intel_dp.c 42.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30 31 32 33 34 35 36
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
37
#include "drm_dp_helper.h"
38

39

40 41 42 43 44
#define DP_LINK_STATUS_SIZE	6
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

#define DP_LINK_CONFIGURATION_SIZE	9

45
#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
46
#define IS_PCH_eDP(dp_priv) ((dp_priv)->has_edp)
47

48 49 50 51 52
struct intel_dp_priv {
	uint32_t output_reg;
	uint32_t DP;
	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
	bool has_audio;
53
	int dpms_mode;
54 55 56
	uint8_t link_bw;
	uint8_t lane_count;
	uint8_t dpcd[4];
57
	struct intel_encoder *intel_encoder;
58 59
	struct i2c_adapter adapter;
	struct i2c_algo_dp_aux_data algo;
60
	bool has_edp;
61 62 63
};

static void
64
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
65 66 67
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);

static void
68
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
69

70
void
71
intel_edp_link_config (struct intel_encoder *intel_encoder,
72 73
		int *lane_num, int *link_bw)
{
74
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
75 76 77 78 79 80 81 82

	*lane_num = dp_priv->lane_count;
	if (dp_priv->link_bw == DP_LINK_BW_1_62)
		*link_bw = 162000;
	else if (dp_priv->link_bw == DP_LINK_BW_2_7)
		*link_bw = 270000;
}

83
static int
84
intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
85
{
86
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	int max_lane_count = 4;

	if (dp_priv->dpcd[0] >= 0x11) {
		max_lane_count = dp_priv->dpcd[2] & 0x1f;
		switch (max_lane_count) {
		case 1: case 2: case 4:
			break;
		default:
			max_lane_count = 4;
		}
	}
	return max_lane_count;
}

static int
102
intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
103
{
104
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	int max_link_bw = dp_priv->dpcd[1];

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
	default:
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

static int
intel_dp_link_clock(uint8_t link_bw)
{
	if (link_bw == DP_LINK_BW_2_7)
		return 270000;
	else
		return 162000;
}

/* I think this is a fiction */
static int
129
intel_dp_link_required(struct drm_device *dev,
130
		       struct intel_encoder *intel_encoder, int pixel_clock)
131
{
132
	struct drm_i915_private *dev_priv = dev->dev_private;
133
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
134

135
	if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv))
136 137 138
		return (pixel_clock * dev_priv->edp_bpp) / 8;
	else
		return pixel_clock * 3;
139 140
}

141 142 143 144 145 146
static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
	return (max_link_clock * max_lanes * 8) / 10;
}

147 148 149 150
static int
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
151 152
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
153 154
	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
	int max_lanes = intel_dp_max_lane_count(intel_encoder);
155

156 157 158 159 160
	/* only refuse the mode on non eDP since we have seen some wierd eDP panels
	   which are outside spec tolerances but somehow work by magic */
	if (!IS_eDP(intel_encoder) &&
	    (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
	     > intel_dp_max_data_rate(max_link_clock, max_lanes)))
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
		return MODE_CLOCK_HIGH;

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t clkcfg;

	clkcfg = I915_READ(CLKCFG);
	switch (clkcfg & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_400:
		return 100;
	case CLKCFG_FSB_533:
		return 133;
	case CLKCFG_FSB_667:
		return 166;
	case CLKCFG_FSB_800:
		return 200;
	case CLKCFG_FSB_1067:
		return 266;
	case CLKCFG_FSB_1333:
		return 333;
	/* these two are just a guess; one of them might be right */
	case CLKCFG_FSB_1600:
	case CLKCFG_FSB_1600_ALT:
		return 400;
	default:
		return 133;
	}
}

222
static int
223
intel_dp_aux_ch(struct intel_encoder *intel_encoder,
224 225 226
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
227
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
228
	uint32_t output_reg = dp_priv->output_reg;
229
	struct drm_device *dev = intel_encoder->enc.dev;
230 231 232 233 234 235 236
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = output_reg + 0x10;
	uint32_t ch_data = ch_ctl + 4;
	int i;
	int recv_bytes;
	uint32_t ctl;
	uint32_t status;
237
	uint32_t aux_clock_divider;
238
	int try, precharge;
239 240

	/* The clock divider is based off the hrawclk,
241 242
	 * and would like to run at 2MHz. So, take the
	 * hrawclk value and divide by 2 and use that
243
	 */
244 245 246 247 248 249
	if (IS_eDP(intel_encoder)) {
		if (IS_GEN6(dev))
			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
		else
			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
	} else if (HAS_PCH_SPLIT(dev))
250
		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
251 252 253
	else
		aux_clock_divider = intel_hrawclk(dev) / 2;

