intel_dp.c 41.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30 31 32 33 34 35 36
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
37
#include "drm_dp_helper.h"
38

39

40 41 42 43 44
#define DP_LINK_STATUS_SIZE	6
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

#define DP_LINK_CONFIGURATION_SIZE	9

45 46
#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)

47 48 49 50 51
struct intel_dp_priv {
	uint32_t output_reg;
	uint32_t DP;
	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
	bool has_audio;
52
	int dpms_mode;
53 54 55
	uint8_t link_bw;
	uint8_t lane_count;
	uint8_t dpcd[4];
56
	struct intel_encoder *intel_encoder;
57 58 59 60 61
	struct i2c_adapter adapter;
	struct i2c_algo_dp_aux_data algo;
};

static void
62
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
63 64 65
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);

static void
66
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
67

68
void
69
intel_edp_link_config (struct intel_encoder *intel_encoder,
70 71
		int *lane_num, int *link_bw)
{
72
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
73 74 75 76 77 78 79 80

	*lane_num = dp_priv->lane_count;
	if (dp_priv->link_bw == DP_LINK_BW_1_62)
		*link_bw = 162000;
	else if (dp_priv->link_bw == DP_LINK_BW_2_7)
		*link_bw = 270000;
}

81
static int
82
intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
83
{
84
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	int max_lane_count = 4;

	if (dp_priv->dpcd[0] >= 0x11) {
		max_lane_count = dp_priv->dpcd[2] & 0x1f;
		switch (max_lane_count) {
		case 1: case 2: case 4:
			break;
		default:
			max_lane_count = 4;
		}
	}
	return max_lane_count;
}

static int
100
intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
101
{
102
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	int max_link_bw = dp_priv->dpcd[1];

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
	default:
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

static int
intel_dp_link_clock(uint8_t link_bw)
{
	if (link_bw == DP_LINK_BW_2_7)
		return 270000;
	else
		return 162000;
}

/* I think this is a fiction */
static int
127
intel_dp_link_required(struct drm_device *dev,
128
		       struct intel_encoder *intel_encoder, int pixel_clock)
129
{
130 131
	struct drm_i915_private *dev_priv = dev->dev_private;

132
	if (IS_eDP(intel_encoder))
133 134 135
		return (pixel_clock * dev_priv->edp_bpp) / 8;
	else
		return pixel_clock * 3;
136 137
}

138 139 140 141 142 143
static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
	return (max_link_clock * max_lanes * 8) / 10;
}

144 145 146 147
static int
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
148 149
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
150 151
	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
	int max_lanes = intel_dp_max_lane_count(intel_encoder);
152

153 154 155 156 157
	/* only refuse the mode on non eDP since we have seen some wierd eDP panels
	   which are outside spec tolerances but somehow work by magic */
	if (!IS_eDP(intel_encoder) &&
	    (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
	     > intel_dp_max_data_rate(max_link_clock, max_lanes)))
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
		return MODE_CLOCK_HIGH;

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t clkcfg;

	clkcfg = I915_READ(CLKCFG);
	switch (clkcfg & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_400:
		return 100;
	case CLKCFG_FSB_533:
		return 133;
	case CLKCFG_FSB_667:
		return 166;
	case CLKCFG_FSB_800:
		return 200;
	case CLKCFG_FSB_1067:
		return 266;
	case CLKCFG_FSB_1333:
		return 333;
	/* these two are just a guess; one of them might be right */
	case CLKCFG_FSB_1600:
	case CLKCFG_FSB_1600_ALT:
		return 400;
	default:
		return 133;
	}
}

219
static int
220
intel_dp_aux_ch(struct intel_encoder *intel_encoder,
221 222 223
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
224
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
225
	uint32_t output_reg = dp_priv->output_reg;
226
	struct drm_device *dev = intel_encoder->enc.dev;
227 228 229 230 231 232 233
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = output_reg + 0x10;
	uint32_t ch_data = ch_ctl + 4;
	int i;
	int recv_bytes;
	uint32_t ctl;
	uint32_t status;
234
	uint32_t aux_clock_divider;
235
	int try, precharge;
236 237

	/* The clock divider is based off the hrawclk,
238 239
	 * and would like to run at 2MHz. So, take the
	 * hrawclk value and divide by 2 and use that
240
	 */
241 242 243 244 245 246
	if (IS_eDP(intel_encoder)) {
		if (IS_GEN6(dev))
			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
		else
			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
	} else if (HAS_PCH_SPLIT(dev))
247
		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
248 249 250
	else
		aux_clock_divider = intel_hrawclk(dev) / 2;

