compression.c 40.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
C
Chris Mason 已提交
20 21 22 23 24 25 26 27 28 29
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
	}

	return NULL;
}

45
static int btrfs_decompress_bio(struct compressed_bio *cb);
46

47
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 49
				      unsigned long disk_size)
{
50
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51

52
	return sizeof(struct compressed_bio) +
53
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54 55
}

56
static int check_compressed_csum(struct btrfs_inode *inode,
57 58 59 60 61 62 63 64 65 66
				 struct compressed_bio *cb,
				 u64 disk_start)
{
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
	u32 csum;
	u32 *cb_sum = &cb->sums;

67
	if (inode->flags & BTRFS_INODE_NODATASUM)
68 69 70 71 72 73
		return 0;

	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];
		csum = ~(u32)0;

74
		kaddr = kmap_atomic(page);
75
		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76
		btrfs_csum_final(csum, (u8 *)&csum);
77
		kunmap_atomic(kaddr);
78 79

		if (csum != *cb_sum) {
80
			btrfs_print_data_csum_error(inode, disk_start, csum,
81
					*cb_sum, cb->mirror_num);
82 83 84 85 86 87 88 89 90 91 92
			ret = -EIO;
			goto fail;
		}
		cb_sum++;

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
93 94 95 96 97 98 99 100 101 102
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
103
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
104 105 106 107 108
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
109
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110
	int ret = 0;
C
Chris Mason 已提交
111

112
	if (bio->bi_status)
C
Chris Mason 已提交
113 114 115 116 117
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
118
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
119 120
		goto out;

121 122 123 124 125 126 127 128
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

129 130 131 132 133 134 135
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

136
	inode = cb->inode;
137
	ret = check_compressed_csum(BTRFS_I(inode), cb,
138
				    (u64)bio->bi_iter.bi_sector << 9);
139 140 141
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
142 143 144
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
145 146
	ret = btrfs_decompress_bio(cb);

147
csum_failed:
C
Chris Mason 已提交
148 149 150 151 152 153 154 155
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
156
		put_page(page);
C
Chris Mason 已提交
157 158 159
	}

	/* do io completion on the original bio */
160
	if (cb->errors) {
C
Chris Mason 已提交
161
		bio_io_error(cb->orig_bio);
162
	} else {
163 164
		int i;
		struct bio_vec *bvec;
165 166 167 168 169

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
170
		ASSERT(!bio_flagged(bio, BIO_CLONED));
171
		bio_for_each_segment_all(bvec, cb->orig_bio, i)
172
			SetPageChecked(bvec->bv_page);
173

174
		bio_endio(cb->orig_bio);
175
	}
C
Chris Mason 已提交
176 177 178 179 180 181 182 183 184 185 186 187

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
188 189
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
190
{
191 192
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
193 194 195 196 197
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

198 199 200
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
201
	while (nr_pages > 0) {
C
Chris Mason 已提交
202
		ret = find_get_pages_contig(inode->i_mapping, index,
203 204
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
205 206 207 208 209 210
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
211 212
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
213
			end_page_writeback(pages[i]);
214
			put_page(pages[i]);
C
Chris Mason 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
230
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
231 232 233 234 235 236 237
{
	struct extent_io_tree *tree;
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

238
	if (bio->bi_status)
C
Chris Mason 已提交
239 240 241 242 243
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
244
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
245 246 247 248 249 250 251
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
	tree = &BTRFS_I(inode)->io_tree;
C
Chris Mason 已提交
252
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
C
Chris Mason 已提交
253 254 255
	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
					 cb->start,
					 cb->start + cb->len - 1,
256
					 NULL,
257 258
					 bio->bi_status ?
					 BLK_STS_OK : BLK_STS_NOTSUPP);
C
Chris Mason 已提交
259
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
260

261
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
262 263 264 265 266 267 268 269 270 271
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
272
		put_page(page);
C
Chris Mason 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
291
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
292 293 294
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
295 296
				 unsigned long nr_pages,
				 unsigned int write_flags)
C
Chris Mason 已提交
297
{
298
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
299 300 301 302
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
303
	int pg_index = 0;
C
Chris Mason 已提交
304 305 306
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
307
	blk_status_t ret;
308
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
309

310
	WARN_ON(start & ((u64)PAGE_SIZE - 1));
311
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
312
	if (!cb)
313
		return BLK_STS_RESOURCE;
314
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
315 316 317 318
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
319
	cb->mirror_num = 0;
C
Chris Mason 已提交
320 321 322 323 324
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

