efi.c 27.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * efi.c - EFI subsystem
 *
 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
 *
 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 * The existance of /sys/firmware/efi may also be used by userspace to
 * determine that the system supports EFI.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

17 18 19
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/debugfs.h>
21 22
#include <linux/device.h>
#include <linux/efi.h>
23
#include <linux/of.h>
24
#include <linux/initrd.h>
25
#include <linux/io.h>
26
#include <linux/kexec.h>
L
Lee, Chun-Yi 已提交
27
#include <linux/platform_device.h>
28 29
#include <linux/random.h>
#include <linux/reboot.h>
30 31 32
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/ucs2_string.h>
33
#include <linux/memblock.h>
34
#include <linux/security.h>
35

36
#include <asm/early_ioremap.h>
37

38
struct efi __read_mostly efi = {
39
	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
40 41 42 43 44
	.acpi			= EFI_INVALID_TABLE_ADDR,
	.acpi20			= EFI_INVALID_TABLE_ADDR,
	.smbios			= EFI_INVALID_TABLE_ADDR,
	.smbios3		= EFI_INVALID_TABLE_ADDR,
	.esrt			= EFI_INVALID_TABLE_ADDR,
45
	.tpm_log		= EFI_INVALID_TABLE_ADDR,
46
	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
47 48 49
#ifdef CONFIG_LOAD_UEFI_KEYS
	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
#endif
50 51 52
#ifdef CONFIG_EFI_COCO_SECRET
	.coco_secret		= EFI_INVALID_TABLE_ADDR,
#endif
53 54
};
EXPORT_SYMBOL(efi);
55

56
unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
57
static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
58
static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
59
static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
60

61
struct mm_struct efi_mm = {
62
	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
63 64
	.mm_users		= ATOMIC_INIT(2),
	.mm_count		= ATOMIC_INIT(1),
65
	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
66
	MMAP_LOCK_INITIALIZER(efi_mm)
67 68
	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
69
	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
70 71
};

72 73
struct workqueue_struct *efi_rts_wq;

74
static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
75 76 77 78 79 80 81 82 83 84 85 86
static int __init setup_noefi(char *arg)
{
	disable_runtime = true;
	return 0;
}
early_param("noefi", setup_noefi);

bool efi_runtime_disabled(void)
{
	return disable_runtime;
}

87 88 89 90 91
bool __pure __efi_soft_reserve_enabled(void)
{
	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
}

D
Dave Young 已提交
92 93
static int __init parse_efi_cmdline(char *str)
{
94 95 96 97 98
	if (!str) {
		pr_warn("need at least one option\n");
		return -EINVAL;
	}

99 100 101
	if (parse_option_str(str, "debug"))
		set_bit(EFI_DBG, &efi.flags);

D
Dave Young 已提交
102 103 104
	if (parse_option_str(str, "noruntime"))
		disable_runtime = true;

105 106 107
	if (parse_option_str(str, "runtime"))
		disable_runtime = false;

108 109
	if (parse_option_str(str, "nosoftreserve"))
		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
D
Dave Young 已提交
110 111 112 113 114

	return 0;
}
early_param("efi", parse_efi_cmdline);

P
Peter Jones 已提交
115
struct kobject *efi_kobj;
116 117 118 119

/*
 * Let's not leave out systab information that snuck into
 * the efivars driver
120 121
 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 * one value per file rule!
122 123 124 125 126 127 128 129 130 131 132 133 134
 */
static ssize_t systab_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
	char *str = buf;

	if (!kobj || !buf)
		return -EINVAL;

	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
135 136 137 138 139
	/*
	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
	 * SMBIOS3 entry point shall be preferred, so we list it first to
	 * let applications stop parsing after the first match.
	 */
140 141
	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
142 143
	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
144

145
	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
146 147
		str = efi_systab_show_arch(str);

148 149 150
	return str - buf;
}

151
static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
152

153 154 155 156 157 158
static ssize_t fw_platform_size_show(struct kobject *kobj,
				     struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
}

159 160 161
extern __weak struct kobj_attribute efi_attr_fw_vendor;
extern __weak struct kobj_attribute efi_attr_runtime;
extern __weak struct kobj_attribute efi_attr_config_table;
162 163
static struct kobj_attribute efi_attr_fw_platform_size =
	__ATTR_RO(fw_platform_size);
164

