efi.c 26.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * efi.c - EFI subsystem
 *
 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
 *
 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 * The existance of /sys/firmware/efi may also be used by userspace to
 * determine that the system supports EFI.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

17 18 19
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/debugfs.h>
21 22
#include <linux/device.h>
#include <linux/efi.h>
23
#include <linux/of.h>
24
#include <linux/io.h>
25
#include <linux/kexec.h>
L
Lee, Chun-Yi 已提交
26
#include <linux/platform_device.h>
27 28
#include <linux/random.h>
#include <linux/reboot.h>
29 30 31
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/ucs2_string.h>
32
#include <linux/memblock.h>
33
#include <linux/security.h>
34

35
#include <asm/early_ioremap.h>
36

37
struct efi __read_mostly efi = {
38
	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
39 40 41 42 43
	.acpi			= EFI_INVALID_TABLE_ADDR,
	.acpi20			= EFI_INVALID_TABLE_ADDR,
	.smbios			= EFI_INVALID_TABLE_ADDR,
	.smbios3		= EFI_INVALID_TABLE_ADDR,
	.esrt			= EFI_INVALID_TABLE_ADDR,
44
	.tpm_log		= EFI_INVALID_TABLE_ADDR,
45
	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
46 47 48
#ifdef CONFIG_LOAD_UEFI_KEYS
	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
#endif
49 50 51
#ifdef CONFIG_EFI_COCO_SECRET
	.coco_secret		= EFI_INVALID_TABLE_ADDR,
#endif
52 53
};
EXPORT_SYMBOL(efi);
54

55
unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
56
static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
57
static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
58

59 60 61 62
struct mm_struct efi_mm = {
	.mm_rb			= RB_ROOT,
	.mm_users		= ATOMIC_INIT(2),
	.mm_count		= ATOMIC_INIT(1),
63
	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
64
	MMAP_LOCK_INITIALIZER(efi_mm)
65 66
	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
67
	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
68 69
};

70 71
struct workqueue_struct *efi_rts_wq;

72
static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
73 74 75 76 77 78 79 80 81 82 83 84
static int __init setup_noefi(char *arg)
{
	disable_runtime = true;
	return 0;
}
early_param("noefi", setup_noefi);

bool efi_runtime_disabled(void)
{
	return disable_runtime;
}

85 86 87 88 89
bool __pure __efi_soft_reserve_enabled(void)
{
	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
}

D
Dave Young 已提交
90 91
static int __init parse_efi_cmdline(char *str)
{
92 93 94 95 96
	if (!str) {
		pr_warn("need at least one option\n");
		return -EINVAL;
	}

97 98 99
	if (parse_option_str(str, "debug"))
		set_bit(EFI_DBG, &efi.flags);

D
Dave Young 已提交
100 101 102
	if (parse_option_str(str, "noruntime"))
		disable_runtime = true;

103 104 105
	if (parse_option_str(str, "runtime"))
		disable_runtime = false;

106 107
	if (parse_option_str(str, "nosoftreserve"))
		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
D
Dave Young 已提交
108 109 110 111 112

	return 0;
}
early_param("efi", parse_efi_cmdline);

P
Peter Jones 已提交
113
struct kobject *efi_kobj;
114 115 116 117

/*
 * Let's not leave out systab information that snuck into
 * the efivars driver
118 119
 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 * one value per file rule!
120 121 122 123 124 125 126 127 128 129 130 131 132
 */
static ssize_t systab_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
	char *str = buf;

	if (!kobj || !buf)
		return -EINVAL;

	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
133 134 135 136 137
	/*
	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
	 * SMBIOS3 entry point shall be preferred, so we list it first to
	 * let applications stop parsing after the first match.
	 */
138 139
	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
140 141
	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
142

143
	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
144 145
		str = efi_systab_show_arch(str);

146 147 148
	return str - buf;
}

149
static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
150

151 152 153 154 155 156
static ssize_t fw_platform_size_show(struct kobject *kobj,
				     struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
}

157 158 159
extern __weak struct kobj_attribute efi_attr_fw_vendor;
extern __weak struct kobj_attribute efi_attr_runtime;
extern __weak struct kobj_attribute efi_attr_config_table;
160 161
static struct kobj_attribute efi_attr_fw_platform_size =
	__ATTR_RO(fw_platform_size);
162

163 164
static struct attribute *efi_subsys_attrs[] = {
	&efi_attr_systab.attr,
165
	&efi_attr_fw_platform_size.attr,
166 167 168 169
	&efi_attr_fw_vendor.attr,
	&efi_attr_runtime.attr,
	&efi_attr_config_table.attr,
	NULL,
170 171
};

172 173
umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
				   int n)
174
{
D
Daniel Kiper 已提交
175
	return attr->mode;
176 177
}