251 252 253 254 255
	if (IS_GEN6(dev))
		precharge = 3;
	else
		precharge = 5;

256 257 258 259
	/* Must try at least 3 times according to DP spec */
	for (try = 0; try < 5; try++) {
		/* Load the send data into the aux channel data registers */
		for (i = 0; i < send_bytes; i += 4) {
260
			uint32_t    d = pack_aux(send + i, send_bytes - i);
261 262 263 264 265 266 267
	
			I915_WRITE(ch_data + i, d);
		}
	
		ctl = (DP_AUX_CH_CTL_SEND_BUSY |
		       DP_AUX_CH_CTL_TIME_OUT_400us |
		       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
268
		       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
		       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
		       DP_AUX_CH_CTL_DONE |
		       DP_AUX_CH_CTL_TIME_OUT_ERROR |
		       DP_AUX_CH_CTL_RECEIVE_ERROR);
	
		/* Send the command and wait for it to complete */
		I915_WRITE(ch_ctl, ctl);
		(void) I915_READ(ch_ctl);
		for (;;) {
			udelay(100);
			status = I915_READ(ch_ctl);
			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
				break;
		}
	
		/* Clear done status and any errors */
285
		I915_WRITE(ch_ctl, (status |
286 287 288 289 290
				DP_AUX_CH_CTL_DONE |
				DP_AUX_CH_CTL_TIME_OUT_ERROR |
				DP_AUX_CH_CTL_RECEIVE_ERROR));
		(void) I915_READ(ch_ctl);
		if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
291 292 293 294
			break;
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
295
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
296
		return -EBUSY;
297 298 299 300 301
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
302
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
303
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
304 305
		return -EIO;
	}
306 307 308

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
309
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
310
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
311
		return -ETIMEDOUT;
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);

	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
	
	for (i = 0; i < recv_bytes; i += 4) {
		uint32_t    d = I915_READ(ch_data + i);

		unpack_aux(d, recv + i, recv_bytes - i);
	}

	return recv_bytes;
}

/* Write data to the aux channel in native mode */
static int
332
intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
333 334 335 336 337 338 339 340 341 342 343
			  uint16_t address, uint8_t *send, int send_bytes)
{
	int ret;
	uint8_t	msg[20];
	int msg_bytes;
	uint8_t	ack;

	if (send_bytes > 16)
		return -1;
	msg[0] = AUX_NATIVE_WRITE << 4;
	msg[1] = address >> 8;
344
	msg[2] = address & 0xff;
345 346 347 348
	msg[3] = send_bytes - 1;
	memcpy(&msg[4], send, send_bytes);
	msg_bytes = send_bytes + 4;
	for (;;) {
349
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
350 351 352 353 354 355 356
		if (ret < 0)
			return ret;
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
			break;
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
357
			return -EIO;
358 359 360 361 362 363
	}
	return send_bytes;
}

/* Write a single byte to the aux channel in native mode */
static int
364
intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
365 366
			    uint16_t address, uint8_t byte)
{
367
	return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
368 369 370 371
}

/* read bytes from a native aux channel */
static int
372
intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
			 uint16_t address, uint8_t *recv, int recv_bytes)
{
	uint8_t msg[4];
	int msg_bytes;
	uint8_t reply[20];
	int reply_bytes;
	uint8_t ack;
	int ret;

	msg[0] = AUX_NATIVE_READ << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = recv_bytes - 1;

	msg_bytes = 4;
	reply_bytes = recv_bytes + 1;

	for (;;) {
391
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
392
				      reply, reply_bytes);
393 394 395
		if (ret == 0)
			return -EPROTO;
		if (ret < 0)
396 397 398 399 400 401 402 403 404
			return ret;
		ack = reply[0];
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
			memcpy(recv, reply + 1, ret - 1);
			return ret - 1;
		}
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
405
			return -EIO;
406 407 408 409
	}
}

static int
410 411
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
		    uint8_t write_byte, uint8_t *read_byte)
412
{
413
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
414 415 416
	struct intel_dp_priv *dp_priv = container_of(adapter,
						     struct intel_dp_priv,
						     adapter);
417
	struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	uint16_t address = algo_data->address;
	uint8_t msg[5];
	uint8_t reply[2];
	int msg_bytes;
	int reply_bytes;
	int ret;