165 166
static struct attribute *efi_subsys_attrs[] = {
	&efi_attr_systab.attr,
167
	&efi_attr_fw_platform_size.attr,
168 169 170 171
	&efi_attr_fw_vendor.attr,
	&efi_attr_runtime.attr,
	&efi_attr_config_table.attr,
	NULL,
172 173
};

174 175
umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
				   int n)
176
{
D
Daniel Kiper 已提交
177
	return attr->mode;
178 179
}

180
static const struct attribute_group efi_subsys_attr_group = {
181
	.attrs = efi_subsys_attrs,
182
	.is_visible = efi_attr_is_visible,
183 184 185 186 187 188 189 190 191
};

static struct efivars generic_efivars;
static struct efivar_operations generic_ops;

static int generic_ops_register(void)
{
	generic_ops.get_variable = efi.get_variable;
	generic_ops.get_next_variable = efi.get_next_variable;
192
	generic_ops.query_variable_store = efi_query_variable_store;
193

194 195 196 197
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
		generic_ops.set_variable = efi.set_variable;
		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
	}
198 199 200 201 202 203 204 205
	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
}

static void generic_ops_unregister(void)
{
	efivars_unregister(&generic_efivars);
}

206
#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
207
#define EFIVAR_SSDT_NAME_MAX	16UL
208 209 210
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
static int __init efivar_ssdt_setup(char *str)
{
211 212 213 214 215
	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);

	if (ret)
		return ret;

216 217 218 219
	if (strlen(str) < sizeof(efivar_ssdt))
		memcpy(efivar_ssdt, str, strlen(str));
	else
		pr_warn("efivar_ssdt: name too long: %s\n", str);
220
	return 1;
221 222 223 224 225
}
__setup("efivar_ssdt=", efivar_ssdt_setup);

static __init int efivar_ssdt_load(void)
{
226 227 228 229
	unsigned long name_size = 256;
	efi_char16_t *name = NULL;
	efi_status_t status;
	efi_guid_t guid;
230

231 232 233
	if (!efivar_ssdt[0])
		return 0;

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	name = kzalloc(name_size, GFP_KERNEL);
	if (!name)
		return -ENOMEM;

	for (;;) {
		char utf8_name[EFIVAR_SSDT_NAME_MAX];
		unsigned long data_size = 0;
		void *data;
		int limit;

		status = efi.get_next_variable(&name_size, name, &guid);
		if (status == EFI_NOT_FOUND) {
			break;
		} else if (status == EFI_BUFFER_TOO_SMALL) {
			name = krealloc(name, name_size, GFP_KERNEL);
			if (!name)
				return -ENOMEM;
			continue;
252 253
		}

254 255 256 257
		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
		ucs2_as_utf8(utf8_name, name, limit - 1);
		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
			continue;
258

259
		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
260

261 262 263
		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
			return -EIO;
264

265 266 267
		data = kmalloc(data_size, GFP_KERNEL);
		if (!data)
			return -ENOMEM;
268

269 270 271 272 273
		status = efi.get_variable(name, &guid, NULL, &data_size, data);
		if (status == EFI_SUCCESS) {
			acpi_status ret = acpi_load_table(data, NULL);
			if (ret)
				pr_err("failed to load table: %u\n", ret);
274 275
			else
				continue;
276 277 278
		} else {
			pr_err("failed to get var data: 0x%lx\n", status);
		}
279 280
		kfree(data);
	}
281
	return 0;
282 283 284 285 286
}
#else
static inline int efivar_ssdt_load(void) { return 0; }
#endif

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
#ifdef CONFIG_DEBUG_FS

#define EFI_DEBUGFS_MAX_BLOBS 32

static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];

static void __init efi_debugfs_init(void)
{
	struct dentry *efi_debugfs;
	efi_memory_desc_t *md;
	char name[32];
	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
	int i = 0;

	efi_debugfs = debugfs_create_dir("efi", NULL);
	if (IS_ERR_OR_NULL(efi_debugfs))
		return;

	for_each_efi_memory_desc(md) {
		switch (md->type) {
		case EFI_BOOT_SERVICES_CODE:
			snprintf(name, sizeof(name), "boot_services_code%d",
				 type_count[md->type]++);
			break;
		case EFI_BOOT_SERVICES_DATA:
			snprintf(name, sizeof(name), "boot_services_data%d",
				 type_count[md->type]++);
			break;
		default:
			continue;
		}