254 255 256 257 258
	if (IS_GEN6(dev))
		precharge = 3;
	else
		precharge = 5;

259 260 261 262
	/* Must try at least 3 times according to DP spec */
	for (try = 0; try < 5; try++) {
		/* Load the send data into the aux channel data registers */
		for (i = 0; i < send_bytes; i += 4) {
263
			uint32_t    d = pack_aux(send + i, send_bytes - i);
264 265 266 267 268 269 270
	
			I915_WRITE(ch_data + i, d);
		}
	
		ctl = (DP_AUX_CH_CTL_SEND_BUSY |
		       DP_AUX_CH_CTL_TIME_OUT_400us |
		       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
271
		       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
		       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
		       DP_AUX_CH_CTL_DONE |
		       DP_AUX_CH_CTL_TIME_OUT_ERROR |
		       DP_AUX_CH_CTL_RECEIVE_ERROR);
	
		/* Send the command and wait for it to complete */
		I915_WRITE(ch_ctl, ctl);
		(void) I915_READ(ch_ctl);
		for (;;) {
			udelay(100);
			status = I915_READ(ch_ctl);
			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
				break;
		}
	
		/* Clear done status and any errors */
288
		I915_WRITE(ch_ctl, (status |
289 290 291 292 293
				DP_AUX_CH_CTL_DONE |
				DP_AUX_CH_CTL_TIME_OUT_ERROR |
				DP_AUX_CH_CTL_RECEIVE_ERROR));
		(void) I915_READ(ch_ctl);
		if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
294 295 296 297
			break;
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
298
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
299
		return -EBUSY;
300 301 302 303 304
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
305
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
306
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
307 308
		return -EIO;
	}
309 310 311

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
312
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
313
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
314
		return -ETIMEDOUT;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);

	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
	
	for (i = 0; i < recv_bytes; i += 4) {
		uint32_t    d = I915_READ(ch_data + i);

		unpack_aux(d, recv + i, recv_bytes - i);
	}

	return recv_bytes;
}

/* Write data to the aux channel in native mode */
static int
335
intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
336 337 338 339 340 341 342 343 344 345 346
			  uint16_t address, uint8_t *send, int send_bytes)
{
	int ret;
	uint8_t	msg[20];
	int msg_bytes;
	uint8_t	ack;

	if (send_bytes > 16)
		return -1;
	msg[0] = AUX_NATIVE_WRITE << 4;
	msg[1] = address >> 8;
347
	msg[2] = address & 0xff;
348 349 350 351
	msg[3] = send_bytes - 1;
	memcpy(&msg[4], send, send_bytes);
	msg_bytes = send_bytes + 4;
	for (;;) {
352
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
353 354 355 356 357 358 359
		if (ret < 0)
			return ret;
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
			break;
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
360
			return -EIO;
361 362 363 364 365 366
	}
	return send_bytes;
}

/* Write a single byte to the aux channel in native mode */
static int
367
intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
368 369
			    uint16_t address, uint8_t byte)
{
370
	return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
371 372 373 374
}

/* read bytes from a native aux channel */
static int
375
intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
			 uint16_t address, uint8_t *recv, int recv_bytes)
{
	uint8_t msg[4];
	int msg_bytes;
	uint8_t reply[20];
	int reply_bytes;
	uint8_t ack;
	int ret;

	msg[0] = AUX_NATIVE_READ << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = recv_bytes - 1;

	msg_bytes = 4;
	reply_bytes = recv_bytes + 1;

	for (;;) {
394
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
395
				      reply, reply_bytes);
396 397 398
		if (ret == 0)
			return -EPROTO;
		if (ret < 0)
399 400 401 402 403 404 405 406 407
			return ret;
		ack = reply[0];
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
			memcpy(recv, reply + 1, ret - 1);
			return ret - 1;
		}
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
408
			return -EIO;
409 410 411 412
	}
}

static int
413 414
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
		    uint8_t write_byte, uint8_t *read_byte)
415
{
416
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
417 418 419
	struct intel_dp_priv *dp_priv = container_of(adapter,
						     struct intel_dp_priv,
						     adapter);
420
	struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	uint16_t address = algo_data->address;
	uint8_t msg[5];
	uint8_t reply[2];
	int msg_bytes;
	int reply_bytes;
	int ret;