	/* Set up the command byte */
	if (mode & MODE_I2C_READ)
		msg[0] = AUX_I2C_READ << 4;
	else
		msg[0] = AUX_I2C_WRITE << 4;

	if (!(mode & MODE_I2C_STOP))
		msg[0] |= AUX_I2C_MOT << 4;
433

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	msg[1] = address >> 8;
	msg[2] = address;

	switch (mode) {
	case MODE_I2C_WRITE:
		msg[3] = 0;
		msg[4] = write_byte;
		msg_bytes = 5;
		reply_bytes = 1;
		break;
	case MODE_I2C_READ:
		msg[3] = 0;
		msg_bytes = 4;
		reply_bytes = 2;
		break;
	default:
		msg_bytes = 3;
		reply_bytes = 1;
		break;
	}

	for (;;) {
456
	  ret = intel_dp_aux_ch(intel_encoder,
457 458 459
				msg, msg_bytes,
				reply, reply_bytes);
		if (ret < 0) {
460
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
461 462 463 464 465 466 467 468 469
			return ret;
		}
		switch (reply[0] & AUX_I2C_REPLY_MASK) {
		case AUX_I2C_REPLY_ACK:
			if (mode == MODE_I2C_READ) {
				*read_byte = reply[1];
			}
			return reply_bytes - 1;
		case AUX_I2C_REPLY_NACK:
470
			DRM_DEBUG_KMS("aux_ch nack\n");
471 472
			return -EREMOTEIO;
		case AUX_I2C_REPLY_DEFER:
473
			DRM_DEBUG_KMS("aux_ch defer\n");
474 475 476 477 478 479 480
			udelay(100);
			break;
		default:
			DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
			return -EREMOTEIO;
		}
	}
481 482 483
}

static int
484 485
intel_dp_i2c_init(struct intel_encoder *intel_encoder,
		  struct intel_connector *intel_connector, const char *name)
486
{
487
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
488

Z
Zhenyu Wang 已提交
489
	DRM_DEBUG_KMS("i2c_init %s\n", name);
490 491 492 493 494 495 496
	dp_priv->algo.running = false;
	dp_priv->algo.address = 0;
	dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;

	memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
	dp_priv->adapter.owner = THIS_MODULE;
	dp_priv->adapter.class = I2C_CLASS_DDC;
497 498
	strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
	dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
499
	dp_priv->adapter.algo_data = &dp_priv->algo;
500
	dp_priv->adapter.dev.parent = &intel_connector->base.kdev;
501 502 503 504 505 506 507 508
	
	return i2c_dp_aux_add_bus(&dp_priv->adapter);
}

static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
509 510
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
511
	int lane_count, clock;
512 513
	int max_lane_count = intel_dp_max_lane_count(intel_encoder);
	int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
514 515 516 517
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };

	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
		for (clock = 0; clock <= max_clock; clock++) {
518
			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
519

520
			if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
521
					<= link_avail) {
522 523 524
				dp_priv->link_bw = bws[clock];
				dp_priv->lane_count = lane_count;
				adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
525 526
				DRM_DEBUG_KMS("Display port link bw %02x lane "
						"count %d clock %d\n",
527 528 529 530 531 532
				       dp_priv->link_bw, dp_priv->lane_count,
				       adjusted_mode->clock);
				return true;
			}
		}
	}
533 534 535 536 537 538 539 540 541 542 543 544

	if (IS_eDP(intel_encoder)) {
		/* okay we failed just pick the highest */
		dp_priv->lane_count = max_lane_count;
		dp_priv->link_bw = bws[max_clock];
		adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
			      "count %d clock %d\n",
			      dp_priv->link_bw, dp_priv->lane_count,
			      adjusted_mode->clock);
		return true;
	}
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	return false;
}

struct intel_dp_m_n {
	uint32_t	tu;
	uint32_t	gmch_m;
	uint32_t	gmch_n;
	uint32_t	link_m;
	uint32_t	link_n;
};

static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

static void
intel_dp_compute_m_n(int bytes_per_pixel,
		     int nlanes,
		     int pixel_clock,
		     int link_clock,
		     struct intel_dp_m_n *m_n)
{
	m_n->tu = 64;
	m_n->gmch_m = pixel_clock * bytes_per_pixel;
	m_n->gmch_n = link_clock * nlanes;
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}

void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
587
	struct drm_encoder *encoder;
588 589 590 591 592 593
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int lane_count = 4;
	struct intel_dp_m_n m_n;

