const char *default_compressor = "lzo";
42 43

/* Module params (documentation at end) */
44
static unsigned int num_devices = 1;
45

46 47 48 49 50 51 52 53 54
static inline void deprecated_attr_warn(const char *name)
{
	pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
			task_pid_nr(current),
			current->comm,
			name,
			"See zram documentation.");
}

55
#define ZRAM_ATTR_RO(name)						\
56
static ssize_t name##_show(struct device *d,				\
57 58 59
				struct device_attribute *attr, char *b)	\
{									\
	struct zram *zram = dev_to_zram(d);				\
60 61
									\
	deprecated_attr_warn(__stringify(name));			\
62
	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
63 64
		(u64)atomic64_read(&zram->stats.name));			\
}									\
65
static DEVICE_ATTR_RO(name);
66

67
static inline bool init_done(struct zram *zram)
68
{
69
	return zram->disksize;
70 71
}

72 73 74 75 76
static inline struct zram *dev_to_zram(struct device *dev)
{
	return (struct zram *)dev_to_disk(dev)->private_data;
}

77
/* flag operations require table entry bit_spin_lock() being held */
78 79
static int zram_test_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
80
{
81 82
	return meta->table[index].value & BIT(flag);
}
83

84 85 86 87 88
static void zram_set_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
{
	meta->table[index].value |= BIT(flag);
}
89

90 91 92 93 94
static void zram_clear_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
{
	meta->table[index].value &= ~BIT(flag);
}
95

96 97 98
static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
{
	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 100
}

101 102
static void zram_set_obj_size(struct zram_meta *meta,
					u32 index, size_t size)
103
{
104
	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
}

static inline int is_partial_io(struct bio_vec *bvec)
{
	return bvec->bv_len != PAGE_SIZE;
}

/*
 * Check if request is within bounds and aligned on zram logical blocks.
 */
static inline int valid_io_request(struct zram *zram,
		sector_t start, unsigned int size)
{
	u64 end, bound;

	/* unaligned request */
	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
		return 0;
	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
		return 0;

	end = start + (size >> SECTOR_SHIFT);
	bound = zram->disksize >> SECTOR_SHIFT;
	/* out of range range */
	if (unlikely(start >= bound || end > bound || start > end))
		return 0;

	/* I/O request is valid */
	return 1;
}

static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
{
	if (*offset + bvec->bv_len >= PAGE_SIZE)
		(*index)++;
	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
}

static inline void update_used_max(struct zram *zram,
					const unsigned long pages)
{
	unsigned long old_max, cur_max;

	old_max = atomic_long_read(&zram->stats.max_used_pages);

	do {
		cur_max = old_max;
		if (pages > cur_max)
			old_max = atomic_long_cmpxchg(
				&zram->stats.max_used_pages, cur_max, pages);
	} while (old_max != cur_max);
}

static int page_zero_filled(void *ptr)
{
	unsigned int pos;
	unsigned long *page;

	page = (unsigned long *)ptr;

	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
		if (page[pos])
			return 0;
	}

	return 1;
}

static void handle_zero_page(struct bio_vec *bvec)
{
	struct page *page = bvec->bv_page;
	void *user_mem;

	user_mem = kmap_atomic(page);
	if (is_partial_io(bvec))
		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
	else
		clear_page(user_mem);
	kunmap_atomic(user_mem);

	flush_dcache_page(page);
188 189 190 191 192
}

static ssize_t initstate_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
193
	u32 val;
194 195
	struct zram *zram = dev_to_zram(dev);

196 197 198
	down_read(&zram->init_lock);
	val = init_done(zram);
	up_read(&zram->init_lock);
199

200
	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 202
}

203 204 205 206 207 208 209 210
static ssize_t disksize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct zram *zram = dev_to_zram(dev);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
}

211 212 213 214 215
static ssize_t orig_data_size_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct zram *zram = dev_to_zram(dev);

216
	deprecated_attr_warn("orig_data_size");
217
	return scnprintf(buf, PAGE_SIZE, "%llu\n",
218
		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 220 221 222 223 224 225 226
}

static ssize_t mem_used_total_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	u64 val = 0;
	struct zram *zram = dev_to_zram(dev);

227
	deprecated_attr_warn("mem_used_total");
228
	down_read(&zram->init_lock);
229 230
	if (init_done(zram)) {
		struct zram_meta *meta = zram->meta;
231
		val = zs_get_total_pages(meta->mem_pool);
232
	}
233 234
	up_read(&zram->init_lock);

235
	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 237
}

M
Minchan Kim 已提交
238 239 240 241 242 243
static ssize_t mem_limit_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	u64 val;
	struct zram *zram = dev_to_zram(dev);

244
	deprecated_attr_warn("mem_limit");
M
Minchan Kim 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	down_read(&zram->init_lock);
	val = zram->limit_pages;
	up_read(&zram->init_lock);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}

static ssize_t mem_limit_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	u64 limit;
	char *tmp;
	struct zram *zram = dev_to_zram(dev);

	limit = memparse(buf, &tmp);
	if (buf == tmp) /* no chars parsed, invalid input */
		return -EINVAL;

	down_write(&zram->init_lock);
	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
	up_write(&zram->init_lock);

	return len;
}

M
Minchan Kim 已提交
270 271 272 273 274 275
static ssize_t mem_used_max_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	u64 val = 0;
	struct zram *zram = dev_to_zram(dev);