	/* Set up the command byte */
	if (mode & MODE_I2C_READ)
		msg[0] = AUX_I2C_READ << 4;
	else
		msg[0] = AUX_I2C_WRITE << 4;

	if (!(mode & MODE_I2C_STOP))
		msg[0] |= AUX_I2C_MOT << 4;
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	msg[1] = address >> 8;
	msg[2] = address;

	switch (mode) {
	case MODE_I2C_WRITE:
		msg[3] = 0;
		msg[4] = write_byte;
		msg_bytes = 5;
		reply_bytes = 1;
		break;
	case MODE_I2C_READ:
		msg[3] = 0;
		msg_bytes = 4;
		reply_bytes = 2;
		break;
	default:
		msg_bytes = 3;
		reply_bytes = 1;
		break;
	}

	for (;;) {
459
	  ret = intel_dp_aux_ch(intel_encoder,
460 461 462
				msg, msg_bytes,
				reply, reply_bytes);
		if (ret < 0) {
463
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
464 465 466 467 468 469 470 471 472
			return ret;
		}
		switch (reply[0] & AUX_I2C_REPLY_MASK) {
		case AUX_I2C_REPLY_ACK:
			if (mode == MODE_I2C_READ) {
				*read_byte = reply[1];
			}
			return reply_bytes - 1;
		case AUX_I2C_REPLY_NACK:
473
			DRM_DEBUG_KMS("aux_ch nack\n");
474 475
			return -EREMOTEIO;
		case AUX_I2C_REPLY_DEFER:
476
			DRM_DEBUG_KMS("aux_ch defer\n");
477 478 479 480 481 482 483
			udelay(100);
			break;
		default:
			DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
			return -EREMOTEIO;
		}
	}
484 485 486
}

static int
487 488
intel_dp_i2c_init(struct intel_encoder *intel_encoder,
		  struct intel_connector *intel_connector, const char *name)
489
{
490
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
491

Z
Zhenyu Wang 已提交
492
	DRM_DEBUG_KMS("i2c_init %s\n", name);
493 494 495 496 497 498 499
	dp_priv->algo.running = false;
	dp_priv->algo.address = 0;
	dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;

	memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
	dp_priv->adapter.owner = THIS_MODULE;
	dp_priv->adapter.class = I2C_CLASS_DDC;
500 501
	strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
	dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
502
	dp_priv->adapter.algo_data = &dp_priv->algo;
503
	dp_priv->adapter.dev.parent = &intel_connector->base.kdev;
504 505 506 507 508 509 510 511
	
	return i2c_dp_aux_add_bus(&dp_priv->adapter);
}

static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
512 513
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
514
	int lane_count, clock;
515 516
	int max_lane_count = intel_dp_max_lane_count(intel_encoder);
	int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
517 518 519 520
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };

	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
		for (clock = 0; clock <= max_clock; clock++) {
521
			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
522

523
			if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
524
					<= link_avail) {
525 526 527
				dp_priv->link_bw = bws[clock];
				dp_priv->lane_count = lane_count;
				adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
528 529
				DRM_DEBUG_KMS("Display port link bw %02x lane "
						"count %d clock %d\n",
530 531 532 533 534 535
				       dp_priv->link_bw, dp_priv->lane_count,
				       adjusted_mode->clock);
				return true;
			}
		}
	}
536

537
	if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
538 539 540 541 542 543 544 545 546 547
		/* okay we failed just pick the highest */
		dp_priv->lane_count = max_lane_count;
		dp_priv->link_bw = bws[max_clock];
		adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
			      "count %d clock %d\n",
			      dp_priv->link_bw, dp_priv->lane_count,
			      adjusted_mode->clock);
		return true;
	}
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	return false;
}

struct intel_dp_m_n {
	uint32_t	tu;
	uint32_t	gmch_m;
	uint32_t	gmch_n;
	uint32_t	link_m;
	uint32_t	link_n;
};

static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

static void
569
intel_dp_compute_m_n(int bpp,
570 571 572 573 574 575
		     int nlanes,
		     int pixel_clock,
		     int link_clock,
		     struct intel_dp_m_n *m_n)
{
	m_n->tu = 64;
576
	m_n->gmch_m = (pixel_clock * bpp) >> 3;
577 578 579 580 581 582 583
	m_n->gmch_n = link_clock * nlanes;
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
bool intel_pch_has_edp(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_encoder *encoder;

	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
		struct intel_encoder *intel_encoder;
		struct intel_dp_priv *dp_priv;

		if (!encoder || encoder->crtc != crtc)
			continue;

		intel_encoder = enc_to_intel_encoder(encoder);
		dp_priv = intel_encoder->dev_priv;

		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT)
			return dp_priv->has_edp;
	}
	return false;
}

606 607 608 609 610 611
void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
612
	struct drm_encoder *encoder;
613 614
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
615
	int lane_count = 4, bpp = 24;
616 617 618
	struct intel_dp_m_n m_n;