		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
			break;
		}

		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
		debugfs_blob[i].data = memremap(md->phys_addr,
						debugfs_blob[i].size,
						MEMREMAP_WB);
		if (!debugfs_blob[i].data)
			continue;

		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
		i++;
	}
}
#else
static inline void efi_debugfs_init(void) {}
#endif

340 341 342 343 344 345 346 347 348
/*
 * We register the efi subsystem with the firmware subsystem and the
 * efivars subsystem with the efi subsystem, if the system was booted with
 * EFI.
 */
static int __init efisubsys_init(void)
{
	int error;

349 350 351
	if (!efi_enabled(EFI_RUNTIME_SERVICES))
		efi.runtime_supported_mask = 0;

352 353 354
	if (!efi_enabled(EFI_BOOT))
		return 0;

355 356 357 358 359 360 361 362 363 364 365 366 367
	if (efi.runtime_supported_mask) {
		/*
		 * Since we process only one efi_runtime_service() at a time, an
		 * ordered workqueue (which creates only one execution context)
		 * should suffice for all our needs.
		 */
		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
		if (!efi_rts_wq) {
			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
			efi.runtime_supported_mask = 0;
			return 0;
		}
368 369
	}

370 371 372
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
		platform_device_register_simple("rtc-efi", 0, NULL, 0);

373 374 375 376
	/* We register the efi directory at /sys/firmware/efi */
	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
	if (!efi_kobj) {
		pr_err("efi: Firmware registration failed.\n");
377
		destroy_workqueue(efi_rts_wq);
378 379 380
		return -ENOMEM;
	}

381 382
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
383 384 385
		error = generic_ops_register();
		if (error)
			goto err_put;
386
		efivar_ssdt_load();
387 388
		platform_device_register_simple("efivars", 0, NULL, 0);
	}
389

390 391 392 393 394 395 396
	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
	if (error) {
		pr_err("efi: Sysfs attribute export failed with error %d.\n",
		       error);
		goto err_unregister;
	}

397 398 399 400
	error = efi_runtime_map_init(efi_kobj);
	if (error)
		goto err_remove_group;

401
	/* and the standard mountpoint for efivarfs */
402 403
	error = sysfs_create_mount_point(efi_kobj, "efivars");
	if (error) {
404 405 406 407
		pr_err("efivars: Subsystem registration failed.\n");
		goto err_remove_group;
	}

408 409 410
	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
		efi_debugfs_init();

411 412 413 414 415
#ifdef CONFIG_EFI_COCO_SECRET
	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
		platform_device_register_simple("efi_secret", 0, NULL, 0);
#endif

416 417 418 419 420
	return 0;

err_remove_group:
	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
err_unregister:
421 422
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
423
		generic_ops_unregister();
424 425
err_put:
	kobject_put(efi_kobj);
426
	destroy_workqueue(efi_rts_wq);
427 428 429 430
	return error;
}

subsys_initcall(efisubsys_init);
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
void __init efi_find_mirror(void)
{
	efi_memory_desc_t *md;
	u64 mirror_size = 0, total_size = 0;

	if (!efi_enabled(EFI_MEMMAP))
		return;

	for_each_efi_memory_desc(md) {
		unsigned long long start = md->phys_addr;
		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;

		total_size += size;
		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
			memblock_mark_mirror(start, size);
			mirror_size += size;
		}
	}
	if (mirror_size)
		pr_info("Memory: %lldM/%lldM mirrored memory\n",
			mirror_size>>20, total_size>>20);
}

