vmscan.c 108.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
L
Linus Torvalds 已提交
49 50 51 52 53

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
54
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
55

56 57
#include "internal.h"

58 59 60
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
61
struct scan_control {
62 63 64
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
65
	/* This context's GFP mask */
A
Al Viro 已提交
66
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
67

68
	/* Allocation order */
A
Andy Whitcroft 已提交
69
	int order;
70

71 72 73 74 75
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
76

77 78 79 80 81
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	/* Scan (total_size >> priority) pages at once */
	int priority;

	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
140 141 142 143 144
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
145 146 147 148

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
149
#ifdef CONFIG_MEMCG
150 151
static bool global_reclaim(struct scan_control *sc)
{
152
	return !sc->target_mem_cgroup;
153
}
154
#else
155 156 157 158
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
159 160
#endif

161
static unsigned long zone_reclaimable_pages(struct zone *zone)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
177 178
	return zone_page_state(zone, NR_PAGES_SCANNED) <
		zone_reclaimable_pages(zone) * 6;
179 180
}

181
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
182
{
183
	if (!mem_cgroup_disabled())
184
		return mem_cgroup_get_lru_size(lruvec, lru);
185

186
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
187 188
}

L
Linus Torvalds 已提交
189
/*
G
Glauber Costa 已提交
190
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
191
 */
G
Glauber Costa 已提交
192
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
193
{
G
Glauber Costa 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

211 212 213
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
214
	return 0;
L
Linus Torvalds 已提交
215
}
216
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
217 218 219 220

/*
 * Remove one
 */
221
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
222 223 224 225
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
226
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
227
}
228
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
229 230

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
231 232 233 234 235 236 237 238

static unsigned long
shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
		 unsigned long nr_pages_scanned, unsigned long lru_pages)
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
239
	long freeable;
G
Glauber Costa 已提交
240 241 242 243 244 245
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

246 247
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
248 249 250 251 252 253 254 255 256 257 258
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
	delta = (4 * nr_pages_scanned) / shrinker->seeks;
259
	delta *= freeable;
G
Glauber Costa 已提交
260 261 262
	do_div(delta, lru_pages + 1);
	total_scan += delta;
	if (total_scan < 0) {
263
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
264
		       shrinker->scan_objects, total_scan);
265
		total_scan = freeable;
G
Glauber Costa 已提交
266 267 268 269 270 271 272 273
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
274
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
275 276 277 278 279
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
280 281
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
282 283 284 285 286 287

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
288 289
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
290 291 292

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
				nr_pages_scanned, lru_pages,
293
				freeable, delta, total_scan);
G
Glauber Costa 已提交
294

295 296 297 298 299 300 301 302 303 304 305
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
306
	 * than the total number of objects on slab (freeable), we must be
307 308 309 310
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
311
	       total_scan >= freeable) {
D
Dave Chinner 已提交
312
		unsigned long ret;
313
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
314

315
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
316 317 318 319
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
320

321 322
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

338
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
339
	return freed;
340 341
}

L
Linus Torvalds 已提交
342 343 344 345 346 347 348 349
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
350
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
351 352 353 354 355 356 357
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
358 359
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
360
 */
D
Dave Chinner 已提交
361
unsigned long shrink_slab(struct shrink_control *shrinkctl,
362
			  unsigned long nr_pages_scanned,
363
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
364 365
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
366
	unsigned long freed = 0;
L
Linus Torvalds 已提交
367

368 369
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
370

371
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
372 373 374 375 376 377 378
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
379 380
		goto out;
	}
L
Linus Torvalds 已提交
381 382

	list_for_each_entry(shrinker, &shrinker_list, list) {
383 384
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
			shrinkctl->nid = 0;
G
Glauber Costa 已提交
385
			freed += shrink_slab_node(shrinkctl, shrinker,
386 387 388 389 390 391 392 393
					nr_pages_scanned, lru_pages);
			continue;
		}

		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
			if (node_online(shrinkctl->nid))
				freed += shrink_slab_node(shrinkctl, shrinker,
						nr_pages_scanned, lru_pages);
L
Linus Torvalds 已提交
394 395 396 397

		}
	}
	up_read(&shrinker_rwsem);
398 399
out:
	cond_resched();
D
Dave Chinner 已提交
400
	return freed;
L
Linus Torvalds 已提交
401 402 403 404
}

static inline int is_page_cache_freeable(struct page *page)
{
405 406 407 408 409
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
410
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
411 412
}

413 414
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
415
{
416
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
440
	lock_page(page);
441 442
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
443 444 445
	unlock_page(page);
}

446 447 448 449 450 451 452 453 454 455 456 457
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
458
/*
A
Andrew Morton 已提交
459 460
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
461
 */
462
static pageout_t pageout(struct page *page, struct address_space *mapping,
463
			 struct scan_control *sc)
L
Linus Torvalds 已提交
464 465 466 467 468 469 470 471
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
472
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
488
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
489 490
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
491
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
492 493 494 495 496 497 498
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
499
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
500 501 502 503 504 505 506
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
507 508
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
509 510 511 512 513 514 515
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
516
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
517 518 519
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
520

L
Linus Torvalds 已提交
521 522 523 524
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
525
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
526
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
527 528 529 530 531 532
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

533
/*
N
Nick Piggin 已提交
534 535
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
536
 */
537 538
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
539
{
540 541
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
542

N
Nick Piggin 已提交
543
	spin_lock_irq(&mapping->tree_lock);
544
	/*
N
Nick Piggin 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
568
	 */
N
Nick Piggin 已提交
569
	if (!page_freeze_refs(page, 2))
570
		goto cannot_free;
N
Nick Piggin 已提交
571 572 573
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
574
		goto cannot_free;
N
Nick Piggin 已提交
575
	}
576 577 578

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
579
		mem_cgroup_swapout(page, swap);
580
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
581
		spin_unlock_irq(&mapping->tree_lock);
582
		swapcache_free(swap);
N
Nick Piggin 已提交
583
	} else {
584
		void (*freepage)(struct page *);
585
		void *shadow = NULL;
586 587

		freepage = mapping->a_ops->freepage;
588 589 590 591 592 593 594 595 596 597 598 599 600 601
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
		 */
		if (reclaimed && page_is_file_cache(page) &&
		    !mapping_exiting(mapping))
			shadow = workingset_eviction(mapping, page);
		__delete_from_page_cache(page, shadow);
N
Nick Piggin 已提交
602
		spin_unlock_irq(&mapping->tree_lock);
603 604 605

		if (freepage != NULL)
			freepage(page);
606 607 608 609 610
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
611
	spin_unlock_irq(&mapping->tree_lock);
612 613 614
	return 0;
}

