efi.c 27.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * efi.c - EFI subsystem
 *
 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
 *
 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 * The existance of /sys/firmware/efi may also be used by userspace to
 * determine that the system supports EFI.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

17 18 19
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/debugfs.h>
21 22
#include <linux/device.h>
#include <linux/efi.h>
23
#include <linux/of.h>
24
#include <linux/io.h>
25
#include <linux/kexec.h>
L
Lee, Chun-Yi 已提交
26
#include <linux/platform_device.h>
27 28
#include <linux/random.h>
#include <linux/reboot.h>
29 30 31
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/ucs2_string.h>
32
#include <linux/memblock.h>
33
#include <linux/security.h>
34

35
#include <asm/early_ioremap.h>
36

37
struct efi __read_mostly efi = {
38
	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
39 40 41 42 43
	.acpi			= EFI_INVALID_TABLE_ADDR,
	.acpi20			= EFI_INVALID_TABLE_ADDR,
	.smbios			= EFI_INVALID_TABLE_ADDR,
	.smbios3		= EFI_INVALID_TABLE_ADDR,
	.esrt			= EFI_INVALID_TABLE_ADDR,
44
	.tpm_log		= EFI_INVALID_TABLE_ADDR,
45
	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
46 47 48
#ifdef CONFIG_LOAD_UEFI_KEYS
	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
#endif
49 50 51
#ifdef CONFIG_EFI_COCO_SECRET
	.coco_secret		= EFI_INVALID_TABLE_ADDR,
#endif
52 53
};
EXPORT_SYMBOL(efi);
54

55
unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
56
static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
57
static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
58

59 60 61 62
struct mm_struct efi_mm = {
	.mm_rb			= RB_ROOT,
	.mm_users		= ATOMIC_INIT(2),
	.mm_count		= ATOMIC_INIT(1),
63
	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
64
	MMAP_LOCK_INITIALIZER(efi_mm)
65 66
	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
67
	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
68 69
};

70 71
struct workqueue_struct *efi_rts_wq;

72
static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
73 74 75 76 77 78 79 80 81 82 83 84
static int __init setup_noefi(char *arg)
{
	disable_runtime = true;
	return 0;
}
early_param("noefi", setup_noefi);

bool efi_runtime_disabled(void)
{
	return disable_runtime;
}

85 86 87 88 89
bool __pure __efi_soft_reserve_enabled(void)
{
	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
}

D
Dave Young 已提交
90 91
static int __init parse_efi_cmdline(char *str)
{
92 93 94 95 96
	if (!str) {
		pr_warn("need at least one option\n");
		return -EINVAL;
	}

97 98 99
	if (parse_option_str(str, "debug"))
		set_bit(EFI_DBG, &efi.flags);

D
Dave Young 已提交
100 101 102
	if (parse_option_str(str, "noruntime"))
		disable_runtime = true;

103 104 105
	if (parse_option_str(str, "runtime"))
		disable_runtime = false;

106 107
	if (parse_option_str(str, "nosoftreserve"))
		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
D
Dave Young 已提交
108 109 110 111 112

	return 0;
}
early_param("efi", parse_efi_cmdline);

P
Peter Jones 已提交
113
struct kobject *efi_kobj;
114 115 116 117

/*
 * Let's not leave out systab information that snuck into
 * the efivars driver
118 119
 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 * one value per file rule!
120 121 122 123 124 125 126 127 128 129 130 131 132
 */
static ssize_t systab_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
	char *str = buf;

	if (!kobj || !buf)
		return -EINVAL;

	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
133 134 135 136 137
	/*
	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
	 * SMBIOS3 entry point shall be preferred, so we list it first to
	 * let applications stop parsing after the first match.
	 */
138 139
	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
140 141
	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
142

143
	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
144 145
		str = efi_systab_show_arch(str);

146 147 148
	return str - buf;
}

149
static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
150

151 152 153 154 155 156
static ssize_t fw_platform_size_show(struct kobject *kobj,
				     struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
}

157 158 159
extern __weak struct kobj_attribute efi_attr_fw_vendor;
extern __weak struct kobj_attribute efi_attr_runtime;
extern __weak struct kobj_attribute efi_attr_config_table;
160 161
static struct kobj_attribute efi_attr_fw_platform_size =
	__ATTR_RO(fw_platform_size);
162

