efi.c 25.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * efi.c - EFI subsystem
 *
 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
 *
 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 * The existance of /sys/firmware/efi may also be used by userspace to
 * determine that the system supports EFI.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

17 18 19
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/debugfs.h>
21 22
#include <linux/device.h>
#include <linux/efi.h>
23
#include <linux/of.h>
24
#include <linux/io.h>
25
#include <linux/kexec.h>
L
Lee, Chun-Yi 已提交
26
#include <linux/platform_device.h>
27 28
#include <linux/random.h>
#include <linux/reboot.h>
29 30 31
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/ucs2_string.h>
32
#include <linux/memblock.h>
33
#include <linux/security.h>
34

35
#include <asm/early_ioremap.h>
36

37
struct efi __read_mostly efi = {
38
	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
39 40 41 42 43
	.acpi			= EFI_INVALID_TABLE_ADDR,
	.acpi20			= EFI_INVALID_TABLE_ADDR,
	.smbios			= EFI_INVALID_TABLE_ADDR,
	.smbios3		= EFI_INVALID_TABLE_ADDR,
	.esrt			= EFI_INVALID_TABLE_ADDR,
44
	.tpm_log		= EFI_INVALID_TABLE_ADDR,
45
	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
46 47
};
EXPORT_SYMBOL(efi);
48

49
unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
50
static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
51
static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
52

53 54 55 56
struct mm_struct efi_mm = {
	.mm_rb			= RB_ROOT,
	.mm_users		= ATOMIC_INIT(2),
	.mm_count		= ATOMIC_INIT(1),
57
	MMAP_LOCK_INITIALIZER(efi_mm)
58 59
	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
60
	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
61 62
};

63 64
struct workqueue_struct *efi_rts_wq;

65 66 67 68 69 70 71 72 73 74 75 76 77
static bool disable_runtime;
static int __init setup_noefi(char *arg)
{
	disable_runtime = true;
	return 0;
}
early_param("noefi", setup_noefi);

bool efi_runtime_disabled(void)
{
	return disable_runtime;
}

78 79 80 81 82
bool __pure __efi_soft_reserve_enabled(void)
{
	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
}

D
Dave Young 已提交
83 84
static int __init parse_efi_cmdline(char *str)
{
85 86 87 88 89
	if (!str) {
		pr_warn("need at least one option\n");
		return -EINVAL;
	}

90 91 92
	if (parse_option_str(str, "debug"))
		set_bit(EFI_DBG, &efi.flags);

D
Dave Young 已提交
93 94 95
	if (parse_option_str(str, "noruntime"))
		disable_runtime = true;

96 97
	if (parse_option_str(str, "nosoftreserve"))
		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
D
Dave Young 已提交
98 99 100 101 102

	return 0;
}
early_param("efi", parse_efi_cmdline);

P
Peter Jones 已提交
103
struct kobject *efi_kobj;
104 105 106 107

/*
 * Let's not leave out systab information that snuck into
 * the efivars driver
108 109
 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 * one value per file rule!
110 111 112 113 114 115 116 117 118 119 120 121 122
 */
static ssize_t systab_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
	char *str = buf;

	if (!kobj || !buf)
		return -EINVAL;

	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
123 124 125 126 127
	/*
	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
	 * SMBIOS3 entry point shall be preferred, so we list it first to
	 * let applications stop parsing after the first match.
	 */
128 129
	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
130 131
	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
132

133
	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
134 135
		str = efi_systab_show_arch(str);

136 137 138
	return str - buf;
}

139
static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
140

141 142 143 144 145 146
static ssize_t fw_platform_size_show(struct kobject *kobj,
				     struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
}

147 148 149
extern __weak struct kobj_attribute efi_attr_fw_vendor;
extern __weak struct kobj_attribute efi_attr_runtime;
extern __weak struct kobj_attribute efi_attr_config_table;
150 151
static struct kobj_attribute efi_attr_fw_platform_size =
	__ATTR_RO(fw_platform_size);
152