N
Nick Piggin 已提交
615 616 617 618 619 620 621 622
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
623
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
624 625 626 627 628 629 630 631 632 633 634
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
635 636 637 638 639 640 641 642 643 644 645
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
646
	bool is_unevictable;
647
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
648

649
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
650 651 652 653

redo:
	ClearPageUnevictable(page);

654
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
655 656 657 658 659 660
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
661
		is_unevictable = false;
662
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
663 664 665 666 667
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
668
		is_unevictable = true;
L
Lee Schermerhorn 已提交
669
		add_page_to_unevictable_list(page);
670
		/*
671 672 673
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
674
		 * isolation/check_move_unevictable_pages,
675
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
676 677
		 * the page back to the evictable list.
		 *
678
		 * The other side is TestClearPageMlocked() or shmem_lock().
679 680
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
681 682 683 684 685 686 687
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
688
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
689 690 691 692 693 694 695 696 697 698
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

699
	if (was_unevictable && !is_unevictable)
700
		count_vm_event(UNEVICTABLE_PGRESCUED);
701
	else if (!was_unevictable && is_unevictable)
702 703
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
704 705 706
	put_page(page);		/* drop ref from isolate */
}

707 708 709
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
710
	PAGEREF_KEEP,
711 712 713 714 715 716
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
717
	int referenced_ptes, referenced_page;
718 719
	unsigned long vm_flags;

720 721
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
722
	referenced_page = TestClearPageReferenced(page);
723 724 725 726 727 728 729 730

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

731
	if (referenced_ptes) {
732
		if (PageSwapBacked(page))
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

750
		if (referenced_page || referenced_ptes > 1)
751 752
			return PAGEREF_ACTIVATE;

753 754 755 756 757 758
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

759 760
		return PAGEREF_KEEP;
	}
761 762

	/* Reclaim if clean, defer dirty pages to writeback */
763
	if (referenced_page && !PageSwapBacked(page))
764 765 766
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
767 768
}

769 770 771 772
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
773 774
	struct address_space *mapping;

775 776 777 778 779 780 781 782 783 784 785 786 787
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
788 789 790 791 792 793 794 795

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
796 797
}

L
Linus Torvalds 已提交
798
/*
A
Andrew Morton 已提交
799
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
800
 */
A
Andrew Morton 已提交
801
static unsigned long shrink_page_list(struct list_head *page_list,
802
				      struct zone *zone,
803
				      struct scan_control *sc,
804
				      enum ttu_flags ttu_flags,
805
				      unsigned long *ret_nr_dirty,
806
				      unsigned long *ret_nr_unqueued_dirty,
807
				      unsigned long *ret_nr_congested,
808
				      unsigned long *ret_nr_writeback,
809
				      unsigned long *ret_nr_immediate,
810
				      bool force_reclaim)
L
Linus Torvalds 已提交
811 812
{
	LIST_HEAD(ret_pages);
813
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
814
	int pgactivate = 0;
815
	unsigned long nr_unqueued_dirty = 0;
816 817
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
818
	unsigned long nr_reclaimed = 0;
819
	unsigned long nr_writeback = 0;
820
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
821 822 823 824 825 826 827

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
828
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
829
		bool dirty, writeback;
L
Linus Torvalds 已提交
830 831 832 833 834 835

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
836
		if (!trylock_page(page))
L
Linus Torvalds 已提交
837 838
			goto keep;

839 840
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
841 842

		sc->nr_scanned++;
843

844
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
845
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
846

847
		if (!sc->may_unmap && page_mapped(page))
848 849
			goto keep_locked;

L
Linus Torvalds 已提交
850 851 852 853
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

854 855 856
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

857 858 859 860 861 862 863 864 865 866 867 868 869
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

870 871 872 873 874 875
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
876
		mapping = page_mapping(page);
877 878
		if (((dirty || writeback) && mapping &&
		     bdi_write_congested(mapping->backing_dev_info)) ||
879
		    (writeback && PageReclaim(page)))
880 881
			nr_congested++;

882 883 884 885 886 887 888 889 890 891 892
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
893 894
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
919
		if (PageWriteback(page)) {
920 921 922
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
J
Johannes Weiner 已提交
923
			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
924 925
				nr_immediate++;
				goto keep_locked;
926 927 928

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
929 930 931 932 933 934 935 936 937 938 939 940 941
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
942
				nr_writeback++;
943

944
				goto keep_locked;
945 946 947 948

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
949
			}
950
		}
L
Linus Torvalds 已提交
951

952 953 954
		if (!force_reclaim)
			references = page_check_references(page, sc);

955 956
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
957
			goto activate_locked;
958 959
		case PAGEREF_KEEP:
			goto keep_locked;
960 961 962 963
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
964 965 966 967 968

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
969
		if (PageAnon(page) && !PageSwapCache(page)) {
970 971
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
972
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
973
				goto activate_locked;
974
			may_enter_fs = 1;
L
Linus Torvalds 已提交
975

976 977 978
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
979 980 981 982 983 984

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
985
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
986 987 988 989
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
990 991
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
992 993 994 995 996 997
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
998 999
			/*
			 * Only kswapd can writeback filesystem pages to
1000 1001
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1002
			 */
1003
			if (page_is_file_cache(page) &&
1004
					(!current_is_kswapd() ||
J
Johannes Weiner 已提交
1005
					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1006 1007 1008 1009 1010 1011 1012 1013 1014
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1015 1016 1017
				goto keep_locked;
			}

1018
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1019
				goto keep_locked;
1020
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1021
				goto keep_locked;
1022
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1023 1024 1025
				goto keep_locked;

			/* Page is dirty, try to write it out here */
1026
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1027 1028 1029 1030 1031
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1032
				if (PageWriteback(page))
1033
					goto keep;
1034
				if (PageDirty(page))
L
Linus Torvalds 已提交
1035
					goto keep;
1036

L
Linus Torvalds 已提交
1037 1038 1039 1040
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1041
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1061
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1072
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1073 1074
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1091 1092
		}

1093
		if (!mapping || !__remove_mapping(mapping, page, true))
1094
			goto keep_locked;
L
Linus Torvalds 已提交
1095