163 164
static struct attribute *efi_subsys_attrs[] = {
	&efi_attr_systab.attr,
165
	&efi_attr_fw_platform_size.attr,
166 167 168 169
	&efi_attr_fw_vendor.attr,
	&efi_attr_runtime.attr,
	&efi_attr_config_table.attr,
	NULL,
170 171
};

172 173
umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
				   int n)
174
{
D
Daniel Kiper 已提交
175
	return attr->mode;
176 177
}

178
static const struct attribute_group efi_subsys_attr_group = {
179
	.attrs = efi_subsys_attrs,
180
	.is_visible = efi_attr_is_visible,
181 182 183 184 185 186 187 188 189
};

static struct efivars generic_efivars;
static struct efivar_operations generic_ops;

static int generic_ops_register(void)
{
	generic_ops.get_variable = efi.get_variable;
	generic_ops.get_next_variable = efi.get_next_variable;
190
	generic_ops.query_variable_store = efi_query_variable_store;
191

192 193 194 195
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
		generic_ops.set_variable = efi.set_variable;
		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
	}
196 197 198 199 200 201 202 203
	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
}

static void generic_ops_unregister(void)
{
	efivars_unregister(&generic_efivars);
}

204
#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
205 206 207 208
#define EFIVAR_SSDT_NAME_MAX	16
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
static int __init efivar_ssdt_setup(char *str)
{
209 210 211 212 213
	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);

	if (ret)
		return ret;

214 215 216 217
	if (strlen(str) < sizeof(efivar_ssdt))
		memcpy(efivar_ssdt, str, strlen(str));
	else
		pr_warn("efivar_ssdt: name too long: %s\n", str);
218
	return 1;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
}
__setup("efivar_ssdt=", efivar_ssdt_setup);

static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
				   unsigned long name_size, void *data)
{
	struct efivar_entry *entry;
	struct list_head *list = data;
	char utf8_name[EFIVAR_SSDT_NAME_MAX];
	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);

	ucs2_as_utf8(utf8_name, name, limit - 1);
	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
		return 0;

	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return 0;

	memcpy(entry->var.VariableName, name, name_size);
	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));

	efivar_entry_add(entry, list);

	return 0;
}

static __init int efivar_ssdt_load(void)
{
	LIST_HEAD(entries);
	struct efivar_entry *entry, *aux;
	unsigned long size;
	void *data;
	int ret;

254 255 256
	if (!efivar_ssdt[0])
		return 0;

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);

	list_for_each_entry_safe(entry, aux, &entries, list) {
		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
			&entry->var.VendorGuid);

		list_del(&entry->list);

		ret = efivar_entry_size(entry, &size);
		if (ret) {
			pr_err("failed to get var size\n");
			goto free_entry;
		}

		data = kmalloc(size, GFP_KERNEL);
272 273
		if (!data) {
			ret = -ENOMEM;
274
			goto free_entry;
275
		}
276 277 278 279 280 281 282

		ret = efivar_entry_get(entry, NULL, &size, data);
		if (ret) {
			pr_err("failed to get var data\n");
			goto free_data;
		}

283
		ret = acpi_load_table(data, NULL);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
		if (ret) {
			pr_err("failed to load table: %d\n", ret);
			goto free_data;
		}

		goto free_entry;

free_data:
		kfree(data);

free_entry:
		kfree(entry);
	}

	return ret;
}
#else
static inline int efivar_ssdt_load(void) { return 0; }
#endif

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
#ifdef CONFIG_DEBUG_FS

#define EFI_DEBUGFS_MAX_BLOBS 32

static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];

static void __init efi_debugfs_init(void)
{
	struct dentry *efi_debugfs;
	efi_memory_desc_t *md;
	char name[32];
	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
	int i = 0;

	efi_debugfs = debugfs_create_dir("efi", NULL);
	if (IS_ERR_OR_NULL(efi_debugfs))
		return;

	for_each_efi_memory_desc(md) {
		switch (md->type) {
		case EFI_BOOT_SERVICES_CODE:
			snprintf(name, sizeof(name), "boot_services_code%d",
				 type_count[md->type]++);
			break;
		case EFI_BOOT_SERVICES_DATA:
			snprintf(name, sizeof(name), "boot_services_data%d",
				 type_count[md->type]++);
			break;
		default:
			continue;
		}