153 154
static struct attribute *efi_subsys_attrs[] = {
	&efi_attr_systab.attr,
155
	&efi_attr_fw_platform_size.attr,
156 157 158 159
	&efi_attr_fw_vendor.attr,
	&efi_attr_runtime.attr,
	&efi_attr_config_table.attr,
	NULL,
160 161
};

162 163
umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
				   int n)
164
{
D
Daniel Kiper 已提交
165
	return attr->mode;
166 167
}

168
static const struct attribute_group efi_subsys_attr_group = {
169
	.attrs = efi_subsys_attrs,
170
	.is_visible = efi_attr_is_visible,
171 172 173 174 175 176 177 178 179
};

static struct efivars generic_efivars;
static struct efivar_operations generic_ops;

static int generic_ops_register(void)
{
	generic_ops.get_variable = efi.get_variable;
	generic_ops.get_next_variable = efi.get_next_variable;
180
	generic_ops.query_variable_store = efi_query_variable_store;
181

182 183 184 185
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
		generic_ops.set_variable = efi.set_variable;
		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
	}
186 187 188 189 190 191 192 193
	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
}

static void generic_ops_unregister(void)
{
	efivars_unregister(&generic_efivars);
}

194
#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
195 196 197 198
#define EFIVAR_SSDT_NAME_MAX	16
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
static int __init efivar_ssdt_setup(char *str)
{
199 200 201 202 203
	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);

	if (ret)
		return ret;

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	if (strlen(str) < sizeof(efivar_ssdt))
		memcpy(efivar_ssdt, str, strlen(str));
	else
		pr_warn("efivar_ssdt: name too long: %s\n", str);
	return 0;
}
__setup("efivar_ssdt=", efivar_ssdt_setup);

static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
				   unsigned long name_size, void *data)
{
	struct efivar_entry *entry;
	struct list_head *list = data;
	char utf8_name[EFIVAR_SSDT_NAME_MAX];
	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);

	ucs2_as_utf8(utf8_name, name, limit - 1);
	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
		return 0;

	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return 0;

	memcpy(entry->var.VariableName, name, name_size);
	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));

	efivar_entry_add(entry, list);

	return 0;
}

static __init int efivar_ssdt_load(void)
{
	LIST_HEAD(entries);
	struct efivar_entry *entry, *aux;
	unsigned long size;
	void *data;
	int ret;

244 245 246
	if (!efivar_ssdt[0])
		return 0;

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);

	list_for_each_entry_safe(entry, aux, &entries, list) {
		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
			&entry->var.VendorGuid);

		list_del(&entry->list);

		ret = efivar_entry_size(entry, &size);
		if (ret) {
			pr_err("failed to get var size\n");
			goto free_entry;
		}

		data = kmalloc(size, GFP_KERNEL);
262 263
		if (!data) {
			ret = -ENOMEM;
264
			goto free_entry;
265
		}
266 267 268 269 270 271 272

		ret = efivar_entry_get(entry, NULL, &size, data);
		if (ret) {
			pr_err("failed to get var data\n");
			goto free_data;
		}

273
		ret = acpi_load_table(data, NULL);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
		if (ret) {
			pr_err("failed to load table: %d\n", ret);
			goto free_data;
		}

		goto free_entry;

free_data:
		kfree(data);

free_entry:
		kfree(entry);
	}

	return ret;
}
#else
static inline int efivar_ssdt_load(void) { return 0; }
#endif

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
#ifdef CONFIG_DEBUG_FS

#define EFI_DEBUGFS_MAX_BLOBS 32

static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];

static void __init efi_debugfs_init(void)
{
	struct dentry *efi_debugfs;
	efi_memory_desc_t *md;
	char name[32];
	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
	int i = 0;

	efi_debugfs = debugfs_create_dir("efi", NULL);
	if (IS_ERR_OR_NULL(efi_debugfs))
		return;

	for_each_efi_memory_desc(md) {
		switch (md->type) {
		case EFI_BOOT_SERVICES_CODE:
			snprintf(name, sizeof(name), "boot_services_code%d",
				 type_count[md->type]++);
			break;
		case EFI_BOOT_SERVICES_DATA:
			snprintf(name, sizeof(name), "boot_services_data%d",
				 type_count[md->type]++);
			break;
		default:
			continue;
		}

