zram_drv.c 32.6 KB
Newer Older
1
/*
2
 * Compressed RAM block device
3
 *
4
 * Copyright (C) 2008, 2009, 2010  Nitin Gupta
M
Minchan Kim 已提交
5
 *               2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13 14
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the licence that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 *
 */

15
#define KMSG_COMPONENT "zram"
16 17 18 19
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

#include <linux/module.h>
#include <linux/kernel.h>
20
#include <linux/bio.h>
21 22 23 24 25 26
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
27
#include <linux/slab.h>
28
#include <linux/backing-dev.h>
29 30
#include <linux/string.h>
#include <linux/vmalloc.h>
31
#include <linux/err.h>
32
#include <linux/idr.h>
33
#include <linux/sysfs.h>
34
#include <linux/cpuhotplug.h>
35

36
#include "zram_drv.h"
37

38
static DEFINE_IDR(zram_index_idr);
39 40 41
/* idr index must be protected */
static DEFINE_MUTEX(zram_index_mutex);

42
static int zram_major;
43
static const char *default_compressor = "lzo";
44 45

/* Module params (documentation at end) */
46
static unsigned int num_devices = 1;
47

48
static inline bool init_done(struct zram *zram)
49
{
50
	return zram->disksize;
51 52
}

53 54 55 56 57
static inline struct zram *dev_to_zram(struct device *dev)
{
	return (struct zram *)dev_to_disk(dev)->private_data;
}

58
/* flag operations require table entry bit_spin_lock() being held */
59 60
static int zram_test_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
61
{
62 63
	return meta->table[index].value & BIT(flag);
}
64

65 66 67 68 69
static void zram_set_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
{
	meta->table[index].value |= BIT(flag);
}
70

71 72 73 74 75
static void zram_clear_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
{
	meta->table[index].value &= ~BIT(flag);
}
76

77 78 79
static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
{
	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
80 81
}

82 83
static void zram_set_obj_size(struct zram_meta *meta,
					u32 index, size_t size)
84
{
85
	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
86

87 88 89
	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
}

90
static inline bool is_partial_io(struct bio_vec *bvec)
91 92 93 94
{
	return bvec->bv_len != PAGE_SIZE;
}

95 96 97 98
static void zram_revalidate_disk(struct zram *zram)
{
	revalidate_disk(zram->disk);
	/* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
99
	zram->disk->queue->backing_dev_info->capabilities |=
100 101 102
		BDI_CAP_STABLE_WRITES;
}

103 104 105
/*
 * Check if request is within bounds and aligned on zram logical blocks.
 */
106
static inline bool valid_io_request(struct zram *zram,
107 108 109 110 111 112
		sector_t start, unsigned int size)
{
	u64 end, bound;

	/* unaligned request */
	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
113
		return false;
114
	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
115
		return false;
116 117 118 119 120

	end = start + (size >> SECTOR_SHIFT);
	bound = zram->disksize >> SECTOR_SHIFT;
	/* out of range range */
	if (unlikely(start >= bound || end > bound || start > end))
121
		return false;
122 123

	/* I/O request is valid */
124
	return true;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
}

static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
{
	if (*offset + bvec->bv_len >= PAGE_SIZE)
		(*index)++;
	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
}

static inline void update_used_max(struct zram *zram,
					const unsigned long pages)
{
	unsigned long old_max, cur_max;

	old_max = atomic_long_read(&zram->stats.max_used_pages);

	do {
		cur_max = old_max;
		if (pages > cur_max)
			old_max = atomic_long_cmpxchg(
				&zram->stats.max_used_pages, cur_max, pages);
	} while (old_max != cur_max);
}

149
static bool page_zero_filled(void *ptr)
150 151 152 153 154 155 156 157
{
	unsigned int pos;
	unsigned long *page;

	page = (unsigned long *)ptr;

	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
		if (page[pos])
158
			return false;
159 160
	}

161
	return true;
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

static void handle_zero_page(struct bio_vec *bvec)
{
	struct page *page = bvec->bv_page;
	void *user_mem;

	user_mem = kmap_atomic(page);
	if (is_partial_io(bvec))
		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
	else
		clear_page(user_mem);
	kunmap_atomic(user_mem);

	flush_dcache_page(page);
177 178 179 180 181
}

static ssize_t initstate_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
182
	u32 val;
183 184
	struct zram *zram = dev_to_zram(dev);

185 186 187
	down_read(&zram->init_lock);
	val = init_done(zram);
	up_read(&zram->init_lock);
188

189
	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
190 191
}

192 193 194 195 196 197 198 199
static ssize_t disksize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct zram *zram = dev_to_zram(dev);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
}

