zram_drv.c 35.2 KB
Newer Older
1
/*
2
 * Compressed RAM block device
3
 *
4
 * Copyright (C) 2008, 2009, 2010  Nitin Gupta
M
Minchan Kim 已提交
5
 *               2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13 14
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the licence that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 *
 */

15
#define KMSG_COMPONENT "zram"
16 17 18 19
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

#include <linux/module.h>
#include <linux/kernel.h>
20
#include <linux/bio.h>
21 22 23 24 25 26
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
27
#include <linux/slab.h>
28 29
#include <linux/string.h>
#include <linux/vmalloc.h>
30
#include <linux/err.h>
31
#include <linux/idr.h>
32
#include <linux/sysfs.h>
33

34
#include "zram_drv.h"
35

36
static DEFINE_IDR(zram_index_idr);
37 38 39
/* idr index must be protected */
static DEFINE_MUTEX(zram_index_mutex);

40
static int zram_major;
41
static const char *default_compressor = "lzo";
42 43

/* Module params (documentation at end) */
44
static unsigned int num_devices = 1;
45

46 47 48 49 50 51 52 53 54
static inline void deprecated_attr_warn(const char *name)
{
	pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
			task_pid_nr(current),
			current->comm,
			name,
			"See zram documentation.");
}

55
#define ZRAM_ATTR_RO(name)						\
56
static ssize_t name##_show(struct device *d,				\
57 58 59
				struct device_attribute *attr, char *b)	\
{									\
	struct zram *zram = dev_to_zram(d);				\
60 61
									\
	deprecated_attr_warn(__stringify(name));			\
62
	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
63 64
		(u64)atomic64_read(&zram->stats.name));			\
}									\
65
static DEVICE_ATTR_RO(name);
66

67
static inline bool init_done(struct zram *zram)
68
{
69
	return zram->disksize;
70 71
}

72 73 74 75 76
static inline struct zram *dev_to_zram(struct device *dev)
{
	return (struct zram *)dev_to_disk(dev)->private_data;
}

77
/* flag operations require table entry bit_spin_lock() being held */
78 79
static int zram_test_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
80
{
81 82
	return meta->table[index].value & BIT(flag);
}
83

84 85 86 87 88
static void zram_set_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
{
	meta->table[index].value |= BIT(flag);
}
89

90 91 92 93 94
static void zram_clear_flag(struct zram_meta *meta, u32 index,
			enum zram_pageflags flag)
{
	meta->table[index].value &= ~BIT(flag);
}
95

96 97 98
static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
{
	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 100
}

101 102
static void zram_set_obj_size(struct zram_meta *meta,
					u32 index, size_t size)
103
{
104
	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105

106 107 108
	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
}

109
static inline bool is_partial_io(struct bio_vec *bvec)
110 111 112 113 114 115 116
{
	return bvec->bv_len != PAGE_SIZE;
}

/*
 * Check if request is within bounds and aligned on zram logical blocks.
 */
117
static inline bool valid_io_request(struct zram *zram,
118 119 120 121 122 123
		sector_t start, unsigned int size)
{
	u64 end, bound;

	/* unaligned request */
	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124
		return false;
125
	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126
		return false;
127 128 129 130 131

	end = start + (size >> SECTOR_SHIFT);
	bound = zram->disksize >> SECTOR_SHIFT;
	/* out of range range */
	if (unlikely(start >= bound || end > bound || start > end))
132
		return false;
133 134

	/* I/O request is valid */
135
	return true;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
}

static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
{
	if (*offset + bvec->bv_len >= PAGE_SIZE)
		(*index)++;
	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
}

static inline void update_used_max(struct zram *zram,
					const unsigned long pages)
{
	unsigned long old_max, cur_max;

	old_max = atomic_long_read(&zram->stats.max_used_pages);

	do {
		cur_max = old_max;
		if (pages > cur_max)
			old_max = atomic_long_cmpxchg(
				&zram->stats.max_used_pages, cur_max, pages);
	} while (old_max != cur_max);
}

160
static bool page_zero_filled(void *ptr)
161 162 163 164 165 166 167 168
{
	unsigned int pos;
	unsigned long *page;

	page = (unsigned long *)ptr;

	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
		if (page[pos])
169
			return false;
170 171
	}

172
	return true;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
}

static void handle_zero_page(struct bio_vec *bvec)
{
	struct page *page = bvec->bv_page;
	void *user_mem;

	user_mem = kmap_atomic(page);
	if (is_partial_io(bvec))
		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
	else
		clear_page(user_mem);
	kunmap_atomic(user_mem);

	flush_dcache_page(page);
188 189 190 191 192
}

static ssize_t initstate_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
193
	u32 val;
194 195
	struct zram *zram = dev_to_zram(dev);

196 197 198
	down_read(&zram->init_lock);
	val = init_done(zram);
	up_read(&zram->init_lock);
199

200
	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 202
}

203 204 205 206 207 208 209 210
static ssize_t disksize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct zram *zram = dev_to_zram(dev);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
}

211 212 213 214 215
static ssize_t orig_data_size_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct zram *zram = dev_to_zram(dev);

216
	deprecated_attr_warn("orig_data_size");
217
	return scnprintf(buf, PAGE_SIZE, "%llu\n",
218
		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 220 221 222 223 224 225 226
}

static ssize_t mem_used_total_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	u64 val = 0;
	struct zram *zram = dev_to_zram(dev);

227
	deprecated_attr_warn("mem_used_total");
228
	down_read(&zram->init_lock);
229 230
	if (init_done(zram)) {
		struct zram_meta *meta = zram->meta;
231
		val = zs_get_total_pages(meta->mem_pool);
232
	}
233 234
	up_read(&zram->init_lock);