325
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
326

327
	bio = btrfs_bio_alloc(bdev, first_byte);
328
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
329 330
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
331
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
332 333 334

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
335
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
336 337
		int submit = 0;

338
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
339
		page->mapping = inode->i_mapping;
340
		if (bio->bi_iter.bi_size)
341
			submit = io_tree->ops->merge_bio_hook(page, 0,
342
							   PAGE_SIZE,
C
Chris Mason 已提交
343 344
							   bio, 0);

C
Chris Mason 已提交
345
		page->mapping = NULL;
346
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
347
		    PAGE_SIZE) {
348 349 350 351 352 353
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
354
			refcount_inc(&cb->pending_bios);
355 356
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
357
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
358

359
			if (!skip_sum) {
360
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
361
				BUG_ON(ret); /* -ENOMEM */
362
			}
363

364
			ret = btrfs_map_bio(fs_info, bio, 0, 1);
365
			if (ret) {
366
				bio->bi_status = ret;
367 368
				bio_endio(bio);
			}
C
Chris Mason 已提交
369

370
			bio = btrfs_bio_alloc(bdev, first_byte);
371
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
372 373
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
374
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
375
		}
376
		if (bytes_left < PAGE_SIZE) {
377
			btrfs_info(fs_info,
378
					"bytes left %lu compress len %lu nr %lu",
379 380
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
381 382
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
383
		cond_resched();
C
Chris Mason 已提交
384 385
	}

386
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
387
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
388

389
	if (!skip_sum) {
390
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
391
		BUG_ON(ret); /* -ENOMEM */
392
	}
393

394
	ret = btrfs_map_bio(fs_info, bio, 0, 1);
395
	if (ret) {
396
		bio->bi_status = ret;
397 398
		bio_endio(bio);
	}
C
Chris Mason 已提交
399 400 401 402

	return 0;
}

403 404
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
405
	struct bio_vec *last = bio_last_bvec_all(bio);
406 407 408 409

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

410 411 412 413 414
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
415
	unsigned long pg_index;
416 417 418 419 420 421 422 423 424 425 426 427
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

428
	last_offset = bio_end_offset(cb->orig_bio);
429 430 431 432 433 434
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

435
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
436

C
Chris Mason 已提交
437
	while (last_offset < compressed_end) {
438
		pg_index = last_offset >> PAGE_SHIFT;
439

440
		if (pg_index > end_index)
441 442 443
			break;

		rcu_read_lock();
M
Matthew Wilcox 已提交
444
		page = radix_tree_lookup(&mapping->i_pages, pg_index);
445
		rcu_read_unlock();
446
		if (page && !radix_tree_exceptional_entry(page)) {
447 448 449 450 451 452
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

453 454
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
455 456 457
		if (!page)
			break;

458
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
459
			put_page(page);
460 461 462
			goto next;
		}

463
		end = last_offset + PAGE_SIZE - 1;
464 465 466 467 468 469
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
470
		lock_extent(tree, last_offset, end);
471
		read_lock(&em_tree->lock);
472
		em = lookup_extent_mapping(em_tree, last_offset,
473
					   PAGE_SIZE);
474
		read_unlock(&em_tree->lock);
475 476

		if (!em || last_offset < em->start ||
477
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
478
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
479
			free_extent_map(em);
480
			unlock_extent(tree, last_offset, end);
481
			unlock_page(page);
482
			put_page(page);
483 484 485 486 487 488
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
489
			size_t zero_offset = isize & (PAGE_SIZE - 1);
490 491 492

			if (zero_offset) {
				int zeros;
493
				zeros = PAGE_SIZE - zero_offset;
494
				userpage = kmap_atomic(page);
495 496
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
497
				kunmap_atomic(userpage);
498 499 500 501
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
502
				   PAGE_SIZE, 0);
503

504
		if (ret == PAGE_SIZE) {
505
			nr_pages++;
506
			put_page(page);
507
		} else {
508
			unlock_extent(tree, last_offset, end);
509
			unlock_page(page);
510
			put_page(page);
511 512 513
			break;
		}
next:
514
		last_offset += PAGE_SIZE;
515 516 517 518
	}
	return 0;
}