M
Minchan Kim 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static ssize_t mem_limit_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	u64 limit;
	char *tmp;
	struct zram *zram = dev_to_zram(dev);

	limit = memparse(buf, &tmp);
	if (buf == tmp) /* no chars parsed, invalid input */
		return -EINVAL;

	down_write(&zram->init_lock);
	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
	up_write(&zram->init_lock);

	return len;
}

M
Minchan Kim 已提交
218 219 220 221 222 223 224 225 226 227 228 229
static ssize_t mem_used_max_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	int err;
	unsigned long val;
	struct zram *zram = dev_to_zram(dev);

	err = kstrtoul(buf, 10, &val);
	if (err || val != 0)
		return -EINVAL;

	down_read(&zram->init_lock);
230 231
	if (init_done(zram)) {
		struct zram_meta *meta = zram->meta;
M
Minchan Kim 已提交
232 233
		atomic_long_set(&zram->stats.max_used_pages,
				zs_get_total_pages(meta->mem_pool));
234
	}
M
Minchan Kim 已提交
235 236 237 238 239
	up_read(&zram->init_lock);

	return len;
}

240 241 242 243 244 245 246 247 248
/*
 * We switched to per-cpu streams and this attr is not needed anymore.
 * However, we will keep it around for some time, because:
 * a) we may revert per-cpu streams in the future
 * b) it's visible to user space and we need to follow our 2 years
 *    retirement rule; but we already have a number of 'soon to be
 *    altered' attrs, so max_comp_streams need to wait for the next
 *    layoff cycle.
 */
249 250 251
static ssize_t max_comp_streams_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
252
	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
253 254
}

255 256 257
static ssize_t max_comp_streams_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
258
	return len;
259 260
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static ssize_t comp_algorithm_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	size_t sz;
	struct zram *zram = dev_to_zram(dev);

	down_read(&zram->init_lock);
	sz = zcomp_available_show(zram->compressor, buf);
	up_read(&zram->init_lock);

	return sz;
}

static ssize_t comp_algorithm_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	struct zram *zram = dev_to_zram(dev);
278
	char compressor[CRYPTO_MAX_ALG_NAME];
279 280
	size_t sz;

281 282 283 284 285 286 287
	strlcpy(compressor, buf, sizeof(compressor));
	/* ignore trailing newline */
	sz = strlen(compressor);
	if (sz > 0 && compressor[sz - 1] == '\n')
		compressor[sz - 1] = 0x00;

	if (!zcomp_available_algorithm(compressor))
288 289
		return -EINVAL;

290 291 292 293 294 295
	down_write(&zram->init_lock);
	if (init_done(zram)) {
		up_write(&zram->init_lock);
		pr_info("Can't change algorithm for initialized device\n");
		return -EBUSY;
	}
296

297
	strlcpy(zram->compressor, compressor, sizeof(compressor));
298 299 300 301
	up_write(&zram->init_lock);
	return len;
}

302 303
static ssize_t compact_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
304
{
305 306
	struct zram *zram = dev_to_zram(dev);
	struct zram_meta *meta;
307

308 309 310 311 312
	down_read(&zram->init_lock);
	if (!init_done(zram)) {
		up_read(&zram->init_lock);
		return -EINVAL;
	}
313

314
	meta = zram->meta;
315
	zs_compact(meta->mem_pool);
316
	up_read(&zram->init_lock);
317

318
	return len;
319 320
}

321 322
static ssize_t io_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
323
{
324 325
	struct zram *zram = dev_to_zram(dev);
	ssize_t ret;
326

327 328 329 330 331 332 333 334
	down_read(&zram->init_lock);
	ret = scnprintf(buf, PAGE_SIZE,
			"%8llu %8llu %8llu %8llu\n",
			(u64)atomic64_read(&zram->stats.failed_reads),
			(u64)atomic64_read(&zram->stats.failed_writes),
			(u64)atomic64_read(&zram->stats.invalid_io),
			(u64)atomic64_read(&zram->stats.notify_free));
	up_read(&zram->init_lock);
335

336
	return ret;
337 338
}

339 340
static ssize_t mm_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
341
{
342
	struct zram *zram = dev_to_zram(dev);
343
	struct zs_pool_stats pool_stats;
344 345 346
	u64 orig_size, mem_used = 0;
	long max_used;
	ssize_t ret;
347

348 349
	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));

350
	down_read(&zram->init_lock);
351
	if (init_done(zram)) {
352
		mem_used = zs_get_total_pages(zram->meta->mem_pool);
353 354
		zs_pool_stats(zram->meta->mem_pool, &pool_stats);
	}
355

356 357
	orig_size = atomic64_read(&zram->stats.pages_stored);
	max_used = atomic_long_read(&zram->stats.max_used_pages);
358

359
	ret = scnprintf(buf, PAGE_SIZE,
360
			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
361 362 363 364 365 366
			orig_size << PAGE_SHIFT,
			(u64)atomic64_read(&zram->stats.compr_data_size),
			mem_used << PAGE_SHIFT,
			zram->limit_pages << PAGE_SHIFT,
			max_used << PAGE_SHIFT,
			(u64)atomic64_read(&zram->stats.zero_pages),
367
			pool_stats.pages_compacted);
368
	up_read(&zram->init_lock);
369

370 371 372
	return ret;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
static ssize_t debug_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int version = 1;
	struct zram *zram = dev_to_zram(dev);
	ssize_t ret;

	down_read(&zram->init_lock);
	ret = scnprintf(buf, PAGE_SIZE,
			"version: %d\n%8llu\n",
			version,
			(u64)atomic64_read(&zram->stats.writestall));
	up_read(&zram->init_lock);

	return ret;
}

390 391
static DEVICE_ATTR_RO(io_stat);
static DEVICE_ATTR_RO(mm_stat);
392
static DEVICE_ATTR_RO(debug_stat);
393 394 395 396 397

static void zram_meta_free(struct zram_meta *meta, u64 disksize)
{
	size_t num_pages = disksize >> PAGE_SHIFT;
	size_t index;
398 399 400 401 402 403 404 405 406 407 408