235
	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 237
}

M
Minchan Kim 已提交
238 239 240 241 242 243
static ssize_t mem_limit_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	u64 val;
	struct zram *zram = dev_to_zram(dev);

244
	deprecated_attr_warn("mem_limit");
M
Minchan Kim 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	down_read(&zram->init_lock);
	val = zram->limit_pages;
	up_read(&zram->init_lock);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}

static ssize_t mem_limit_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	u64 limit;
	char *tmp;
	struct zram *zram = dev_to_zram(dev);

	limit = memparse(buf, &tmp);
	if (buf == tmp) /* no chars parsed, invalid input */
		return -EINVAL;

	down_write(&zram->init_lock);
	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
	up_write(&zram->init_lock);

	return len;
}

M
Minchan Kim 已提交
270 271 272 273 274 275
static ssize_t mem_used_max_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	u64 val = 0;
	struct zram *zram = dev_to_zram(dev);

276
	deprecated_attr_warn("mem_used_max");
M
Minchan Kim 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	down_read(&zram->init_lock);
	if (init_done(zram))
		val = atomic_long_read(&zram->stats.max_used_pages);
	up_read(&zram->init_lock);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}

static ssize_t mem_used_max_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	int err;
	unsigned long val;
	struct zram *zram = dev_to_zram(dev);

	err = kstrtoul(buf, 10, &val);
	if (err || val != 0)
		return -EINVAL;

	down_read(&zram->init_lock);
297 298
	if (init_done(zram)) {
		struct zram_meta *meta = zram->meta;
M
Minchan Kim 已提交
299 300
		atomic_long_set(&zram->stats.max_used_pages,
				zs_get_total_pages(meta->mem_pool));
301
	}
M
Minchan Kim 已提交
302 303 304 305 306
	up_read(&zram->init_lock);

	return len;
}

307 308 309 310 311 312 313 314 315
/*
 * We switched to per-cpu streams and this attr is not needed anymore.
 * However, we will keep it around for some time, because:
 * a) we may revert per-cpu streams in the future
 * b) it's visible to user space and we need to follow our 2 years
 *    retirement rule; but we already have a number of 'soon to be
 *    altered' attrs, so max_comp_streams need to wait for the next
 *    layoff cycle.
 */
316 317 318
static ssize_t max_comp_streams_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
319
	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
320 321
}

322 323 324
static ssize_t max_comp_streams_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
325
	return len;
326 327
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
static ssize_t comp_algorithm_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	size_t sz;
	struct zram *zram = dev_to_zram(dev);

	down_read(&zram->init_lock);
	sz = zcomp_available_show(zram->compressor, buf);
	up_read(&zram->init_lock);

	return sz;
}

static ssize_t comp_algorithm_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	struct zram *zram = dev_to_zram(dev);
345
	char compressor[CRYPTO_MAX_ALG_NAME];
346 347
	size_t sz;

348 349 350 351 352 353 354
	strlcpy(compressor, buf, sizeof(compressor));
	/* ignore trailing newline */
	sz = strlen(compressor);
	if (sz > 0 && compressor[sz - 1] == '\n')
		compressor[sz - 1] = 0x00;

	if (!zcomp_available_algorithm(compressor))
355 356
		return -EINVAL;

357 358 359 360 361 362
	down_write(&zram->init_lock);
	if (init_done(zram)) {
		up_write(&zram->init_lock);
		pr_info("Can't change algorithm for initialized device\n");
		return -EBUSY;
	}
363

364
	strlcpy(zram->compressor, compressor, sizeof(compressor));
365 366 367 368
	up_write(&zram->init_lock);
	return len;
}

369 370
static ssize_t compact_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
371
{
372 373
	struct zram *zram = dev_to_zram(dev);
	struct zram_meta *meta;
374

375 376 377 378 379
	down_read(&zram->init_lock);
	if (!init_done(zram)) {
		up_read(&zram->init_lock);
		return -EINVAL;
	}
380

381
	meta = zram->meta;
382
	zs_compact(meta->mem_pool);
383
	up_read(&zram->init_lock);
384

385
	return len;
386 387
}

388 389
static ssize_t io_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
390
{
391 392
	struct zram *zram = dev_to_zram(dev);
	ssize_t ret;
393

394 395 396 397 398 399 400 401
	down_read(&zram->init_lock);
	ret = scnprintf(buf, PAGE_SIZE,
			"%8llu %8llu %8llu %8llu\n",
			(u64)atomic64_read(&zram->stats.failed_reads),
			(u64)atomic64_read(&zram->stats.failed_writes),
			(u64)atomic64_read(&zram->stats.invalid_io),
			(u64)atomic64_read(&zram->stats.notify_free));
	up_read(&zram->init_lock);
402

403
	return ret;
404 405
}

406 407
static ssize_t mm_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
408
{
409
	struct zram *zram = dev_to_zram(dev);
410
	struct zs_pool_stats pool_stats;
411 412 413
	u64 orig_size, mem_used = 0;
	long max_used;
	ssize_t ret;
414

415 416
	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));

417
	down_read(&zram->init_lock);
418
	if (init_done(zram)) {
419
		mem_used = zs_get_total_pages(zram->meta->mem_pool);
420 421
		zs_pool_stats(zram->meta->mem_pool, &pool_stats);
	}
422

423 424
	orig_size = atomic64_read(&zram->stats.pages_stored);
	max_used = atomic_long_read(&zram->stats.max_used_pages);
425