		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
			break;
		}

		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
		debugfs_blob[i].data = memremap(md->phys_addr,
						debugfs_blob[i].size,
						MEMREMAP_WB);
		if (!debugfs_blob[i].data)
			continue;

		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
		i++;
	}
}
#else
static inline void efi_debugfs_init(void) {}
#endif

357 358 359 360 361 362 363 364 365
/*
 * We register the efi subsystem with the firmware subsystem and the
 * efivars subsystem with the efi subsystem, if the system was booted with
 * EFI.
 */
static int __init efisubsys_init(void)
{
	int error;

366 367 368
	if (!efi_enabled(EFI_RUNTIME_SERVICES))
		efi.runtime_supported_mask = 0;

369 370 371
	if (!efi_enabled(EFI_BOOT))
		return 0;

372 373 374 375 376 377 378 379 380 381 382 383 384
	if (efi.runtime_supported_mask) {
		/*
		 * Since we process only one efi_runtime_service() at a time, an
		 * ordered workqueue (which creates only one execution context)
		 * should suffice for all our needs.
		 */
		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
		if (!efi_rts_wq) {
			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
			efi.runtime_supported_mask = 0;
			return 0;
		}
385 386
	}

387 388 389
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
		platform_device_register_simple("rtc-efi", 0, NULL, 0);

390 391 392 393
	/* We register the efi directory at /sys/firmware/efi */
	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
	if (!efi_kobj) {
		pr_err("efi: Firmware registration failed.\n");
394
		destroy_workqueue(efi_rts_wq);
395 396 397
		return -ENOMEM;
	}

398 399
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
400 401 402
		error = generic_ops_register();
		if (error)
			goto err_put;
403
		efivar_ssdt_load();
404 405
		platform_device_register_simple("efivars", 0, NULL, 0);
	}
406

407 408 409 410 411 412 413
	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
	if (error) {
		pr_err("efi: Sysfs attribute export failed with error %d.\n",
		       error);
		goto err_unregister;
	}

414 415 416 417
	error = efi_runtime_map_init(efi_kobj);
	if (error)
		goto err_remove_group;

418
	/* and the standard mountpoint for efivarfs */
419 420
	error = sysfs_create_mount_point(efi_kobj, "efivars");
	if (error) {
421 422 423 424
		pr_err("efivars: Subsystem registration failed.\n");
		goto err_remove_group;
	}

425 426 427
	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
		efi_debugfs_init();

428 429 430 431 432
#ifdef CONFIG_EFI_COCO_SECRET
	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
		platform_device_register_simple("efi_secret", 0, NULL, 0);
#endif

433 434 435 436 437
	return 0;

err_remove_group:
	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
err_unregister:
438 439
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
440
		generic_ops_unregister();
441 442
err_put:
	kobject_put(efi_kobj);
443
	destroy_workqueue(efi_rts_wq);
444 445 446 447
	return error;
}

subsys_initcall(efisubsys_init);
448

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
void __init efi_find_mirror(void)
{
	efi_memory_desc_t *md;
	u64 mirror_size = 0, total_size = 0;

	if (!efi_enabled(EFI_MEMMAP))
		return;

	for_each_efi_memory_desc(md) {
		unsigned long long start = md->phys_addr;
		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;

		total_size += size;
		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
			memblock_mark_mirror(start, size);
			mirror_size += size;
		}
	}
	if (mirror_size)
		pr_info("Memory: %lldM/%lldM mirrored memory\n",
			mirror_size>>20, total_size>>20);
}