N
Nick Piggin 已提交
1096 1097 1098 1099 1100 1101 1102 1103
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1104
free_it:
1105
		nr_reclaimed++;
1106 1107 1108 1109 1110 1111

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1112 1113
		continue;

N
Nick Piggin 已提交
1114
cull_mlocked:
1115 1116
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1117 1118 1119 1120
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1121
activate_locked:
1122 1123
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1124
			try_to_free_swap(page);
1125
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1126 1127 1128 1129 1130 1131
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1132
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1133
	}
1134

1135
	mem_cgroup_uncharge_list(&free_pages);
1136
	free_hot_cold_page_list(&free_pages, true);
1137

L
Linus Torvalds 已提交
1138
	list_splice(&ret_pages, page_list);
1139
	count_vm_events(PGACTIVATE, pgactivate);
1140

1141 1142
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1143
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1144
	*ret_nr_writeback += nr_writeback;
1145
	*ret_nr_immediate += nr_immediate;
1146
	return nr_reclaimed;
L
Linus Torvalds 已提交
1147 1148
}

1149 1150 1151 1152 1153 1154 1155 1156
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1157
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1158 1159 1160 1161
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1162 1163
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1164 1165 1166 1167 1168 1169
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1170 1171
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1172
	list_splice(&clean_pages, page_list);
1173
	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1174 1175 1176
	return ret;
}

A
Andy Whitcroft 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1187
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1188 1189 1190 1191 1192 1193 1194
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1195 1196
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1197 1198
		return ret;

A
Andy Whitcroft 已提交
1199
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1234

1235 1236 1237
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1262
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1263
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1264
 * @nr_scanned:	The number of pages that were scanned.
1265
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1266
 * @mode:	One of the LRU isolation modes
1267
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1268 1269 1270
 *
 * returns how many pages were moved onto *@dst.
 */
1271
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1272
		struct lruvec *lruvec, struct list_head *dst,
1273
		unsigned long *nr_scanned, struct scan_control *sc,
1274
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1275
{
H
Hugh Dickins 已提交
1276
	struct list_head *src = &lruvec->lists[lru];
1277
	unsigned long nr_taken = 0;
1278
	unsigned long scan;
L
Linus Torvalds 已提交
1279

1280
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1281
		struct page *page;
1282
		int nr_pages;
A
Andy Whitcroft 已提交
1283

L
Linus Torvalds 已提交
1284 1285 1286
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1287
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1288

1289
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1290
		case 0:
1291 1292
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1293
			list_move(&page->lru, dst);
1294
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1295 1296 1297 1298 1299 1300
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1301

A
Andy Whitcroft 已提交
1302 1303 1304
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1305 1306
	}

H
Hugh Dickins 已提交
1307
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1308 1309
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1310 1311 1312
	return nr_taken;
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1324 1325 1326
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1342
	VM_BUG_ON_PAGE(!page_count(page), page);
1343

1344 1345
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1346
		struct lruvec *lruvec;
1347 1348

		spin_lock_irq(&zone->lru_lock);
1349
		lruvec = mem_cgroup_page_lruvec(page, zone);
1350
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1351
			int lru = page_lru(page);
1352
			get_page(page);
1353
			ClearPageLRU(page);
1354 1355
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1356 1357 1358 1359 1360 1361
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1362
/*
F
Fengguang Wu 已提交
1363 1364 1365 1366 1367
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1368 1369 1370 1371 1372 1373 1374 1375 1376
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1377
	if (!global_reclaim(sc))
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1388 1389 1390 1391 1392 1393 1394 1395
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1396 1397 1398
	return isolated > inactive;
}

1399
static noinline_for_stack void
H
Hugh Dickins 已提交
1400
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1401
{
1402 1403
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1404
	LIST_HEAD(pages_to_free);
1405 1406 1407 1408 1409

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1410
		struct page *page = lru_to_page(page_list);
1411
		int lru;
1412

1413
		VM_BUG_ON_PAGE(PageLRU(page), page);
1414
		list_del(&page->lru);
1415
		if (unlikely(!page_evictable(page))) {
1416 1417 1418 1419 1420
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1421 1422 1423

		lruvec = mem_cgroup_page_lruvec(page, zone);

1424
		SetPageLRU(page);
1425
		lru = page_lru(page);
1426 1427
		add_page_to_lru_list(page, lruvec, lru);

1428 1429
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1430 1431
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1432
		}
1433 1434 1435
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1436
			del_page_from_lru_list(page, lruvec, lru);
1437 1438 1439

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1440
				mem_cgroup_uncharge(page);
1441 1442 1443 1444
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1445 1446 1447
		}
	}

1448 1449 1450 1451
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1452 1453
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1467
/*
A
Andrew Morton 已提交
1468 1469
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1470
 */
1471
static noinline_for_stack unsigned long
1472
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1473
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1474 1475
{
	LIST_HEAD(page_list);
1476
	unsigned long nr_scanned;
1477
	unsigned long nr_reclaimed = 0;
1478
	unsigned long nr_taken;
1479 1480
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1481
	unsigned long nr_unqueued_dirty = 0;
1482
	unsigned long nr_writeback = 0;
1483
	unsigned long nr_immediate = 0;
1484
	isolate_mode_t isolate_mode = 0;
1485
	int file = is_file_lru(lru);
1486 1487
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1488

1489
	while (unlikely(too_many_isolated(zone, file, sc))) {
1490
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1491 1492 1493 1494 1495 1496

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1497
	lru_add_drain();
1498 1499

	if (!sc->may_unmap)
1500
		isolate_mode |= ISOLATE_UNMAPPED;
1501
	if (!sc->may_writepage)
1502
		isolate_mode |= ISOLATE_CLEAN;
1503

L
Linus Torvalds 已提交
1504
	spin_lock_irq(&zone->lru_lock);
1505

1506 1507
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1508 1509 1510 1511

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1512
	if (global_reclaim(sc)) {
1513
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1514
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1515
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1516
		else
H
Hugh Dickins 已提交
1517
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1518
	}
1519
	spin_unlock_irq(&zone->lru_lock);
1520

1521
	if (nr_taken == 0)
1522
		return 0;
A
Andy Whitcroft 已提交
1523

1524
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1525 1526 1527
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1528

1529 1530
	spin_lock_irq(&zone->lru_lock);

1531
	reclaim_stat->recent_scanned[file] += nr_taken;
1532

Y
Ying Han 已提交
1533 1534 1535 1536 1537 1538 1539 1540
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1541