	/* Free all pages that are still in this zram device */
	for (index = 0; index < num_pages; index++) {
		unsigned long handle = meta->table[index].handle;

		if (!handle)
			continue;

		zs_free(meta->mem_pool, handle);
	}

409 410 411 412 413
	zs_destroy_pool(meta->mem_pool);
	vfree(meta->table);
	kfree(meta);
}

414
static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
415 416 417
{
	size_t num_pages;
	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
418

419
	if (!meta)
420
		return NULL;
421 422 423 424 425

	num_pages = disksize >> PAGE_SHIFT;
	meta->table = vzalloc(num_pages * sizeof(*meta->table));
	if (!meta->table) {
		pr_err("Error allocating zram address table\n");
426
		goto out_error;
427 428
	}

429
	meta->mem_pool = zs_create_pool(pool_name);
430 431
	if (!meta->mem_pool) {
		pr_err("Error creating memory pool\n");
432
		goto out_error;
433 434 435 436
	}

	return meta;

437
out_error:
438 439
	vfree(meta->table);
	kfree(meta);
440
	return NULL;
441 442
}

443 444 445 446 447
/*
 * To protect concurrent access to the same index entry,
 * caller should hold this table index entry's bit_spinlock to
 * indicate this index entry is accessing.
 */
448
static void zram_free_page(struct zram *zram, size_t index)
449
{
M
Minchan Kim 已提交
450 451
	struct zram_meta *meta = zram->meta;
	unsigned long handle = meta->table[index].handle;
452

453
	if (unlikely(!handle)) {
454 455 456 457
		/*
		 * No memory is allocated for zero filled pages.
		 * Simply clear zero page flag.
		 */
M
Minchan Kim 已提交
458 459
		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
			zram_clear_flag(meta, index, ZRAM_ZERO);
460
			atomic64_dec(&zram->stats.zero_pages);
461 462 463 464
		}
		return;
	}

M
Minchan Kim 已提交
465
	zs_free(meta->mem_pool, handle);
466

467 468
	atomic64_sub(zram_get_obj_size(meta, index),
			&zram->stats.compr_data_size);
469
	atomic64_dec(&zram->stats.pages_stored);
470

M
Minchan Kim 已提交
471
	meta->table[index].handle = 0;
472
	zram_set_obj_size(meta, index, 0);
473 474
}

475
static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
476
{
477
	int ret = 0;
478
	unsigned char *cmem;
M
Minchan Kim 已提交
479
	struct zram_meta *meta = zram->meta;
M
Minchan Kim 已提交
480
	unsigned long handle;
481
	unsigned int size;
M
Minchan Kim 已提交
482

483
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
M
Minchan Kim 已提交
484
	handle = meta->table[index].handle;
485
	size = zram_get_obj_size(meta, index);
486

M
Minchan Kim 已提交
487
	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
488
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
489
		clear_page(mem);
490 491
		return 0;
	}
492

M
Minchan Kim 已提交
493
	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
494
	if (size == PAGE_SIZE) {
495
		copy_page(mem, cmem);
496 497 498 499 500 501
	} else {
		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);

		ret = zcomp_decompress(zstrm, cmem, size, mem);
		zcomp_stream_put(zram->comp);
	}
M
Minchan Kim 已提交
502
	zs_unmap_object(meta->mem_pool, handle);
503
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
504

505
	/* Should NEVER happen. Return bio error if it does. */
506
	if (unlikely(ret)) {
507 508
		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
		return ret;
509
	}
510

511
	return 0;
512 513
}

514
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
515
			  u32 index, int offset)
516 517
{
	int ret;
518 519
	struct page *page;
	unsigned char *user_mem, *uncmem = NULL;
M
Minchan Kim 已提交
520
	struct zram_meta *meta = zram->meta;
521 522
	page = bvec->bv_page;

523
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
M
Minchan Kim 已提交
524 525
	if (unlikely(!meta->table[index].handle) ||
			zram_test_flag(meta, index, ZRAM_ZERO)) {
526
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
527
		handle_zero_page(bvec);
528 529
		return 0;
	}
530
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
531

532 533
	if (is_partial_io(bvec))
		/* Use  a temporary buffer to decompress the page */
534 535 536 537
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);

	user_mem = kmap_atomic(page);
	if (!is_partial_io(bvec))
538 539 540
		uncmem = user_mem;

	if (!uncmem) {
S
Sergey Senozhatsky 已提交
541
		pr_err("Unable to allocate temp memory\n");
542 543 544
		ret = -ENOMEM;
		goto out_cleanup;
	}
545

546
	ret = zram_decompress_page(zram, uncmem, index);
547
	/* Should NEVER happen. Return bio error if it does. */
548
	if (unlikely(ret))
549
		goto out_cleanup;
550