	/*
594
	 * Find the lane count in the intel_encoder private
595
	 */
596 597 598
	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
		struct intel_encoder *intel_encoder;
		struct intel_dp_priv *dp_priv;
599

600
		if (encoder->crtc != crtc)
601 602
			continue;

603 604 605
		intel_encoder = enc_to_intel_encoder(encoder);
		dp_priv = intel_encoder->dev_priv;

606
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
607 608 609 610 611 612 613 614 615 616 617 618 619
			lane_count = dp_priv->lane_count;
			break;
		}
	}

	/*
	 * Compute the GMCH and Link ratios. The '3' here is
	 * the number of bytes_per_pixel post-LUT, which we always
	 * set up for 8-bits of R/G/B, or 3 bytes total.
	 */
	intel_dp_compute_m_n(3, lane_count,
			     mode->clock, adjusted_mode->clock, &m_n);

620
	if (HAS_PCH_SPLIT(dev)) {
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		if (intel_crtc->pipe == 0) {
			I915_WRITE(TRANSA_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
		} else {
			I915_WRITE(TRANSB_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
		}
636
	} else {
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		if (intel_crtc->pipe == 0) {
			I915_WRITE(PIPEA_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEA_GMCH_DATA_N,
				   m_n.gmch_n);
			I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
		} else {
			I915_WRITE(PIPEB_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEB_GMCH_DATA_N,
					m_n.gmch_n);
			I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
		}
654 655 656 657 658 659 660
	}
}

static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
661
	struct drm_device *dev = encoder->dev;
662 663 664
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
	struct drm_crtc *crtc = intel_encoder->enc.crtc;
665 666
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

667
	dp_priv->DP = (DP_VOLTAGE_0_4 |
668 669 670 671 672 673
		       DP_PRE_EMPHASIS_0);

	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
		dp_priv->DP |= DP_SYNC_HS_HIGH;
	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
		dp_priv->DP |= DP_SYNC_VS_HIGH;
674

675 676 677 678
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
	else
		dp_priv->DP |= DP_LINK_TRAIN_OFF;
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

	switch (dp_priv->lane_count) {
	case 1:
		dp_priv->DP |= DP_PORT_WIDTH_1;
		break;
	case 2:
		dp_priv->DP |= DP_PORT_WIDTH_2;
		break;
	case 4:
		dp_priv->DP |= DP_PORT_WIDTH_4;
		break;
	}
	if (dp_priv->has_audio)
		dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;

	memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
	dp_priv->link_configuration[0] = dp_priv->link_bw;
	dp_priv->link_configuration[1] = dp_priv->lane_count;

	/*
699
	 * Check for DPCD version > 1.1 and enhanced framing support
700
	 */
701
	if (dp_priv->dpcd[0] >= 0x11 && (dp_priv->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
702 703 704 705
		dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
		dp_priv->DP |= DP_ENHANCED_FRAMING;
	}

706 707
	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
708
		dp_priv->DP |= DP_PIPEB_SELECT;
709

710
	if (IS_eDP(intel_encoder)) {
711 712 713 714 715 716 717
		/* don't miss out required setting for eDP */
		dp_priv->DP |= DP_PLL_ENABLE;
		if (adjusted_mode->clock < 200000)
			dp_priv->DP |= DP_PLL_FREQ_160MHZ;
		else
			dp_priv->DP |= DP_PLL_FREQ_270MHZ;
	}
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
static void ironlake_edp_panel_on (struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
	u32 pp, pp_status;

	pp_status = I915_READ(PCH_PP_STATUS);
	if (pp_status & PP_ON)
		return;

	pp = I915_READ(PCH_PP_CONTROL);
	pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
	I915_WRITE(PCH_PP_CONTROL, pp);
	do {
		pp_status = I915_READ(PCH_PP_STATUS);
	} while (((pp_status & PP_ON) == 0) && !time_after(jiffies, timeout));

	if (time_after(jiffies, timeout))
		DRM_DEBUG_KMS("panel on wait timed out: 0x%08x\n", pp_status);

	pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
	I915_WRITE(PCH_PP_CONTROL, pp);
}

static void ironlake_edp_panel_off (struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
	u32 pp, pp_status;

	pp = I915_READ(PCH_PP_CONTROL);
	pp &= ~POWER_TARGET_ON;
	I915_WRITE(PCH_PP_CONTROL, pp);
	do {
		pp_status = I915_READ(PCH_PP_STATUS);
	} while ((pp_status & PP_ON) && !time_after(jiffies, timeout));

	if (time_after(jiffies, timeout))
		DRM_DEBUG_KMS("panel off wait timed out\n");