P
Peter Jones 已提交
472 473
/*
 * Find the efi memory descriptor for a given physical address.  Given a
474
 * physical address, determine if it exists within an EFI Memory Map entry,
P
Peter Jones 已提交
475 476 477
 * and if so, populate the supplied memory descriptor with the appropriate
 * data.
 */
478
int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
P
Peter Jones 已提交
479
{
480
	efi_memory_desc_t *md;
P
Peter Jones 已提交
481 482 483 484 485 486 487 488 489 490 491

	if (!efi_enabled(EFI_MEMMAP)) {
		pr_err_once("EFI_MEMMAP is not enabled.\n");
		return -EINVAL;
	}

	if (!out_md) {
		pr_err_once("out_md is null.\n");
		return -EINVAL;
        }

492
	for_each_efi_memory_desc(md) {
P
Peter Jones 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
		u64 size;
		u64 end;

		size = md->num_pages << EFI_PAGE_SHIFT;
		end = md->phys_addr + size;
		if (phys_addr >= md->phys_addr && phys_addr < end) {
			memcpy(out_md, md, sizeof(*out_md));
			return 0;
		}
	}
	return -ENOENT;
}

/*
 * Calculate the highest address of an efi memory descriptor.
 */
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
{
	u64 size = md->num_pages << EFI_PAGE_SHIFT;
	u64 end = md->phys_addr + size;
	return end;
}
515

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}

/**
 * efi_mem_reserve - Reserve an EFI memory region
 * @addr: Physical address to reserve
 * @size: Size of reservation
 *
 * Mark a region as reserved from general kernel allocation and
 * prevent it being released by efi_free_boot_services().
 *
 * This function should be called drivers once they've parsed EFI
 * configuration tables to figure out where their data lives, e.g.
 * efi_esrt_init().
 */
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
{
	if (!memblock_is_region_reserved(addr, size))
		memblock_reserve(addr, size);

	/*
	 * Some architectures (x86) reserve all boot services ranges
	 * until efi_free_boot_services() because of buggy firmware
	 * implementations. This means the above memblock_reserve() is
	 * superfluous on x86 and instead what it needs to do is
	 * ensure the @start, @size is not freed.
	 */
	efi_arch_mem_reserve(addr, size);
}

545
static const efi_config_table_type_t common_tables[] __initconst = {
546 547 548 549 550 551 552 553 554 555 556
	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
557
#ifdef CONFIG_EFI_RCI2_TABLE
558
	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
559 560 561
#endif
#ifdef CONFIG_LOAD_UEFI_KEYS
	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
562 563 564
#endif
#ifdef CONFIG_EFI_COCO_SECRET
	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
565
#endif
566
	{},
567 568
};

569
static __init int match_config_table(const efi_guid_t *guid,
570
				     unsigned long table,
571
				     const efi_config_table_type_t *table_types)
572 573 574
{
	int i;

575 576 577 578 579 580 581
	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
		if (!efi_guidcmp(*guid, table_types[i].guid)) {
			*(table_types[i].ptr) = table;
			if (table_types[i].name[0])
				pr_cont("%s=0x%lx ",
					table_types[i].name, table);
			return 1;
582 583 584 585 586 587
		}
	}

	return 0;
}

588 589 590
int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
				   int count,
				   const efi_config_table_type_t *arch_tables)
591
{
592 593 594 595
	const efi_config_table_64_t *tbl64 = (void *)config_tables;
	const efi_config_table_32_t *tbl32 = (void *)config_tables;
	const efi_guid_t *guid;
	unsigned long table;
596
	int i;
597 598

	pr_info("");
599
	for (i = 0; i < count; i++) {
600 601 602 603 604 605 606 607 608
		if (!IS_ENABLED(CONFIG_X86)) {
			guid = &config_tables[i].guid;
			table = (unsigned long)config_tables[i].table;
		} else if (efi_enabled(EFI_64BIT)) {
			guid = &tbl64[i].guid;
			table = tbl64[i].table;

			if (IS_ENABLED(CONFIG_X86_32) &&
			    tbl64[i].table > U32_MAX) {
609 610 611 612 613
				pr_cont("\n");
				pr_err("Table located above 4GB, disabling EFI.\n");
				return -EINVAL;
			}
		} else {
614 615
			guid = &tbl32[i].guid;
			table = tbl32[i].table;
616 617
		}

618
		if (!match_config_table(guid, table, common_tables) && arch_tables)
619
			match_config_table(guid, table, arch_tables);
620 621
	}
	pr_cont("\n");
622
	set_bit(EFI_CONFIG_TABLES, &efi.flags);
623