426
	ret = scnprintf(buf, PAGE_SIZE,
427
			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
428 429 430 431 432 433
			orig_size << PAGE_SHIFT,
			(u64)atomic64_read(&zram->stats.compr_data_size),
			mem_used << PAGE_SHIFT,
			zram->limit_pages << PAGE_SHIFT,
			max_used << PAGE_SHIFT,
			(u64)atomic64_read(&zram->stats.zero_pages),
434
			pool_stats.pages_compacted);
435
	up_read(&zram->init_lock);
436

437 438 439
	return ret;
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static ssize_t debug_stat_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int version = 1;
	struct zram *zram = dev_to_zram(dev);
	ssize_t ret;

	down_read(&zram->init_lock);
	ret = scnprintf(buf, PAGE_SIZE,
			"version: %d\n%8llu\n",
			version,
			(u64)atomic64_read(&zram->stats.writestall));
	up_read(&zram->init_lock);

	return ret;
}

457 458
static DEVICE_ATTR_RO(io_stat);
static DEVICE_ATTR_RO(mm_stat);
459
static DEVICE_ATTR_RO(debug_stat);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
ZRAM_ATTR_RO(num_reads);
ZRAM_ATTR_RO(num_writes);
ZRAM_ATTR_RO(failed_reads);
ZRAM_ATTR_RO(failed_writes);
ZRAM_ATTR_RO(invalid_io);
ZRAM_ATTR_RO(notify_free);
ZRAM_ATTR_RO(zero_pages);
ZRAM_ATTR_RO(compr_data_size);

static inline bool zram_meta_get(struct zram *zram)
{
	if (atomic_inc_not_zero(&zram->refcount))
		return true;
	return false;
}

static inline void zram_meta_put(struct zram *zram)
{
	atomic_dec(&zram->refcount);
}

static void zram_meta_free(struct zram_meta *meta, u64 disksize)
{
	size_t num_pages = disksize >> PAGE_SHIFT;
	size_t index;
485 486 487 488 489 490 491 492 493 494 495

	/* Free all pages that are still in this zram device */
	for (index = 0; index < num_pages; index++) {
		unsigned long handle = meta->table[index].handle;

		if (!handle)
			continue;

		zs_free(meta->mem_pool, handle);
	}

496 497 498 499 500
	zs_destroy_pool(meta->mem_pool);
	vfree(meta->table);
	kfree(meta);
}

501
static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
502 503 504
{
	size_t num_pages;
	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
505

506
	if (!meta)
507
		return NULL;
508 509 510 511 512

	num_pages = disksize >> PAGE_SHIFT;
	meta->table = vzalloc(num_pages * sizeof(*meta->table));
	if (!meta->table) {
		pr_err("Error allocating zram address table\n");
513
		goto out_error;
514 515
	}

516
	meta->mem_pool = zs_create_pool(pool_name);
517 518
	if (!meta->mem_pool) {
		pr_err("Error creating memory pool\n");
519
		goto out_error;
520 521 522 523
	}

	return meta;

524
out_error:
525 526
	vfree(meta->table);
	kfree(meta);
527
	return NULL;
528 529
}

530 531 532 533 534
/*
 * To protect concurrent access to the same index entry,
 * caller should hold this table index entry's bit_spinlock to
 * indicate this index entry is accessing.
 */
535
static void zram_free_page(struct zram *zram, size_t index)
536
{
M
Minchan Kim 已提交
537 538
	struct zram_meta *meta = zram->meta;
	unsigned long handle = meta->table[index].handle;
539

540
	if (unlikely(!handle)) {
541 542 543 544
		/*
		 * No memory is allocated for zero filled pages.
		 * Simply clear zero page flag.
		 */
M
Minchan Kim 已提交
545 546
		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
			zram_clear_flag(meta, index, ZRAM_ZERO);
547
			atomic64_dec(&zram->stats.zero_pages);
548 549 550 551
		}
		return;
	}

M
Minchan Kim 已提交
552
	zs_free(meta->mem_pool, handle);
553

554 555
	atomic64_sub(zram_get_obj_size(meta, index),
			&zram->stats.compr_data_size);
556
	atomic64_dec(&zram->stats.pages_stored);
557

M
Minchan Kim 已提交
558
	meta->table[index].handle = 0;
559
	zram_set_obj_size(meta, index, 0);
560 561
}

562
static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
563
{
564
	int ret = 0;
565
	unsigned char *cmem;
M
Minchan Kim 已提交
566
	struct zram_meta *meta = zram->meta;
M
Minchan Kim 已提交
567
	unsigned long handle;
568
	unsigned int size;
M
Minchan Kim 已提交
569

570
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
M
Minchan Kim 已提交
571
	handle = meta->table[index].handle;
572
	size = zram_get_obj_size(meta, index);
573

M
Minchan Kim 已提交
574
	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
575
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
576
		clear_page(mem);
577 578
		return 0;
	}
579

M
Minchan Kim 已提交
580
	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
581
	if (size == PAGE_SIZE) {
582
		copy_page(mem, cmem);
583 584 585 586 587 588
	} else {
		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);

		ret = zcomp_decompress(zstrm, cmem, size, mem);
		zcomp_stream_put(zram->comp);
	}
M
Minchan Kim 已提交
589
	zs_unmap_object(meta->mem_pool, handle);
590
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
591

592
	/* Should NEVER happen. Return bio error if it does. */
593
	if (unlikely(ret)) {
594 595
		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
		return ret;
596
	}
597

598
	return 0;
599 600
}

601
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
602
			  u32 index, int offset)
603 604
{
	int ret;
605 606
	struct page *page;
	unsigned char *user_mem, *uncmem = NULL;
M
Minchan Kim 已提交
607
	struct zram_meta *meta = zram->meta;
608 609
	page = bvec->bv_page;