	/* Make sure VDD is enabled so DP AUX will work */
	pp |= EDP_FORCE_VDD;
	I915_WRITE(PCH_PP_CONTROL, pp);
}

765
static void ironlake_edp_backlight_on (struct drm_device *dev)
766 767 768 769
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

770
	DRM_DEBUG_KMS("\n");
771 772 773 774 775
	pp = I915_READ(PCH_PP_CONTROL);
	pp |= EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}

776
static void ironlake_edp_backlight_off (struct drm_device *dev)
777 778 779 780
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

781
	DRM_DEBUG_KMS("\n");
782 783 784 785
	pp = I915_READ(PCH_PP_CONTROL);
	pp &= ~EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}
786 787 788 789

static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
790 791
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
792
	struct drm_device *dev = encoder->dev;
793 794 795 796
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dp_reg = I915_READ(dp_priv->output_reg);

	if (mode != DRM_MODE_DPMS_ON) {
797
		if (dp_reg & DP_PORT_EN) {
798
			intel_dp_link_down(intel_encoder, dp_priv->DP);
799
			if (IS_eDP(intel_encoder)) {
800
				ironlake_edp_backlight_off(dev);
801 802
				ironlake_edp_backlight_off(dev);
			}
803
		}
804
	} else {
805
		if (!(dp_reg & DP_PORT_EN)) {
806
			intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
807 808
			if (IS_eDP(intel_encoder)) {
				ironlake_edp_panel_on(dev);
809
				ironlake_edp_backlight_on(dev);
810
			}
811
		}
812
	}
813
	dp_priv->dpms_mode = mode;
814 815 816 817 818 819 820
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
821
intel_dp_get_link_status(struct intel_encoder *intel_encoder,
822 823 824 825
			 uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	int ret;

826
	ret = intel_dp_aux_native_read(intel_encoder,
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
				       DP_LANE0_1_STATUS,
				       link_status, DP_LINK_STATUS_SIZE);
	if (ret != DP_LINK_STATUS_SIZE)
		return false;
	return true;
}

static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		     int r)
{
	return link_status[r - DP_LANE0_1_STATUS];
}

static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
				 int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}

static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
				      int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}


#if 0
static char	*voltage_names[] = {
	"0.4V", "0.6V", "0.8V", "1.2V"
};
static char	*pre_emph_names[] = {
	"0dB", "3.5dB", "6dB", "9.5dB"
};
static char	*link_train_names[] = {
	"pattern 1", "pattern 2", "idle", "off"
};
#endif

/*
 * These are source-specific values; current Intel hardware supports
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
 */
#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800

static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_600:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_800:
		return DP_TRAIN_PRE_EMPHASIS_3_5;
	case DP_TRAIN_VOLTAGE_SWING_1200:
	default:
		return DP_TRAIN_PRE_EMPHASIS_0;
	}
}

static void
903
intel_get_adjust_train(struct intel_encoder *intel_encoder,
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		       uint8_t link_status[DP_LINK_STATUS_SIZE],
		       int lane_count,
		       uint8_t train_set[4])
{
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;

	for (lane = 0; lane < lane_count; lane++) {
		uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
		uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}

	if (v >= I830_DP_VOLTAGE_MAX)
		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;

	if (p >= intel_dp_pre_emphasis_max(v))
		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;

	for (lane = 0; lane < 4; lane++)
		train_set[lane] = v | p;
}

static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
	uint32_t	signal_levels = 0;

	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_600:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_800:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_1200:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
	switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
		return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
		return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
	}
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		      int lane)
{
	int i = DP_LANE0_1_STATUS + (lane >> 1);
	int s = (lane & 1) * 4;
	uint8_t l = intel_dp_link_status(link_status, i);

	return (l >> s) & 0xf;
}

/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	int lane;
	uint8_t lane_status;

	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & DP_LANE_CR_DONE) == 0)
			return false;
	}
	return true;
}