P
Peter Jones 已提交
455 456
/*
 * Find the efi memory descriptor for a given physical address.  Given a
457
 * physical address, determine if it exists within an EFI Memory Map entry,
P
Peter Jones 已提交
458 459 460
 * and if so, populate the supplied memory descriptor with the appropriate
 * data.
 */
461
int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
P
Peter Jones 已提交
462
{
463
	efi_memory_desc_t *md;
P
Peter Jones 已提交
464 465 466 467 468 469 470 471 472 473 474

	if (!efi_enabled(EFI_MEMMAP)) {
		pr_err_once("EFI_MEMMAP is not enabled.\n");
		return -EINVAL;
	}

	if (!out_md) {
		pr_err_once("out_md is null.\n");
		return -EINVAL;
        }

475
	for_each_efi_memory_desc(md) {
P
Peter Jones 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
		u64 size;
		u64 end;

		size = md->num_pages << EFI_PAGE_SHIFT;
		end = md->phys_addr + size;
		if (phys_addr >= md->phys_addr && phys_addr < end) {
			memcpy(out_md, md, sizeof(*out_md));
			return 0;
		}
	}
	return -ENOENT;
}

/*
 * Calculate the highest address of an efi memory descriptor.
 */
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
{
	u64 size = md->num_pages << EFI_PAGE_SHIFT;
	u64 end = md->phys_addr + size;
	return end;
}
498

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}

/**
 * efi_mem_reserve - Reserve an EFI memory region
 * @addr: Physical address to reserve
 * @size: Size of reservation
 *
 * Mark a region as reserved from general kernel allocation and
 * prevent it being released by efi_free_boot_services().
 *
 * This function should be called drivers once they've parsed EFI
 * configuration tables to figure out where their data lives, e.g.
 * efi_esrt_init().
 */
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
{
	if (!memblock_is_region_reserved(addr, size))
		memblock_reserve(addr, size);

	/*
	 * Some architectures (x86) reserve all boot services ranges
	 * until efi_free_boot_services() because of buggy firmware
	 * implementations. This means the above memblock_reserve() is
	 * superfluous on x86 and instead what it needs to do is
	 * ensure the @start, @size is not freed.
	 */
	efi_arch_mem_reserve(addr, size);
}

528
static const efi_config_table_type_t common_tables[] __initconst = {
529 530 531 532 533 534 535 536 537 538
	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
539
	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
540
	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
541
#ifdef CONFIG_EFI_RCI2_TABLE
542
	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
543 544 545
#endif
#ifdef CONFIG_LOAD_UEFI_KEYS
	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
546 547 548
#endif
#ifdef CONFIG_EFI_COCO_SECRET
	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
549
#endif
550
	{},
551 552
};

553
static __init int match_config_table(const efi_guid_t *guid,
554
				     unsigned long table,
555
				     const efi_config_table_type_t *table_types)
556 557 558
{
	int i;

559 560 561 562 563 564 565
	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
		if (!efi_guidcmp(*guid, table_types[i].guid)) {
			*(table_types[i].ptr) = table;
			if (table_types[i].name[0])
				pr_cont("%s=0x%lx ",
					table_types[i].name, table);
			return 1;
566 567 568 569 570 571
		}
	}

	return 0;
}

572 573 574
int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
				   int count,
				   const efi_config_table_type_t *arch_tables)
575
{
576 577 578 579
	const efi_config_table_64_t *tbl64 = (void *)config_tables;
	const efi_config_table_32_t *tbl32 = (void *)config_tables;
	const efi_guid_t *guid;
	unsigned long table;
580
	int i;
581 582

	pr_info("");
583
	for (i = 0; i < count; i++) {
584 585 586 587 588 589 590 591 592
		if (!IS_ENABLED(CONFIG_X86)) {
			guid = &config_tables[i].guid;
			table = (unsigned long)config_tables[i].table;
		} else if (efi_enabled(EFI_64BIT)) {
			guid = &tbl64[i].guid;
			table = tbl64[i].table;

			if (IS_ENABLED(CONFIG_X86_32) &&
			    tbl64[i].table > U32_MAX) {
593 594 595 596 597
				pr_cont("\n");
				pr_err("Table located above 4GB, disabling EFI.\n");
				return -EINVAL;
			}
		} else {
598 599
			guid = &tbl32[i].guid;
			table = tbl32[i].table;
600 601
		}

602
		if (!match_config_table(guid, table, common_tables) && arch_tables)
603
			match_config_table(guid, table, arch_tables);
604 605
	}
	pr_cont("\n");
606
	set_bit(EFI_CONFIG_TABLES, &efi.flags);
607

608
	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
609 610 611
		struct linux_efi_random_seed *seed;
		u32 size = 0;