551 552 553 554 555 556 557 558 559 560 561
	if (is_partial_io(bvec))
		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
				bvec->bv_len);

	flush_dcache_page(page);
	ret = 0;
out_cleanup:
	kunmap_atomic(user_mem);
	if (is_partial_io(bvec))
		kfree(uncmem);
	return ret;
562 563 564 565
}

static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
			   int offset)
566
{
567
	int ret = 0;
568
	unsigned int clen;
569
	unsigned long handle = 0;
570
	struct page *page;
571
	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
M
Minchan Kim 已提交
572
	struct zram_meta *meta = zram->meta;
573
	struct zcomp_strm *zstrm = NULL;
M
Minchan Kim 已提交
574
	unsigned long alloced_pages;
575

576
	page = bvec->bv_page;
577 578 579 580 581
	if (is_partial_io(bvec)) {
		/*
		 * This is a partial IO. We need to read the full page
		 * before to write the changes.
		 */
582
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
583 584 585 586
		if (!uncmem) {
			ret = -ENOMEM;
			goto out;
		}
587
		ret = zram_decompress_page(zram, uncmem, index);
588
		if (ret)
589 590 591
			goto out;
	}

592
compress_again:
593
	user_mem = kmap_atomic(page);
594
	if (is_partial_io(bvec)) {
595 596
		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
		       bvec->bv_len);
597 598 599
		kunmap_atomic(user_mem);
		user_mem = NULL;
	} else {
600
		uncmem = user_mem;
601
	}
602 603

	if (page_zero_filled(uncmem)) {
604 605
		if (user_mem)
			kunmap_atomic(user_mem);
606
		/* Free memory associated with this sector now. */
607
		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
608
		zram_free_page(zram, index);
M
Minchan Kim 已提交
609
		zram_set_flag(meta, index, ZRAM_ZERO);
610
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
611

612
		atomic64_inc(&zram->stats.zero_pages);
613 614
		ret = 0;
		goto out;
615
	}
616

617
	zstrm = zcomp_stream_get(zram->comp);
618
	ret = zcomp_compress(zstrm, uncmem, &clen);
619 620 621 622 623
	if (!is_partial_io(bvec)) {
		kunmap_atomic(user_mem);
		user_mem = NULL;
		uncmem = NULL;
	}
624

625
	if (unlikely(ret)) {
626
		pr_err("Compression failed! err=%d\n", ret);
627
		goto out;
628
	}
629

630
	src = zstrm->buffer;
631 632
	if (unlikely(clen > max_zpage_size)) {
		clen = PAGE_SIZE;
633 634
		if (is_partial_io(bvec))
			src = uncmem;
635
	}
636

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	/*
	 * handle allocation has 2 paths:
	 * a) fast path is executed with preemption disabled (for
	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
	 *  since we can't sleep;
	 * b) slow path enables preemption and attempts to allocate
	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
	 *  put per-cpu compression stream and, thus, to re-do
	 *  the compression once handle is allocated.
	 *
	 * if we have a 'non-null' handle here then we are coming
	 * from the slow path and handle has already been allocated.
	 */
	if (!handle)
		handle = zs_malloc(meta->mem_pool, clen,
				__GFP_KSWAPD_RECLAIM |
				__GFP_NOWARN |
654 655
				__GFP_HIGHMEM |
				__GFP_MOVABLE);
656
	if (!handle) {
657
		zcomp_stream_put(zram->comp);
658 659
		zstrm = NULL;

660 661
		atomic64_inc(&zram->stats.writestall);

662
		handle = zs_malloc(meta->mem_pool, clen,
663 664
				GFP_NOIO | __GFP_HIGHMEM |
				__GFP_MOVABLE);
665 666 667
		if (handle)
			goto compress_again;

668
		pr_err("Error allocating memory for compressed page: %u, size=%u\n",
669
			index, clen);
670 671
		ret = -ENOMEM;
		goto out;
672
	}
M
Minchan Kim 已提交
673

M
Minchan Kim 已提交
674
	alloced_pages = zs_get_total_pages(meta->mem_pool);
675 676
	update_used_max(zram, alloced_pages);

M
Minchan Kim 已提交
677
	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
M
Minchan Kim 已提交
678 679 680 681 682
		zs_free(meta->mem_pool, handle);
		ret = -ENOMEM;
		goto out;
	}

M
Minchan Kim 已提交
683
	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
684

685
	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
686
		src = kmap_atomic(page);
687
		copy_page(cmem, src);
688
		kunmap_atomic(src);
689 690 691
	} else {
		memcpy(cmem, src, clen);
	}
692

693
	zcomp_stream_put(zram->comp);
694
	zstrm = NULL;
M
Minchan Kim 已提交
695
	zs_unmap_object(meta->mem_pool, handle);
696

697 698 699 700
	/*
	 * Free memory associated with this sector
	 * before overwriting unused sectors.
	 */
701
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
702 703
	zram_free_page(zram, index);

M
Minchan Kim 已提交
704
	meta->table[index].handle = handle;
705 706
	zram_set_obj_size(meta, index, clen);
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
707

708
	/* Update stats */
709 710
	atomic64_add(clen, &zram->stats.compr_data_size);
	atomic64_inc(&zram->stats.pages_stored);
711
out:
712
	if (zstrm)
713
		zcomp_stream_put(zram->comp);
714 715
	if (is_partial_io(bvec))
		kfree(uncmem);
716
	return ret;
717 718
}

