compression.c 40.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
C
Chris Mason 已提交
20 21 22 23 24 25 26 27 28 29
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
	}

	return NULL;
}

45
static int btrfs_decompress_bio(struct compressed_bio *cb);
46

47
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 49
				      unsigned long disk_size)
{
50
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51

52
	return sizeof(struct compressed_bio) +
53
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54 55
}

56
static int check_compressed_csum(struct btrfs_inode *inode,
57 58 59 60 61 62 63 64 65 66
				 struct compressed_bio *cb,
				 u64 disk_start)
{
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
	u32 csum;
	u32 *cb_sum = &cb->sums;

67
	if (inode->flags & BTRFS_INODE_NODATASUM)
68 69 70 71 72 73
		return 0;

	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];
		csum = ~(u32)0;

74
		kaddr = kmap_atomic(page);
75
		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76
		btrfs_csum_final(csum, (u8 *)&csum);
77
		kunmap_atomic(kaddr);
78 79

		if (csum != *cb_sum) {
80
			btrfs_print_data_csum_error(inode, disk_start, csum,
81
					*cb_sum, cb->mirror_num);
82 83 84 85 86 87 88 89 90 91 92
			ret = -EIO;
			goto fail;
		}
		cb_sum++;

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
93 94 95 96 97 98 99 100 101 102
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
103
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
104 105 106 107 108
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
109
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110
	int ret = 0;
C
Chris Mason 已提交
111

112
	if (bio->bi_status)
C
Chris Mason 已提交
113 114 115 116 117
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
118
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
119 120
		goto out;

121 122 123 124 125 126 127 128
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

129 130 131 132 133 134 135
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

136
	inode = cb->inode;
137
	ret = check_compressed_csum(BTRFS_I(inode), cb,
138
				    (u64)bio->bi_iter.bi_sector << 9);
139 140 141
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
142 143 144
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
145 146
	ret = btrfs_decompress_bio(cb);

147
csum_failed:
C
Chris Mason 已提交
148 149 150 151 152 153 154 155
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
156
		put_page(page);
C
Chris Mason 已提交
157 158 159
	}

	/* do io completion on the original bio */
160
	if (cb->errors) {
C
Chris Mason 已提交
161
		bio_io_error(cb->orig_bio);
162
	} else {
163 164
		int i;
		struct bio_vec *bvec;
165 166 167 168 169

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
170
		ASSERT(!bio_flagged(bio, BIO_CLONED));
171
		bio_for_each_segment_all(bvec, cb->orig_bio, i)
172
			SetPageChecked(bvec->bv_page);
173

174
		bio_endio(cb->orig_bio);
175
	}
C
Chris Mason 已提交
176 177 178 179 180 181 182 183 184 185 186 187

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
188 189
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
190
{
191 192
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
193 194 195 196 197
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

198 199 200
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
201
	while (nr_pages > 0) {
C
Chris Mason 已提交
202
		ret = find_get_pages_contig(inode->i_mapping, index,
203 204
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
205 206 207 208 209 210
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
211 212
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
213
			end_page_writeback(pages[i]);
214
			put_page(pages[i]);
C
Chris Mason 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
230
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
231 232 233 234 235 236 237
{
	struct extent_io_tree *tree;
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

238
	if (bio->bi_status)
C
Chris Mason 已提交
239 240 241 242 243
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
244
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
245 246 247 248 249 250 251
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
	tree = &BTRFS_I(inode)->io_tree;
C
Chris Mason 已提交
252
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
C
Chris Mason 已提交
253 254 255
	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
					 cb->start,
					 cb->start + cb->len - 1,
256
					 NULL,
257 258
					 bio->bi_status ?
					 BLK_STS_OK : BLK_STS_NOTSUPP);
C
Chris Mason 已提交
259
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
260

261
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
262 263 264 265 266 267 268 269 270 271
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
272
		put_page(page);
C
Chris Mason 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
291
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
292 293 294
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
295 296
				 unsigned long nr_pages,
				 unsigned int write_flags)
C
Chris Mason 已提交
297
{
298
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
299 300 301
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
302
	int pg_index = 0;
C
Chris Mason 已提交
303 304 305
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
306
	blk_status_t ret;
307
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
308

309
	WARN_ON(start & ((u64)PAGE_SIZE - 1));
310
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
311
	if (!cb)
312
		return BLK_STS_RESOURCE;
313
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
314 315 316 317
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
318
	cb->mirror_num = 0;
C
Chris Mason 已提交
319 320 321 322 323
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