276
	deprecated_attr_warn("mem_used_max");
M
Minchan Kim 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	down_read(&zram->init_lock);
	if (init_done(zram))
		val = atomic_long_read(&zram->stats.max_used_pages);
	up_read(&zram->init_lock);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}

static ssize_t mem_used_max_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	int err;
	unsigned long val;
	struct zram *zram = dev_to_zram(dev);

	err = kstrtoul(buf, 10, &val);
	if (err || val != 0)
		return -EINVAL;

	down_read(&zram->init_lock);
297 298
	if (init_done(zram)) {
		struct zram_meta *meta = zram->meta;
M
Minchan Kim 已提交
299 300
		atomic_long_set(&zram->stats.max_used_pages,
				zs_get_total_pages(meta->mem_pool));
301
	}
M
Minchan Kim 已提交
302 303 304 305 306
	up_read(&zram->init_lock);

	return len;
}

307 308 309 310 311 312 313 314 315 316 317 318 319
static ssize_t max_comp_streams_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int val;
	struct zram *zram = dev_to_zram(dev);

	down_read(&zram->init_lock);
	val = zram->max_comp_streams;
	up_read(&zram->init_lock);

	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
}

320 321 322 323 324
static ssize_t max_comp_streams_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	int num;
	struct zram *zram = dev_to_zram(dev);
M
Minchan Kim 已提交
325
	int ret;
326

M
Minchan Kim 已提交
327 328 329
	ret = kstrtoint(buf, 0, &num);
	if (ret < 0)
		return ret;
330 331
	if (num < 1)
		return -EINVAL;
M
Minchan Kim 已提交
332

333 334
	down_write(&zram->init_lock);
	if (init_done(zram)) {
M
Minchan Kim 已提交
335
		if (!zcomp_set_max_streams(zram->comp, num)) {
336
			pr_info("Cannot change max compression streams\n");
M
Minchan Kim 已提交
337 338 339
			ret = -EINVAL;
			goto out;
		}
340
	}
M
Minchan Kim 已提交
341

342
	zram->max_comp_streams = num;
M
Minchan Kim 已提交
343 344
	ret = len;
out:
345
	up_write(&zram->init_lock);
M
Minchan Kim 已提交
346
	return ret;
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static ssize_t comp_algorithm_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	size_t sz;
	struct zram *zram = dev_to_zram(dev);

	down_read(&zram->init_lock);
	sz = zcomp_available_show(zram->compressor, buf);
	up_read(&zram->init_lock);

	return sz;
}

static ssize_t comp_algorithm_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	struct zram *zram = dev_to_zram(dev);
366 367
	size_t sz;

368 369 370 371 372 373 374
	down_write(&zram->init_lock);
	if (init_done(zram)) {
		up_write(&zram->init_lock);
		pr_info("Can't change algorithm for initialized device\n");
		return -EBUSY;
	}
	strlcpy(zram->compressor, buf, sizeof(zram->compressor));
375 376 377 378 379 380

	/* ignore trailing newline */
	sz = strlen(zram->compressor);
	if (sz > 0 && zram->compressor[sz - 1] == '\n')
		zram->compressor[sz - 1] = 0x00;

381 382 383
	if (!zcomp_available_algorithm(zram->compressor))
		len = -EINVAL;

384 385 386 387
	up_write(&zram->init_lock);
	return len;
}

388 389
static ssize_t compact_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
390
{
391 392
	struct zram *zram = dev_to_zram(dev);
	struct zram_meta *meta;
393

394 395 396 397 398
	down_read(&zram->init_lock);
	if (!init_done(zram)) {
		up_read(&zram->init_lock);
		return -EINVAL;
	}
399

400
	meta = zram->meta;
401
	zs_compact(meta->mem_pool);
402
	up_read(&zram->init_lock);
403

404
	return len;
405 406
}

407 408
static ssize_t io_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
409
{
410 411
	struct zram *zram = dev_to_zram(dev);
	ssize_t ret;
412

413 414 415 416 417 418 419 420
	down_read(&zram->init_lock);
	ret = scnprintf(buf, PAGE_SIZE,
			"%8llu %8llu %8llu %8llu\n",
			(u64)atomic64_read(&zram->stats.failed_reads),
			(u64)atomic64_read(&zram->stats.failed_writes),
			(u64)atomic64_read(&zram->stats.invalid_io),
			(u64)atomic64_read(&zram->stats.notify_free));
	up_read(&zram->init_lock);
421

422
	return ret;
423 424
}

425 426
static ssize_t mm_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
427
{
428
	struct zram *zram = dev_to_zram(dev);
429
	struct zs_pool_stats pool_stats;
430 431 432
	u64 orig_size, mem_used = 0;
	long max_used;
	ssize_t ret;
433

434 435
	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));

436
	down_read(&zram->init_lock);
437
	if (init_done(zram)) {
438
		mem_used = zs_get_total_pages(zram->meta->mem_pool);
439 440
		zs_pool_stats(zram->meta->mem_pool, &pool_stats);
	}
441

442 443
	orig_size = atomic64_read(&zram->stats.pages_stored);
	max_used = atomic_long_read(&zram->stats.max_used_pages);
444