610
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
M
Minchan Kim 已提交
611 612
	if (unlikely(!meta->table[index].handle) ||
			zram_test_flag(meta, index, ZRAM_ZERO)) {
613
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
614
		handle_zero_page(bvec);
615 616
		return 0;
	}
617
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
618

619 620
	if (is_partial_io(bvec))
		/* Use  a temporary buffer to decompress the page */
621 622 623 624
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);

	user_mem = kmap_atomic(page);
	if (!is_partial_io(bvec))
625 626 627
		uncmem = user_mem;

	if (!uncmem) {
S
Sergey Senozhatsky 已提交
628
		pr_err("Unable to allocate temp memory\n");
629 630 631
		ret = -ENOMEM;
		goto out_cleanup;
	}
632

633
	ret = zram_decompress_page(zram, uncmem, index);
634
	/* Should NEVER happen. Return bio error if it does. */
635
	if (unlikely(ret))
636
		goto out_cleanup;
637

638 639 640 641 642 643 644 645 646 647 648
	if (is_partial_io(bvec))
		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
				bvec->bv_len);

	flush_dcache_page(page);
	ret = 0;
out_cleanup:
	kunmap_atomic(user_mem);
	if (is_partial_io(bvec))
		kfree(uncmem);
	return ret;
649 650 651 652
}

static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
			   int offset)
653
{
654
	int ret = 0;
655
	unsigned int clen;
656
	unsigned long handle = 0;
657
	struct page *page;
658
	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
M
Minchan Kim 已提交
659
	struct zram_meta *meta = zram->meta;
660
	struct zcomp_strm *zstrm = NULL;
M
Minchan Kim 已提交
661
	unsigned long alloced_pages;
662

663
	page = bvec->bv_page;
664 665 666 667 668
	if (is_partial_io(bvec)) {
		/*
		 * This is a partial IO. We need to read the full page
		 * before to write the changes.
		 */
669
		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
670 671 672 673
		if (!uncmem) {
			ret = -ENOMEM;
			goto out;
		}
674
		ret = zram_decompress_page(zram, uncmem, index);
675
		if (ret)
676 677 678
			goto out;
	}

679
compress_again:
680
	user_mem = kmap_atomic(page);
681
	if (is_partial_io(bvec)) {
682 683
		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
		       bvec->bv_len);
684 685 686
		kunmap_atomic(user_mem);
		user_mem = NULL;
	} else {
687
		uncmem = user_mem;
688
	}
689 690

	if (page_zero_filled(uncmem)) {
691 692
		if (user_mem)
			kunmap_atomic(user_mem);
693
		/* Free memory associated with this sector now. */
694
		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
695
		zram_free_page(zram, index);
M
Minchan Kim 已提交
696
		zram_set_flag(meta, index, ZRAM_ZERO);
697
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
698

699
		atomic64_inc(&zram->stats.zero_pages);
700 701
		ret = 0;
		goto out;
702
	}
703

704
	zstrm = zcomp_stream_get(zram->comp);
705
	ret = zcomp_compress(zstrm, uncmem, &clen);
706 707 708 709 710
	if (!is_partial_io(bvec)) {
		kunmap_atomic(user_mem);
		user_mem = NULL;
		uncmem = NULL;
	}
711

712
	if (unlikely(ret)) {
713
		pr_err("Compression failed! err=%d\n", ret);
714
		goto out;
715
	}
716

717
	src = zstrm->buffer;
718 719
	if (unlikely(clen > max_zpage_size)) {
		clen = PAGE_SIZE;
720 721
		if (is_partial_io(bvec))
			src = uncmem;
722
	}
723

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	/*
	 * handle allocation has 2 paths:
	 * a) fast path is executed with preemption disabled (for
	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
	 *  since we can't sleep;
	 * b) slow path enables preemption and attempts to allocate
	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
	 *  put per-cpu compression stream and, thus, to re-do
	 *  the compression once handle is allocated.
	 *
	 * if we have a 'non-null' handle here then we are coming
	 * from the slow path and handle has already been allocated.
	 */
	if (!handle)
		handle = zs_malloc(meta->mem_pool, clen,
				__GFP_KSWAPD_RECLAIM |
				__GFP_NOWARN |
741 742
				__GFP_HIGHMEM |
				__GFP_MOVABLE);
743
	if (!handle) {
744
		zcomp_stream_put(zram->comp);
745 746
		zstrm = NULL;

747 748
		atomic64_inc(&zram->stats.writestall);

749
		handle = zs_malloc(meta->mem_pool, clen,
750 751
				GFP_NOIO | __GFP_HIGHMEM |
				__GFP_MOVABLE);
752 753 754
		if (handle)
			goto compress_again;

755
		pr_err("Error allocating memory for compressed page: %u, size=%u\n",
756
			index, clen);
757 758
		ret = -ENOMEM;
		goto out;
759
	}
M
Minchan Kim 已提交
760

M
Minchan Kim 已提交
761
	alloced_pages = zs_get_total_pages(meta->mem_pool);
762 763
	update_used_max(zram, alloced_pages);

M
Minchan Kim 已提交
764
	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
M
Minchan Kim 已提交
765 766 767 768 769
		zs_free(meta->mem_pool, handle);
		ret = -ENOMEM;
		goto out;
	}

M
Minchan Kim 已提交
770
	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
771

772
	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
773
		src = kmap_atomic(page);
774
		copy_page(cmem, src);
775
		kunmap_atomic(src);
776 777 778
	} else {
		memcpy(cmem, src, clen);
	}
779