1542
	putback_inactive_pages(lruvec, &page_list);
1543

1544
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1545 1546 1547

	spin_unlock_irq(&zone->lru_lock);

1548
	mem_cgroup_uncharge_list(&page_list);
1549
	free_hot_cold_page_list(&page_list, true);
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1561 1562 1563
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1564
	 */
1565
	if (nr_writeback && nr_writeback == nr_taken)
J
Johannes Weiner 已提交
1566
		set_bit(ZONE_WRITEBACK, &zone->flags);
1567

1568
	/*
1569 1570
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1571
	 */
1572
	if (global_reclaim(sc)) {
1573 1574 1575 1576 1577
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
J
Johannes Weiner 已提交
1578
			set_bit(ZONE_CONGESTED, &zone->flags);
1579

1580 1581 1582
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
J
Johannes Weiner 已提交
1583 1584
		 * the zone ZONE_DIRTY and kswapd will start writing pages from
		 * reclaim context.
1585 1586
		 */
		if (nr_unqueued_dirty == nr_taken)
J
Johannes Weiner 已提交
1587
			set_bit(ZONE_DIRTY, &zone->flags);
1588 1589

		/*
1590 1591 1592
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1593 1594
		 * they are written so also forcibly stall.
		 */
1595
		if (nr_immediate && current_may_throttle())
1596
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1597
	}
1598

1599 1600 1601 1602 1603
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1604 1605
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
1606 1607
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1608 1609 1610
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1611
		sc->priority,
M
Mel Gorman 已提交
1612
		trace_shrink_flags(file));
1613
	return nr_reclaimed;
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1633

1634
static void move_active_pages_to_lru(struct lruvec *lruvec,
1635
				     struct list_head *list,
1636
				     struct list_head *pages_to_free,
1637 1638
				     enum lru_list lru)
{
1639
	struct zone *zone = lruvec_zone(lruvec);
1640 1641
	unsigned long pgmoved = 0;
	struct page *page;
1642
	int nr_pages;
1643 1644 1645

	while (!list_empty(list)) {
		page = lru_to_page(list);
1646
		lruvec = mem_cgroup_page_lruvec(page, zone);
1647

1648
		VM_BUG_ON_PAGE(PageLRU(page), page);
1649 1650
		SetPageLRU(page);

1651 1652
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1653
		list_move(&page->lru, &lruvec->lists[lru]);
1654
		pgmoved += nr_pages;
1655

1656 1657 1658
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1659
			del_page_from_lru_list(page, lruvec, lru);
1660 1661 1662

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1663
				mem_cgroup_uncharge(page);
1664 1665 1666 1667
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1668 1669 1670 1671 1672 1673
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1674

H
Hugh Dickins 已提交
1675
static void shrink_active_list(unsigned long nr_to_scan,
1676
			       struct lruvec *lruvec,
1677
			       struct scan_control *sc,
1678
			       enum lru_list lru)
L
Linus Torvalds 已提交
1679
{
1680
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1681
	unsigned long nr_scanned;
1682
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1683
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1684
	LIST_HEAD(l_active);
1685
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1686
	struct page *page;
1687
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1688
	unsigned long nr_rotated = 0;
1689
	isolate_mode_t isolate_mode = 0;
1690
	int file = is_file_lru(lru);
1691
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1692 1693

	lru_add_drain();
1694 1695

	if (!sc->may_unmap)
1696
		isolate_mode |= ISOLATE_UNMAPPED;
1697
	if (!sc->may_writepage)
1698
		isolate_mode |= ISOLATE_CLEAN;
1699

L
Linus Torvalds 已提交
1700
	spin_lock_irq(&zone->lru_lock);
1701

1702 1703
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1704
	if (global_reclaim(sc))
1705
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1706

1707
	reclaim_stat->recent_scanned[file] += nr_taken;
1708

H
Hugh Dickins 已提交
1709
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1710
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1711
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1712 1713 1714 1715 1716 1717
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1718

1719
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1720 1721 1722 1723
			putback_lru_page(page);
			continue;
		}

1724 1725 1726 1727 1728 1729 1730 1731
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1732 1733
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1734
			nr_rotated += hpage_nr_pages(page);
1735 1736 1737 1738 1739 1740 1741 1742 1743
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1744
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1745 1746 1747 1748
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1749

1750
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1751 1752 1753
		list_add(&page->lru, &l_inactive);
	}

1754
	/*
1755
	 * Move pages back to the lru list.
1756
	 */
1757
	spin_lock_irq(&zone->lru_lock);
1758
	/*
1759 1760 1761
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1762
	 * get_scan_count.
1763
	 */
1764
	reclaim_stat->recent_rotated[file] += nr_rotated;
1765

1766 1767
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1768
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1769
	spin_unlock_irq(&zone->lru_lock);
1770

1771
	mem_cgroup_uncharge_list(&l_hold);
1772
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1773 1774
}

1775
#ifdef CONFIG_SWAP
1776
static int inactive_anon_is_low_global(struct zone *zone)
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1789 1790
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1791
 * @lruvec: LRU vector to check
1792 1793 1794 1795
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1796
static int inactive_anon_is_low(struct lruvec *lruvec)
1797
{
1798 1799 1800 1801 1802 1803 1804
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1805
	if (!mem_cgroup_disabled())
1806
		return mem_cgroup_inactive_anon_is_low(lruvec);
1807

1808
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1809
}
1810
#else
1811
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1812 1813 1814 1815
{
	return 0;
}
#endif
1816

1817 1818
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1819
 * @lruvec: LRU vector to check
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1831
static int inactive_file_is_low(struct lruvec *lruvec)
1832
{
1833 1834 1835 1836 1837
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1838

1839
	return active > inactive;
1840 1841
}

H
Hugh Dickins 已提交
1842
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1843
{
H
Hugh Dickins 已提交
1844
	if (is_file_lru(lru))
1845
		return inactive_file_is_low(lruvec);
1846
	else
1847
		return inactive_anon_is_low(lruvec);
1848 1849
}

1850
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1851
				 struct lruvec *lruvec, struct scan_control *sc)
1852
{
1853
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1854
		if (inactive_list_is_low(lruvec, lru))
1855
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1856 1857 1858
		return 0;
	}