		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
			break;
		}

		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
		debugfs_blob[i].data = memremap(md->phys_addr,
						debugfs_blob[i].size,
						MEMREMAP_WB);
		if (!debugfs_blob[i].data)
			continue;

		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
		i++;
	}
}
#else
static inline void efi_debugfs_init(void) {}
#endif

347 348 349 350 351 352 353 354 355
/*
 * We register the efi subsystem with the firmware subsystem and the
 * efivars subsystem with the efi subsystem, if the system was booted with
 * EFI.
 */
static int __init efisubsys_init(void)
{
	int error;

356 357 358
	if (!efi_enabled(EFI_RUNTIME_SERVICES))
		efi.runtime_supported_mask = 0;

359 360 361
	if (!efi_enabled(EFI_BOOT))
		return 0;

362 363 364 365 366 367 368 369 370 371 372 373 374
	if (efi.runtime_supported_mask) {
		/*
		 * Since we process only one efi_runtime_service() at a time, an
		 * ordered workqueue (which creates only one execution context)
		 * should suffice for all our needs.
		 */
		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
		if (!efi_rts_wq) {
			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
			efi.runtime_supported_mask = 0;
			return 0;
		}
375 376
	}

377 378 379
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
		platform_device_register_simple("rtc-efi", 0, NULL, 0);

380 381 382 383 384 385 386
	/* We register the efi directory at /sys/firmware/efi */
	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
	if (!efi_kobj) {
		pr_err("efi: Firmware registration failed.\n");
		return -ENOMEM;
	}

387 388
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
389
		efivar_ssdt_load();
390 391 392 393 394
		error = generic_ops_register();
		if (error)
			goto err_put;
		platform_device_register_simple("efivars", 0, NULL, 0);
	}
395

396 397 398 399 400 401 402
	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
	if (error) {
		pr_err("efi: Sysfs attribute export failed with error %d.\n",
		       error);
		goto err_unregister;
	}

403 404 405 406
	error = efi_runtime_map_init(efi_kobj);
	if (error)
		goto err_remove_group;

407
	/* and the standard mountpoint for efivarfs */
408 409
	error = sysfs_create_mount_point(efi_kobj, "efivars");
	if (error) {
410 411 412 413
		pr_err("efivars: Subsystem registration failed.\n");
		goto err_remove_group;
	}

414 415 416
	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
		efi_debugfs_init();

417 418 419 420 421
	return 0;

err_remove_group:
	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
err_unregister:
422 423
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
424
		generic_ops_unregister();
425 426 427 428 429 430
err_put:
	kobject_put(efi_kobj);
	return error;
}

subsys_initcall(efisubsys_init);
431

P
Peter Jones 已提交
432 433
/*
 * Find the efi memory descriptor for a given physical address.  Given a
434
 * physical address, determine if it exists within an EFI Memory Map entry,
P
Peter Jones 已提交
435 436 437
 * and if so, populate the supplied memory descriptor with the appropriate
 * data.
 */
438
int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
P
Peter Jones 已提交
439
{
440
	efi_memory_desc_t *md;
P
Peter Jones 已提交
441 442 443 444 445 446 447 448 449 450 451

	if (!efi_enabled(EFI_MEMMAP)) {
		pr_err_once("EFI_MEMMAP is not enabled.\n");
		return -EINVAL;
	}

	if (!out_md) {
		pr_err_once("out_md is null.\n");
		return -EINVAL;
        }

452
	for_each_efi_memory_desc(md) {
P
Peter Jones 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
		u64 size;
		u64 end;

		size = md->num_pages << EFI_PAGE_SHIFT;
		end = md->phys_addr + size;
		if (phys_addr >= md->phys_addr && phys_addr < end) {
			memcpy(out_md, md, sizeof(*out_md));
			return 0;
		}
	}
	return -ENOENT;
}