780
	zcomp_stream_put(zram->comp);
781
	zstrm = NULL;
M
Minchan Kim 已提交
782
	zs_unmap_object(meta->mem_pool, handle);
783

784 785 786 787
	/*
	 * Free memory associated with this sector
	 * before overwriting unused sectors.
	 */
788
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
789 790
	zram_free_page(zram, index);

M
Minchan Kim 已提交
791
	meta->table[index].handle = handle;
792 793
	zram_set_obj_size(meta, index, clen);
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
794

795
	/* Update stats */
796 797
	atomic64_add(clen, &zram->stats.compr_data_size);
	atomic64_inc(&zram->stats.pages_stored);
798
out:
799
	if (zstrm)
800
		zcomp_stream_put(zram->comp);
801 802
	if (is_partial_io(bvec))
		kfree(uncmem);
803
	return ret;
804 805
}

J
Joonsoo Kim 已提交
806 807 808 809 810 811 812 813 814
/*
 * zram_bio_discard - handler on discard request
 * @index: physical block index in PAGE_SIZE units
 * @offset: byte offset within physical block
 */
static void zram_bio_discard(struct zram *zram, u32 index,
			     int offset, struct bio *bio)
{
	size_t n = bio->bi_iter.bi_size;
815
	struct zram_meta *meta = zram->meta;
J
Joonsoo Kim 已提交
816 817 818 819 820 821 822 823 824 825 826 827

	/*
	 * zram manages data in physical block size units. Because logical block
	 * size isn't identical with physical block size on some arch, we
	 * could get a discard request pointing to a specific offset within a
	 * certain physical block.  Although we can handle this request by
	 * reading that physiclal block and decompressing and partially zeroing
	 * and re-compressing and then re-storing it, this isn't reasonable
	 * because our intent with a discard request is to save memory.  So
	 * skipping this logical block is appropriate here.
	 */
	if (offset) {
828
		if (n <= (PAGE_SIZE - offset))
J
Joonsoo Kim 已提交
829 830
			return;

831
		n -= (PAGE_SIZE - offset);
J
Joonsoo Kim 已提交
832 833 834 835
		index++;
	}

	while (n >= PAGE_SIZE) {
836
		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
J
Joonsoo Kim 已提交
837
		zram_free_page(zram, index);
838
		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
839
		atomic64_inc(&zram->stats.notify_free);
J
Joonsoo Kim 已提交
840 841 842 843 844
		index++;
		n -= PAGE_SIZE;
	}
}

845 846
static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
			int offset, int rw)
847
{
848
	unsigned long start_time = jiffies;
849 850
	int ret;

851 852
	generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
			&zram->disk->part0);
853

854 855 856 857 858 859
	if (rw == READ) {
		atomic64_inc(&zram->stats.num_reads);
		ret = zram_bvec_read(zram, bvec, index, offset);
	} else {
		atomic64_inc(&zram->stats.num_writes);
		ret = zram_bvec_write(zram, bvec, index, offset);
860
	}
861

862
	generic_end_io_acct(rw, &zram->disk->part0, start_time);
863

864 865 866 867 868
	if (unlikely(ret)) {
		if (rw == READ)
			atomic64_inc(&zram->stats.failed_reads);
		else
			atomic64_inc(&zram->stats.failed_writes);
869
	}
870

871
	return ret;
872 873
}

874
static void __zram_make_request(struct zram *zram, struct bio *bio)
875
{
876
	int offset, rw;
877
	u32 index;
878 879
	struct bio_vec bvec;
	struct bvec_iter iter;
880

881 882 883
	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
	offset = (bio->bi_iter.bi_sector &
		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
884

885
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
J
Joonsoo Kim 已提交
886
		zram_bio_discard(zram, index, offset, bio);
887
		bio_endio(bio);
J
Joonsoo Kim 已提交
888 889 890
		return;
	}

891
	rw = bio_data_dir(bio);
892
	bio_for_each_segment(bvec, bio, iter) {
893 894
		int max_transfer_size = PAGE_SIZE - offset;

895
		if (bvec.bv_len > max_transfer_size) {
896 897 898 899 900 901
			/*
			 * zram_bvec_rw() can only make operation on a single
			 * zram page. Split the bio vector.
			 */
			struct bio_vec bv;

902
			bv.bv_page = bvec.bv_page;
903
			bv.bv_len = max_transfer_size;
904
			bv.bv_offset = bvec.bv_offset;
905

906
			if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
907 908
				goto out;

909
			bv.bv_len = bvec.bv_len - max_transfer_size;
910
			bv.bv_offset += max_transfer_size;
911
			if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
912 913
				goto out;
		} else
914
			if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
915 916
				goto out;

917
		update_position(&index, &offset, &bvec);
918
	}
919

920
	bio_endio(bio);
921
	return;
922 923 924 925 926 927

out:
	bio_io_error(bio);
}

/*
928
 * Handler function for all zram I/O requests.
929
 */
930
static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
931
{
932
	struct zram *zram = queue->queuedata;
933

934
	if (unlikely(!zram_meta_get(zram)))
935
		goto error;
936

937 938
	blk_queue_split(queue, &bio, queue->bio_split);

939 940
	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
					bio->bi_iter.bi_size)) {
941
		atomic64_inc(&zram->stats.invalid_io);
942
		goto put_zram;
943 944
	}

945
	__zram_make_request(zram, bio);
946
	zram_meta_put(zram);
947
	return BLK_QC_T_NONE;
948 949
put_zram:
	zram_meta_put(zram);
950 951
error:
	bio_io_error(bio);
952
	return BLK_QC_T_NONE;
953 954
}