/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
			 DP_LANE_CHANNEL_EQ_DONE|\
			 DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	uint8_t lane_align;
	uint8_t lane_status;
	int lane;

	lane_align = intel_dp_link_status(link_status,
					  DP_LANE_ALIGN_STATUS_UPDATED);
	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
		return false;
	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
			return false;
	}
	return true;
}

static bool
1039
intel_dp_set_link_train(struct intel_encoder *intel_encoder,
1040 1041 1042 1043 1044
			uint32_t dp_reg_value,
			uint8_t dp_train_pat,
			uint8_t train_set[4],
			bool first)
{
1045
	struct drm_device *dev = intel_encoder->enc.dev;
1046
	struct drm_i915_private *dev_priv = dev->dev_private;
1047
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1048 1049 1050 1051 1052 1053 1054
	int ret;

	I915_WRITE(dp_priv->output_reg, dp_reg_value);
	POSTING_READ(dp_priv->output_reg);
	if (first)
		intel_wait_for_vblank(dev);

1055
	intel_dp_aux_native_write_1(intel_encoder,
1056 1057 1058
				    DP_TRAINING_PATTERN_SET,
				    dp_train_pat);

1059
	ret = intel_dp_aux_native_write(intel_encoder,
1060 1061 1062 1063 1064 1065 1066 1067
					DP_TRAINING_LANE0_SET, train_set, 4);
	if (ret != 4)
		return false;

	return true;
}

static void
1068
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
1069 1070
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
1071
	struct drm_device *dev = intel_encoder->enc.dev;
1072
	struct drm_i915_private *dev_priv = dev->dev_private;
1073
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1074 1075 1076 1077 1078 1079 1080 1081
	uint8_t	train_set[4];
	uint8_t link_status[DP_LINK_STATUS_SIZE];
	int i;
	uint8_t voltage;
	bool clock_recovery = false;
	bool channel_eq = false;
	bool first = true;
	int tries;
1082
	u32 reg;
1083 1084

	/* Write the link configuration data */
1085
	intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
1086 1087 1088
				  link_configuration, DP_LINK_CONFIGURATION_SIZE);

	DP |= DP_PORT_EN;
1089 1090 1091 1092
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
	else
		DP &= ~DP_LINK_TRAIN_MASK;
1093 1094 1095 1096 1097 1098
	memset(train_set, 0, 4);
	voltage = 0xff;
	tries = 0;
	clock_recovery = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
1099 1100 1101 1102 1103 1104 1105 1106
		uint32_t    signal_levels;
		if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
			signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}
1107

1108 1109 1110 1111 1112 1113
		if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_1;

		if (!intel_dp_set_link_train(intel_encoder, reg,
1114 1115 1116 1117 1118 1119
					     DP_TRAINING_PATTERN_1, train_set, first))
			break;
		first = false;
		/* Set training pattern 1 */

		udelay(100);
1120
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
			break;

		if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
			clock_recovery = true;
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < dp_priv->lane_count; i++)
			if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
				break;
		if (i == dp_priv->lane_count)
			break;

		/* Check to see if we've tried the same voltage 5 times */
		if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
			++tries;
			if (tries == 5)
				break;
		} else
			tries = 0;
		voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;

		/* Compute new train_set as requested by target */
1145
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1146 1147 1148 1149 1150 1151 1152
	}

	/* channel equalization */
	tries = 0;
	channel_eq = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		uint32_t    signal_levels;

		if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
			signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}

		if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_2;
1167 1168

		/* channel eq pattern */
1169
		if (!intel_dp_set_link_train(intel_encoder, reg,
1170 1171 1172 1173 1174
					     DP_TRAINING_PATTERN_2, train_set,
					     false))
			break;

		udelay(400);
1175
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
			break;

		if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
			channel_eq = true;
			break;
		}

		/* Try 5 times */
		if (tries > 5)
			break;

		/* Compute new train_set as requested by target */
1188
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1189 1190 1191
		++tries;
	}

1192 1193 1194 1195 1196 1197
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		reg = DP | DP_LINK_TRAIN_OFF_CPT;
	else
		reg = DP | DP_LINK_TRAIN_OFF;

	I915_WRITE(dp_priv->output_reg, reg);
1198
	POSTING_READ(dp_priv->output_reg);
1199
	intel_dp_aux_native_write_1(intel_encoder,
1200 1201 1202 1203
				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}

static void
1204
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
1205
{
1206
	struct drm_device *dev = intel_encoder->enc.dev;
1207
	struct drm_i915_private *dev_priv = dev->dev_private;
1208
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1209

1210
	DRM_DEBUG_KMS("\n");
1211

1212
	if (IS_eDP(intel_encoder)) {
1213 1214 1215 1216 1217 1218
		DP &= ~DP_PLL_ENABLE;
		I915_WRITE(dp_priv->output_reg, DP);
		POSTING_READ(dp_priv->output_reg);
		udelay(100);
	}