445
	ret = scnprintf(buf, PAGE_SIZE,
446
			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
447 448 449 450 451 452
			orig_size << PAGE_SHIFT,
			(u64)atomic64_read(&zram->stats.compr_data_size),
			mem_used << PAGE_SHIFT,
			zram->limit_pages << PAGE_SHIFT,
			max_used << PAGE_SHIFT,
			(u64)atomic64_read(&zram->stats.zero_pages),
453
			pool_stats.num_migrated);
454
	up_read(&zram->init_lock);
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	return ret;
}

static DEVICE_ATTR_RO(io_stat);
static DEVICE_ATTR_RO(mm_stat);
ZRAM_ATTR_RO(num_reads);
ZRAM_ATTR_RO(num_writes);
ZRAM_ATTR_RO(failed_reads);
ZRAM_ATTR_RO(failed_writes);
ZRAM_ATTR_RO(invalid_io);
ZRAM_ATTR_RO(notify_free);
ZRAM_ATTR_RO(zero_pages);
ZRAM_ATTR_RO(compr_data_size);

static inline bool zram_meta_get(struct zram *zram)
{
	if (atomic_inc_not_zero(&zram->refcount))
		return true;
	return false;
}

static inline void zram_meta_put(struct zram *zram)
{
	atomic_dec(&zram->refcount);
}

static void zram_meta_free(struct zram_meta *meta, u64 disksize)
{
	size_t num_pages = disksize >> PAGE_SHIFT;
	size_t index;
486 487 488 489 490 491 492 493 494 495 496

	/* Free all pages that are still in this zram device */
	for (index = 0; index < num_pages; index++) {
		unsigned long handle = meta->table[index].handle;

		if (!handle)
			continue;

		zs_free(meta->mem_pool, handle);
	}

497 498 499 500 501
	zs_destroy_pool(meta->mem_pool);
	vfree(meta->table);
	kfree(meta);
}

502
static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
503 504 505
{
	size_t num_pages;
	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
506

507
	if (!meta)
508
		return NULL;
509 510 511 512 513

	num_pages = disksize >> PAGE_SHIFT;
	meta->table = vzalloc(num_pages * sizeof(*meta->table));
	if (!meta->table) {
		pr_err("Error allocating zram address table\n");
514
		goto out_error;
515 516
	}

517
	meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
518 519
	if (!meta->mem_pool) {
		pr_err("Error creating memory pool\n");
520
		goto out_error;
521 522 523 524
	}

	return meta;

525
out_error:
526 527
	vfree(meta->table);
	kfree(meta);
528
	return NULL;
529 530
}

531 532 533 534 535
/*
 * To protect concurrent access to the same index entry,
 * caller should hold this table index entry's bit_spinlock to
 * indicate this index entry is accessing.
 */
536
static void zram_free_page(struct zram *zram, size_t index)
537
{
M
Minchan Kim 已提交
538 539
	struct zram_meta *meta = zram->meta;
	unsigned long handle = meta->table[index].handle;
540

541
	if (unlikely(!handle)) {
542 543 544 545
		/*
		 * No memory is allocated for zero filled pages.
		 * Simply clear zero page flag.
		 */
M
Minchan Kim 已提交
546 547
		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
			zram_clear_flag(meta, index, ZRAM_ZERO);
548
			atomic64_dec(&zram->stats.zero_pages);
549 550 551 552
		}
		return;
	}

M
Minchan Kim 已提交
553
	zs_free(meta->mem_pool, handle);
554

555 556
	atomic64_sub(zram_get_obj_size(meta, index),
			&zram->stats.compr_data_size);
557
	atomic64_dec(&zram->stats.pages_stored);
558

M
Minchan Kim 已提交
559
	meta->table[index].handle = 0;
560
	zram_set_obj_size(meta, index, 0);
561 562
}

563
static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
564
{
565
	int ret = 0;
566
	unsigned char *cmem;
M
Minchan Kim 已提交
567
	struct zram_meta *meta = zram->meta;
M
Minchan Kim 已提交
568
	unsigned long handle;
M
Minchan Kim 已提交
569
	size_t size;
M
Minchan Kim 已提交
570

571
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
M
Minchan Kim 已提交
572
	handle = meta->table[index].handle;
573
	size = zram_get_obj_size(meta, index);
574

M
Minchan Kim 已提交
575
	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
576
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
577
		clear_page(mem);
578 579
		return 0;
	}
580

M
Minchan Kim 已提交
581
	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
M
Minchan Kim 已提交
582
	if (size == PAGE_SIZE)
583
		copy_page(mem, cmem);
584
	else
585
		ret = zcomp_decompress(zram->comp, cmem, size, mem);
M
Minchan Kim 已提交
586
	zs_unmap_object(meta->mem_pool, handle);
587
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
588

589
	/* Should NEVER happen. Return bio error if it does. */
590
	if (unlikely(ret)) {
591 592
		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
		return ret;
593
	}
594

595
	return 0;
596 597
}

598
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
599
			  u32 index, int offset)
600 601
{
	int ret;
602 603
	struct page *page;
	unsigned char *user_mem, *uncmem = NULL;
M
Minchan Kim 已提交
604
	struct zram_meta *meta = zram->meta;
605 606
	page = bvec->bv_page;