N
Nitin Gupta 已提交
955 956
static void zram_slot_free_notify(struct block_device *bdev,
				unsigned long index)
957
{
958
	struct zram *zram;
959
	struct zram_meta *meta;
960

961
	zram = bdev->bd_disk->private_data;
962
	meta = zram->meta;
963

964
	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
965
	zram_free_page(zram, index);
966
	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
967
	atomic64_inc(&zram->stats.notify_free);
968 969
}

970 971 972
static int zram_rw_page(struct block_device *bdev, sector_t sector,
		       struct page *page, int rw)
{
973
	int offset, err = -EIO;
974 975 976 977 978
	u32 index;
	struct zram *zram;
	struct bio_vec bv;

	zram = bdev->bd_disk->private_data;
979 980 981
	if (unlikely(!zram_meta_get(zram)))
		goto out;

982 983
	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
		atomic64_inc(&zram->stats.invalid_io);
984 985
		err = -EINVAL;
		goto put_zram;
986 987 988 989 990 991 992 993 994 995
	}

	index = sector >> SECTORS_PER_PAGE_SHIFT;
	offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;

	bv.bv_page = page;
	bv.bv_len = PAGE_SIZE;
	bv.bv_offset = 0;

	err = zram_bvec_rw(zram, &bv, index, offset, rw);
996 997 998
put_zram:
	zram_meta_put(zram);
out:
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	/*
	 * If I/O fails, just return error(ie, non-zero) without
	 * calling page_endio.
	 * It causes resubmit the I/O with bio request by upper functions
	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
	 * bio->bi_end_io does things to handle the error
	 * (e.g., SetPageError, set_page_dirty and extra works).
	 */
	if (err == 0)
		page_endio(page, rw, 0);
	return err;
}

1012 1013 1014 1015 1016
static void zram_reset_device(struct zram *zram)
{
	struct zram_meta *meta;
	struct zcomp *comp;
	u64 disksize;
1017

1018
	down_write(&zram->init_lock);
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	zram->limit_pages = 0;

	if (!init_done(zram)) {
		up_write(&zram->init_lock);
		return;
	}

	meta = zram->meta;
	comp = zram->comp;
	disksize = zram->disksize;
	/*
	 * Refcount will go down to 0 eventually and r/w handler
	 * cannot handle further I/O so it will bail out by
	 * check zram_meta_get.
	 */
	zram_meta_put(zram);
	/*
	 * We want to free zram_meta in process context to avoid
	 * deadlock between reclaim path and any other locks.
	 */
	wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);

	/* Reset stats */
	memset(&zram->stats, 0, sizeof(zram->stats));
	zram->disksize = 0;

	set_capacity(zram->disk, 0);
	part_stat_set_all(&zram->disk->part0, 0);

	up_write(&zram->init_lock);
	/* I/O operation under all of CPU are done so let's free */
	zram_meta_free(meta, disksize);
	zcomp_destroy(comp);
}

static ssize_t disksize_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
1057
{
1058 1059 1060
	u64 disksize;
	struct zcomp *comp;
	struct zram_meta *meta;
1061
	struct zram *zram = dev_to_zram(dev);
1062
	int err;
1063

1064 1065 1066
	disksize = memparse(buf, NULL);
	if (!disksize)
		return -EINVAL;
1067

1068
	disksize = PAGE_ALIGN(disksize);
1069
	meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1070 1071 1072
	if (!meta)
		return -ENOMEM;

1073
	comp = zcomp_create(zram->compressor);
1074
	if (IS_ERR(comp)) {
S
Sergey Senozhatsky 已提交
1075
		pr_err("Cannot initialise %s compressing backend\n",
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
				zram->compressor);
		err = PTR_ERR(comp);
		goto out_free_meta;
	}

	down_write(&zram->init_lock);
	if (init_done(zram)) {
		pr_info("Cannot change disksize for initialized device\n");
		err = -EBUSY;
		goto out_destroy_comp;
	}

	init_waitqueue_head(&zram->io_done);
	atomic_set(&zram->refcount, 1);
	zram->meta = meta;
	zram->comp = comp;
	zram->disksize = disksize;
	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
	up_write(&zram->init_lock);

	/*
	 * Revalidate disk out of the init_lock to avoid lockdep splat.
	 * It's okay because disk's capacity is protected by init_lock
	 * so that revalidate_disk always sees up-to-date capacity.
	 */
	revalidate_disk(zram->disk);

	return len;

out_destroy_comp:
	up_write(&zram->init_lock);
	zcomp_destroy(comp);
out_free_meta:
	zram_meta_free(meta, disksize);
	return err;
1111 1112
}

1113 1114
static ssize_t reset_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
1115
{
1116 1117 1118 1119
	int ret;
	unsigned short do_reset;
	struct zram *zram;
	struct block_device *bdev;
1120

1121 1122 1123 1124 1125 1126 1127
	ret = kstrtou16(buf, 10, &do_reset);
	if (ret)
		return ret;

	if (!do_reset)
		return -EINVAL;

1128 1129 1130 1131
	zram = dev_to_zram(dev);
	bdev = bdget_disk(zram->disk, 0);
	if (!bdev)
		return -ENOMEM;
1132

1133
	mutex_lock(&bdev->bd_mutex);
1134 1135 1136 1137 1138
	/* Do not reset an active device or claimed device */
	if (bdev->bd_openers || zram->claim) {
		mutex_unlock(&bdev->bd_mutex);
		bdput(bdev);
		return -EBUSY;
1139 1140
	}