624
	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
625 626 627
		struct linux_efi_random_seed *seed;
		u32 size = 0;

628
		seed = early_memremap(efi_rng_seed, sizeof(*seed));
629
		if (seed != NULL) {
630
			size = READ_ONCE(seed->size);
631 632 633 634 635
			early_memunmap(seed, sizeof(*seed));
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
		if (size > 0) {
636 637
			seed = early_memremap(efi_rng_seed,
					      sizeof(*seed) + size);
638
			if (seed != NULL) {
639
				pr_notice("seeding entropy pool\n");
640
				add_bootloader_randomness(seed->bits, size);
641 642 643 644 645 646 647
				early_memunmap(seed, sizeof(*seed) + size);
			} else {
				pr_err("Could not map UEFI random seed!\n");
			}
		}
	}

648
	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
649
		efi_memattr_init();
650

651 652
	efi_tpm_eventlog_init();

653 654
	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
		unsigned long prsv = mem_reserve;
655 656 657

		while (prsv) {
			struct linux_efi_memreserve *rsv;
658 659 660 661 662 663 664 665 666 667
			u8 *p;

			/*
			 * Just map a full page: that is what we will get
			 * anyway, and it permits us to map the entire entry
			 * before knowing its size.
			 */
			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
					   PAGE_SIZE);
			if (p == NULL) {
668 669 670 671
				pr_err("Could not map UEFI memreserve entry!\n");
				return -ENOMEM;
			}

672 673 674
			rsv = (void *)(p + prsv % PAGE_SIZE);

			/* reserve the entry itself */
675 676
			memblock_reserve(prsv,
					 struct_size(rsv, entry, rsv->size));
677 678 679 680 681

			for (i = 0; i < atomic_read(&rsv->count); i++) {
				memblock_reserve(rsv->entry[i].base,
						 rsv->entry[i].size);
			}
682 683

			prsv = rsv->next;
684
			early_memunmap(p, PAGE_SIZE);
685 686 687
		}
	}

688 689 690 691 692 693 694 695 696 697
	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
		efi_rt_properties_table_t *tbl;

		tbl = early_memremap(rt_prop, sizeof(*tbl));
		if (tbl) {
			efi.runtime_supported_mask &= tbl->runtime_services_supported;
			early_memunmap(tbl, sizeof(*tbl));
		}
	}

698 699
	return 0;
}
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
				   int min_major_version)
{
	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
		pr_err("System table signature incorrect!\n");
		return -EINVAL;
	}

	if ((systab_hdr->revision >> 16) < min_major_version)
		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
		       systab_hdr->revision >> 16,
		       systab_hdr->revision & 0xffff,
		       min_major_version);

	return 0;
}

#ifndef CONFIG_IA64
static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
						size_t size)
{
	const efi_char16_t *ret;

	ret = early_memremap_ro(fw_vendor, size);
	if (!ret)
		pr_err("Could not map the firmware vendor!\n");
	return ret;
}

static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
{
	early_memunmap((void *)fw_vendor, size);
}
#else
#define map_fw_vendor(p, s)	__va(p)
#define unmap_fw_vendor(v, s)
#endif

void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
				     unsigned long fw_vendor)
{
	char vendor[100] = "unknown";
	const efi_char16_t *c16;
	size_t i;

	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
	if (c16) {
		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
			vendor[i] = c16[i];
		vendor[i] = '\0';

		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
	}

	pr_info("EFI v%u.%.02u by %s\n",
		systab_hdr->revision >> 16,
		systab_hdr->revision & 0xffff,
		vendor);
759 760 761 762 763 764 765

	if (IS_ENABLED(CONFIG_X86_64) &&
	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
	    !strcmp(vendor, "Apple")) {
		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
	}
766 767
}