	/*
619
	 * Find the lane count in the intel_encoder private
620
	 */
621 622 623
	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
		struct intel_encoder *intel_encoder;
		struct intel_dp_priv *dp_priv;
624

625
		if (encoder->crtc != crtc)
626 627
			continue;

628 629 630
		intel_encoder = enc_to_intel_encoder(encoder);
		dp_priv = intel_encoder->dev_priv;

631
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
632
			lane_count = dp_priv->lane_count;
633 634
			if (IS_PCH_eDP(dp_priv))
				bpp = dev_priv->edp_bpp;
635 636 637 638 639 640 641 642 643
			break;
		}
	}

	/*
	 * Compute the GMCH and Link ratios. The '3' here is
	 * the number of bytes_per_pixel post-LUT, which we always
	 * set up for 8-bits of R/G/B, or 3 bytes total.
	 */
644
	intel_dp_compute_m_n(bpp, lane_count,
645 646
			     mode->clock, adjusted_mode->clock, &m_n);

647
	if (HAS_PCH_SPLIT(dev)) {
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
		if (intel_crtc->pipe == 0) {
			I915_WRITE(TRANSA_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
		} else {
			I915_WRITE(TRANSB_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
		}
663
	} else {
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
		if (intel_crtc->pipe == 0) {
			I915_WRITE(PIPEA_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEA_GMCH_DATA_N,
				   m_n.gmch_n);
			I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
		} else {
			I915_WRITE(PIPEB_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEB_GMCH_DATA_N,
					m_n.gmch_n);
			I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
		}
681 682 683 684 685 686 687
	}
}

static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
688
	struct drm_device *dev = encoder->dev;
689 690 691
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
	struct drm_crtc *crtc = intel_encoder->enc.crtc;
692 693
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

694
	dp_priv->DP = (DP_VOLTAGE_0_4 |
695 696 697 698 699 700
		       DP_PRE_EMPHASIS_0);

	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
		dp_priv->DP |= DP_SYNC_HS_HIGH;
	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
		dp_priv->DP |= DP_SYNC_VS_HIGH;
701

702 703 704 705
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
	else
		dp_priv->DP |= DP_LINK_TRAIN_OFF;
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

	switch (dp_priv->lane_count) {
	case 1:
		dp_priv->DP |= DP_PORT_WIDTH_1;
		break;
	case 2:
		dp_priv->DP |= DP_PORT_WIDTH_2;
		break;
	case 4:
		dp_priv->DP |= DP_PORT_WIDTH_4;
		break;
	}
	if (dp_priv->has_audio)
		dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;

	memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
	dp_priv->link_configuration[0] = dp_priv->link_bw;
	dp_priv->link_configuration[1] = dp_priv->lane_count;

	/*
726
	 * Check for DPCD version > 1.1 and enhanced framing support
727
	 */
728
	if (dp_priv->dpcd[0] >= 0x11 && (dp_priv->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
729 730 731 732
		dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
		dp_priv->DP |= DP_ENHANCED_FRAMING;
	}

733 734
	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
735
		dp_priv->DP |= DP_PIPEB_SELECT;
736

737
	if (IS_eDP(intel_encoder)) {
738 739 740 741 742 743 744
		/* don't miss out required setting for eDP */
		dp_priv->DP |= DP_PLL_ENABLE;
		if (adjusted_mode->clock < 200000)
			dp_priv->DP |= DP_PLL_FREQ_160MHZ;
		else
			dp_priv->DP |= DP_PLL_FREQ_270MHZ;
	}
745 746
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
static void ironlake_edp_panel_on (struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
	u32 pp, pp_status;

	pp_status = I915_READ(PCH_PP_STATUS);
	if (pp_status & PP_ON)
		return;

	pp = I915_READ(PCH_PP_CONTROL);
	pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
	I915_WRITE(PCH_PP_CONTROL, pp);
	do {
		pp_status = I915_READ(PCH_PP_STATUS);
	} while (((pp_status & PP_ON) == 0) && !time_after(jiffies, timeout));

	if (time_after(jiffies, timeout))
		DRM_DEBUG_KMS("panel on wait timed out: 0x%08x\n", pp_status);

	pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
	I915_WRITE(PCH_PP_CONTROL, pp);
}

static void ironlake_edp_panel_off (struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
	u32 pp, pp_status;

	pp = I915_READ(PCH_PP_CONTROL);
	pp &= ~POWER_TARGET_ON;
	I915_WRITE(PCH_PP_CONTROL, pp);
	do {
		pp_status = I915_READ(PCH_PP_STATUS);
	} while ((pp_status & PP_ON) && !time_after(jiffies, timeout));

	if (time_after(jiffies, timeout))
		DRM_DEBUG_KMS("panel off wait timed out\n");