607
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
M
Minchan Kim 已提交
608 609
	if (unlikely(!meta->table[index].handle) ||
			zram_test_flag(meta, index, ZRAM_ZERO)) {
610
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
611
		handle_zero_page(bvec);
612 613
		return 0;
	}
614
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
615

616 617
	if (is_partial_io(bvec))
		/* Use  a temporary buffer to decompress the page */
618 619 620 621
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);

	user_mem = kmap_atomic(page);
	if (!is_partial_io(bvec))
622 623 624 625 626 627 628
		uncmem = user_mem;

	if (!uncmem) {
		pr_info("Unable to allocate temp memory\n");
		ret = -ENOMEM;
		goto out_cleanup;
	}
629

630
	ret = zram_decompress_page(zram, uncmem, index);
631
	/* Should NEVER happen. Return bio error if it does. */
632
	if (unlikely(ret))
633
		goto out_cleanup;
634

635 636 637 638 639 640 641 642 643 644 645
	if (is_partial_io(bvec))
		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
				bvec->bv_len);

	flush_dcache_page(page);
	ret = 0;
out_cleanup:
	kunmap_atomic(user_mem);
	if (is_partial_io(bvec))
		kfree(uncmem);
	return ret;
646 647 648 649
}

static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
			   int offset)
650
{
651
	int ret = 0;
652
	size_t clen;
653
	unsigned long handle;
654
	struct page *page;
655
	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
M
Minchan Kim 已提交
656
	struct zram_meta *meta = zram->meta;
657
	struct zcomp_strm *zstrm = NULL;
M
Minchan Kim 已提交
658
	unsigned long alloced_pages;
659

660
	page = bvec->bv_page;
661 662 663 664 665
	if (is_partial_io(bvec)) {
		/*
		 * This is a partial IO. We need to read the full page
		 * before to write the changes.
		 */
666
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
667 668 669 670
		if (!uncmem) {
			ret = -ENOMEM;
			goto out;
		}
671
		ret = zram_decompress_page(zram, uncmem, index);
672
		if (ret)
673 674 675
			goto out;
	}

676
	zstrm = zcomp_strm_find(zram->comp);
677
	user_mem = kmap_atomic(page);
678

679
	if (is_partial_io(bvec)) {
680 681
		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
		       bvec->bv_len);
682 683 684
		kunmap_atomic(user_mem);
		user_mem = NULL;
	} else {
685
		uncmem = user_mem;
686
	}
687 688

	if (page_zero_filled(uncmem)) {
689 690
		if (user_mem)
			kunmap_atomic(user_mem);
691
		/* Free memory associated with this sector now. */
692
		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
693
		zram_free_page(zram, index);
M
Minchan Kim 已提交
694
		zram_set_flag(meta, index, ZRAM_ZERO);
695
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
696

697
		atomic64_inc(&zram->stats.zero_pages);
698 699
		ret = 0;
		goto out;
700
	}
701

702
	ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
703 704 705 706 707
	if (!is_partial_io(bvec)) {
		kunmap_atomic(user_mem);
		user_mem = NULL;
		uncmem = NULL;
	}
708

709
	if (unlikely(ret)) {
710
		pr_err("Compression failed! err=%d\n", ret);
711
		goto out;
712
	}
713
	src = zstrm->buffer;
714 715
	if (unlikely(clen > max_zpage_size)) {
		clen = PAGE_SIZE;
716 717
		if (is_partial_io(bvec))
			src = uncmem;
718
	}
719

M
Minchan Kim 已提交
720
	handle = zs_malloc(meta->mem_pool, clen);
721
	if (!handle) {
722 723
		pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
			index, clen);
724 725
		ret = -ENOMEM;
		goto out;
726
	}
M
Minchan Kim 已提交
727

M
Minchan Kim 已提交
728 729
	alloced_pages = zs_get_total_pages(meta->mem_pool);
	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
M
Minchan Kim 已提交
730 731 732 733 734
		zs_free(meta->mem_pool, handle);
		ret = -ENOMEM;
		goto out;
	}

M
Minchan Kim 已提交
735 736
	update_used_max(zram, alloced_pages);

M
Minchan Kim 已提交
737
	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
738

739
	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
740
		src = kmap_atomic(page);
741
		copy_page(cmem, src);
742
		kunmap_atomic(src);
743 744 745
	} else {
		memcpy(cmem, src, clen);
	}
746

747
	zcomp_strm_release(zram->comp, zstrm);
748
	zstrm = NULL;
M
Minchan Kim 已提交
749
	zs_unmap_object(meta->mem_pool, handle);
750

751 752 753 754
	/*
	 * Free memory associated with this sector
	 * before overwriting unused sectors.
	 */
755
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
756 757
	zram_free_page(zram, index);

M
Minchan Kim 已提交
758
	meta->table[index].handle = handle;
759 760
	zram_set_obj_size(meta, index, clen);
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
761

762
	/* Update stats */
763 764
	atomic64_add(clen, &zram->stats.compr_data_size);
	atomic64_inc(&zram->stats.pages_stored);
765
out:
766
	if (zstrm)
767
		zcomp_strm_release(zram->comp, zstrm);
768 769
	if (is_partial_io(bvec))
		kfree(uncmem);
770
	return ret;
771 772
}