/*
 * Calculate the highest address of an efi memory descriptor.
 */
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
{
	u64 size = md->num_pages << EFI_PAGE_SHIFT;
	u64 end = md->phys_addr + size;
	return end;
}
475

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}

/**
 * efi_mem_reserve - Reserve an EFI memory region
 * @addr: Physical address to reserve
 * @size: Size of reservation
 *
 * Mark a region as reserved from general kernel allocation and
 * prevent it being released by efi_free_boot_services().
 *
 * This function should be called drivers once they've parsed EFI
 * configuration tables to figure out where their data lives, e.g.
 * efi_esrt_init().
 */
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
{
	if (!memblock_is_region_reserved(addr, size))
		memblock_reserve(addr, size);

	/*
	 * Some architectures (x86) reserve all boot services ranges
	 * until efi_free_boot_services() because of buggy firmware
	 * implementations. This means the above memblock_reserve() is
	 * superfluous on x86 and instead what it needs to do is
	 * ensure the @start, @size is not freed.
	 */
	efi_arch_mem_reserve(addr, size);
}

505
static const efi_config_table_type_t common_tables[] __initconst = {
506 507 508 509 510 511 512 513 514 515 516
	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
517
#ifdef CONFIG_EFI_RCI2_TABLE
518
	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
519
#endif
520
	{},
521 522
};

523
static __init int match_config_table(const efi_guid_t *guid,
524
				     unsigned long table,
525
				     const efi_config_table_type_t *table_types)
526 527 528
{
	int i;

529 530 531 532 533 534 535
	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
		if (!efi_guidcmp(*guid, table_types[i].guid)) {
			*(table_types[i].ptr) = table;
			if (table_types[i].name[0])
				pr_cont("%s=0x%lx ",
					table_types[i].name, table);
			return 1;
536 537 538 539 540 541
		}
	}

	return 0;
}

542 543 544
int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
				   int count,
				   const efi_config_table_type_t *arch_tables)
545
{
546 547 548 549
	const efi_config_table_64_t *tbl64 = (void *)config_tables;
	const efi_config_table_32_t *tbl32 = (void *)config_tables;
	const efi_guid_t *guid;
	unsigned long table;
550
	int i;
551 552

	pr_info("");
553
	for (i = 0; i < count; i++) {
554 555 556 557 558 559 560 561 562
		if (!IS_ENABLED(CONFIG_X86)) {
			guid = &config_tables[i].guid;
			table = (unsigned long)config_tables[i].table;
		} else if (efi_enabled(EFI_64BIT)) {
			guid = &tbl64[i].guid;
			table = tbl64[i].table;

			if (IS_ENABLED(CONFIG_X86_32) &&
			    tbl64[i].table > U32_MAX) {
563 564 565 566 567
				pr_cont("\n");
				pr_err("Table located above 4GB, disabling EFI.\n");
				return -EINVAL;
			}
		} else {
568 569
			guid = &tbl32[i].guid;
			table = tbl32[i].table;
570 571
		}

572
		if (!match_config_table(guid, table, common_tables) && arch_tables)
573
			match_config_table(guid, table, arch_tables);
574 575
	}
	pr_cont("\n");
576
	set_bit(EFI_CONFIG_TABLES, &efi.flags);
577

578
	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
579 580 581
		struct linux_efi_random_seed *seed;
		u32 size = 0;