768
static __initdata char memory_type_name[][13] = {
769 770 771 772 773 774 775
	"Reserved",
	"Loader Code",
	"Loader Data",
	"Boot Code",
	"Boot Data",
	"Runtime Code",
	"Runtime Data",
776 777 778 779 780 781
	"Conventional",
	"Unusable",
	"ACPI Reclaim",
	"ACPI Mem NVS",
	"MMIO",
	"MMIO Port",
782
	"PAL Code",
783
	"Persistent",
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
};

char * __init efi_md_typeattr_format(char *buf, size_t size,
				     const efi_memory_desc_t *md)
{
	char *pos;
	int type_len;
	u64 attr;

	pos = buf;
	if (md->type >= ARRAY_SIZE(memory_type_name))
		type_len = snprintf(pos, size, "[type=%u", md->type);
	else
		type_len = snprintf(pos, size, "[%-*s",
				    (int)(sizeof(memory_type_name[0]) - 1),
				    memory_type_name[md->type]);
	if (type_len >= size)
		return buf;

	pos += type_len;
	size -= type_len;

	attr = md->attribute;
	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
808 809
		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
810
		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
811
		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
812 813 814
		snprintf(pos, size, "|attr=0x%016llx]",
			 (unsigned long long)attr);
	else
R
Robert Elliott 已提交
815
		snprintf(pos, size,
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
			 attr & EFI_MEMORY_SP			? "SP"  : "",
			 attr & EFI_MEMORY_NV			? "NV"  : "",
			 attr & EFI_MEMORY_XP			? "XP"  : "",
			 attr & EFI_MEMORY_RP			? "RP"  : "",
			 attr & EFI_MEMORY_WP			? "WP"  : "",
			 attr & EFI_MEMORY_RO			? "RO"  : "",
			 attr & EFI_MEMORY_UCE			? "UCE" : "",
			 attr & EFI_MEMORY_WB			? "WB"  : "",
			 attr & EFI_MEMORY_WT			? "WT"  : "",
			 attr & EFI_MEMORY_WC			? "WC"  : "",
			 attr & EFI_MEMORY_UC			? "UC"  : "");
831 832
	return buf;
}
833

834 835 836 837 838
/*
 * IA64 has a funky EFI memory map that doesn't work the same way as
 * other architectures.
 */
#ifndef CONFIG_IA64
839 840 841 842 843 844 845 846
/*
 * efi_mem_attributes - lookup memmap attributes for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering
 * @phys_addr. Returns the EFI memory attributes if the region
 * was found in the memory map, 0 otherwise.
 */
847
u64 efi_mem_attributes(unsigned long phys_addr)
848 849 850 851 852 853
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return 0;

854
	for_each_efi_memory_desc(md) {
855 856 857 858 859 860 861
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
		    (md->num_pages << EFI_PAGE_SHIFT))))
			return md->attribute;
	}
	return 0;
}
862

863 864 865 866 867 868
/*
 * efi_mem_type - lookup memmap type for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering @phys_addr.
 * Returns the EFI memory type if the region was found in the memory
869
 * map, -EINVAL otherwise.
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
 */
int efi_mem_type(unsigned long phys_addr)
{
	const efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return -ENOTSUPP;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
				  (md->num_pages << EFI_PAGE_SHIFT))))
			return md->type;
	}
	return -EINVAL;
}
#endif

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
int efi_status_to_err(efi_status_t status)
{
	int err;

	switch (status) {
	case EFI_SUCCESS:
		err = 0;
		break;
	case EFI_INVALID_PARAMETER:
		err = -EINVAL;
		break;
	case EFI_OUT_OF_RESOURCES:
		err = -ENOSPC;
		break;
	case EFI_DEVICE_ERROR:
		err = -EIO;
		break;
	case EFI_WRITE_PROTECTED:
		err = -EROFS;
		break;
	case EFI_SECURITY_VIOLATION:
		err = -EACCES;
		break;
	case EFI_NOT_FOUND:
		err = -ENOENT;
		break;
914 915 916
	case EFI_ABORTED:
		err = -EINTR;
		break;
917 918 919 920 921
	default:
		err = -EINVAL;
	}

	return err;
922 923
}

924
static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
925
static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
926

927 928
static int __init efi_memreserve_map_root(void)
{
929
	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
930 931
		return -ENODEV;

932
	efi_memreserve_root = memremap(mem_reserve,
933 934 935 936 937 938 939
				       sizeof(*efi_memreserve_root),
				       MEMREMAP_WB);
	if (WARN_ON_ONCE(!efi_memreserve_root))
		return -ENOMEM;
	return 0;
}