J
Joonsoo Kim 已提交
773 774 775 776 777 778 779 780 781
/*
 * zram_bio_discard - handler on discard request
 * @index: physical block index in PAGE_SIZE units
 * @offset: byte offset within physical block
 */
static void zram_bio_discard(struct zram *zram, u32 index,
			     int offset, struct bio *bio)
{
	size_t n = bio->bi_iter.bi_size;
782
	struct zram_meta *meta = zram->meta;
J
Joonsoo Kim 已提交
783 784 785 786 787 788 789 790 791 792 793 794

	/*
	 * zram manages data in physical block size units. Because logical block
	 * size isn't identical with physical block size on some arch, we
	 * could get a discard request pointing to a specific offset within a
	 * certain physical block.  Although we can handle this request by
	 * reading that physiclal block and decompressing and partially zeroing
	 * and re-compressing and then re-storing it, this isn't reasonable
	 * because our intent with a discard request is to save memory.  So
	 * skipping this logical block is appropriate here.
	 */
	if (offset) {
795
		if (n <= (PAGE_SIZE - offset))
J
Joonsoo Kim 已提交
796 797
			return;

798
		n -= (PAGE_SIZE - offset);
J
Joonsoo Kim 已提交
799 800 801 802
		index++;
	}

	while (n >= PAGE_SIZE) {
803
		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
J
Joonsoo Kim 已提交
804
		zram_free_page(zram, index);
805
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
806
		atomic64_inc(&zram->stats.notify_free);
J
Joonsoo Kim 已提交
807 808 809 810 811
		index++;
		n -= PAGE_SIZE;
	}
}

812 813
static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
			int offset, int rw)
814
{
815
	unsigned long start_time = jiffies;
816 817
	int ret;

818 819
	generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
			&zram->disk->part0);
820

821 822 823 824 825 826
	if (rw == READ) {
		atomic64_inc(&zram->stats.num_reads);
		ret = zram_bvec_read(zram, bvec, index, offset);
	} else {
		atomic64_inc(&zram->stats.num_writes);
		ret = zram_bvec_write(zram, bvec, index, offset);
827
	}
828

829
	generic_end_io_acct(rw, &zram->disk->part0, start_time);
830

831 832 833 834 835
	if (unlikely(ret)) {
		if (rw == READ)
			atomic64_inc(&zram->stats.failed_reads);
		else
			atomic64_inc(&zram->stats.failed_writes);
836
	}
837

838
	return ret;
839 840
}

841
static void __zram_make_request(struct zram *zram, struct bio *bio)
842
{
843
	int offset, rw;
844
	u32 index;
845 846
	struct bio_vec bvec;
	struct bvec_iter iter;
847

848 849 850
	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
	offset = (bio->bi_iter.bi_sector &
		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
851

J
Joonsoo Kim 已提交
852 853
	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
		zram_bio_discard(zram, index, offset, bio);
854
		bio_endio(bio);
J
Joonsoo Kim 已提交
855 856 857
		return;
	}

858
	rw = bio_data_dir(bio);
859
	bio_for_each_segment(bvec, bio, iter) {
860 861
		int max_transfer_size = PAGE_SIZE - offset;

862
		if (bvec.bv_len > max_transfer_size) {
863 864 865 866 867 868
			/*
			 * zram_bvec_rw() can only make operation on a single
			 * zram page. Split the bio vector.
			 */
			struct bio_vec bv;

869
			bv.bv_page = bvec.bv_page;
870
			bv.bv_len = max_transfer_size;
871
			bv.bv_offset = bvec.bv_offset;
872

873
			if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
874 875
				goto out;

876
			bv.bv_len = bvec.bv_len - max_transfer_size;
877
			bv.bv_offset += max_transfer_size;
878
			if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
879 880
				goto out;
		} else
881
			if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
882 883
				goto out;

884
		update_position(&index, &offset, &bvec);
885
	}
886

887
	bio_endio(bio);
888
	return;
889 890 891 892 893 894

out:
	bio_io_error(bio);
}

/*
895
 * Handler function for all zram I/O requests.
896
 */
897
static void zram_make_request(struct request_queue *queue, struct bio *bio)
898
{
899
	struct zram *zram = queue->queuedata;
900

901
	if (unlikely(!zram_meta_get(zram)))
902
		goto error;
903

904 905
	blk_queue_split(queue, &bio, queue->bio_split);

906 907
	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
					bio->bi_iter.bi_size)) {
908
		atomic64_inc(&zram->stats.invalid_io);
909
		goto put_zram;
910 911
	}

912
	__zram_make_request(zram, bio);
913
	zram_meta_put(zram);
914
	return;
915 916
put_zram:
	zram_meta_put(zram);
917 918
error:
	bio_io_error(bio);
919 920
}

N
Nitin Gupta 已提交
921 922
static void zram_slot_free_notify(struct block_device *bdev,
				unsigned long index)
923
{
924
	struct zram *zram;
925
	struct zram_meta *meta;
926

927
	zram = bdev->bd_disk->private_data;
928
	meta = zram->meta;
929

930
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
931
	zram_free_page(zram, index);
932
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
933
	atomic64_inc(&zram->stats.notify_free);
934 935
}

936 937 938
static int zram_rw_page(struct block_device *bdev, sector_t sector,
		       struct page *page, int rw)
{
939
	int offset, err = -EIO;
940 941 942 943 944
	u32 index;
	struct zram *zram;
	struct bio_vec bv;

	zram = bdev->bd_disk->private_data;
945 946 947
	if (unlikely(!zram_meta_get(zram)))
		goto out;