582
		seed = early_memremap(efi_rng_seed, sizeof(*seed));
583
		if (seed != NULL) {
584
			size = READ_ONCE(seed->size);
585 586 587 588 589
			early_memunmap(seed, sizeof(*seed));
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
		if (size > 0) {
590 591
			seed = early_memremap(efi_rng_seed,
					      sizeof(*seed) + size);
592
			if (seed != NULL) {
593
				pr_notice("seeding entropy pool\n");
594
				add_bootloader_randomness(seed->bits, size);
595 596 597 598 599 600 601
				early_memunmap(seed, sizeof(*seed) + size);
			} else {
				pr_err("Could not map UEFI random seed!\n");
			}
		}
	}

602
	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
603
		efi_memattr_init();
604

605 606
	efi_tpm_eventlog_init();

607 608
	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
		unsigned long prsv = mem_reserve;
609 610 611

		while (prsv) {
			struct linux_efi_memreserve *rsv;
612 613 614 615 616 617 618 619 620 621
			u8 *p;

			/*
			 * Just map a full page: that is what we will get
			 * anyway, and it permits us to map the entire entry
			 * before knowing its size.
			 */
			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
					   PAGE_SIZE);
			if (p == NULL) {
622 623 624 625
				pr_err("Could not map UEFI memreserve entry!\n");
				return -ENOMEM;
			}

626 627 628
			rsv = (void *)(p + prsv % PAGE_SIZE);

			/* reserve the entry itself */
629 630
			memblock_reserve(prsv,
					 struct_size(rsv, entry, rsv->size));
631 632 633 634 635

			for (i = 0; i < atomic_read(&rsv->count); i++) {
				memblock_reserve(rsv->entry[i].base,
						 rsv->entry[i].size);
			}
636 637

			prsv = rsv->next;
638
			early_memunmap(p, PAGE_SIZE);
639 640 641
		}
	}

642 643 644 645 646 647 648 649 650 651
	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
		efi_rt_properties_table_t *tbl;

		tbl = early_memremap(rt_prop, sizeof(*tbl));
		if (tbl) {
			efi.runtime_supported_mask &= tbl->runtime_services_supported;
			early_memunmap(tbl, sizeof(*tbl));
		}
	}

652 653
	return 0;
}
654

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
				   int min_major_version)
{
	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
		pr_err("System table signature incorrect!\n");
		return -EINVAL;
	}

	if ((systab_hdr->revision >> 16) < min_major_version)
		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
		       systab_hdr->revision >> 16,
		       systab_hdr->revision & 0xffff,
		       min_major_version);

	return 0;
}

#ifndef CONFIG_IA64
static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
						size_t size)
{
	const efi_char16_t *ret;

	ret = early_memremap_ro(fw_vendor, size);
	if (!ret)
		pr_err("Could not map the firmware vendor!\n");
	return ret;
}

static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
{
	early_memunmap((void *)fw_vendor, size);
}
#else
#define map_fw_vendor(p, s)	__va(p)
#define unmap_fw_vendor(v, s)
#endif

void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
				     unsigned long fw_vendor)
{
	char vendor[100] = "unknown";
	const efi_char16_t *c16;
	size_t i;

	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
	if (c16) {
		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
			vendor[i] = c16[i];
		vendor[i] = '\0';

		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
	}

	pr_info("EFI v%u.%.02u by %s\n",
		systab_hdr->revision >> 16,
		systab_hdr->revision & 0xffff,
		vendor);
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728
static __initdata char memory_type_name[][20] = {
	"Reserved",
	"Loader Code",
	"Loader Data",
	"Boot Code",
	"Boot Data",
	"Runtime Code",
	"Runtime Data",
	"Conventional Memory",
	"Unusable Memory",
	"ACPI Reclaim Memory",
	"ACPI Memory NVS",
	"Memory Mapped I/O",
	"MMIO Port Space",
729 730
	"PAL Code",
	"Persistent Memory",
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
};

char * __init efi_md_typeattr_format(char *buf, size_t size,
				     const efi_memory_desc_t *md)
{
	char *pos;
	int type_len;
	u64 attr;