J
Joonsoo Kim 已提交
719 720 721 722 723 724 725 726 727
/*
 * zram_bio_discard - handler on discard request
 * @index: physical block index in PAGE_SIZE units
 * @offset: byte offset within physical block
 */
static void zram_bio_discard(struct zram *zram, u32 index,
			     int offset, struct bio *bio)
{
	size_t n = bio->bi_iter.bi_size;
728
	struct zram_meta *meta = zram->meta;
J
Joonsoo Kim 已提交
729 730 731 732 733 734 735 736 737 738 739 740

	/*
	 * zram manages data in physical block size units. Because logical block
	 * size isn't identical with physical block size on some arch, we
	 * could get a discard request pointing to a specific offset within a
	 * certain physical block.  Although we can handle this request by
	 * reading that physiclal block and decompressing and partially zeroing
	 * and re-compressing and then re-storing it, this isn't reasonable
	 * because our intent with a discard request is to save memory.  So
	 * skipping this logical block is appropriate here.
	 */
	if (offset) {
741
		if (n <= (PAGE_SIZE - offset))
J
Joonsoo Kim 已提交
742 743
			return;

744
		n -= (PAGE_SIZE - offset);
J
Joonsoo Kim 已提交
745 746 747 748
		index++;
	}

	while (n >= PAGE_SIZE) {
749
		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
J
Joonsoo Kim 已提交
750
		zram_free_page(zram, index);
751
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
752
		atomic64_inc(&zram->stats.notify_free);
J
Joonsoo Kim 已提交
753 754 755 756 757
		index++;
		n -= PAGE_SIZE;
	}
}

758
static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
759
			int offset, bool is_write)
760
{
761
	unsigned long start_time = jiffies;
762
	int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
763 764
	int ret;

765
	generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
766
			&zram->disk->part0);
767

768
	if (!is_write) {
769 770 771 772 773
		atomic64_inc(&zram->stats.num_reads);
		ret = zram_bvec_read(zram, bvec, index, offset);
	} else {
		atomic64_inc(&zram->stats.num_writes);
		ret = zram_bvec_write(zram, bvec, index, offset);
774
	}
775

776
	generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
777

778
	if (unlikely(ret)) {
779
		if (!is_write)
780 781 782
			atomic64_inc(&zram->stats.failed_reads);
		else
			atomic64_inc(&zram->stats.failed_writes);
783
	}
784

785
	return ret;
786 787
}

788
static void __zram_make_request(struct zram *zram, struct bio *bio)
789
{
790
	int offset;
791
	u32 index;
792 793
	struct bio_vec bvec;
	struct bvec_iter iter;
794

795 796 797
	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
	offset = (bio->bi_iter.bi_sector &
		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
798

799
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
J
Joonsoo Kim 已提交
800
		zram_bio_discard(zram, index, offset, bio);
801
		bio_endio(bio);
J
Joonsoo Kim 已提交
802 803 804
		return;
	}

805
	bio_for_each_segment(bvec, bio, iter) {
806 807
		int max_transfer_size = PAGE_SIZE - offset;

808
		if (bvec.bv_len > max_transfer_size) {
809 810 811 812 813 814
			/*
			 * zram_bvec_rw() can only make operation on a single
			 * zram page. Split the bio vector.
			 */
			struct bio_vec bv;

815
			bv.bv_page = bvec.bv_page;
816
			bv.bv_len = max_transfer_size;
817
			bv.bv_offset = bvec.bv_offset;
818

819
			if (zram_bvec_rw(zram, &bv, index, offset,
820
					 op_is_write(bio_op(bio))) < 0)
821 822
				goto out;

823
			bv.bv_len = bvec.bv_len - max_transfer_size;
824
			bv.bv_offset += max_transfer_size;
825
			if (zram_bvec_rw(zram, &bv, index + 1, 0,
826
					 op_is_write(bio_op(bio))) < 0)
827 828
				goto out;
		} else
829
			if (zram_bvec_rw(zram, &bvec, index, offset,
830
					 op_is_write(bio_op(bio))) < 0)
831 832
				goto out;

833
		update_position(&index, &offset, &bvec);
834
	}
835

836
	bio_endio(bio);
837
	return;
838 839 840 841 842 843

out:
	bio_io_error(bio);
}

/*
844
 * Handler function for all zram I/O requests.
845
 */
846
static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
847
{
848
	struct zram *zram = queue->queuedata;
849

850 851
	blk_queue_split(queue, &bio, queue->bio_split);

852 853
	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
					bio->bi_iter.bi_size)) {
854
		atomic64_inc(&zram->stats.invalid_io);
M
Minchan Kim 已提交
855
		goto error;
856 857
	}

858
	__zram_make_request(zram, bio);
859
	return BLK_QC_T_NONE;
M
Minchan Kim 已提交
860

861 862
error:
	bio_io_error(bio);
863
	return BLK_QC_T_NONE;
864 865
}

N
Nitin Gupta 已提交
866 867
static void zram_slot_free_notify(struct block_device *bdev,
				unsigned long index)
868
{
869
	struct zram *zram;
870
	struct zram_meta *meta;
871

872
	zram = bdev->bd_disk->private_data;
873
	meta = zram->meta;
874

875
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
876
	zram_free_page(zram, index);
877
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
878
	atomic64_inc(&zram->stats.notify_free);
879 880
}