	/* Make sure VDD is enabled so DP AUX will work */
	pp |= EDP_FORCE_VDD;
	I915_WRITE(PCH_PP_CONTROL, pp);
}

792
static void ironlake_edp_backlight_on (struct drm_device *dev)
793 794 795 796
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

797
	DRM_DEBUG_KMS("\n");
798 799 800 801 802
	pp = I915_READ(PCH_PP_CONTROL);
	pp |= EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}

803
static void ironlake_edp_backlight_off (struct drm_device *dev)
804 805 806 807
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

808
	DRM_DEBUG_KMS("\n");
809 810 811 812
	pp = I915_READ(PCH_PP_CONTROL);
	pp &= ~EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}
813 814 815 816

static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
817 818
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
819
	struct drm_device *dev = encoder->dev;
820 821 822 823
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dp_reg = I915_READ(dp_priv->output_reg);

	if (mode != DRM_MODE_DPMS_ON) {
824
		if (dp_reg & DP_PORT_EN) {
825
			intel_dp_link_down(intel_encoder, dp_priv->DP);
826
			if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
827
				ironlake_edp_backlight_off(dev);
828
				ironlake_edp_panel_off(dev);
829
			}
830
		}
831
	} else {
832
		if (!(dp_reg & DP_PORT_EN)) {
833
			intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
834
			if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
835
				ironlake_edp_panel_on(dev);
836
				ironlake_edp_backlight_on(dev);
837
			}
838
		}
839
	}
840
	dp_priv->dpms_mode = mode;
841 842 843 844 845 846 847
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
848
intel_dp_get_link_status(struct intel_encoder *intel_encoder,
849 850 851 852
			 uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	int ret;

853
	ret = intel_dp_aux_native_read(intel_encoder,
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
				       DP_LANE0_1_STATUS,
				       link_status, DP_LINK_STATUS_SIZE);
	if (ret != DP_LINK_STATUS_SIZE)
		return false;
	return true;
}

static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		     int r)
{
	return link_status[r - DP_LANE0_1_STATUS];
}

static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
				 int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}

static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
				      int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}


#if 0
static char	*voltage_names[] = {
	"0.4V", "0.6V", "0.8V", "1.2V"
};
static char	*pre_emph_names[] = {
	"0dB", "3.5dB", "6dB", "9.5dB"
};
static char	*link_train_names[] = {
	"pattern 1", "pattern 2", "idle", "off"
};
#endif

/*
 * These are source-specific values; current Intel hardware supports
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
 */
#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800

static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_600:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_800:
		return DP_TRAIN_PRE_EMPHASIS_3_5;
	case DP_TRAIN_VOLTAGE_SWING_1200:
	default:
		return DP_TRAIN_PRE_EMPHASIS_0;
	}
}

static void
930
intel_get_adjust_train(struct intel_encoder *intel_encoder,
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
		       uint8_t link_status[DP_LINK_STATUS_SIZE],
		       int lane_count,
		       uint8_t train_set[4])
{
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;

	for (lane = 0; lane < lane_count; lane++) {
		uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
		uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}

	if (v >= I830_DP_VOLTAGE_MAX)
		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;

	if (p >= intel_dp_pre_emphasis_max(v))
		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;

	for (lane = 0; lane < 4; lane++)
		train_set[lane] = v | p;
}

static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
	uint32_t	signal_levels = 0;

	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_600:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_800:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_1200:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
	switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
		return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
		return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
	}
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		      int lane)
{
	int i = DP_LANE0_1_STATUS + (lane >> 1);
	int s = (lane & 1) * 4;
	uint8_t l = intel_dp_link_status(link_status, i);

	return (l >> s) & 0xf;
}

/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	int lane;
	uint8_t lane_status;

	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & DP_LANE_CR_DONE) == 0)
			return false;
	}
	return true;
}

/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
			 DP_LANE_CHANNEL_EQ_DONE|\
			 DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	uint8_t lane_align;
	uint8_t lane_status;
	int lane;

	lane_align = intel_dp_link_status(link_status,
					  DP_LANE_ALIGN_STATUS_UPDATED);
	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
		return false;
	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
			return false;
	}
	return true;
}

static bool
1066
intel_dp_set_link_train(struct intel_encoder *intel_encoder,
1067 1068 1069 1070 1071
			uint32_t dp_reg_value,
			uint8_t dp_train_pat,
			uint8_t train_set[4],
			bool first)
{
1072
	struct drm_device *dev = intel_encoder->enc.dev;
1073
	struct drm_i915_private *dev_priv = dev->dev_private;
1074
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1075 1076 1077 1078 1079 1080 1081
	int ret;