	pos = buf;
	if (md->type >= ARRAY_SIZE(memory_type_name))
		type_len = snprintf(pos, size, "[type=%u", md->type);
	else
		type_len = snprintf(pos, size, "[%-*s",
				    (int)(sizeof(memory_type_name[0]) - 1),
				    memory_type_name[md->type]);
	if (type_len >= size)
		return buf;

	pos += type_len;
	size -= type_len;

	attr = md->attribute;
	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
755 756
		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
D
Dan Williams 已提交
757
		     EFI_MEMORY_NV | EFI_MEMORY_SP |
758
		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
759 760 761
		snprintf(pos, size, "|attr=0x%016llx]",
			 (unsigned long long)attr);
	else
R
Robert Elliott 已提交
762
		snprintf(pos, size,
D
Dan Williams 已提交
763
			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
764
			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
765
			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
D
Dan Williams 已提交
766
			 attr & EFI_MEMORY_SP      ? "SP"  : "",
R
Robert Elliott 已提交
767
			 attr & EFI_MEMORY_NV      ? "NV"  : "",
768 769 770
			 attr & EFI_MEMORY_XP      ? "XP"  : "",
			 attr & EFI_MEMORY_RP      ? "RP"  : "",
			 attr & EFI_MEMORY_WP      ? "WP"  : "",
771
			 attr & EFI_MEMORY_RO      ? "RO"  : "",
772 773 774 775 776 777 778
			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
			 attr & EFI_MEMORY_WB      ? "WB"  : "",
			 attr & EFI_MEMORY_WT      ? "WT"  : "",
			 attr & EFI_MEMORY_WC      ? "WC"  : "",
			 attr & EFI_MEMORY_UC      ? "UC"  : "");
	return buf;
}
779

780 781 782 783 784
/*
 * IA64 has a funky EFI memory map that doesn't work the same way as
 * other architectures.
 */
#ifndef CONFIG_IA64
785 786 787 788 789 790 791 792
/*
 * efi_mem_attributes - lookup memmap attributes for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering
 * @phys_addr. Returns the EFI memory attributes if the region
 * was found in the memory map, 0 otherwise.
 */
793
u64 efi_mem_attributes(unsigned long phys_addr)
794 795 796 797 798 799
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return 0;

800
	for_each_efi_memory_desc(md) {
801 802 803 804 805 806 807
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
		    (md->num_pages << EFI_PAGE_SHIFT))))
			return md->attribute;
	}
	return 0;
}
808

809 810 811 812 813 814
/*
 * efi_mem_type - lookup memmap type for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering @phys_addr.
 * Returns the EFI memory type if the region was found in the memory
815
 * map, -EINVAL otherwise.
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
 */
int efi_mem_type(unsigned long phys_addr)
{
	const efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return -ENOTSUPP;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
				  (md->num_pages << EFI_PAGE_SHIFT))))
			return md->type;
	}
	return -EINVAL;
}
#endif

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
int efi_status_to_err(efi_status_t status)
{
	int err;

	switch (status) {
	case EFI_SUCCESS:
		err = 0;
		break;
	case EFI_INVALID_PARAMETER:
		err = -EINVAL;
		break;
	case EFI_OUT_OF_RESOURCES:
		err = -ENOSPC;
		break;
	case EFI_DEVICE_ERROR:
		err = -EIO;
		break;
	case EFI_WRITE_PROTECTED:
		err = -EROFS;
		break;
	case EFI_SECURITY_VIOLATION:
		err = -EACCES;
		break;
	case EFI_NOT_FOUND:
		err = -ENOENT;
		break;
860 861 862
	case EFI_ABORTED:
		err = -EINTR;
		break;
863 864 865 866 867
	default:
		err = -EINVAL;
	}

	return err;
868 869
}

870
static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
871
static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
872

873 874
static int __init efi_memreserve_map_root(void)
{
875
	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
876 877
		return -ENODEV;