324
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
325

326
	bio = btrfs_bio_alloc(bdev, first_byte);
327
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
328 329
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
330
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
331 332 333

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
334
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
335 336
		int submit = 0;

337
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
338
		page->mapping = inode->i_mapping;
339
		if (bio->bi_iter.bi_size)
340
			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0);
C
Chris Mason 已提交
341

C
Chris Mason 已提交
342
		page->mapping = NULL;
343
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
344
		    PAGE_SIZE) {
345 346 347 348 349 350
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
351
			refcount_inc(&cb->pending_bios);
352 353
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
354
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
355

356
			if (!skip_sum) {
357
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
358
				BUG_ON(ret); /* -ENOMEM */
359
			}
360

361
			ret = btrfs_map_bio(fs_info, bio, 0, 1);
362
			if (ret) {
363
				bio->bi_status = ret;
364 365
				bio_endio(bio);
			}
C
Chris Mason 已提交
366

367
			bio = btrfs_bio_alloc(bdev, first_byte);
368
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
369 370
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
371
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
372
		}
373
		if (bytes_left < PAGE_SIZE) {
374
			btrfs_info(fs_info,
375
					"bytes left %lu compress len %lu nr %lu",
376 377
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
378 379
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
380
		cond_resched();
C
Chris Mason 已提交
381 382
	}

383
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
384
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
385

386
	if (!skip_sum) {
387
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
388
		BUG_ON(ret); /* -ENOMEM */
389
	}
390

391
	ret = btrfs_map_bio(fs_info, bio, 0, 1);
392
	if (ret) {
393
		bio->bi_status = ret;
394 395
		bio_endio(bio);
	}
C
Chris Mason 已提交
396 397 398 399

	return 0;
}

400 401
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
402
	struct bio_vec *last = bio_last_bvec_all(bio);
403 404 405 406

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

407 408 409 410 411
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
412
	unsigned long pg_index;
413 414 415 416 417 418 419 420 421 422 423 424
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

425
	last_offset = bio_end_offset(cb->orig_bio);
426 427 428 429 430 431
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

432
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
433

C
Chris Mason 已提交
434
	while (last_offset < compressed_end) {
435
		pg_index = last_offset >> PAGE_SHIFT;
436

437
		if (pg_index > end_index)
438 439
			break;

440
		page = xa_load(&mapping->i_pages, pg_index);
441
		if (page && !xa_is_value(page)) {
442 443 444 445 446 447
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

448 449
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
450 451 452
		if (!page)
			break;

453
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
454
			put_page(page);
455 456 457
			goto next;
		}

458
		end = last_offset + PAGE_SIZE - 1;
459 460 461 462 463 464
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
465
		lock_extent(tree, last_offset, end);
466
		read_lock(&em_tree->lock);
467
		em = lookup_extent_mapping(em_tree, last_offset,
468
					   PAGE_SIZE);
469
		read_unlock(&em_tree->lock);
470 471

		if (!em || last_offset < em->start ||
472
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
473
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
474
			free_extent_map(em);
475
			unlock_extent(tree, last_offset, end);
476
			unlock_page(page);
477
			put_page(page);
478 479 480 481 482 483
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
484
			size_t zero_offset = isize & (PAGE_SIZE - 1);
485 486 487

			if (zero_offset) {
				int zeros;
488
				zeros = PAGE_SIZE - zero_offset;
489
				userpage = kmap_atomic(page);
490 491
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
492
				kunmap_atomic(userpage);
493 494 495 496
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
497
				   PAGE_SIZE, 0);
498

499
		if (ret == PAGE_SIZE) {
500
			nr_pages++;
501
			put_page(page);
502
		} else {
503
			unlock_extent(tree, last_offset, end);
504
			unlock_page(page);
505
			put_page(page);
506 507 508
			break;
		}
next:
509
		last_offset += PAGE_SIZE;
510 511 512 513
	}
	return 0;
}