178
static const struct attribute_group efi_subsys_attr_group = {
179
	.attrs = efi_subsys_attrs,
180
	.is_visible = efi_attr_is_visible,
181 182 183 184 185 186 187 188 189
};

static struct efivars generic_efivars;
static struct efivar_operations generic_ops;

static int generic_ops_register(void)
{
	generic_ops.get_variable = efi.get_variable;
	generic_ops.get_next_variable = efi.get_next_variable;
190
	generic_ops.query_variable_store = efi_query_variable_store;
191

192 193 194 195
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
		generic_ops.set_variable = efi.set_variable;
		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
	}
196 197 198 199 200 201 202 203
	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
}

static void generic_ops_unregister(void)
{
	efivars_unregister(&generic_efivars);
}

204
#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
205 206 207 208
#define EFIVAR_SSDT_NAME_MAX	16
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
static int __init efivar_ssdt_setup(char *str)
{
209 210 211 212 213
	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);

	if (ret)
		return ret;

214 215 216 217
	if (strlen(str) < sizeof(efivar_ssdt))
		memcpy(efivar_ssdt, str, strlen(str));
	else
		pr_warn("efivar_ssdt: name too long: %s\n", str);
218
	return 1;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
}
__setup("efivar_ssdt=", efivar_ssdt_setup);

static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
				   unsigned long name_size, void *data)
{
	struct efivar_entry *entry;
	struct list_head *list = data;
	char utf8_name[EFIVAR_SSDT_NAME_MAX];
	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);

	ucs2_as_utf8(utf8_name, name, limit - 1);
	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
		return 0;

	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return 0;

	memcpy(entry->var.VariableName, name, name_size);
	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));

	efivar_entry_add(entry, list);

	return 0;
}

static __init int efivar_ssdt_load(void)
{
	LIST_HEAD(entries);
	struct efivar_entry *entry, *aux;
	unsigned long size;
	void *data;
	int ret;

254 255 256
	if (!efivar_ssdt[0])
		return 0;

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);

	list_for_each_entry_safe(entry, aux, &entries, list) {
		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
			&entry->var.VendorGuid);

		list_del(&entry->list);

		ret = efivar_entry_size(entry, &size);
		if (ret) {
			pr_err("failed to get var size\n");
			goto free_entry;
		}

		data = kmalloc(size, GFP_KERNEL);
272 273
		if (!data) {
			ret = -ENOMEM;
274
			goto free_entry;
275
		}
276 277 278 279 280 281 282

		ret = efivar_entry_get(entry, NULL, &size, data);
		if (ret) {
			pr_err("failed to get var data\n");
			goto free_data;
		}

283
		ret = acpi_load_table(data, NULL);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
		if (ret) {
			pr_err("failed to load table: %d\n", ret);
			goto free_data;
		}

		goto free_entry;

free_data:
		kfree(data);

free_entry:
		kfree(entry);
	}

	return ret;
}
#else
static inline int efivar_ssdt_load(void) { return 0; }
#endif

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
#ifdef CONFIG_DEBUG_FS

#define EFI_DEBUGFS_MAX_BLOBS 32

static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];

static void __init efi_debugfs_init(void)
{
	struct dentry *efi_debugfs;
	efi_memory_desc_t *md;
	char name[32];
	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
	int i = 0;

	efi_debugfs = debugfs_create_dir("efi", NULL);
	if (IS_ERR_OR_NULL(efi_debugfs))
		return;

	for_each_efi_memory_desc(md) {
		switch (md->type) {
		case EFI_BOOT_SERVICES_CODE:
			snprintf(name, sizeof(name), "boot_services_code%d",
				 type_count[md->type]++);
			break;
		case EFI_BOOT_SERVICES_DATA:
			snprintf(name, sizeof(name), "boot_services_data%d",
				 type_count[md->type]++);
			break;
		default:
			continue;
		}

		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
			break;
		}

		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
		debugfs_blob[i].data = memremap(md->phys_addr,
						debugfs_blob[i].size,
						MEMREMAP_WB);
		if (!debugfs_blob[i].data)
			continue;

		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
		i++;
	}
}
#else
static inline void efi_debugfs_init(void) {}
#endif

357 358 359 360 361 362 363 364 365
/*
 * We register the efi subsystem with the firmware subsystem and the
 * efivars subsystem with the efi subsystem, if the system was booted with
 * EFI.
 */
static int __init efisubsys_init(void)
{
	int error;

366 367 368
	if (!efi_enabled(EFI_RUNTIME_SERVICES))
		efi.runtime_supported_mask = 0;

369 370 371
	if (!efi_enabled(EFI_BOOT))
		return 0;

372 373 374 375 376 377 378 379 380 381 382 383 384
	if (efi.runtime_supported_mask) {
		/*
		 * Since we process only one efi_runtime_service() at a time, an
		 * ordered workqueue (which creates only one execution context)
		 * should suffice for all our needs.
		 */
		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
		if (!efi_rts_wq) {
			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
			efi.runtime_supported_mask = 0;
			return 0;
		}
385 386
	}