1859
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1860 1861
}

1862 1863 1864 1865 1866 1867 1868
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1869 1870 1871 1872 1873 1874
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1875 1876
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1877
 */
1878 1879
static void get_scan_count(struct lruvec *lruvec, int swappiness,
			   struct scan_control *sc, unsigned long *nr)
1880
{
1881 1882 1883 1884
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1885
	unsigned long anon_prio, file_prio;
1886
	enum scan_balance scan_balance;
1887
	unsigned long anon, file;
1888
	bool force_scan = false;
1889
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1890
	enum lru_list lru;
1891 1892
	bool some_scanned;
	int pass;
1893

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1904
	if (current_is_kswapd() && !zone_reclaimable(zone))
1905
		force_scan = true;
1906
	if (!global_reclaim(sc))
1907
		force_scan = true;
1908 1909

	/* If we have no swap space, do not bother scanning anon pages. */
1910
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1911
		scan_balance = SCAN_FILE;
1912 1913
		goto out;
	}
1914

1915 1916 1917 1918 1919 1920 1921
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
1922
	if (!global_reclaim(sc) && !swappiness) {
1923
		scan_balance = SCAN_FILE;
1924 1925 1926 1927 1928 1929 1930 1931
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
1932
	if (!sc->priority && swappiness) {
1933
		scan_balance = SCAN_EQUAL;
1934 1935 1936
		goto out;
	}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
1947 1948 1949 1950 1951 1952
		unsigned long zonefile;
		unsigned long zonefree;

		zonefree = zone_page_state(zone, NR_FREE_PAGES);
		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
			   zone_page_state(zone, NR_INACTIVE_FILE);
1953

1954
		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
1955 1956 1957 1958 1959
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

1960 1961 1962 1963 1964
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1965
		scan_balance = SCAN_FILE;
1966 1967 1968
		goto out;
	}

1969 1970
	scan_balance = SCAN_FRACT;

1971 1972 1973 1974
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1975
	anon_prio = swappiness;
H
Hugh Dickins 已提交
1976
	file_prio = 200 - anon_prio;
1977

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1989 1990 1991 1992 1993 1994

	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);

1995
	spin_lock_irq(&zone->lru_lock);
1996 1997 1998
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1999 2000
	}

2001 2002 2003
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2004 2005 2006
	}

	/*
2007 2008 2009
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2010
	 */
2011
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2012
	ap /= reclaim_stat->recent_rotated[0] + 1;
2013

2014
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2015
	fp /= reclaim_stat->recent_rotated[1] + 1;
2016
	spin_unlock_irq(&zone->lru_lock);
2017

2018 2019 2020 2021
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2022 2023 2024 2025 2026 2027 2028
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2029

2030 2031
			size = get_lru_size(lruvec, lru);
			scan = size >> sc->priority;
2032

2033 2034
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
				if ((scan_balance == SCAN_FILE) != file)
					scan = 0;
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
			nr[lru] = scan;
2059
			/*
2060 2061
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2062
			 */
2063
			some_scanned |= !!scan;
2064
		}
2065
	}
2066
}
2067

2068 2069 2070
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2071 2072
static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
			  struct scan_control *sc)
2073 2074
{
	unsigned long nr[NR_LRU_LISTS];
2075
	unsigned long targets[NR_LRU_LISTS];
2076 2077 2078 2079 2080
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2081
	bool scan_adjusted;
2082

2083
	get_scan_count(lruvec, swappiness, sc, nr);
2084

2085 2086 2087
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2102 2103 2104
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2105 2106 2107
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2108 2109 2110 2111 2112 2113 2114 2115 2116
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2117 2118 2119 2120 2121 2122

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2123
		 * requested. Ensure that the anon and file LRUs are scanned
2124 2125 2126 2127 2128 2129 2130
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2131 2132 2133 2134 2135 2136 2137 2138 2139
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2186
/* Use reclaim/compaction for costly allocs or under memory pressure */
2187
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2188
{
2189
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2190
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2191
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2192 2193 2194 2195 2196
		return true;

	return false;
}

2197
/*
M
Mel Gorman 已提交
2198 2199 2200 2201 2202
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2203
 */
2204
static inline bool should_continue_reclaim(struct zone *zone,
2205 2206 2207 2208 2209 2210 2211 2212
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2213
	if (!in_reclaim_compaction(sc))
2214 2215
		return false;

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2238 2239 2240 2241 2242 2243

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2244
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2245
	if (get_nr_swap_pages() > 0)
2246
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2247 2248 2249 2250 2251
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2252
	switch (compaction_suitable(zone, sc->order)) {
2253 2254 2255 2256 2257 2258 2259 2260
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2261
static bool shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2262
{
2263
	unsigned long nr_reclaimed, nr_scanned;
2264
	bool reclaimable = false;
L
Linus Torvalds 已提交
2265

2266 2267 2268 2269 2270 2271
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2272
		struct mem_cgroup *memcg;
2273

2274 2275
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2276

2277 2278
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2279
			struct lruvec *lruvec;
2280
			int swappiness;
2281

2282
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2283
			swappiness = mem_cgroup_swappiness(memcg);
2284

2285
			shrink_lruvec(lruvec, swappiness, sc);
2286

2287
			/*
2288 2289
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2290
			 * zone.
2291 2292 2293 2294 2295
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2296
			 */
2297 2298
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2299 2300 2301
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2302 2303
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2304 2305 2306 2307 2308

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2309 2310 2311
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2312 2313
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2314 2315

	return reclaimable;
2316 2317
}

2318 2319 2320 2321
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2322
static inline bool compaction_ready(struct zone *zone, int order)
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2333 2334
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2335
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2336 2337 2338 2339 2340 2341
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2342
	if (compaction_deferred(zone, order))
2343 2344
		return watermark_ok;

2345 2346 2347 2348 2349
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
	if (compaction_suitable(zone, order) == COMPACT_SKIPPED)
2350 2351 2352 2353 2354
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2355 2356 2357 2358 2359
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2360 2361
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2362 2363
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2364 2365 2366
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2367 2368 2369
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2370 2371
 *
 * Returns true if a zone was reclaimable.
L
Linus Torvalds 已提交
2372
 */
2373
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2374
{
2375
	struct zoneref *z;
2376
	struct zone *zone;
2377 2378
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2379 2380
	unsigned long lru_pages = 0;
	struct reclaim_state *reclaim_state = current->reclaim_state;
2381
	gfp_t orig_mask;
2382 2383 2384
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2385
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2386
	bool reclaimable = false;
2387

2388 2389 2390 2391 2392
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2393
	orig_mask = sc->gfp_mask;
2394 2395 2396
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2397
	nodes_clear(shrink.nodes_to_scan);
2398