C
Chris Mason 已提交
514 515 516 517 518
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
519
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
520 521 522 523 524
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
525
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
526 527
				 int mirror_num, unsigned long bio_flags)
{
528
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
529 530 531 532 533
	struct extent_io_tree *tree;
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
534
	unsigned long pg_index;
C
Chris Mason 已提交
535 536 537
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
538
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
539 540
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
541
	struct extent_map *em;
542
	blk_status_t ret = BLK_STS_RESOURCE;
543
	int faili = 0;
544
	u32 *sums;
C
Chris Mason 已提交
545 546 547 548 549

	tree = &BTRFS_I(inode)->io_tree;
	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
550
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
551
	em = lookup_extent_mapping(em_tree,
552
				   page_offset(bio_first_page_all(bio)),
553
				   PAGE_SIZE);
554
	read_unlock(&em_tree->lock);
555
	if (!em)
556
		return BLK_STS_IOERR;
C
Chris Mason 已提交
557

558
	compressed_len = em->block_len;
559
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
560 561 562
	if (!cb)
		goto out;

563
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
564 565
	cb->errors = 0;
	cb->inode = inode;
566 567
	cb->mirror_num = mirror_num;
	sums = &cb->sums;
C
Chris Mason 已提交
568

569
	cb->start = em->orig_start;
570 571
	em_len = em->len;
	em_start = em->start;
572

C
Chris Mason 已提交
573
	free_extent_map(em);
574
	em = NULL;
C
Chris Mason 已提交
575

C
Christoph Hellwig 已提交
576
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
577
	cb->compressed_len = compressed_len;
578
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
579 580
	cb->orig_bio = bio;

581
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
582
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
583
				       GFP_NOFS);
584 585 586
	if (!cb->compressed_pages)
		goto fail1;

587
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
588

589 590
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
591
							      __GFP_HIGHMEM);
592 593
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
594
			ret = BLK_STS_RESOURCE;
595
			goto fail2;
596
		}
C
Chris Mason 已提交
597
	}
598
	faili = nr_pages - 1;
C
Chris Mason 已提交
599 600
	cb->nr_pages = nr_pages;

601
	add_ra_bio_pages(inode, em_start + em_len, cb);
602 603

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
604
	cb->len = bio->bi_iter.bi_size;
605

606
	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
D
David Sterba 已提交
607
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
608 609
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
610
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
611

612
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
613 614
		int submit = 0;

615
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
616
		page->mapping = inode->i_mapping;
617
		page->index = em_start >> PAGE_SHIFT;
618

619
		if (comp_bio->bi_iter.bi_size)
620 621
			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE,
					comp_bio, 0);
C
Chris Mason 已提交
622

C
Chris Mason 已提交
623
		page->mapping = NULL;
624
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
625
		    PAGE_SIZE) {
626 627
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
628
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
629

630 631 632 633 634 635
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
636
			refcount_inc(&cb->pending_bios);
637

638
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
639 640
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
							    sums);
641
				BUG_ON(ret); /* -ENOMEM */
642
			}
643
			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
644
					     fs_info->sectorsize);
645

646
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
647
			if (ret) {
648
				comp_bio->bi_status = ret;
649 650
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
651

652
			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
D
David Sterba 已提交
653
			comp_bio->bi_opf = REQ_OP_READ;
654 655 656
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

657
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
658
		}
659
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
660 661
	}

662
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
663
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
664

665
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
666
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
667
		BUG_ON(ret); /* -ENOMEM */
668
	}
669

670
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
671
	if (ret) {
672
		comp_bio->bi_status = ret;
673 674
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
675 676

	return 0;
677 678

fail2:
679 680 681 682
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
683 684 685 686 687 688 689

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
690
}
691

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
727 728

struct heuristic_ws {
729 730
	/* Partial copy of input data */
	u8 *sample;
731
	u32 sample_size;
732 733
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
734 735
	/* Sorting buffer */
	struct bucket_item *bucket_b;
736 737 738 739 740 741 742 743 744
	struct list_head list;
};

static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

745 746
	kvfree(workspace->sample);
	kfree(workspace->bucket);
747
	kfree(workspace->bucket_b);
748 749 750 751 752 753 754 755 756 757 758
	kfree(workspace);
}

static struct list_head *alloc_heuristic_ws(void)
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

759 760 761 762 763 764 765
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
766

767 768 769 770
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

771
	INIT_LIST_HEAD(&ws->list);
772
	return &ws->list;
773 774 775
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
776 777 778
}

struct workspaces_list {
779 780
	struct list_head idle_ws;
	spinlock_t ws_lock;
781 782 783 784 785
	/* Number of free workspaces */
	int free_ws;
	/* Total number of allocated workspaces */
	atomic_t total_ws;
	/* Waiters for a free workspace */
786
	wait_queue_head_t ws_wait;
787 788 789 790 791
};

static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];

static struct workspaces_list btrfs_heuristic_ws;
792

793
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
794
	&btrfs_zlib_compress,
L
Li Zefan 已提交
795
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
796
	&btrfs_zstd_compress,
797 798
};