612
		seed = early_memremap(efi_rng_seed, sizeof(*seed));
613
		if (seed != NULL) {
614
			size = min(seed->size, EFI_RANDOM_SEED_SIZE);
615 616 617 618 619
			early_memunmap(seed, sizeof(*seed));
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
		if (size > 0) {
620 621
			seed = early_memremap(efi_rng_seed,
					      sizeof(*seed) + size);
622
			if (seed != NULL) {
623
				pr_notice("seeding entropy pool\n");
624
				add_bootloader_randomness(seed->bits, size);
625 626 627 628 629 630 631
				early_memunmap(seed, sizeof(*seed) + size);
			} else {
				pr_err("Could not map UEFI random seed!\n");
			}
		}
	}

632
	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
633
		efi_memattr_init();
634

635 636
	efi_tpm_eventlog_init();

637 638
	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
		unsigned long prsv = mem_reserve;
639 640 641

		while (prsv) {
			struct linux_efi_memreserve *rsv;
642 643 644 645 646 647 648 649 650 651
			u8 *p;

			/*
			 * Just map a full page: that is what we will get
			 * anyway, and it permits us to map the entire entry
			 * before knowing its size.
			 */
			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
					   PAGE_SIZE);
			if (p == NULL) {
652 653 654 655
				pr_err("Could not map UEFI memreserve entry!\n");
				return -ENOMEM;
			}

656 657 658
			rsv = (void *)(p + prsv % PAGE_SIZE);

			/* reserve the entry itself */
659 660
			memblock_reserve(prsv,
					 struct_size(rsv, entry, rsv->size));
661 662 663 664 665

			for (i = 0; i < atomic_read(&rsv->count); i++) {
				memblock_reserve(rsv->entry[i].base,
						 rsv->entry[i].size);
			}
666 667

			prsv = rsv->next;
668
			early_memunmap(p, PAGE_SIZE);
669 670 671
		}
	}

672 673 674 675 676 677 678 679 680 681
	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
		efi_rt_properties_table_t *tbl;

		tbl = early_memremap(rt_prop, sizeof(*tbl));
		if (tbl) {
			efi.runtime_supported_mask &= tbl->runtime_services_supported;
			early_memunmap(tbl, sizeof(*tbl));
		}
	}

682 683 684 685 686 687 688 689 690 691 692 693
	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
		struct linux_efi_initrd *tbl;

		tbl = early_memremap(initrd, sizeof(*tbl));
		if (tbl) {
			phys_initrd_start = tbl->base;
			phys_initrd_size = tbl->size;
			early_memunmap(tbl, sizeof(*tbl));
		}
	}

694 695
	return 0;
}
696

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
				   int min_major_version)
{
	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
		pr_err("System table signature incorrect!\n");
		return -EINVAL;
	}

	if ((systab_hdr->revision >> 16) < min_major_version)
		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
		       systab_hdr->revision >> 16,
		       systab_hdr->revision & 0xffff,
		       min_major_version);

	return 0;
}

#ifndef CONFIG_IA64
static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
						size_t size)
{
	const efi_char16_t *ret;

	ret = early_memremap_ro(fw_vendor, size);
	if (!ret)
		pr_err("Could not map the firmware vendor!\n");
	return ret;
}

static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
{
	early_memunmap((void *)fw_vendor, size);
}
#else
#define map_fw_vendor(p, s)	__va(p)
#define unmap_fw_vendor(v, s)
#endif

void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
				     unsigned long fw_vendor)
{
	char vendor[100] = "unknown";
	const efi_char16_t *c16;
	size_t i;

	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
	if (c16) {
		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
			vendor[i] = c16[i];
		vendor[i] = '\0';

		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
	}

	pr_info("EFI v%u.%.02u by %s\n",
		systab_hdr->revision >> 16,
		systab_hdr->revision & 0xffff,
		vendor);
755 756 757 758 759 760 761

	if (IS_ENABLED(CONFIG_X86_64) &&
	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
	    !strcmp(vendor, "Apple")) {
		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
	}
762 763
}