881
static int zram_rw_page(struct block_device *bdev, sector_t sector,
882
		       struct page *page, bool is_write)
883
{
884
	int offset, err = -EIO;
885 886 887 888 889
	u32 index;
	struct zram *zram;
	struct bio_vec bv;

	zram = bdev->bd_disk->private_data;
890

891 892
	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
		atomic64_inc(&zram->stats.invalid_io);
893
		err = -EINVAL;
M
Minchan Kim 已提交
894
		goto out;
895 896 897 898 899 900 901 902 903
	}

	index = sector >> SECTORS_PER_PAGE_SHIFT;
	offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;

	bv.bv_page = page;
	bv.bv_len = PAGE_SIZE;
	bv.bv_offset = 0;

904
	err = zram_bvec_rw(zram, &bv, index, offset, is_write);
905
out:
906 907 908 909 910 911 912 913 914
	/*
	 * If I/O fails, just return error(ie, non-zero) without
	 * calling page_endio.
	 * It causes resubmit the I/O with bio request by upper functions
	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
	 * bio->bi_end_io does things to handle the error
	 * (e.g., SetPageError, set_page_dirty and extra works).
	 */
	if (err == 0)
915
		page_endio(page, is_write, 0);
916 917 918
	return err;
}

919 920 921 922 923
static void zram_reset_device(struct zram *zram)
{
	struct zram_meta *meta;
	struct zcomp *comp;
	u64 disksize;
924

925
	down_write(&zram->init_lock);
926

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	zram->limit_pages = 0;

	if (!init_done(zram)) {
		up_write(&zram->init_lock);
		return;
	}

	meta = zram->meta;
	comp = zram->comp;
	disksize = zram->disksize;

	/* Reset stats */
	memset(&zram->stats, 0, sizeof(zram->stats));
	zram->disksize = 0;

	set_capacity(zram->disk, 0);
	part_stat_set_all(&zram->disk->part0, 0);

	up_write(&zram->init_lock);
	/* I/O operation under all of CPU are done so let's free */
	zram_meta_free(meta, disksize);
	zcomp_destroy(comp);
}

static ssize_t disksize_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
953
{
954 955 956
	u64 disksize;
	struct zcomp *comp;
	struct zram_meta *meta;
957
	struct zram *zram = dev_to_zram(dev);
958
	int err;
959

960 961 962
	disksize = memparse(buf, NULL);
	if (!disksize)
		return -EINVAL;
963

964
	disksize = PAGE_ALIGN(disksize);
965
	meta = zram_meta_alloc(zram->disk->disk_name, disksize);
966 967 968
	if (!meta)
		return -ENOMEM;

969
	comp = zcomp_create(zram->compressor);
970
	if (IS_ERR(comp)) {
S
Sergey Senozhatsky 已提交
971
		pr_err("Cannot initialise %s compressing backend\n",
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
				zram->compressor);
		err = PTR_ERR(comp);
		goto out_free_meta;
	}

	down_write(&zram->init_lock);
	if (init_done(zram)) {
		pr_info("Cannot change disksize for initialized device\n");
		err = -EBUSY;
		goto out_destroy_comp;
	}

	zram->meta = meta;
	zram->comp = comp;
	zram->disksize = disksize;
	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
988
	zram_revalidate_disk(zram);
989
	up_write(&zram->init_lock);
990 991 992 993 994 995 996 997 998

	return len;

out_destroy_comp:
	up_write(&zram->init_lock);
	zcomp_destroy(comp);
out_free_meta:
	zram_meta_free(meta, disksize);
	return err;
999 1000
}

1001 1002
static ssize_t reset_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
1003
{
1004 1005 1006 1007
	int ret;
	unsigned short do_reset;
	struct zram *zram;
	struct block_device *bdev;
1008

1009 1010 1011 1012 1013 1014 1015
	ret = kstrtou16(buf, 10, &do_reset);
	if (ret)
		return ret;

	if (!do_reset)
		return -EINVAL;

1016 1017 1018 1019
	zram = dev_to_zram(dev);
	bdev = bdget_disk(zram->disk, 0);
	if (!bdev)
		return -ENOMEM;
1020

1021
	mutex_lock(&bdev->bd_mutex);
1022 1023 1024 1025 1026
	/* Do not reset an active device or claimed device */
	if (bdev->bd_openers || zram->claim) {
		mutex_unlock(&bdev->bd_mutex);
		bdput(bdev);
		return -EBUSY;
1027 1028
	}

1029 1030 1031
	/* From now on, anyone can't open /dev/zram[0-9] */
	zram->claim = true;
	mutex_unlock(&bdev->bd_mutex);
1032

1033
	/* Make sure all the pending I/O are finished */
1034 1035
	fsync_bdev(bdev);
	zram_reset_device(zram);
1036
	zram_revalidate_disk(zram);
1037 1038
	bdput(bdev);

1039 1040 1041 1042
	mutex_lock(&bdev->bd_mutex);
	zram->claim = false;
	mutex_unlock(&bdev->bd_mutex);

1043
	return len;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
}

static int zram_open(struct block_device *bdev, fmode_t mode)
{
	int ret = 0;
	struct zram *zram;