	I915_WRITE(dp_priv->output_reg, dp_reg_value);
	POSTING_READ(dp_priv->output_reg);
	if (first)
		intel_wait_for_vblank(dev);

1082
	intel_dp_aux_native_write_1(intel_encoder,
1083 1084 1085
				    DP_TRAINING_PATTERN_SET,
				    dp_train_pat);

1086
	ret = intel_dp_aux_native_write(intel_encoder,
1087 1088 1089 1090 1091 1092 1093 1094
					DP_TRAINING_LANE0_SET, train_set, 4);
	if (ret != 4)
		return false;

	return true;
}

static void
1095
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
1096 1097
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
1098
	struct drm_device *dev = intel_encoder->enc.dev;
1099
	struct drm_i915_private *dev_priv = dev->dev_private;
1100
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1101 1102 1103 1104 1105 1106 1107 1108
	uint8_t	train_set[4];
	uint8_t link_status[DP_LINK_STATUS_SIZE];
	int i;
	uint8_t voltage;
	bool clock_recovery = false;
	bool channel_eq = false;
	bool first = true;
	int tries;
1109
	u32 reg;
1110 1111

	/* Write the link configuration data */
1112
	intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
1113 1114 1115
				  link_configuration, DP_LINK_CONFIGURATION_SIZE);

	DP |= DP_PORT_EN;
1116 1117 1118 1119
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
	else
		DP &= ~DP_LINK_TRAIN_MASK;
1120 1121 1122 1123 1124 1125
	memset(train_set, 0, 4);
	voltage = 0xff;
	tries = 0;
	clock_recovery = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
1126 1127 1128 1129 1130 1131 1132 1133
		uint32_t    signal_levels;
		if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
			signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}
1134

1135 1136 1137 1138 1139 1140
		if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_1;

		if (!intel_dp_set_link_train(intel_encoder, reg,
1141 1142 1143 1144 1145 1146
					     DP_TRAINING_PATTERN_1, train_set, first))
			break;
		first = false;
		/* Set training pattern 1 */

		udelay(100);
1147
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
			break;

		if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
			clock_recovery = true;
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < dp_priv->lane_count; i++)
			if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
				break;
		if (i == dp_priv->lane_count)
			break;

		/* Check to see if we've tried the same voltage 5 times */
		if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
			++tries;
			if (tries == 5)
				break;
		} else
			tries = 0;
		voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;

		/* Compute new train_set as requested by target */
1172
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1173 1174 1175 1176 1177 1178 1179
	}

	/* channel equalization */
	tries = 0;
	channel_eq = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
		uint32_t    signal_levels;

		if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
			signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}

		if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_2;
1194 1195

		/* channel eq pattern */
1196
		if (!intel_dp_set_link_train(intel_encoder, reg,
1197 1198 1199 1200 1201
					     DP_TRAINING_PATTERN_2, train_set,
					     false))
			break;

		udelay(400);
1202
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
			break;

		if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
			channel_eq = true;
			break;
		}

		/* Try 5 times */
		if (tries > 5)
			break;

		/* Compute new train_set as requested by target */
1215
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1216 1217 1218
		++tries;
	}

1219 1220 1221 1222 1223 1224
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		reg = DP | DP_LINK_TRAIN_OFF_CPT;
	else
		reg = DP | DP_LINK_TRAIN_OFF;

	I915_WRITE(dp_priv->output_reg, reg);
1225
	POSTING_READ(dp_priv->output_reg);
1226
	intel_dp_aux_native_write_1(intel_encoder,
1227 1228 1229 1230
				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}

static void
1231
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
1232
{
1233
	struct drm_device *dev = intel_encoder->enc.dev;
1234
	struct drm_i915_private *dev_priv = dev->dev_private;
1235
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1236

1237
	DRM_DEBUG_KMS("\n");
1238

1239
	if (IS_eDP(intel_encoder)) {
1240 1241 1242 1243 1244 1245
		DP &= ~DP_PLL_ENABLE;
		I915_WRITE(dp_priv->output_reg, DP);
		POSTING_READ(dp_priv->output_reg);
		udelay(100);
	}

1246 1247 1248 1249 1250 1251 1252 1253 1254
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
		I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
		POSTING_READ(dp_priv->output_reg);
	} else {
		DP &= ~DP_LINK_TRAIN_MASK;
		I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
		POSTING_READ(dp_priv->output_reg);
	}
1255 1256 1257

	udelay(17000);