1141 1142 1143
	/* From now on, anyone can't open /dev/zram[0-9] */
	zram->claim = true;
	mutex_unlock(&bdev->bd_mutex);
1144

1145
	/* Make sure all the pending I/O are finished */
1146 1147 1148 1149 1150
	fsync_bdev(bdev);
	zram_reset_device(zram);
	revalidate_disk(zram->disk);
	bdput(bdev);

1151 1152 1153 1154
	mutex_lock(&bdev->bd_mutex);
	zram->claim = false;
	mutex_unlock(&bdev->bd_mutex);

1155
	return len;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
}

static int zram_open(struct block_device *bdev, fmode_t mode)
{
	int ret = 0;
	struct zram *zram;

	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));

	zram = bdev->bd_disk->private_data;
	/* zram was claimed to reset so open request fails */
	if (zram->claim)
		ret = -EBUSY;
1169 1170 1171 1172

	return ret;
}

1173
static const struct block_device_operations zram_devops = {
1174
	.open = zram_open,
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	.swap_slot_free_notify = zram_slot_free_notify,
	.rw_page = zram_rw_page,
	.owner = THIS_MODULE
};

static DEVICE_ATTR_WO(compact);
static DEVICE_ATTR_RW(disksize);
static DEVICE_ATTR_RO(initstate);
static DEVICE_ATTR_WO(reset);
static DEVICE_ATTR_RO(orig_data_size);
static DEVICE_ATTR_RO(mem_used_total);
static DEVICE_ATTR_RW(mem_limit);
static DEVICE_ATTR_RW(mem_used_max);
static DEVICE_ATTR_RW(max_comp_streams);
static DEVICE_ATTR_RW(comp_algorithm);
1190

1191 1192 1193 1194 1195 1196
static struct attribute *zram_disk_attrs[] = {
	&dev_attr_disksize.attr,
	&dev_attr_initstate.attr,
	&dev_attr_reset.attr,
	&dev_attr_num_reads.attr,
	&dev_attr_num_writes.attr,
1197 1198
	&dev_attr_failed_reads.attr,
	&dev_attr_failed_writes.attr,
1199
	&dev_attr_compact.attr,
1200 1201 1202 1203 1204 1205
	&dev_attr_invalid_io.attr,
	&dev_attr_notify_free.attr,
	&dev_attr_zero_pages.attr,
	&dev_attr_orig_data_size.attr,
	&dev_attr_compr_data_size.attr,
	&dev_attr_mem_used_total.attr,
M
Minchan Kim 已提交
1206
	&dev_attr_mem_limit.attr,
M
Minchan Kim 已提交
1207
	&dev_attr_mem_used_max.attr,
1208
	&dev_attr_max_comp_streams.attr,
1209
	&dev_attr_comp_algorithm.attr,
1210
	&dev_attr_io_stat.attr,
1211
	&dev_attr_mm_stat.attr,
1212
	&dev_attr_debug_stat.attr,
1213 1214 1215 1216 1217 1218 1219
	NULL,
};

static struct attribute_group zram_disk_attr_group = {
	.attrs = zram_disk_attrs,
};

1220 1221 1222 1223 1224
/*
 * Allocate and initialize new zram device. the function returns
 * '>= 0' device_id upon success, and negative value otherwise.
 */
static int zram_add(void)
1225
{
1226
	struct zram *zram;
1227
	struct request_queue *queue;
1228
	int ret, device_id;
1229 1230 1231 1232 1233

	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
	if (!zram)
		return -ENOMEM;

1234
	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1235 1236
	if (ret < 0)
		goto out_free_dev;
1237
	device_id = ret;
1238

1239
	init_rwsem(&zram->init_lock);
1240

1241 1242
	queue = blk_alloc_queue(GFP_KERNEL);
	if (!queue) {
1243 1244
		pr_err("Error allocating disk queue for device %d\n",
			device_id);
1245 1246
		ret = -ENOMEM;
		goto out_free_idr;
1247 1248
	}

1249
	blk_queue_make_request(queue, zram_make_request);
1250

1251
	/* gendisk structure */
1252 1253
	zram->disk = alloc_disk(1);
	if (!zram->disk) {
S
Sergey Senozhatsky 已提交
1254
		pr_err("Error allocating disk structure for device %d\n",
1255
			device_id);
J
Julia Lawall 已提交
1256
		ret = -ENOMEM;
1257
		goto out_free_queue;
1258 1259
	}

1260 1261 1262
	zram->disk->major = zram_major;
	zram->disk->first_minor = device_id;
	zram->disk->fops = &zram_devops;
1263 1264
	zram->disk->queue = queue;
	zram->disk->queue->queuedata = zram;
1265 1266
	zram->disk->private_data = zram;
	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1267

1268
	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1269
	set_capacity(zram->disk, 0);
1270 1271
	/* zram devices sort of resembles non-rotational disks */
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1272
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1273 1274 1275 1276
	/*
	 * To ensure that we always get PAGE_SIZE aligned
	 * and n*PAGE_SIZED sized I/O requests.
	 */
1277
	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1278 1279
	blk_queue_logical_block_size(zram->disk->queue,
					ZRAM_LOGICAL_BLOCK_SIZE);
1280 1281
	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
J
Joonsoo Kim 已提交
1282
	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1283
	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
J
Joonsoo Kim 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	/*
	 * zram_bio_discard() will clear all logical blocks if logical block
	 * size is identical with physical block size(PAGE_SIZE). But if it is
	 * different, we will skip discarding some parts of logical blocks in
	 * the part of the request range which isn't aligned to physical block
	 * size.  So we can't ensure that all discarded logical blocks are
	 * zeroed.
	 */
	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
		zram->disk->queue->limits.discard_zeroes_data = 1;
	else
		zram->disk->queue->limits.discard_zeroes_data = 0;
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1297