948 949
	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
		atomic64_inc(&zram->stats.invalid_io);
950 951
		err = -EINVAL;
		goto put_zram;
952 953 954 955 956 957 958 959 960 961
	}

	index = sector >> SECTORS_PER_PAGE_SHIFT;
	offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;

	bv.bv_page = page;
	bv.bv_len = PAGE_SIZE;
	bv.bv_offset = 0;

	err = zram_bvec_rw(zram, &bv, index, offset, rw);
962 963 964
put_zram:
	zram_meta_put(zram);
out:
965 966 967 968 969 970 971 972 973 974 975 976 977
	/*
	 * If I/O fails, just return error(ie, non-zero) without
	 * calling page_endio.
	 * It causes resubmit the I/O with bio request by upper functions
	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
	 * bio->bi_end_io does things to handle the error
	 * (e.g., SetPageError, set_page_dirty and extra works).
	 */
	if (err == 0)
		page_endio(page, rw, 0);
	return err;
}

978 979 980 981 982
static void zram_reset_device(struct zram *zram)
{
	struct zram_meta *meta;
	struct zcomp *comp;
	u64 disksize;
983

984
	down_write(&zram->init_lock);
985

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	zram->limit_pages = 0;

	if (!init_done(zram)) {
		up_write(&zram->init_lock);
		return;
	}

	meta = zram->meta;
	comp = zram->comp;
	disksize = zram->disksize;
	/*
	 * Refcount will go down to 0 eventually and r/w handler
	 * cannot handle further I/O so it will bail out by
	 * check zram_meta_get.
	 */
	zram_meta_put(zram);
	/*
	 * We want to free zram_meta in process context to avoid
	 * deadlock between reclaim path and any other locks.
	 */
	wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);

	/* Reset stats */
	memset(&zram->stats, 0, sizeof(zram->stats));
	zram->disksize = 0;
	zram->max_comp_streams = 1;

	set_capacity(zram->disk, 0);
	part_stat_set_all(&zram->disk->part0, 0);

	up_write(&zram->init_lock);
	/* I/O operation under all of CPU are done so let's free */
	zram_meta_free(meta, disksize);
	zcomp_destroy(comp);
}

static ssize_t disksize_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
1024
{
1025 1026 1027
	u64 disksize;
	struct zcomp *comp;
	struct zram_meta *meta;
1028
	struct zram *zram = dev_to_zram(dev);
1029
	int err;
1030

1031 1032 1033
	disksize = memparse(buf, NULL);
	if (!disksize)
		return -EINVAL;
1034

1035
	disksize = PAGE_ALIGN(disksize);
1036
	meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	if (!meta)
		return -ENOMEM;

	comp = zcomp_create(zram->compressor, zram->max_comp_streams);
	if (IS_ERR(comp)) {
		pr_info("Cannot initialise %s compressing backend\n",
				zram->compressor);
		err = PTR_ERR(comp);
		goto out_free_meta;
	}

	down_write(&zram->init_lock);
	if (init_done(zram)) {
		pr_info("Cannot change disksize for initialized device\n");
		err = -EBUSY;
		goto out_destroy_comp;
	}

	init_waitqueue_head(&zram->io_done);
	atomic_set(&zram->refcount, 1);
	zram->meta = meta;
	zram->comp = comp;
	zram->disksize = disksize;
	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
	up_write(&zram->init_lock);

	/*
	 * Revalidate disk out of the init_lock to avoid lockdep splat.
	 * It's okay because disk's capacity is protected by init_lock
	 * so that revalidate_disk always sees up-to-date capacity.
	 */
	revalidate_disk(zram->disk);

	return len;

out_destroy_comp:
	up_write(&zram->init_lock);
	zcomp_destroy(comp);
out_free_meta:
	zram_meta_free(meta, disksize);
	return err;
1078 1079
}

1080 1081
static ssize_t reset_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
1082
{
1083 1084 1085 1086
	int ret;
	unsigned short do_reset;
	struct zram *zram;
	struct block_device *bdev;
1087

1088 1089 1090 1091 1092 1093 1094
	ret = kstrtou16(buf, 10, &do_reset);
	if (ret)
		return ret;

	if (!do_reset)
		return -EINVAL;

1095 1096 1097 1098
	zram = dev_to_zram(dev);
	bdev = bdget_disk(zram->disk, 0);
	if (!bdev)
		return -ENOMEM;
1099

1100
	mutex_lock(&bdev->bd_mutex);
1101 1102 1103 1104 1105
	/* Do not reset an active device or claimed device */
	if (bdev->bd_openers || zram->claim) {
		mutex_unlock(&bdev->bd_mutex);
		bdput(bdev);
		return -EBUSY;
1106 1107
	}

1108 1109 1110
	/* From now on, anyone can't open /dev/zram[0-9] */
	zram->claim = true;
	mutex_unlock(&bdev->bd_mutex);
1111

1112
	/* Make sure all the pending I/O are finished */
1113 1114 1115 1116 1117
	fsync_bdev(bdev);
	zram_reset_device(zram);
	revalidate_disk(zram->disk);
	bdput(bdev);