799
void __init btrfs_init_compress(void)
800
{
801
	struct list_head *workspace;
802 803
	int i;

804 805 806 807
	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
808

809 810 811 812 813 814 815 816 817 818 819
	workspace = alloc_heuristic_ws();
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
	} else {
		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
		btrfs_heuristic_ws.free_ws = 1;
		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
	}

	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
820 821
		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
822
		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
823
		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
824 825 826 827 828 829 830

		/*
		 * Preallocate one workspace for each compression type so
		 * we can guarantee forward progress in the worst case
		 */
		workspace = btrfs_compress_op[i]->alloc_workspace();
		if (IS_ERR(workspace)) {
831
			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
832 833 834 835 836
		} else {
			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
			btrfs_comp_ws[i].free_ws = 1;
			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
		}
837 838 839 840
	}
}

/*
841 842 843 844
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
845
 */
846
static struct list_head *__find_workspace(int type, bool heuristic)
847 848 849 850
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
	int idx = type - 1;
851
	unsigned nofs_flag;
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
871 872

again:
873 874 875
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
876
		list_del(workspace);
877
		(*free_ws)--;
878
		spin_unlock(ws_lock);
879 880 881
		return workspace;

	}
882
	if (atomic_read(total_ws) > cpus) {
883 884
		DEFINE_WAIT(wait);

885 886
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
887
		if (atomic_read(total_ws) > cpus && !*free_ws)
888
			schedule();
889
		finish_wait(ws_wait, &wait);
890 891
		goto again;
	}
892
	atomic_inc(total_ws);
893
	spin_unlock(ws_lock);
894

895 896 897 898 899 900
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
901 902 903 904
	if (heuristic)
		workspace = alloc_heuristic_ws();
	else
		workspace = btrfs_compress_op[idx]->alloc_workspace();
905 906
	memalloc_nofs_restore(nofs_flag);

907
	if (IS_ERR(workspace)) {
908
		atomic_dec(total_ws);
909
		wake_up(ws_wait);
910 911 912 913 914 915

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
916 917 918 919
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
920
		 */
921 922 923 924 925 926
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
927
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
928 929
			}
		}
930
		goto again;
931 932 933 934
	}
	return workspace;
}

935 936 937 938 939
static struct list_head *find_workspace(int type)
{
	return __find_workspace(type, false);
}

940 941 942 943
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
944 945
static void __free_workspace(int type, struct list_head *workspace,
			     bool heuristic)
946 947
{
	int idx = type - 1;
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
967 968

	spin_lock(ws_lock);
969
	if (*free_ws <= num_online_cpus()) {
970
		list_add(workspace, idle_ws);
971
		(*free_ws)++;
972
		spin_unlock(ws_lock);
973 974
		goto wake;
	}
975
	spin_unlock(ws_lock);
976

977 978 979 980
	if (heuristic)
		free_heuristic_ws(workspace);
	else
		btrfs_compress_op[idx]->free_workspace(workspace);
981
	atomic_dec(total_ws);
982
wake:
983
	cond_wake_up(ws_wait);
984 985
}

986 987 988 989 990
static void free_workspace(int type, struct list_head *ws)
{
	return __free_workspace(type, ws, false);
}

991 992 993 994 995 996 997 998
/*
 * cleanup function for module exit
 */
static void free_workspaces(void)
{
	struct list_head *workspace;
	int i;

999 1000 1001 1002 1003 1004 1005
	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
		workspace = btrfs_heuristic_ws.idle_ws.next;
		list_del(workspace);
		free_heuristic_ws(workspace);
		atomic_dec(&btrfs_heuristic_ws.total_ws);
	}

1006
	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1007 1008
		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
			workspace = btrfs_comp_ws[i].idle_ws.next;
1009 1010
			list_del(workspace);
			btrfs_compress_op[i]->free_workspace(workspace);
1011
			atomic_dec(&btrfs_comp_ws[i].total_ws);
1012 1013 1014 1015 1016
		}
	}
}