1298
	add_disk(zram->disk);
1299

1300 1301 1302
	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
				&zram_disk_attr_group);
	if (ret < 0) {
S
Sergey Senozhatsky 已提交
1303 1304
		pr_err("Error creating sysfs group for device %d\n",
				device_id);
1305
		goto out_free_disk;
1306
	}
1307
	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1308
	zram->meta = NULL;
1309 1310

	pr_info("Added device: %s\n", zram->disk->disk_name);
1311
	return device_id;
1312

1313 1314 1315 1316
out_free_disk:
	del_gendisk(zram->disk);
	put_disk(zram->disk);
out_free_queue:
1317
	blk_cleanup_queue(queue);
1318 1319 1320 1321
out_free_idr:
	idr_remove(&zram_index_idr, device_id);
out_free_dev:
	kfree(zram);
1322
	return ret;
1323 1324
}

1325
static int zram_remove(struct zram *zram)
1326
{
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	struct block_device *bdev;

	bdev = bdget_disk(zram->disk, 0);
	if (!bdev)
		return -ENOMEM;

	mutex_lock(&bdev->bd_mutex);
	if (bdev->bd_openers || zram->claim) {
		mutex_unlock(&bdev->bd_mutex);
		bdput(bdev);
		return -EBUSY;
	}

	zram->claim = true;
	mutex_unlock(&bdev->bd_mutex);

1343 1344
	/*
	 * Remove sysfs first, so no one will perform a disksize
1345 1346 1347 1348
	 * store while we destroy the devices. This also helps during
	 * hot_remove -- zram_reset_device() is the last holder of
	 * ->init_lock, no later/concurrent disksize_store() or any
	 * other sysfs handlers are possible.
1349 1350 1351
	 */
	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
			&zram_disk_attr_group);
1352

1353 1354
	/* Make sure all the pending I/O are finished */
	fsync_bdev(bdev);
1355
	zram_reset_device(zram);
1356 1357 1358 1359
	bdput(bdev);

	pr_info("Removed device: %s\n", zram->disk->disk_name);

1360 1361 1362 1363
	blk_cleanup_queue(zram->disk->queue);
	del_gendisk(zram->disk);
	put_disk(zram->disk);
	kfree(zram);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	return 0;
}

/* zram-control sysfs attributes */
static ssize_t hot_add_show(struct class *class,
			struct class_attribute *attr,
			char *buf)
{
	int ret;

	mutex_lock(&zram_index_mutex);
	ret = zram_add();
	mutex_unlock(&zram_index_mutex);

	if (ret < 0)
		return ret;
	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
}

static ssize_t hot_remove_store(struct class *class,
			struct class_attribute *attr,
			const char *buf,
			size_t count)
{
	struct zram *zram;
	int ret, dev_id;

	/* dev_id is gendisk->first_minor, which is `int' */
	ret = kstrtoint(buf, 10, &dev_id);
	if (ret)
		return ret;
	if (dev_id < 0)
		return -EINVAL;

	mutex_lock(&zram_index_mutex);

	zram = idr_find(&zram_index_idr, dev_id);
1401
	if (zram) {
1402
		ret = zram_remove(zram);
1403 1404
		idr_remove(&zram_index_idr, dev_id);
	} else {
1405
		ret = -ENODEV;
1406
	}
1407 1408 1409

	mutex_unlock(&zram_index_mutex);
	return ret ? ret : count;
1410
}
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static struct class_attribute zram_control_class_attrs[] = {
	__ATTR_RO(hot_add),
	__ATTR_WO(hot_remove),
	__ATTR_NULL,
};

static struct class zram_control_class = {
	.name		= "zram-control",
	.owner		= THIS_MODULE,
	.class_attrs	= zram_control_class_attrs,
};

1424 1425 1426 1427 1428
static int zram_remove_cb(int id, void *ptr, void *data)
{
	zram_remove(ptr);
	return 0;
}
1429

1430 1431
static void destroy_devices(void)
{
1432
	class_unregister(&zram_control_class);
1433 1434
	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
	idr_destroy(&zram_index_idr);
1435
	unregister_blkdev(zram_major, "zram");
1436 1437
}

1438
static int __init zram_init(void)
1439
{
1440
	int ret;
1441

1442 1443
	ret = class_register(&zram_control_class);
	if (ret) {
S
Sergey Senozhatsky 已提交
1444
		pr_err("Unable to register zram-control class\n");
1445 1446 1447
		return ret;
	}

1448 1449
	zram_major = register_blkdev(0, "zram");
	if (zram_major <= 0) {
S
Sergey Senozhatsky 已提交
1450
		pr_err("Unable to get major number\n");
1451
		class_unregister(&zram_control_class);
1452
		return -EBUSY;
1453 1454
	}

1455
	while (num_devices != 0) {
1456
		mutex_lock(&zram_index_mutex);
1457
		ret = zram_add();
1458
		mutex_unlock(&zram_index_mutex);
1459
		if (ret < 0)
1460
			goto out_error;
1461
		num_devices--;
1462 1463
	}

1464
	return 0;
1465

1466
out_error:
1467
	destroy_devices();
1468 1469 1470
	return ret;
}

1471
static void __exit zram_exit(void)
1472
{
1473
	destroy_devices();
1474 1475
}

1476 1477
module_init(zram_init);
module_exit(zram_exit);
1478

1479
module_param(num_devices, uint, 0);
1480
MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1481

1482 1483
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1484
MODULE_DESCRIPTION("Compressed RAM Block Device");