2399 2400
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2401
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2402
			continue;
2403 2404 2405 2406
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2407
		if (global_reclaim(sc)) {
2408 2409
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2410 2411

			lru_pages += zone_reclaimable_pages(zone);
2412
			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2413

2414 2415
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2416
				continue;	/* Let kswapd poll it */
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
			    zonelist_zone_idx(z) <= requested_highidx &&
			    compaction_ready(zone, sc->order)) {
				sc->compaction_ready = true;
				continue;
2433
			}
2434

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2447 2448
			if (nr_soft_reclaimed)
				reclaimable = true;
2449
			/* need some check for avoid more shrink_zone() */
2450
		}
2451

2452 2453 2454 2455 2456 2457
		if (shrink_zone(zone, sc))
			reclaimable = true;

		if (global_reclaim(sc) &&
		    !reclaimable && zone_reclaimable(zone))
			reclaimable = true;
L
Linus Torvalds 已提交
2458
	}
2459

2460 2461 2462 2463 2464 2465 2466
	/*
	 * Don't shrink slabs when reclaiming memory from over limit cgroups
	 * but do shrink slab at least once when aborting reclaim for
	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
	 * pages.
	 */
	if (global_reclaim(sc)) {
2467
		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2468 2469 2470 2471 2472 2473
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
		}
	}

2474 2475 2476 2477 2478
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
2479

2480
	return reclaimable;
L
Linus Torvalds 已提交
2481
}
2482

L
Linus Torvalds 已提交
2483 2484 2485 2486 2487 2488 2489 2490
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2491 2492 2493 2494
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2495 2496 2497
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2498
 */
2499
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2500
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2501
{
2502
	unsigned long total_scanned = 0;
2503
	unsigned long writeback_threshold;
2504
	bool zones_reclaimable;
L
Linus Torvalds 已提交
2505

2506 2507
	delayacct_freepages_start();

2508
	if (global_reclaim(sc))
2509
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2510

2511
	do {
2512 2513
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2514
		sc->nr_scanned = 0;
2515
		zones_reclaimable = shrink_zones(zonelist, sc);
2516

2517
		total_scanned += sc->nr_scanned;
2518
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2519 2520 2521 2522
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2523

2524 2525 2526 2527 2528 2529 2530
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2531 2532 2533 2534 2535 2536 2537
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2538 2539
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2540 2541
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2542
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2543
		}
2544
	} while (--sc->priority >= 0);
2545

2546 2547
	delayacct_freepages_end();

2548 2549 2550
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2551
	/* Aborted reclaim to try compaction? don't OOM, then */
2552
	if (sc->compaction_ready)
2553 2554
		return 1;

2555 2556
	/* Any of the zones still reclaimable?  Don't OOM. */
	if (zones_reclaimable)
2557 2558 2559
		return 1;

	return 0;
L
Linus Torvalds 已提交
2560 2561
}

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2572 2573 2574
		if (!populated_zone(zone))
			continue;

2575 2576 2577 2578
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2579 2580 2581 2582
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2599 2600 2601 2602
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2603
 */
2604
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2605 2606
					nodemask_t *nodemask)
{
2607
	struct zoneref *z;
2608
	struct zone *zone;
2609
	pg_data_t *pgdat = NULL;
2610 2611 2612 2613 2614 2615 2616 2617 2618

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2619 2620 2621 2622 2623 2624 2625 2626
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2627

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_mask, nodemask) {
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2656
		goto out;
2657

2658 2659 2660
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2672 2673

		goto check_pending;
2674 2675 2676 2677 2678
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2679 2680 2681 2682 2683 2684 2685

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2686 2687
}

2688
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2689
				gfp_t gfp_mask, nodemask_t *nodemask)
2690
{
2691
	unsigned long nr_reclaimed;
2692
	struct scan_control sc = {
2693
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2694
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2695 2696 2697
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2698
		.may_writepage = !laptop_mode,
2699
		.may_unmap = 1,
2700
		.may_swap = 1,
2701 2702
	};

2703
	/*
2704 2705 2706
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2707
	 */
2708
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2709 2710
		return 1;

2711 2712 2713 2714
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2715
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2716 2717 2718 2719

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2720 2721
}

A
Andrew Morton 已提交
2722
#ifdef CONFIG_MEMCG
2723

2724
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2725
						gfp_t gfp_mask, bool noswap,
2726 2727
						struct zone *zone,
						unsigned long *nr_scanned)
2728 2729
{
	struct scan_control sc = {
2730
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2731
		.target_mem_cgroup = memcg,
2732 2733 2734 2735
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
	};
2736
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2737
	int swappiness = mem_cgroup_swappiness(memcg);
2738

2739 2740
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2741

2742
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2743 2744 2745
						      sc.may_writepage,
						      sc.gfp_mask);

2746 2747 2748 2749 2750 2751 2752
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2753
	shrink_lruvec(lruvec, swappiness, &sc);
2754 2755 2756

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2757
	*nr_scanned = sc.nr_scanned;
2758 2759 2760
	return sc.nr_reclaimed;
}

2761
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2762
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2763
					   gfp_t gfp_mask,
2764
					   bool may_swap)
2765
{
2766
	struct zonelist *zonelist;
2767
	unsigned long nr_reclaimed;
2768
	int nid;
2769
	struct scan_control sc = {
2770
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2771 2772
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2773 2774 2775 2776
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2777
		.may_swap = may_swap,
2778
	};
2779

2780 2781 2782 2783 2784
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2785
	nid = mem_cgroup_select_victim_node(memcg);
2786 2787

	zonelist = NODE_DATA(nid)->node_zonelists;
2788 2789 2790 2791 2792

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2793
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2794 2795 2796 2797

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2798 2799 2800
}
#endif

2801
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2802
{
2803
	struct mem_cgroup *memcg;
2804

2805 2806 2807 2808 2809
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2810
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2811

2812
		if (inactive_anon_is_low(lruvec))
2813
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2814
					   sc, LRU_ACTIVE_ANON);
2815 2816 2817

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2818 2819
}

2820 2821 2822 2823 2824 2825 2826
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2827
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2828
	    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2829 2830 2831 2832 2833
		return false;

	return true;
}

2834
/*
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2845 2846 2847 2848
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2849
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2850 2851 2852 2853
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2854
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2855
{
2856
	unsigned long managed_pages = 0;
2857
	unsigned long balanced_pages = 0;
2858 2859
	int i;