	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));

	zram = bdev->bd_disk->private_data;
	/* zram was claimed to reset so open request fails */
	if (zram->claim)
		ret = -EBUSY;
1057 1058 1059 1060

	return ret;
}

1061
static const struct block_device_operations zram_devops = {
1062
	.open = zram_open,
1063 1064 1065 1066 1067 1068 1069 1070 1071
	.swap_slot_free_notify = zram_slot_free_notify,
	.rw_page = zram_rw_page,
	.owner = THIS_MODULE
};

static DEVICE_ATTR_WO(compact);
static DEVICE_ATTR_RW(disksize);
static DEVICE_ATTR_RO(initstate);
static DEVICE_ATTR_WO(reset);
1072 1073
static DEVICE_ATTR_WO(mem_limit);
static DEVICE_ATTR_WO(mem_used_max);
1074 1075
static DEVICE_ATTR_RW(max_comp_streams);
static DEVICE_ATTR_RW(comp_algorithm);
1076

1077 1078 1079 1080
static struct attribute *zram_disk_attrs[] = {
	&dev_attr_disksize.attr,
	&dev_attr_initstate.attr,
	&dev_attr_reset.attr,
1081
	&dev_attr_compact.attr,
M
Minchan Kim 已提交
1082
	&dev_attr_mem_limit.attr,
M
Minchan Kim 已提交
1083
	&dev_attr_mem_used_max.attr,
1084
	&dev_attr_max_comp_streams.attr,
1085
	&dev_attr_comp_algorithm.attr,
1086
	&dev_attr_io_stat.attr,
1087
	&dev_attr_mm_stat.attr,
1088
	&dev_attr_debug_stat.attr,
1089 1090 1091 1092 1093 1094 1095
	NULL,
};

static struct attribute_group zram_disk_attr_group = {
	.attrs = zram_disk_attrs,
};

1096 1097 1098 1099 1100
/*
 * Allocate and initialize new zram device. the function returns
 * '>= 0' device_id upon success, and negative value otherwise.
 */
static int zram_add(void)
1101
{
1102
	struct zram *zram;
1103
	struct request_queue *queue;
1104
	int ret, device_id;
1105 1106 1107 1108 1109

	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
	if (!zram)
		return -ENOMEM;

1110
	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1111 1112
	if (ret < 0)
		goto out_free_dev;
1113
	device_id = ret;
1114

1115
	init_rwsem(&zram->init_lock);
1116

1117 1118
	queue = blk_alloc_queue(GFP_KERNEL);
	if (!queue) {
1119 1120
		pr_err("Error allocating disk queue for device %d\n",
			device_id);
1121 1122
		ret = -ENOMEM;
		goto out_free_idr;
1123 1124
	}

1125
	blk_queue_make_request(queue, zram_make_request);
1126

1127
	/* gendisk structure */
1128 1129
	zram->disk = alloc_disk(1);
	if (!zram->disk) {
S
Sergey Senozhatsky 已提交
1130
		pr_err("Error allocating disk structure for device %d\n",
1131
			device_id);
J
Julia Lawall 已提交
1132
		ret = -ENOMEM;
1133
		goto out_free_queue;
1134 1135
	}

1136 1137 1138
	zram->disk->major = zram_major;
	zram->disk->first_minor = device_id;
	zram->disk->fops = &zram_devops;
1139 1140
	zram->disk->queue = queue;
	zram->disk->queue->queuedata = zram;
1141 1142
	zram->disk->private_data = zram;
	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1143

1144
	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1145
	set_capacity(zram->disk, 0);
1146 1147
	/* zram devices sort of resembles non-rotational disks */
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1148
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1149 1150 1151 1152
	/*
	 * To ensure that we always get PAGE_SIZE aligned
	 * and n*PAGE_SIZED sized I/O requests.
	 */
1153
	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1154 1155
	blk_queue_logical_block_size(zram->disk->queue,
					ZRAM_LOGICAL_BLOCK_SIZE);
1156 1157
	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
J
Joonsoo Kim 已提交
1158
	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1159
	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
J
Joonsoo Kim 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	/*
	 * zram_bio_discard() will clear all logical blocks if logical block
	 * size is identical with physical block size(PAGE_SIZE). But if it is
	 * different, we will skip discarding some parts of logical blocks in
	 * the part of the request range which isn't aligned to physical block
	 * size.  So we can't ensure that all discarded logical blocks are
	 * zeroed.
	 */
	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
		zram->disk->queue->limits.discard_zeroes_data = 1;
	else
		zram->disk->queue->limits.discard_zeroes_data = 0;
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1173

1174
	add_disk(zram->disk);
1175

1176 1177 1178
	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
				&zram_disk_attr_group);
	if (ret < 0) {
S
Sergey Senozhatsky 已提交
1179 1180
		pr_err("Error creating sysfs group for device %d\n",
				device_id);
1181
		goto out_free_disk;
1182
	}
1183
	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1184
	zram->meta = NULL;
1185 1186

	pr_info("Added device: %s\n", zram->disk->disk_name);
1187
	return device_id;
1188

1189 1190 1191 1192
out_free_disk:
	del_gendisk(zram->disk);
	put_disk(zram->disk);
out_free_queue:
1193
	blk_cleanup_queue(queue);
1194 1195 1196 1197
out_free_idr:
	idr_remove(&zram_index_idr, device_id);
out_free_dev:
	kfree(zram);
1198
	return ret;
1199 1200
}