C
Chris Mason 已提交
519 520 521 522 523
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
524
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
525 526 527 528 529
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
530
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
531 532
				 int mirror_num, unsigned long bio_flags)
{
533
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
534 535 536 537 538
	struct extent_io_tree *tree;
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
539
	unsigned long pg_index;
C
Chris Mason 已提交
540 541 542
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
543
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
544 545
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
546
	struct extent_map *em;
547
	blk_status_t ret = BLK_STS_RESOURCE;
548
	int faili = 0;
549
	u32 *sums;
C
Chris Mason 已提交
550 551 552 553 554

	tree = &BTRFS_I(inode)->io_tree;
	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
555
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
556
	em = lookup_extent_mapping(em_tree,
557
				   page_offset(bio_first_page_all(bio)),
558
				   PAGE_SIZE);
559
	read_unlock(&em_tree->lock);
560
	if (!em)
561
		return BLK_STS_IOERR;
C
Chris Mason 已提交
562

563
	compressed_len = em->block_len;
564
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
565 566 567
	if (!cb)
		goto out;

568
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
569 570
	cb->errors = 0;
	cb->inode = inode;
571 572
	cb->mirror_num = mirror_num;
	sums = &cb->sums;
C
Chris Mason 已提交
573

574
	cb->start = em->orig_start;
575 576
	em_len = em->len;
	em_start = em->start;
577

C
Chris Mason 已提交
578
	free_extent_map(em);
579
	em = NULL;
C
Chris Mason 已提交
580

C
Christoph Hellwig 已提交
581
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
582
	cb->compressed_len = compressed_len;
583
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
584 585
	cb->orig_bio = bio;

586
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
587
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
588
				       GFP_NOFS);
589 590 591
	if (!cb->compressed_pages)
		goto fail1;

592
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
593

594 595
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
596
							      __GFP_HIGHMEM);
597 598
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
599
			ret = BLK_STS_RESOURCE;
600
			goto fail2;
601
		}
C
Chris Mason 已提交
602
	}
603
	faili = nr_pages - 1;
C
Chris Mason 已提交
604 605
	cb->nr_pages = nr_pages;

606
	add_ra_bio_pages(inode, em_start + em_len, cb);
607 608

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
609
	cb->len = bio->bi_iter.bi_size;
610

611
	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
D
David Sterba 已提交
612
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
613 614
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
615
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
616

617
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
618 619
		int submit = 0;

620
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
621
		page->mapping = inode->i_mapping;
622
		page->index = em_start >> PAGE_SHIFT;
623

624
		if (comp_bio->bi_iter.bi_size)
625
			submit = tree->ops->merge_bio_hook(page, 0,
626
							PAGE_SIZE,
C
Chris Mason 已提交
627 628
							comp_bio, 0);

C
Chris Mason 已提交
629
		page->mapping = NULL;
630
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
631
		    PAGE_SIZE) {
632 633
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
634
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
635

636 637 638 639 640 641
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
642
			refcount_inc(&cb->pending_bios);
643

644
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
645 646
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
							    sums);
647
				BUG_ON(ret); /* -ENOMEM */
648
			}
649
			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
650
					     fs_info->sectorsize);
651

652
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
653
			if (ret) {
654
				comp_bio->bi_status = ret;
655 656
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
657

658
			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
D
David Sterba 已提交
659
			comp_bio->bi_opf = REQ_OP_READ;
660 661 662
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

663
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
664
		}
665
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
666 667
	}

668
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
669
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
670

671
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
672
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
673
		BUG_ON(ret); /* -ENOMEM */
674
	}
675

676
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
677
	if (ret) {
678
		comp_bio->bi_status = ret;
679 680
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
681 682

	return 0;
683 684

fail2:
685 686 687 688
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
689 690 691 692 693 694 695

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
696
}
697

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
733 734

struct heuristic_ws {
735 736
	/* Partial copy of input data */
	u8 *sample;
737
	u32 sample_size;
738 739
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
740 741
	/* Sorting buffer */
	struct bucket_item *bucket_b;
742 743 744 745 746 747 748 749 750
	struct list_head list;
};

static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

751 752
	kvfree(workspace->sample);
	kfree(workspace->bucket);
753
	kfree(workspace->bucket_b);
754 755 756 757 758 759 760 761 762 763 764
	kfree(workspace);
}

static struct list_head *alloc_heuristic_ws(void)
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

765 766 767 768 769 770 771
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
772