1118 1119 1120 1121
	mutex_lock(&bdev->bd_mutex);
	zram->claim = false;
	mutex_unlock(&bdev->bd_mutex);

1122
	return len;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
}

static int zram_open(struct block_device *bdev, fmode_t mode)
{
	int ret = 0;
	struct zram *zram;

	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));

	zram = bdev->bd_disk->private_data;
	/* zram was claimed to reset so open request fails */
	if (zram->claim)
		ret = -EBUSY;
1136 1137 1138 1139

	return ret;
}

1140
static const struct block_device_operations zram_devops = {
1141
	.open = zram_open,
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	.swap_slot_free_notify = zram_slot_free_notify,
	.rw_page = zram_rw_page,
	.owner = THIS_MODULE
};

static DEVICE_ATTR_WO(compact);
static DEVICE_ATTR_RW(disksize);
static DEVICE_ATTR_RO(initstate);
static DEVICE_ATTR_WO(reset);
static DEVICE_ATTR_RO(orig_data_size);
static DEVICE_ATTR_RO(mem_used_total);
static DEVICE_ATTR_RW(mem_limit);
static DEVICE_ATTR_RW(mem_used_max);
static DEVICE_ATTR_RW(max_comp_streams);
static DEVICE_ATTR_RW(comp_algorithm);
1157

1158 1159 1160 1161 1162 1163
static struct attribute *zram_disk_attrs[] = {
	&dev_attr_disksize.attr,
	&dev_attr_initstate.attr,
	&dev_attr_reset.attr,
	&dev_attr_num_reads.attr,
	&dev_attr_num_writes.attr,
1164 1165
	&dev_attr_failed_reads.attr,
	&dev_attr_failed_writes.attr,
1166
	&dev_attr_compact.attr,
1167 1168 1169 1170 1171 1172
	&dev_attr_invalid_io.attr,
	&dev_attr_notify_free.attr,
	&dev_attr_zero_pages.attr,
	&dev_attr_orig_data_size.attr,
	&dev_attr_compr_data_size.attr,
	&dev_attr_mem_used_total.attr,
M
Minchan Kim 已提交
1173
	&dev_attr_mem_limit.attr,
M
Minchan Kim 已提交
1174
	&dev_attr_mem_used_max.attr,
1175
	&dev_attr_max_comp_streams.attr,
1176
	&dev_attr_comp_algorithm.attr,
1177
	&dev_attr_io_stat.attr,
1178
	&dev_attr_mm_stat.attr,
1179 1180 1181 1182 1183 1184 1185
	NULL,
};

static struct attribute_group zram_disk_attr_group = {
	.attrs = zram_disk_attrs,
};

1186 1187 1188 1189 1190
/*
 * Allocate and initialize new zram device. the function returns
 * '>= 0' device_id upon success, and negative value otherwise.
 */
static int zram_add(void)
1191
{
1192
	struct zram *zram;
1193
	struct request_queue *queue;
1194
	int ret, device_id;
1195 1196 1197 1198 1199

	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
	if (!zram)
		return -ENOMEM;

1200
	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1201 1202
	if (ret < 0)
		goto out_free_dev;
1203
	device_id = ret;
1204

1205
	init_rwsem(&zram->init_lock);
1206

1207 1208
	queue = blk_alloc_queue(GFP_KERNEL);
	if (!queue) {
1209 1210
		pr_err("Error allocating disk queue for device %d\n",
			device_id);
1211 1212
		ret = -ENOMEM;
		goto out_free_idr;
1213 1214
	}

1215
	blk_queue_make_request(queue, zram_make_request);
1216

1217
	/* gendisk structure */
1218 1219
	zram->disk = alloc_disk(1);
	if (!zram->disk) {
1220
		pr_warn("Error allocating disk structure for device %d\n",
1221
			device_id);
J
Julia Lawall 已提交
1222
		ret = -ENOMEM;
1223
		goto out_free_queue;
1224 1225
	}

1226 1227 1228
	zram->disk->major = zram_major;
	zram->disk->first_minor = device_id;
	zram->disk->fops = &zram_devops;
1229 1230
	zram->disk->queue = queue;
	zram->disk->queue->queuedata = zram;
1231 1232
	zram->disk->private_data = zram;
	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1233

1234
	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1235
	set_capacity(zram->disk, 0);
1236 1237
	/* zram devices sort of resembles non-rotational disks */
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1238
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1239 1240 1241 1242
	/*
	 * To ensure that we always get PAGE_SIZE aligned
	 * and n*PAGE_SIZED sized I/O requests.
	 */
1243
	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1244 1245
	blk_queue_logical_block_size(zram->disk->queue,
					ZRAM_LOGICAL_BLOCK_SIZE);
1246 1247
	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
J
Joonsoo Kim 已提交
1248
	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1249
	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
J
Joonsoo Kim 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	/*
	 * zram_bio_discard() will clear all logical blocks if logical block
	 * size is identical with physical block size(PAGE_SIZE). But if it is
	 * different, we will skip discarding some parts of logical blocks in
	 * the part of the request range which isn't aligned to physical block
	 * size.  So we can't ensure that all discarded logical blocks are
	 * zeroed.
	 */
	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
		zram->disk->queue->limits.discard_zeroes_data = 1;
	else
		zram->disk->queue->limits.discard_zeroes_data = 0;
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1263