764
static __initdata char memory_type_name[][13] = {
765 766 767 768 769 770 771
	"Reserved",
	"Loader Code",
	"Loader Data",
	"Boot Code",
	"Boot Data",
	"Runtime Code",
	"Runtime Data",
772 773 774 775 776 777
	"Conventional",
	"Unusable",
	"ACPI Reclaim",
	"ACPI Mem NVS",
	"MMIO",
	"MMIO Port",
778
	"PAL Code",
779
	"Persistent",
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
};

char * __init efi_md_typeattr_format(char *buf, size_t size,
				     const efi_memory_desc_t *md)
{
	char *pos;
	int type_len;
	u64 attr;

	pos = buf;
	if (md->type >= ARRAY_SIZE(memory_type_name))
		type_len = snprintf(pos, size, "[type=%u", md->type);
	else
		type_len = snprintf(pos, size, "[%-*s",
				    (int)(sizeof(memory_type_name[0]) - 1),
				    memory_type_name[md->type]);
	if (type_len >= size)
		return buf;

	pos += type_len;
	size -= type_len;

	attr = md->attribute;
	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
804 805
		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
806
		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
807
		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
808 809 810
		snprintf(pos, size, "|attr=0x%016llx]",
			 (unsigned long long)attr);
	else
R
Robert Elliott 已提交
811
		snprintf(pos, size,
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
			 attr & EFI_MEMORY_SP			? "SP"  : "",
			 attr & EFI_MEMORY_NV			? "NV"  : "",
			 attr & EFI_MEMORY_XP			? "XP"  : "",
			 attr & EFI_MEMORY_RP			? "RP"  : "",
			 attr & EFI_MEMORY_WP			? "WP"  : "",
			 attr & EFI_MEMORY_RO			? "RO"  : "",
			 attr & EFI_MEMORY_UCE			? "UCE" : "",
			 attr & EFI_MEMORY_WB			? "WB"  : "",
			 attr & EFI_MEMORY_WT			? "WT"  : "",
			 attr & EFI_MEMORY_WC			? "WC"  : "",
			 attr & EFI_MEMORY_UC			? "UC"  : "");
827 828
	return buf;
}
829

830 831 832 833 834
/*
 * IA64 has a funky EFI memory map that doesn't work the same way as
 * other architectures.
 */
#ifndef CONFIG_IA64
835 836 837 838 839 840 841 842
/*
 * efi_mem_attributes - lookup memmap attributes for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering
 * @phys_addr. Returns the EFI memory attributes if the region
 * was found in the memory map, 0 otherwise.
 */
843
u64 efi_mem_attributes(unsigned long phys_addr)
844 845 846 847 848 849
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return 0;

850
	for_each_efi_memory_desc(md) {
851 852 853 854 855 856 857
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
		    (md->num_pages << EFI_PAGE_SHIFT))))
			return md->attribute;
	}
	return 0;
}
858

859 860 861 862 863 864
/*
 * efi_mem_type - lookup memmap type for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering @phys_addr.
 * Returns the EFI memory type if the region was found in the memory
865
 * map, -EINVAL otherwise.
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
 */
int efi_mem_type(unsigned long phys_addr)
{
	const efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return -ENOTSUPP;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
				  (md->num_pages << EFI_PAGE_SHIFT))))
			return md->type;
	}
	return -EINVAL;
}
#endif

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
int efi_status_to_err(efi_status_t status)
{
	int err;

	switch (status) {
	case EFI_SUCCESS:
		err = 0;
		break;
	case EFI_INVALID_PARAMETER:
		err = -EINVAL;
		break;
	case EFI_OUT_OF_RESOURCES:
		err = -ENOSPC;
		break;
	case EFI_DEVICE_ERROR:
		err = -EIO;
		break;
	case EFI_WRITE_PROTECTED:
		err = -EROFS;
		break;
	case EFI_SECURITY_VIOLATION:
		err = -EACCES;
		break;
	case EFI_NOT_FOUND:
		err = -ENOENT;
		break;
910 911 912
	case EFI_ABORTED:
		err = -EINTR;
		break;
913 914 915 916 917
	default:
		err = -EINVAL;
	}

	return err;
918
}
919
EXPORT_SYMBOL_GPL(efi_status_to_err);
920

921
static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
922
static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
923

924 925
static int __init efi_memreserve_map_root(void)
{
926
	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
927 928
		return -ENODEV;

929
	efi_memreserve_root = memremap(mem_reserve,
930 931 932 933 934 935 936
				       sizeof(*efi_memreserve_root),
				       MEMREMAP_WB);
	if (WARN_ON_ONCE(!efi_memreserve_root))
		return -ENOMEM;
	return 0;
}