940 941 942
static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
{
	struct resource *res, *parent;
943
	int ret;
944 945 946 947 948 949 950 951 952 953 954 955

	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
	if (!res)
		return -ENOMEM;

	res->name	= "reserved";
	res->flags	= IORESOURCE_MEM;
	res->start	= addr;
	res->end	= addr + size - 1;

	/* we expect a conflict with a 'System RAM' region */
	parent = request_resource_conflict(&iomem_resource, res);
956 957 958 959 960 961 962 963 964 965 966
	ret = parent ? request_resource(parent, res) : 0;

	/*
	 * Given that efi_mem_reserve_iomem() can be called at any
	 * time, only call memblock_reserve() if the architecture
	 * keeps the infrastructure around.
	 */
	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
		memblock_reserve(addr, size);

	return ret;
967 968
}

969
int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
970
{
971
	struct linux_efi_memreserve *rsv;
972 973
	unsigned long prsv;
	int rc, index;
974

975
	if (efi_memreserve_root == (void *)ULONG_MAX)
976 977
		return -ENODEV;

978 979 980 981 982 983
	if (!efi_memreserve_root) {
		rc = efi_memreserve_map_root();
		if (rc)
			return rc;
	}

984
	/* first try to find a slot in an existing linked list entry */
985
	for (prsv = efi_memreserve_root->next; prsv; ) {
986
		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
987 988 989 990 991
		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
		if (index < rsv->size) {
			rsv->entry[index].base = addr;
			rsv->entry[index].size = size;

992
			memunmap(rsv);
993
			return efi_mem_reserve_iomem(addr, size);
994
		}
995
		prsv = rsv->next;
996
		memunmap(rsv);
997 998 999 1000
	}

	/* no slot found - allocate a new linked list entry */
	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1001 1002 1003
	if (!rsv)
		return -ENOMEM;

1004 1005 1006 1007 1008 1009
	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
	if (rc) {
		free_page((unsigned long)rsv);
		return rc;
	}

1010 1011 1012 1013 1014 1015 1016
	/*
	 * The memremap() call above assumes that a linux_efi_memreserve entry
	 * never crosses a page boundary, so let's ensure that this remains true
	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
	 * using SZ_4K explicitly in the size calculation below.
	 */
	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1017 1018 1019
	atomic_set(&rsv->count, 1);
	rsv->entry[0].base = addr;
	rsv->entry[0].size = size;
1020 1021

	spin_lock(&efi_mem_reserve_persistent_lock);
1022 1023
	rsv->next = efi_memreserve_root->next;
	efi_memreserve_root->next = __pa(rsv);
1024 1025
	spin_unlock(&efi_mem_reserve_persistent_lock);

1026
	return efi_mem_reserve_iomem(addr, size);
1027
}
1028

1029 1030
static int __init efi_memreserve_root_init(void)
{
1031 1032 1033 1034
	if (efi_memreserve_root)
		return 0;
	if (efi_memreserve_map_root())
		efi_memreserve_root = (void *)ULONG_MAX;
1035 1036
	return 0;
}
1037
early_initcall(efi_memreserve_root_init);
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
#ifdef CONFIG_KEXEC
static int update_efi_random_seed(struct notifier_block *nb,
				  unsigned long code, void *unused)
{
	struct linux_efi_random_seed *seed;
	u32 size = 0;

	if (!kexec_in_progress)
		return NOTIFY_DONE;

1049
	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1050
	if (seed != NULL) {
1051
		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1052 1053 1054 1055 1056
		memunmap(seed);
	} else {
		pr_err("Could not map UEFI random seed!\n");
	}
	if (size > 0) {
1057 1058
		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
				MEMREMAP_WB);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		if (seed != NULL) {
			seed->size = size;
			get_random_bytes(seed->bits, seed->size);
			memunmap(seed);
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
	}
	return NOTIFY_DONE;
}

static struct notifier_block efi_random_seed_nb = {
	.notifier_call = update_efi_random_seed,
};

1074
static int __init register_update_efi_random_seed(void)
1075
{
1076
	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1077 1078 1079 1080 1081
		return 0;
	return register_reboot_notifier(&efi_random_seed_nb);
}
late_initcall(register_update_efi_random_seed);
#endif