878
	efi_memreserve_root = memremap(mem_reserve,
879 880 881 882 883 884 885
				       sizeof(*efi_memreserve_root),
				       MEMREMAP_WB);
	if (WARN_ON_ONCE(!efi_memreserve_root))
		return -ENOMEM;
	return 0;
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
{
	struct resource *res, *parent;

	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
	if (!res)
		return -ENOMEM;

	res->name	= "reserved";
	res->flags	= IORESOURCE_MEM;
	res->start	= addr;
	res->end	= addr + size - 1;

	/* we expect a conflict with a 'System RAM' region */
	parent = request_resource_conflict(&iomem_resource, res);
	return parent ? request_resource(parent, res) : 0;
}

904
int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
905
{
906
	struct linux_efi_memreserve *rsv;
907 908
	unsigned long prsv;
	int rc, index;
909

910
	if (efi_memreserve_root == (void *)ULONG_MAX)
911 912
		return -ENODEV;

913 914 915 916 917 918
	if (!efi_memreserve_root) {
		rc = efi_memreserve_map_root();
		if (rc)
			return rc;
	}

919 920
	/* first try to find a slot in an existing linked list entry */
	for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
921
		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
922 923 924 925 926
		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
		if (index < rsv->size) {
			rsv->entry[index].base = addr;
			rsv->entry[index].size = size;

927
			memunmap(rsv);
928
			return efi_mem_reserve_iomem(addr, size);
929
		}
930
		memunmap(rsv);
931 932 933 934
	}

	/* no slot found - allocate a new linked list entry */
	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
935 936 937
	if (!rsv)
		return -ENOMEM;

938 939 940 941 942 943
	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
	if (rc) {
		free_page((unsigned long)rsv);
		return rc;
	}

944 945 946 947 948 949 950
	/*
	 * The memremap() call above assumes that a linux_efi_memreserve entry
	 * never crosses a page boundary, so let's ensure that this remains true
	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
	 * using SZ_4K explicitly in the size calculation below.
	 */
	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
951 952 953
	atomic_set(&rsv->count, 1);
	rsv->entry[0].base = addr;
	rsv->entry[0].size = size;
954 955

	spin_lock(&efi_mem_reserve_persistent_lock);
956 957
	rsv->next = efi_memreserve_root->next;
	efi_memreserve_root->next = __pa(rsv);
958 959
	spin_unlock(&efi_mem_reserve_persistent_lock);

960
	return efi_mem_reserve_iomem(addr, size);
961
}
962

963 964
static int __init efi_memreserve_root_init(void)
{
965 966 967 968
	if (efi_memreserve_root)
		return 0;
	if (efi_memreserve_map_root())
		efi_memreserve_root = (void *)ULONG_MAX;
969 970
	return 0;
}
971
early_initcall(efi_memreserve_root_init);
972

973 974 975 976 977 978 979 980 981 982
#ifdef CONFIG_KEXEC
static int update_efi_random_seed(struct notifier_block *nb,
				  unsigned long code, void *unused)
{
	struct linux_efi_random_seed *seed;
	u32 size = 0;

	if (!kexec_in_progress)
		return NOTIFY_DONE;

983
	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
984
	if (seed != NULL) {
985
		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
986 987 988 989 990
		memunmap(seed);
	} else {
		pr_err("Could not map UEFI random seed!\n");
	}
	if (size > 0) {
991 992
		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
				MEMREMAP_WB);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
		if (seed != NULL) {
			seed->size = size;
			get_random_bytes(seed->bits, seed->size);
			memunmap(seed);
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
	}
	return NOTIFY_DONE;
}

static struct notifier_block efi_random_seed_nb = {
	.notifier_call = update_efi_random_seed,
};

1008
static int __init register_update_efi_random_seed(void)
1009
{
1010
	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1011 1012 1013 1014 1015
		return 0;
	return register_reboot_notifier(&efi_random_seed_nb);
}
late_initcall(register_update_efi_random_seed);
#endif