1258
	if (IS_eDP(intel_encoder))
1259
		DP |= DP_LINK_TRAIN_OFF;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(dp_priv->output_reg);
}

/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */

static void
1274
intel_dp_check_link_status(struct intel_encoder *intel_encoder)
1275
{
1276
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1277 1278
	uint8_t link_status[DP_LINK_STATUS_SIZE];

1279
	if (!intel_encoder->enc.crtc)
1280 1281
		return;

1282 1283
	if (!intel_dp_get_link_status(intel_encoder, link_status)) {
		intel_dp_link_down(intel_encoder, dp_priv->DP);
1284 1285 1286 1287
		return;
	}

	if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1288
		intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
1289 1290
}

1291
static enum drm_connector_status
1292
ironlake_dp_detect(struct drm_connector *connector)
1293
{
1294 1295
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
1296
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1297 1298 1299
	enum drm_connector_status status;

	status = connector_status_disconnected;
1300
	if (intel_dp_aux_native_read(intel_encoder,
1301 1302 1303 1304 1305 1306
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
1307 1308
	DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", dp_priv->dpcd[0],
		      dp_priv->dpcd[1], dp_priv->dpcd[2], dp_priv->dpcd[3]);
1309 1310 1311
	return status;
}

1312 1313 1314 1315 1316 1317 1318 1319 1320
/**
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
 *
 * \return true if DP port is connected.
 * \return false if DP port is disconnected.
 */
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector)
{
1321 1322 1323
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct drm_device *dev = intel_encoder->enc.dev;
1324
	struct drm_i915_private *dev_priv = dev->dev_private;
1325
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1326 1327 1328 1329 1330
	uint32_t temp, bit;
	enum drm_connector_status status;

	dp_priv->has_audio = false;

1331
	if (HAS_PCH_SPLIT(dev))
1332
		return ironlake_dp_detect(connector);
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	switch (dp_priv->output_reg) {
	case DP_B:
		bit = DPB_HOTPLUG_INT_STATUS;
		break;
	case DP_C:
		bit = DPC_HOTPLUG_INT_STATUS;
		break;
	case DP_D:
		bit = DPD_HOTPLUG_INT_STATUS;
		break;
	default:
		return connector_status_unknown;
	}

	temp = I915_READ(PORT_HOTPLUG_STAT);

	if ((temp & bit) == 0)
		return connector_status_disconnected;

	status = connector_status_disconnected;
1354
	if (intel_dp_aux_native_read(intel_encoder,
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
1366 1367 1368
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct drm_device *dev = intel_encoder->enc.dev;
1369
	struct drm_i915_private *dev_priv = dev->dev_private;
1370
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1371
	int ret;
1372 1373 1374 1375

	/* We should parse the EDID data and find out if it has an audio sink
	 */

1376
	ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
1377 1378 1379 1380
	if (ret)
		return ret;

	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1381
	if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
1382 1383 1384 1385 1386 1387 1388 1389
		if (dev_priv->panel_fixed_mode != NULL) {
			struct drm_display_mode *mode;
			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
	return 0;
1390 1391 1392 1393 1394 1395 1396
}

static void
intel_dp_destroy (struct drm_connector *connector)
{
	drm_sysfs_connector_remove(connector);
	drm_connector_cleanup(connector);
1397
	kfree(connector);
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
}

static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
	.dpms = intel_dp_dpms,
	.mode_fixup = intel_dp_mode_fixup,
	.prepare = intel_encoder_prepare,
	.mode_set = intel_dp_mode_set,
	.commit = intel_encoder_commit,
};

static const struct drm_connector_funcs intel_dp_connector_funcs = {
	.dpms = drm_helper_connector_dpms,
	.detect = intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.destroy = intel_dp_destroy,
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
1418
	.best_encoder = intel_attached_encoder,
1419 1420 1421 1422
};

static void intel_dp_enc_destroy(struct drm_encoder *encoder)
{
1423 1424 1425 1426
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);

	if (intel_encoder->i2c_bus)
		intel_i2c_destroy(intel_encoder->i2c_bus);
1427
	drm_encoder_cleanup(encoder);
1428
	kfree(intel_encoder);
1429 1430 1431 1432 1433 1434
}

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
	.destroy = intel_dp_enc_destroy,
};

1435
void
1436
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1437
{
1438
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1439 1440

	if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1441
		intel_dp_check_link_status(intel_encoder);
1442
}
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/* Return which DP Port should be selected for Transcoder DP control */
int
intel_trans_dp_port_sel (struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_encoder *encoder;
	struct intel_encoder *intel_encoder = NULL;