937 938 939
static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
{
	struct resource *res, *parent;
940
	int ret;
941 942 943 944 945 946 947 948 949 950 951 952

	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
	if (!res)
		return -ENOMEM;

	res->name	= "reserved";
	res->flags	= IORESOURCE_MEM;
	res->start	= addr;
	res->end	= addr + size - 1;

	/* we expect a conflict with a 'System RAM' region */
	parent = request_resource_conflict(&iomem_resource, res);
953 954 955 956 957 958 959 960 961 962 963
	ret = parent ? request_resource(parent, res) : 0;

	/*
	 * Given that efi_mem_reserve_iomem() can be called at any
	 * time, only call memblock_reserve() if the architecture
	 * keeps the infrastructure around.
	 */
	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
		memblock_reserve(addr, size);

	return ret;
964 965
}

966
int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
967
{
968
	struct linux_efi_memreserve *rsv;
969 970
	unsigned long prsv;
	int rc, index;
971

972
	if (efi_memreserve_root == (void *)ULONG_MAX)
973 974
		return -ENODEV;

975 976 977 978 979 980
	if (!efi_memreserve_root) {
		rc = efi_memreserve_map_root();
		if (rc)
			return rc;
	}

981
	/* first try to find a slot in an existing linked list entry */
982
	for (prsv = efi_memreserve_root->next; prsv; ) {
983
		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
984 985 986 987 988
		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
		if (index < rsv->size) {
			rsv->entry[index].base = addr;
			rsv->entry[index].size = size;

989
			memunmap(rsv);
990
			return efi_mem_reserve_iomem(addr, size);
991
		}
992
		prsv = rsv->next;
993
		memunmap(rsv);
994 995 996 997
	}

	/* no slot found - allocate a new linked list entry */
	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
998 999 1000
	if (!rsv)
		return -ENOMEM;

1001 1002 1003 1004 1005 1006
	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
	if (rc) {
		free_page((unsigned long)rsv);
		return rc;
	}

1007 1008 1009 1010 1011 1012 1013
	/*
	 * The memremap() call above assumes that a linux_efi_memreserve entry
	 * never crosses a page boundary, so let's ensure that this remains true
	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
	 * using SZ_4K explicitly in the size calculation below.
	 */
	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1014 1015 1016
	atomic_set(&rsv->count, 1);
	rsv->entry[0].base = addr;
	rsv->entry[0].size = size;
1017 1018

	spin_lock(&efi_mem_reserve_persistent_lock);
1019 1020
	rsv->next = efi_memreserve_root->next;
	efi_memreserve_root->next = __pa(rsv);
1021 1022
	spin_unlock(&efi_mem_reserve_persistent_lock);

1023
	return efi_mem_reserve_iomem(addr, size);
1024
}
1025

1026 1027
static int __init efi_memreserve_root_init(void)
{
1028 1029 1030 1031
	if (efi_memreserve_root)
		return 0;
	if (efi_memreserve_map_root())
		efi_memreserve_root = (void *)ULONG_MAX;
1032 1033
	return 0;
}
1034
early_initcall(efi_memreserve_root_init);
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
#ifdef CONFIG_KEXEC
static int update_efi_random_seed(struct notifier_block *nb,
				  unsigned long code, void *unused)
{
	struct linux_efi_random_seed *seed;
	u32 size = 0;

	if (!kexec_in_progress)
		return NOTIFY_DONE;

1046
	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1047
	if (seed != NULL) {
1048
		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1049 1050 1051 1052 1053
		memunmap(seed);
	} else {
		pr_err("Could not map UEFI random seed!\n");
	}
	if (size > 0) {
1054 1055
		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
				MEMREMAP_WB);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
		if (seed != NULL) {
			seed->size = size;
			get_random_bytes(seed->bits, seed->size);
			memunmap(seed);
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
	}
	return NOTIFY_DONE;
}

static struct notifier_block efi_random_seed_nb = {
	.notifier_call = update_efi_random_seed,
};

1071
static int __init register_update_efi_random_seed(void)
1072
{
1073
	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1074 1075 1076 1077 1078
		return 0;
	return register_reboot_notifier(&efi_random_seed_nb);
}
late_initcall(register_update_efi_random_seed);
#endif