1201
static int zram_remove(struct zram *zram)
1202
{
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	struct block_device *bdev;

	bdev = bdget_disk(zram->disk, 0);
	if (!bdev)
		return -ENOMEM;

	mutex_lock(&bdev->bd_mutex);
	if (bdev->bd_openers || zram->claim) {
		mutex_unlock(&bdev->bd_mutex);
		bdput(bdev);
		return -EBUSY;
	}

	zram->claim = true;
	mutex_unlock(&bdev->bd_mutex);

1219 1220
	/*
	 * Remove sysfs first, so no one will perform a disksize
1221 1222 1223 1224
	 * store while we destroy the devices. This also helps during
	 * hot_remove -- zram_reset_device() is the last holder of
	 * ->init_lock, no later/concurrent disksize_store() or any
	 * other sysfs handlers are possible.
1225 1226 1227
	 */
	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
			&zram_disk_attr_group);
1228

1229 1230
	/* Make sure all the pending I/O are finished */
	fsync_bdev(bdev);
1231
	zram_reset_device(zram);
1232 1233 1234 1235
	bdput(bdev);

	pr_info("Removed device: %s\n", zram->disk->disk_name);

1236 1237 1238 1239
	blk_cleanup_queue(zram->disk->queue);
	del_gendisk(zram->disk);
	put_disk(zram->disk);
	kfree(zram);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	return 0;
}

/* zram-control sysfs attributes */
static ssize_t hot_add_show(struct class *class,
			struct class_attribute *attr,
			char *buf)
{
	int ret;

	mutex_lock(&zram_index_mutex);
	ret = zram_add();
	mutex_unlock(&zram_index_mutex);

	if (ret < 0)
		return ret;
	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
}

static ssize_t hot_remove_store(struct class *class,
			struct class_attribute *attr,
			const char *buf,
			size_t count)
{
	struct zram *zram;
	int ret, dev_id;

	/* dev_id is gendisk->first_minor, which is `int' */
	ret = kstrtoint(buf, 10, &dev_id);
	if (ret)
		return ret;
	if (dev_id < 0)
		return -EINVAL;

	mutex_lock(&zram_index_mutex);

	zram = idr_find(&zram_index_idr, dev_id);
1277
	if (zram) {
1278
		ret = zram_remove(zram);
1279 1280
		if (!ret)
			idr_remove(&zram_index_idr, dev_id);
1281
	} else {
1282
		ret = -ENODEV;
1283
	}
1284 1285 1286

	mutex_unlock(&zram_index_mutex);
	return ret ? ret : count;
1287
}
1288

1289 1290 1291 1292 1293 1294
/*
 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
 * sense that reading from this file does alter the state of your system -- it
 * creates a new un-initialized zram device and returns back this device's
 * device_id (or an error code if it fails to create a new device).
 */
1295
static struct class_attribute zram_control_class_attrs[] = {
1296
	__ATTR(hot_add, 0400, hot_add_show, NULL),
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	__ATTR_WO(hot_remove),
	__ATTR_NULL,
};

static struct class zram_control_class = {
	.name		= "zram-control",
	.owner		= THIS_MODULE,
	.class_attrs	= zram_control_class_attrs,
};

1307 1308 1309 1310 1311
static int zram_remove_cb(int id, void *ptr, void *data)
{
	zram_remove(ptr);
	return 0;
}
1312

1313 1314
static void destroy_devices(void)
{
1315
	class_unregister(&zram_control_class);
1316 1317
	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
	idr_destroy(&zram_index_idr);
1318
	unregister_blkdev(zram_major, "zram");
1319
	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1320 1321
}

1322
static int __init zram_init(void)
1323
{
1324
	int ret;
1325

1326 1327 1328 1329 1330
	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
	if (ret < 0)
		return ret;

1331 1332
	ret = class_register(&zram_control_class);
	if (ret) {
S
Sergey Senozhatsky 已提交
1333
		pr_err("Unable to register zram-control class\n");
1334
		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1335 1336 1337
		return ret;
	}

1338 1339
	zram_major = register_blkdev(0, "zram");
	if (zram_major <= 0) {
S
Sergey Senozhatsky 已提交
1340
		pr_err("Unable to get major number\n");
1341
		class_unregister(&zram_control_class);
1342
		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1343
		return -EBUSY;
1344 1345
	}

1346
	while (num_devices != 0) {
1347
		mutex_lock(&zram_index_mutex);
1348
		ret = zram_add();
1349
		mutex_unlock(&zram_index_mutex);
1350
		if (ret < 0)
1351
			goto out_error;
1352
		num_devices--;
1353 1354
	}

1355
	return 0;
1356

1357
out_error:
1358
	destroy_devices();
1359 1360 1361
	return ret;
}

1362
static void __exit zram_exit(void)
1363
{
1364
	destroy_devices();
1365 1366
}

1367 1368
module_init(zram_init);
module_exit(zram_exit);
1369

1370
module_param(num_devices, uint, 0);
1371
MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1372

1373 1374
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1375
MODULE_DESCRIPTION("Compressed RAM Block Device");