2860 2861 2862
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2863

2864 2865 2866
		if (!populated_zone(zone))
			continue;

2867
		managed_pages += zone->managed_pages;
2868 2869 2870 2871 2872 2873 2874 2875

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2876
		if (!zone_reclaimable(zone)) {
2877
			balanced_pages += zone->managed_pages;
2878 2879 2880 2881
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2882
			balanced_pages += zone->managed_pages;
2883 2884 2885 2886 2887
		else if (!order)
			return false;
	}

	if (order)
2888
		return balanced_pages >= (managed_pages >> 2);
2889 2890
	else
		return true;
2891 2892
}

2893 2894 2895 2896 2897 2898 2899
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2900
					int classzone_idx)
2901 2902 2903
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2919

2920
	return pgdat_balanced(pgdat, order, classzone_idx);
2921 2922
}

2923 2924 2925
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2926 2927
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2928 2929
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2930
 */
2931
static bool kswapd_shrink_zone(struct zone *zone,
2932
			       int classzone_idx,
2933
			       struct scan_control *sc,
2934 2935
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2936
{
2937 2938
	int testorder = sc->order;
	unsigned long balance_gap;
2939 2940 2941 2942
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2943
	bool lowmem_pressure;
2944 2945 2946

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
2965 2966
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2977
	shrink_zone(zone, sc);
D
Dave Chinner 已提交
2978 2979
	nodes_clear(shrink.nodes_to_scan);
	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2980 2981

	reclaim_state->reclaimed_slab = 0;
2982
	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2983 2984
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2985 2986 2987
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

J
Johannes Weiner 已提交
2988
	clear_bit(ZONE_WRITEBACK, &zone->flags);
2989

2990 2991 2992 2993 2994 2995
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
2996
	if (zone_reclaimable(zone) &&
2997
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
J
Johannes Weiner 已提交
2998 2999
		clear_bit(ZONE_CONGESTED, &zone->flags);
		clear_bit(ZONE_DIRTY, &zone->flags);
3000 3001
	}

3002
	return sc->nr_scanned >= sc->nr_to_reclaim;
3003 3004
}

L
Linus Torvalds 已提交
3005 3006
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
3007
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
3008
 *
3009
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3020 3021 3022 3023 3024
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
3025
 */
3026
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3027
							int *classzone_idx)
L
Linus Torvalds 已提交
3028 3029
{
	int i;
3030
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3031 3032
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3033 3034
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3035
		.order = order,
3036
		.priority = DEF_PRIORITY,
3037
		.may_writepage = !laptop_mode,
3038
		.may_unmap = 1,
3039
		.may_swap = 1,
3040
	};
3041
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3042

3043
	do {
L
Linus Torvalds 已提交
3044
		unsigned long lru_pages = 0;
3045
		unsigned long nr_attempted = 0;
3046
		bool raise_priority = true;
3047
		bool pgdat_needs_compaction = (order > 0);
3048 3049

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3050

3051 3052 3053 3054 3055 3056
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
3057

3058 3059
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
3060

3061 3062
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
3063
				continue;
L
Linus Torvalds 已提交
3064

3065 3066 3067 3068
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3069
			age_active_anon(zone, &sc);
3070

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3082
			if (!zone_balanced(zone, order, 0, 0)) {
3083
				end_zone = i;
A
Andrew Morton 已提交
3084
				break;
3085
			} else {
3086 3087 3088 3089
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
J
Johannes Weiner 已提交
3090 3091
				clear_bit(ZONE_CONGESTED, &zone->flags);
				clear_bit(ZONE_DIRTY, &zone->flags);
L
Linus Torvalds 已提交
3092 3093
			}
		}
3094

3095
		if (i < 0)
A
Andrew Morton 已提交
3096 3097
			goto out;

L
Linus Torvalds 已提交
3098 3099 3100
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3101 3102 3103
			if (!populated_zone(zone))
				continue;

3104
			lru_pages += zone_reclaimable_pages(zone);
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3116 3117
		}

3118 3119 3120 3121 3122 3123 3124
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3137
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3138 3139
				continue;

3140 3141
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3142 3143 3144
				continue;

			sc.nr_scanned = 0;
3145

3146 3147 3148 3149 3150 3151 3152 3153 3154
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3155
			/*
3156 3157 3158 3159
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3160
			 */
3161 3162 3163
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3164
		}
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3175
		/*
3176 3177 3178 3179 3180 3181
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3182
		 */
3183 3184
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3185

3186 3187 3188
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3189

3190 3191 3192 3193 3194 3195 3196
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3197
		/*
3198 3199
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3200
		 */
3201 3202
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3203
	} while (sc.priority >= 1 &&
3204
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3205

3206
out:
3207
	/*
3208
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3209 3210 3211 3212
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3213
	*classzone_idx = end_zone;
3214
	return order;
L
Linus Torvalds 已提交
3215 3216
}

3217
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3228
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3229 3230 3231 3232 3233 3234 3235 3236 3237
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3238
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3250

3251 3252 3253 3254 3255 3256 3257 3258
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3259 3260 3261
		if (!kthread_should_stop())
			schedule();

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3272 3273
/*
 * The background pageout daemon, started as a kernel thread
3274
 * from the init process.
L
Linus Torvalds 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3287
	unsigned long order, new_order;
3288
	unsigned balanced_order;
3289
	int classzone_idx, new_classzone_idx;
3290
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3291 3292
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3293

L
Linus Torvalds 已提交
3294 3295 3296
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3297
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3298

3299 3300
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3301
	if (!cpumask_empty(cpumask))
3302
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3317
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3318
	set_freezable();
L
Linus Torvalds 已提交
3319

3320
	order = new_order = 0;
3321
	balanced_order = 0;
3322
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3323
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3324
	for ( ; ; ) {
3325
		bool ret;
3326

3327 3328 3329 3330 3331
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3332 3333
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3334 3335 3336 3337 3338 3339
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3340
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3341 3342
			/*
			 * Don't sleep if someone wants a larger 'order'
3343
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3344 3345
			 */
			order = new_order;
3346
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3347
		} else {
3348 3349
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3350
			order = pgdat->kswapd_max_order;
3351
			classzone_idx = pgdat->classzone_idx;
3352 3353
			new_order = order;
			new_classzone_idx = classzone_idx;
3354
			pgdat->kswapd_max_order = 0;
3355
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3356 3357
		}

3358 3359 3360 3361 3362 3363 3364 3365
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3366 3367
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3368 3369 3370
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3371
		}
L
Linus Torvalds 已提交
3372
	}
3373