1219 1220 1221 1222 1223 1224 1225 1226 1227
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
		I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
		POSTING_READ(dp_priv->output_reg);
	} else {
		DP &= ~DP_LINK_TRAIN_MASK;
		I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
		POSTING_READ(dp_priv->output_reg);
	}
1228 1229 1230

	udelay(17000);

1231
	if (IS_eDP(intel_encoder))
1232
		DP |= DP_LINK_TRAIN_OFF;
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(dp_priv->output_reg);
}

/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */

static void
1247
intel_dp_check_link_status(struct intel_encoder *intel_encoder)
1248
{
1249
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1250 1251
	uint8_t link_status[DP_LINK_STATUS_SIZE];

1252
	if (!intel_encoder->enc.crtc)
1253 1254
		return;

1255 1256
	if (!intel_dp_get_link_status(intel_encoder, link_status)) {
		intel_dp_link_down(intel_encoder, dp_priv->DP);
1257 1258 1259 1260
		return;
	}

	if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1261
		intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
1262 1263
}

1264
static enum drm_connector_status
1265
ironlake_dp_detect(struct drm_connector *connector)
1266
{
1267 1268
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
1269
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1270 1271 1272
	enum drm_connector_status status;

	status = connector_status_disconnected;
1273
	if (intel_dp_aux_native_read(intel_encoder,
1274 1275 1276 1277 1278 1279
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
1280 1281
	DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", dp_priv->dpcd[0],
		      dp_priv->dpcd[1], dp_priv->dpcd[2], dp_priv->dpcd[3]);
1282 1283 1284
	return status;
}

1285 1286 1287 1288 1289 1290 1291 1292 1293
/**
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
 *
 * \return true if DP port is connected.
 * \return false if DP port is disconnected.
 */
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector)
{
1294 1295 1296
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct drm_device *dev = intel_encoder->enc.dev;
1297
	struct drm_i915_private *dev_priv = dev->dev_private;
1298
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1299 1300 1301 1302 1303
	uint32_t temp, bit;
	enum drm_connector_status status;

	dp_priv->has_audio = false;

1304
	if (HAS_PCH_SPLIT(dev))
1305
		return ironlake_dp_detect(connector);
1306

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	switch (dp_priv->output_reg) {
	case DP_B:
		bit = DPB_HOTPLUG_INT_STATUS;
		break;
	case DP_C:
		bit = DPC_HOTPLUG_INT_STATUS;
		break;
	case DP_D:
		bit = DPD_HOTPLUG_INT_STATUS;
		break;
	default:
		return connector_status_unknown;
	}

	temp = I915_READ(PORT_HOTPLUG_STAT);

	if ((temp & bit) == 0)
		return connector_status_disconnected;

	status = connector_status_disconnected;
1327
	if (intel_dp_aux_native_read(intel_encoder,
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
1339 1340 1341
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct drm_device *dev = intel_encoder->enc.dev;
1342 1343
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;
1344 1345 1346 1347

	/* We should parse the EDID data and find out if it has an audio sink
	 */

1348
	ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
1349 1350 1351 1352
	if (ret)
		return ret;

	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1353
	if (IS_eDP(intel_encoder)) {
1354 1355 1356 1357 1358 1359 1360 1361
		if (dev_priv->panel_fixed_mode != NULL) {
			struct drm_display_mode *mode;
			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
	return 0;
1362 1363 1364 1365 1366 1367 1368
}

static void
intel_dp_destroy (struct drm_connector *connector)
{
	drm_sysfs_connector_remove(connector);
	drm_connector_cleanup(connector);
1369
	kfree(connector);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
}

static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
	.dpms = intel_dp_dpms,
	.mode_fixup = intel_dp_mode_fixup,
	.prepare = intel_encoder_prepare,
	.mode_set = intel_dp_mode_set,
	.commit = intel_encoder_commit,
};

static const struct drm_connector_funcs intel_dp_connector_funcs = {
	.dpms = drm_helper_connector_dpms,
	.detect = intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.destroy = intel_dp_destroy,
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
1390
	.best_encoder = intel_attached_encoder,
1391 1392 1393 1394
};

static void intel_dp_enc_destroy(struct drm_encoder *encoder)
{
1395 1396 1397 1398
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);

	if (intel_encoder->i2c_bus)
		intel_i2c_destroy(intel_encoder->i2c_bus);
1399
	drm_encoder_cleanup(encoder);
1400
	kfree(intel_encoder);
1401 1402 1403 1404 1405 1406
}