773 774 775 776
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

777
	INIT_LIST_HEAD(&ws->list);
778
	return &ws->list;
779 780 781
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
782 783 784
}

struct workspaces_list {
785 786
	struct list_head idle_ws;
	spinlock_t ws_lock;
787 788 789 790 791
	/* Number of free workspaces */
	int free_ws;
	/* Total number of allocated workspaces */
	atomic_t total_ws;
	/* Waiters for a free workspace */
792
	wait_queue_head_t ws_wait;
793 794 795 796 797
};

static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];

static struct workspaces_list btrfs_heuristic_ws;
798

799
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
800
	&btrfs_zlib_compress,
L
Li Zefan 已提交
801
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
802
	&btrfs_zstd_compress,
803 804
};

805
void __init btrfs_init_compress(void)
806
{
807
	struct list_head *workspace;
808 809
	int i;

810 811 812 813
	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
814

815 816 817 818 819 820 821 822 823 824 825
	workspace = alloc_heuristic_ws();
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
	} else {
		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
		btrfs_heuristic_ws.free_ws = 1;
		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
	}

	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
826 827
		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
828
		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
829
		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
830 831 832 833 834 835 836

		/*
		 * Preallocate one workspace for each compression type so
		 * we can guarantee forward progress in the worst case
		 */
		workspace = btrfs_compress_op[i]->alloc_workspace();
		if (IS_ERR(workspace)) {
837
			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
838 839 840 841 842
		} else {
			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
			btrfs_comp_ws[i].free_ws = 1;
			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
		}
843 844 845 846
	}
}

/*
847 848 849 850
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
851
 */
852
static struct list_head *__find_workspace(int type, bool heuristic)
853 854 855 856
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
	int idx = type - 1;
857
	unsigned nofs_flag;
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
877 878

again:
879 880 881
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
882
		list_del(workspace);
883
		(*free_ws)--;
884
		spin_unlock(ws_lock);
885 886 887
		return workspace;

	}
888
	if (atomic_read(total_ws) > cpus) {
889 890
		DEFINE_WAIT(wait);

891 892
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
893
		if (atomic_read(total_ws) > cpus && !*free_ws)
894
			schedule();
895
		finish_wait(ws_wait, &wait);
896 897
		goto again;
	}
898
	atomic_inc(total_ws);
899
	spin_unlock(ws_lock);
900

901 902 903 904 905 906
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
907 908 909 910
	if (heuristic)
		workspace = alloc_heuristic_ws();
	else
		workspace = btrfs_compress_op[idx]->alloc_workspace();
911 912
	memalloc_nofs_restore(nofs_flag);

913
	if (IS_ERR(workspace)) {
914
		atomic_dec(total_ws);
915
		wake_up(ws_wait);
916 917 918 919 920 921

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
922 923 924 925
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
926
		 */
927 928 929 930 931 932
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
933
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
934 935
			}
		}
936
		goto again;
937 938 939 940
	}
	return workspace;
}

941 942 943 944 945
static struct list_head *find_workspace(int type)
{
	return __find_workspace(type, false);
}

946 947 948 949
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
950 951
static void __free_workspace(int type, struct list_head *workspace,
			     bool heuristic)
952 953
{
	int idx = type - 1;
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
973 974

	spin_lock(ws_lock);
975
	if (*free_ws <= num_online_cpus()) {
976
		list_add(workspace, idle_ws);
977
		(*free_ws)++;
978
		spin_unlock(ws_lock);
979 980
		goto wake;
	}
981
	spin_unlock(ws_lock);
982

983 984 985 986
	if (heuristic)
		free_heuristic_ws(workspace);
	else
		btrfs_compress_op[idx]->free_workspace(workspace);
987
	atomic_dec(total_ws);
988
wake:
989
	cond_wake_up(ws_wait);
990 991
}

992 993 994 995 996
static void free_workspace(int type, struct list_head *ws)
{
	return __free_workspace(type, ws, false);
}

997 998 999 1000 1001 1002 1003 1004
/*
 * cleanup function for module exit
 */
static void free_workspaces(void)
{
	struct list_head *workspace;
	int i;

1005 1006 1007 1008 1009 1010 1011
	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
		workspace = btrfs_heuristic_ws.idle_ws.next;
		list_del(workspace);
		free_heuristic_ws(workspace);
		atomic_dec(&btrfs_heuristic_ws.total_ws);
	}

1012
	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1013 1014
		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
			workspace = btrfs_comp_ws[i].idle_ws.next;
1015 1016
			list_del(workspace);
			btrfs_compress_op[i]->free_workspace(workspace);
1017
			atomic_dec(&btrfs_comp_ws[i].total_ws);
1018 1019 1020 1021 1022
		}
	}
}