	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1454
		if (encoder->crtc != crtc)
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
			continue;

		intel_encoder = enc_to_intel_encoder(encoder);
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
			struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
			return dp_priv->output_reg;
		}
	}
	return -1;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
/* check the VBT to see whether the eDP is on DP-D port */
static bool intel_dpd_is_edp(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct child_device_config *p_child;
	int i;

	if (!dev_priv->child_dev_num)
		return false;

	for (i = 0; i < dev_priv->child_dev_num; i++) {
		p_child = dev_priv->child_dev + i;

		if (p_child->dvo_port == PORT_IDPD &&
		    p_child->device_type == DEVICE_TYPE_eDP)
			return true;
	}
	return false;
}

1486 1487 1488 1489 1490
void
intel_dp_init(struct drm_device *dev, int output_reg)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_connector *connector;
1491
	struct intel_encoder *intel_encoder;
1492
	struct intel_connector *intel_connector;
1493
	struct intel_dp_priv *dp_priv;
1494
	const char *name = NULL;
1495

1496
	intel_encoder = kcalloc(sizeof(struct intel_encoder) +
1497
			       sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1498
	if (!intel_encoder)
1499 1500
		return;

1501 1502 1503 1504 1505 1506
	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
	if (!intel_connector) {
		kfree(intel_encoder);
		return;
	}

1507
	dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
1508

1509
	connector = &intel_connector->base;
1510 1511 1512 1513
	drm_connector_init(dev, connector, &intel_dp_connector_funcs,
			   DRM_MODE_CONNECTOR_DisplayPort);
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

1514 1515
	connector->polled = DRM_CONNECTOR_POLL_HPD;

1516
	if (output_reg == DP_A)
1517
		intel_encoder->type = INTEL_OUTPUT_EDP;
1518
	else
1519
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1520

1521
	if (output_reg == DP_B || output_reg == PCH_DP_B)
1522
		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1523
	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1524
		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1525
	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1526
		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1527

1528 1529
	if (IS_eDP(intel_encoder))
		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
Z
Zhenyu Wang 已提交
1530

1531 1532 1533 1534 1535
	if (HAS_PCH_SPLIT(dev) && (output_reg == PCH_DP_D)) {
		if (intel_dpd_is_edp(dev))
			dp_priv->has_edp = true;
	}

1536
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1537 1538 1539
	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

1540
	dp_priv->intel_encoder = intel_encoder;
1541 1542
	dp_priv->output_reg = output_reg;
	dp_priv->has_audio = false;
1543
	dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1544
	intel_encoder->dev_priv = dp_priv;
1545

1546
	drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
1547
			 DRM_MODE_ENCODER_TMDS);
1548
	drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
1549

1550
	drm_mode_connector_attach_encoder(&intel_connector->base,
1551
					  &intel_encoder->enc);
1552 1553 1554
	drm_sysfs_connector_add(connector);

	/* Set up the DDC bus. */
1555
	switch (output_reg) {
1556 1557 1558
		case DP_A:
			name = "DPDDC-A";
			break;
1559 1560
		case DP_B:
		case PCH_DP_B:
1561 1562
			dev_priv->hotplug_supported_mask |=
				HDMIB_HOTPLUG_INT_STATUS;
1563 1564 1565 1566
			name = "DPDDC-B";
			break;
		case DP_C:
		case PCH_DP_C:
1567 1568
			dev_priv->hotplug_supported_mask |=
				HDMIC_HOTPLUG_INT_STATUS;
1569 1570 1571 1572
			name = "DPDDC-C";
			break;
		case DP_D:
		case PCH_DP_D:
1573 1574
			dev_priv->hotplug_supported_mask |=
				HDMID_HOTPLUG_INT_STATUS;
1575 1576 1577 1578
			name = "DPDDC-D";
			break;
	}

1579
	intel_dp_i2c_init(intel_encoder, intel_connector, name);
1580

1581 1582
	intel_encoder->ddc_bus = &dp_priv->adapter;
	intel_encoder->hot_plug = intel_dp_hot_plug;
1583

1584
	if (output_reg == DP_A || IS_PCH_eDP(dp_priv)) {
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		/* initialize panel mode from VBT if available for eDP */
		if (dev_priv->lfp_lvds_vbt_mode) {
			dev_priv->panel_fixed_mode =
				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
			if (dev_priv->panel_fixed_mode) {
				dev_priv->panel_fixed_mode->type |=
					DRM_MODE_TYPE_PREFERRED;
			}
		}
	}

1596 1597 1598 1599 1600 1601 1602 1603 1604
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}