1264
	add_disk(zram->disk);
1265

1266 1267 1268
	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
				&zram_disk_attr_group);
	if (ret < 0) {
1269
		pr_warn("Error creating sysfs group");
1270
		goto out_free_disk;
1271
	}
1272
	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1273
	zram->meta = NULL;
1274
	zram->max_comp_streams = 1;
1275 1276

	pr_info("Added device: %s\n", zram->disk->disk_name);
1277
	return device_id;
1278

1279 1280 1281 1282
out_free_disk:
	del_gendisk(zram->disk);
	put_disk(zram->disk);
out_free_queue:
1283
	blk_cleanup_queue(queue);
1284 1285 1286 1287
out_free_idr:
	idr_remove(&zram_index_idr, device_id);
out_free_dev:
	kfree(zram);
1288
	return ret;
1289 1290
}

1291
static int zram_remove(struct zram *zram)
1292
{
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	struct block_device *bdev;

	bdev = bdget_disk(zram->disk, 0);
	if (!bdev)
		return -ENOMEM;

	mutex_lock(&bdev->bd_mutex);
	if (bdev->bd_openers || zram->claim) {
		mutex_unlock(&bdev->bd_mutex);
		bdput(bdev);
		return -EBUSY;
	}

	zram->claim = true;
	mutex_unlock(&bdev->bd_mutex);

1309 1310
	/*
	 * Remove sysfs first, so no one will perform a disksize
1311 1312 1313 1314
	 * store while we destroy the devices. This also helps during
	 * hot_remove -- zram_reset_device() is the last holder of
	 * ->init_lock, no later/concurrent disksize_store() or any
	 * other sysfs handlers are possible.
1315 1316 1317
	 */
	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
			&zram_disk_attr_group);
1318

1319 1320
	/* Make sure all the pending I/O are finished */
	fsync_bdev(bdev);
1321
	zram_reset_device(zram);
1322 1323 1324 1325
	bdput(bdev);

	pr_info("Removed device: %s\n", zram->disk->disk_name);

1326 1327 1328 1329 1330
	idr_remove(&zram_index_idr, zram->disk->first_minor);
	blk_cleanup_queue(zram->disk->queue);
	del_gendisk(zram->disk);
	put_disk(zram->disk);
	kfree(zram);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	return 0;
}

/* zram-control sysfs attributes */
static ssize_t hot_add_show(struct class *class,
			struct class_attribute *attr,
			char *buf)
{
	int ret;

	mutex_lock(&zram_index_mutex);
	ret = zram_add();
	mutex_unlock(&zram_index_mutex);

	if (ret < 0)
		return ret;
	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
}

static ssize_t hot_remove_store(struct class *class,
			struct class_attribute *attr,
			const char *buf,
			size_t count)
{
	struct zram *zram;
	int ret, dev_id;

	/* dev_id is gendisk->first_minor, which is `int' */
	ret = kstrtoint(buf, 10, &dev_id);
	if (ret)
		return ret;
	if (dev_id < 0)
		return -EINVAL;

	mutex_lock(&zram_index_mutex);

	zram = idr_find(&zram_index_idr, dev_id);
	if (zram)
		ret = zram_remove(zram);
	else
		ret = -ENODEV;

	mutex_unlock(&zram_index_mutex);
	return ret ? ret : count;
1375
}
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static struct class_attribute zram_control_class_attrs[] = {
	__ATTR_RO(hot_add),
	__ATTR_WO(hot_remove),
	__ATTR_NULL,
};

static struct class zram_control_class = {
	.name		= "zram-control",
	.owner		= THIS_MODULE,
	.class_attrs	= zram_control_class_attrs,
};

1389 1390 1391 1392 1393
static int zram_remove_cb(int id, void *ptr, void *data)
{
	zram_remove(ptr);
	return 0;
}
1394

1395 1396
static void destroy_devices(void)
{
1397
	class_unregister(&zram_control_class);
1398 1399
	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
	idr_destroy(&zram_index_idr);
1400
	unregister_blkdev(zram_major, "zram");
1401 1402
}

1403
static int __init zram_init(void)
1404
{
1405
	int ret;
1406

1407 1408 1409 1410 1411 1412
	ret = class_register(&zram_control_class);
	if (ret) {
		pr_warn("Unable to register zram-control class\n");
		return ret;
	}

1413 1414
	zram_major = register_blkdev(0, "zram");
	if (zram_major <= 0) {
1415
		pr_warn("Unable to get major number\n");
1416
		class_unregister(&zram_control_class);
1417
		return -EBUSY;
1418 1419
	}

1420
	while (num_devices != 0) {
1421
		mutex_lock(&zram_index_mutex);
1422
		ret = zram_add();
1423
		mutex_unlock(&zram_index_mutex);
1424
		if (ret < 0)
1425
			goto out_error;
1426
		num_devices--;
1427 1428
	}

1429
	return 0;
1430

1431
out_error:
1432
	destroy_devices();
1433 1434 1435
	return ret;
}

1436
static void __exit zram_exit(void)
1437
{
1438
	destroy_devices();
1439 1440
}

1441 1442
module_init(zram_init);
module_exit(zram_exit);
1443

1444
module_param(num_devices, uint, 0);
1445
MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1446

1447 1448
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1449
MODULE_DESCRIPTION("Compressed RAM Block Device");