3374
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3375
	current->reclaim_state = NULL;
3376 3377
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3378 3379 3380 3381 3382 3383
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3384
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3385 3386 3387
{
	pg_data_t *pgdat;

3388
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3389 3390
		return;

3391
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3392
		return;
3393
	pgdat = zone->zone_pgdat;
3394
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3395
		pgdat->kswapd_max_order = order;
3396 3397
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3398
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3399
		return;
3400
	if (zone_balanced(zone, order, 0, 0))
3401 3402 3403
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3404
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3405 3406
}

3407
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3408
/*
3409
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3410 3411 3412 3413 3414
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3415
 */
3416
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3417
{
3418 3419
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3420
		.nr_to_reclaim = nr_to_reclaim,
3421
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3422
		.priority = DEF_PRIORITY,
3423
		.may_writepage = 1,
3424 3425
		.may_unmap = 1,
		.may_swap = 1,
3426
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3427
	};
3428
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3429 3430
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3431

3432 3433 3434 3435
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3436

3437
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3438

3439 3440 3441
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3442

3443
	return nr_reclaimed;
L
Linus Torvalds 已提交
3444
}
3445
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3446 3447 3448 3449 3450

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3451 3452
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3453
{
3454
	int nid;
L
Linus Torvalds 已提交
3455

3456
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3457
		for_each_node_state(nid, N_MEMORY) {
3458
			pg_data_t *pgdat = NODE_DATA(nid);
3459 3460 3461
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3462

3463
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3464
				/* One of our CPUs online: restore mask */
3465
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3466 3467 3468 3469 3470
		}
	}
	return NOTIFY_OK;
}

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3487 3488
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3489
		pgdat->kswapd = NULL;
3490 3491 3492 3493
	}
	return ret;
}

3494
/*
3495
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3496
 * hold mem_hotplug_begin/end().
3497 3498 3499 3500 3501
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3502
	if (kswapd) {
3503
		kthread_stop(kswapd);
3504 3505
		NODE_DATA(nid)->kswapd = NULL;
	}
3506 3507
}

L
Linus Torvalds 已提交
3508 3509
static int __init kswapd_init(void)
{
3510
	int nid;
3511

L
Linus Torvalds 已提交
3512
	swap_setup();
3513
	for_each_node_state(nid, N_MEMORY)
3514
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3515 3516 3517 3518 3519
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3530
#define RECLAIM_OFF 0
3531
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3532 3533 3534
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3535 3536 3537 3538 3539 3540 3541
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3542 3543 3544 3545 3546 3547
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3548 3549 3550 3551 3552 3553
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3596 3597 3598
/*
 * Try to free up some pages from this zone through reclaim.
 */
3599
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3600
{
3601
	/* Minimum pages needed in order to stay on node */
3602
	const unsigned long nr_pages = 1 << order;
3603 3604
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3605
	struct scan_control sc = {
3606
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3607
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3608
		.order = order,
3609
		.priority = ZONE_RECLAIM_PRIORITY,
3610 3611 3612
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
		.may_swap = 1,
3613
	};
3614 3615 3616
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3617
	unsigned long nr_slab_pages0, nr_slab_pages1;
3618 3619

	cond_resched();
3620 3621 3622 3623 3624 3625
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3626
	lockdep_set_current_reclaim_state(gfp_mask);
3627 3628
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3629

3630
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3631 3632 3633 3634 3635
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3636 3637
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3638
	}
3639

3640 3641
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3642
		/*
3643
		 * shrink_slab() does not currently allow us to determine how
3644 3645 3646 3647
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3648
		 */
D
Dave Chinner 已提交
3649 3650
		nodes_clear(shrink.nodes_to_scan);
		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3651 3652 3653 3654
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3655
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3656 3657 3658 3659 3660 3661 3662 3663
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3664 3665 3666 3667 3668

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3669 3670 3671
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3672 3673
	}

3674
	p->reclaim_state = NULL;
3675
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3676
	lockdep_clear_current_reclaim_state();
3677
	return sc.nr_reclaimed >= nr_pages;
3678
}
3679 3680 3681 3682

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3683
	int ret;
3684 3685

	/*
3686 3687
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3688
	 *
3689 3690 3691 3692 3693
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3694
	 */
3695 3696
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3697
		return ZONE_RECLAIM_FULL;
3698

3699
	if (!zone_reclaimable(zone))
3700
		return ZONE_RECLAIM_FULL;
3701

3702
	/*
3703
	 * Do not scan if the allocation should not be delayed.
3704
	 */
3705
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3706
		return ZONE_RECLAIM_NOSCAN;
3707 3708 3709 3710 3711 3712 3713

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3714
	node_id = zone_to_nid(zone);
3715
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3716
		return ZONE_RECLAIM_NOSCAN;
3717

J
Johannes Weiner 已提交
3718
	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3719 3720
		return ZONE_RECLAIM_NOSCAN;

3721
	ret = __zone_reclaim(zone, gfp_mask, order);
J
Johannes Weiner 已提交
3722
	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3723

3724 3725 3726
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3727
	return ret;
3728
}
3729
#endif
L
Lee Schermerhorn 已提交
3730 3731 3732 3733 3734 3735

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3736
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3737 3738
 *
 * Reasons page might not be evictable:
3739
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3740
 * (2) page is part of an mlocked VMA
3741
 *
L
Lee Schermerhorn 已提交
3742
 */
3743
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3744
{
3745
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3746
}
3747

3748
#ifdef CONFIG_SHMEM
3749
/**
3750 3751 3752
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3753
 *
3754
 * Checks pages for evictability and moves them to the appropriate lru list.
3755 3756
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3757
 */
3758
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3759
{
3760
	struct lruvec *lruvec;
3761 3762 3763 3764
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3765

3766 3767 3768
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3769

3770 3771 3772 3773 3774 3775 3776 3777
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3778
		lruvec = mem_cgroup_page_lruvec(page, zone);
3779

3780 3781
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3782

3783
		if (page_evictable(page)) {
3784 3785
			enum lru_list lru = page_lru_base_type(page);

3786
			VM_BUG_ON_PAGE(PageActive(page), page);
3787
			ClearPageUnevictable(page);
3788 3789
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3790
			pgrescued++;
3791
		}
3792
	}
3793

3794 3795 3796 3797
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3798 3799
	}
}
3800
#endif /* CONFIG_SHMEM */