/*
1023 1024
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1025
 *
1026 1027 1028 1029 1030
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1031 1032
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1033
 *
1034 1035
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1036 1037 1038
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1039 1040
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1041
 *
1042
 * @max_out tells us the max number of bytes that we're allowed to
1043 1044
 * stuff into pages
 */
1045
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1046
			 u64 start, struct page **pages,
1047 1048
			 unsigned long *out_pages,
			 unsigned long *total_in,
1049
			 unsigned long *total_out)
1050 1051 1052
{
	struct list_head *workspace;
	int ret;
1053
	int type = type_level & 0xF;
1054 1055 1056

	workspace = find_workspace(type);

1057
	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1058
	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1059
						      start, pages,
1060
						      out_pages,
1061
						      total_in, total_out);
1062 1063 1064 1065 1066 1067 1068 1069 1070
	free_workspace(type, workspace);
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1071
 * orig_bio contains the pages from the file that we want to decompress into
1072 1073 1074 1075 1076 1077 1078 1079
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1080
static int btrfs_decompress_bio(struct compressed_bio *cb)
1081 1082 1083
{
	struct list_head *workspace;
	int ret;
1084
	int type = cb->compress_type;
1085 1086

	workspace = find_workspace(type);
1087
	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1088
	free_workspace(type, workspace);
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

	workspace = find_workspace(type);

	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
						  dest_page, start_byte,
						  srclen, destlen);

	free_workspace(type, workspace);
	return ret;
}

1114
void __cold btrfs_exit_compress(void)
1115 1116 1117
{
	free_workspaces();
}
1118 1119 1120 1121 1122 1123 1124 1125

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1126
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1127
			      unsigned long total_out, u64 disk_start,
1128
			      struct bio *bio)
1129 1130 1131 1132
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1133
	unsigned long prev_start_byte;
1134 1135 1136
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1137
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1138 1139 1140 1141 1142

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1143
	start_byte = page_offset(bvec.bv_page) - disk_start;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1163 1164
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1165
		bytes = min(bytes, working_bytes);
1166 1167 1168

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1169
		kunmap_atomic(kaddr);
1170
		flush_dcache_page(bvec.bv_page);
1171 1172 1173 1174 1175 1176

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1177 1178 1179 1180
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1181
		prev_start_byte = start_byte;
1182
		start_byte = page_offset(bvec.bv_page) - disk_start;
1183

1184
		/*
1185 1186 1187 1188
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1189
		 */
1190 1191 1192 1193 1194 1195 1196
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1209 1210 1211 1212 1213
		}
	}

	return 1;
}
1214

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
/*
 * Shannon Entropy calculation
 *
 * Pure byte distribution analysis fails to determine compressiability of data.
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
 * Use 16 u32 counters for calculating new possition in buf array
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1289
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1290
		       int num)
1291
{
1292 1293 1294 1295 1296 1297 1298 1299
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1300

1301 1302 1303 1304
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1305
	max_num = array[0].count;
1306
	for (i = 1; i < num; i++) {
1307
		buf_num = array[i].count;
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1320
			buf_num = array[i].count;
1321 1322 1323 1324 1325 1326 1327 1328
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1329
			buf_num = array[i].count;
1330 1331 1332
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1333
			array_buf[new_addr] = array[i];
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1347
			buf_num = array_buf[i].count;
1348 1349 1350 1351 1352 1353 1354 1355
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1356
			buf_num = array_buf[i].count;
1357 1358 1359
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1360
			array[new_addr] = array_buf[i];
1361 1362 1363 1364
		}

		shift += RADIX_BASE;
	}
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1394
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1450 1451 1452 1453 1454 1455 1456 1457
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1527 1528
	struct list_head *ws_list = __find_workspace(0, true);
	struct heuristic_ws *ws;
1529 1530
	u32 i;
	u8 byte;
1531
	int ret = 0;
1532

1533 1534
	ws = list_entry(ws_list, struct heuristic_ws, list);

1535 1536
	heuristic_collect_sample(inode, start, end, ws);

1537 1538 1539 1540 1541
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1542 1543 1544 1545 1546
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1547 1548
	}

1549 1550 1551 1552 1553 1554
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1595
out:
1596
	__free_workspace(0, ws_list, true);
1597 1598
	return ret;
}
1599 1600 1601 1602 1603 1604

unsigned int btrfs_compress_str2level(const char *str)
{
	if (strncmp(str, "zlib", 4) != 0)
		return 0;

1605 1606 1607
	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
		return str[5] - '0';
1608

1609
	return BTRFS_ZLIB_DEFAULT_LEVEL;
1610
}