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
	.destroy = intel_dp_enc_destroy,
};

1407
void
1408
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1409
{
1410
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1411 1412

	if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1413
		intel_dp_check_link_status(intel_encoder);
1414
}
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/* Return which DP Port should be selected for Transcoder DP control */
int
intel_trans_dp_port_sel (struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_encoder *encoder;
	struct intel_encoder *intel_encoder = NULL;

	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1426
		if (encoder->crtc != crtc)
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
			continue;

		intel_encoder = enc_to_intel_encoder(encoder);
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
			struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
			return dp_priv->output_reg;
		}
	}
	return -1;
}

1438 1439 1440 1441 1442
void
intel_dp_init(struct drm_device *dev, int output_reg)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_connector *connector;
1443
	struct intel_encoder *intel_encoder;
1444
	struct intel_connector *intel_connector;
1445
	struct intel_dp_priv *dp_priv;
1446
	const char *name = NULL;
1447

1448
	intel_encoder = kcalloc(sizeof(struct intel_encoder) +
1449
			       sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1450
	if (!intel_encoder)
1451 1452
		return;

1453 1454 1455 1456 1457 1458
	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
	if (!intel_connector) {
		kfree(intel_encoder);
		return;
	}

1459
	dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
1460

1461
	connector = &intel_connector->base;
1462 1463 1464 1465
	drm_connector_init(dev, connector, &intel_dp_connector_funcs,
			   DRM_MODE_CONNECTOR_DisplayPort);
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

1466 1467
	connector->polled = DRM_CONNECTOR_POLL_HPD;

1468
	if (output_reg == DP_A)
1469
		intel_encoder->type = INTEL_OUTPUT_EDP;
1470
	else
1471
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1472

1473
	if (output_reg == DP_B || output_reg == PCH_DP_B)
1474
		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1475
	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1476
		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1477
	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1478
		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1479

1480 1481
	if (IS_eDP(intel_encoder))
		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
Z
Zhenyu Wang 已提交
1482

1483
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1484 1485 1486
	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

1487
	dp_priv->intel_encoder = intel_encoder;
1488 1489
	dp_priv->output_reg = output_reg;
	dp_priv->has_audio = false;
1490
	dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1491
	intel_encoder->dev_priv = dp_priv;
1492

1493
	drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
1494
			 DRM_MODE_ENCODER_TMDS);
1495
	drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
1496

1497
	drm_mode_connector_attach_encoder(&intel_connector->base,
1498
					  &intel_encoder->enc);
1499 1500 1501
	drm_sysfs_connector_add(connector);

	/* Set up the DDC bus. */
1502
	switch (output_reg) {
1503 1504 1505
		case DP_A:
			name = "DPDDC-A";
			break;
1506 1507
		case DP_B:
		case PCH_DP_B:
1508 1509
			dev_priv->hotplug_supported_mask |=
				HDMIB_HOTPLUG_INT_STATUS;
1510 1511 1512 1513
			name = "DPDDC-B";
			break;
		case DP_C:
		case PCH_DP_C:
1514 1515
			dev_priv->hotplug_supported_mask |=
				HDMIC_HOTPLUG_INT_STATUS;
1516 1517 1518 1519
			name = "DPDDC-C";
			break;
		case DP_D:
		case PCH_DP_D:
1520 1521
			dev_priv->hotplug_supported_mask |=
				HDMID_HOTPLUG_INT_STATUS;
1522 1523 1524 1525
			name = "DPDDC-D";
			break;
	}

1526
	intel_dp_i2c_init(intel_encoder, intel_connector, name);
1527

1528 1529
	intel_encoder->ddc_bus = &dp_priv->adapter;
	intel_encoder->hot_plug = intel_dp_hot_plug;
1530

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	if (output_reg == DP_A) {
		/* initialize panel mode from VBT if available for eDP */
		if (dev_priv->lfp_lvds_vbt_mode) {
			dev_priv->panel_fixed_mode =
				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
			if (dev_priv->panel_fixed_mode) {
				dev_priv->panel_fixed_mode->type |=
					DRM_MODE_TYPE_PREFERRED;
			}
		}
	}

1543 1544 1545 1546 1547 1548 1549 1550 1551
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}