/*
1017 1018
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1019
 *
1020 1021 1022 1023 1024
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1025 1026
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1027
 *
1028 1029
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1030 1031 1032
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1033 1034
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1035
 *
1036
 * @max_out tells us the max number of bytes that we're allowed to
1037 1038
 * stuff into pages
 */
1039
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1040
			 u64 start, struct page **pages,
1041 1042
			 unsigned long *out_pages,
			 unsigned long *total_in,
1043
			 unsigned long *total_out)
1044 1045 1046
{
	struct list_head *workspace;
	int ret;
1047
	int type = type_level & 0xF;
1048 1049 1050

	workspace = find_workspace(type);

1051
	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1052
	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1053
						      start, pages,
1054
						      out_pages,
1055
						      total_in, total_out);
1056 1057 1058 1059 1060 1061 1062 1063 1064
	free_workspace(type, workspace);
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1065
 * orig_bio contains the pages from the file that we want to decompress into
1066 1067 1068 1069 1070 1071 1072 1073
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1074
static int btrfs_decompress_bio(struct compressed_bio *cb)
1075 1076 1077
{
	struct list_head *workspace;
	int ret;
1078
	int type = cb->compress_type;
1079 1080

	workspace = find_workspace(type);
1081
	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1082
	free_workspace(type, workspace);
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

	workspace = find_workspace(type);

	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
						  dest_page, start_byte,
						  srclen, destlen);

	free_workspace(type, workspace);
	return ret;
}

1108
void __cold btrfs_exit_compress(void)
1109 1110 1111
{
	free_workspaces();
}
1112 1113 1114 1115 1116 1117 1118 1119

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1120
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1121
			      unsigned long total_out, u64 disk_start,
1122
			      struct bio *bio)
1123 1124 1125 1126
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1127
	unsigned long prev_start_byte;
1128 1129 1130
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1131
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1132 1133 1134 1135 1136

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1137
	start_byte = page_offset(bvec.bv_page) - disk_start;
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1157 1158
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1159
		bytes = min(bytes, working_bytes);
1160 1161 1162

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1163
		kunmap_atomic(kaddr);
1164
		flush_dcache_page(bvec.bv_page);
1165 1166 1167 1168 1169 1170

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1171 1172 1173 1174
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1175
		prev_start_byte = start_byte;
1176
		start_byte = page_offset(bvec.bv_page) - disk_start;
1177

1178
		/*
1179 1180 1181 1182
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1183
		 */
1184 1185 1186 1187 1188 1189 1190
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1203 1204 1205 1206 1207
		}
	}

	return 1;
}
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * Shannon Entropy calculation
 *
 * Pure byte distribution analysis fails to determine compressiability of data.
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
 * Use 16 u32 counters for calculating new possition in buf array
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1283
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1284
		       int num)
1285
{
1286 1287 1288 1289 1290 1291 1292 1293
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1294

1295 1296 1297 1298
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1299
	max_num = array[0].count;
1300
	for (i = 1; i < num; i++) {
1301
		buf_num = array[i].count;
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1314
			buf_num = array[i].count;
1315 1316 1317 1318 1319 1320 1321 1322
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1323
			buf_num = array[i].count;
1324 1325 1326
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1327
			array_buf[new_addr] = array[i];
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1341
			buf_num = array_buf[i].count;
1342 1343 1344 1345 1346 1347 1348 1349
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1350
			buf_num = array_buf[i].count;
1351 1352 1353
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1354
			array[new_addr] = array_buf[i];
1355 1356 1357 1358
		}

		shift += RADIX_BASE;
	}
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1388
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1444 1445 1446 1447 1448 1449 1450 1451
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1521 1522
	struct list_head *ws_list = __find_workspace(0, true);
	struct heuristic_ws *ws;
1523 1524
	u32 i;
	u8 byte;
1525
	int ret = 0;
1526

1527 1528
	ws = list_entry(ws_list, struct heuristic_ws, list);

1529 1530
	heuristic_collect_sample(inode, start, end, ws);

1531 1532 1533 1534 1535
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1536 1537 1538 1539 1540
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1541 1542
	}

1543 1544 1545 1546 1547 1548
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1589
out:
1590
	__free_workspace(0, ws_list, true);
1591 1592
	return ret;
}
1593 1594 1595 1596 1597 1598

unsigned int btrfs_compress_str2level(const char *str)
{
	if (strncmp(str, "zlib", 4) != 0)
		return 0;

1599 1600 1601
	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
		return str[5] - '0';
1602

1603
	return BTRFS_ZLIB_DEFAULT_LEVEL;
1604
}