387 388 389
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
		platform_device_register_simple("rtc-efi", 0, NULL, 0);

390 391 392 393
	/* We register the efi directory at /sys/firmware/efi */
	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
	if (!efi_kobj) {
		pr_err("efi: Firmware registration failed.\n");
394
		destroy_workqueue(efi_rts_wq);
395 396 397
		return -ENOMEM;
	}

398 399
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
400 401 402
		error = generic_ops_register();
		if (error)
			goto err_put;
403
		efivar_ssdt_load();
404 405
		platform_device_register_simple("efivars", 0, NULL, 0);
	}
406

407 408 409 410 411 412 413
	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
	if (error) {
		pr_err("efi: Sysfs attribute export failed with error %d.\n",
		       error);
		goto err_unregister;
	}

414 415 416 417
	error = efi_runtime_map_init(efi_kobj);
	if (error)
		goto err_remove_group;

418
	/* and the standard mountpoint for efivarfs */
419 420
	error = sysfs_create_mount_point(efi_kobj, "efivars");
	if (error) {
421 422 423 424
		pr_err("efivars: Subsystem registration failed.\n");
		goto err_remove_group;
	}

425 426 427
	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
		efi_debugfs_init();

428 429 430 431 432
#ifdef CONFIG_EFI_COCO_SECRET
	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
		platform_device_register_simple("efi_secret", 0, NULL, 0);
#endif

433 434 435 436 437
	return 0;

err_remove_group:
	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
err_unregister:
438 439
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
440
		generic_ops_unregister();
441 442
err_put:
	kobject_put(efi_kobj);
443
	destroy_workqueue(efi_rts_wq);
444 445 446 447
	return error;
}

subsys_initcall(efisubsys_init);
448

P
Peter Jones 已提交
449 450
/*
 * Find the efi memory descriptor for a given physical address.  Given a
451
 * physical address, determine if it exists within an EFI Memory Map entry,
P
Peter Jones 已提交
452 453 454
 * and if so, populate the supplied memory descriptor with the appropriate
 * data.
 */
455
int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
P
Peter Jones 已提交
456
{
457
	efi_memory_desc_t *md;
P
Peter Jones 已提交
458 459 460 461 462 463 464 465 466 467 468

	if (!efi_enabled(EFI_MEMMAP)) {
		pr_err_once("EFI_MEMMAP is not enabled.\n");
		return -EINVAL;
	}

	if (!out_md) {
		pr_err_once("out_md is null.\n");
		return -EINVAL;
        }

469
	for_each_efi_memory_desc(md) {
P
Peter Jones 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		u64 size;
		u64 end;

		size = md->num_pages << EFI_PAGE_SHIFT;
		end = md->phys_addr + size;
		if (phys_addr >= md->phys_addr && phys_addr < end) {
			memcpy(out_md, md, sizeof(*out_md));
			return 0;
		}
	}
	return -ENOENT;
}

/*
 * Calculate the highest address of an efi memory descriptor.
 */
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
{
	u64 size = md->num_pages << EFI_PAGE_SHIFT;
	u64 end = md->phys_addr + size;
	return end;
}
492

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}

/**
 * efi_mem_reserve - Reserve an EFI memory region
 * @addr: Physical address to reserve
 * @size: Size of reservation
 *
 * Mark a region as reserved from general kernel allocation and
 * prevent it being released by efi_free_boot_services().
 *
 * This function should be called drivers once they've parsed EFI
 * configuration tables to figure out where their data lives, e.g.
 * efi_esrt_init().
 */
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
{
	if (!memblock_is_region_reserved(addr, size))
		memblock_reserve(addr, size);

	/*
	 * Some architectures (x86) reserve all boot services ranges
	 * until efi_free_boot_services() because of buggy firmware
	 * implementations. This means the above memblock_reserve() is
	 * superfluous on x86 and instead what it needs to do is
	 * ensure the @start, @size is not freed.
	 */
	efi_arch_mem_reserve(addr, size);
}

522
static const efi_config_table_type_t common_tables[] __initconst = {
523 524 525 526 527 528 529 530 531 532 533
	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
534
#ifdef CONFIG_EFI_RCI2_TABLE
535
	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
536 537 538
#endif
#ifdef CONFIG_LOAD_UEFI_KEYS
	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
539 540 541
#endif
#ifdef CONFIG_EFI_COCO_SECRET
	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
542
#endif
543
	{},
544 545
};

546
static __init int match_config_table(const efi_guid_t *guid,
547
				     unsigned long table,
548
				     const efi_config_table_type_t *table_types)
549 550 551
{
	int i;

552 553 554 555 556 557 558
	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
		if (!efi_guidcmp(*guid, table_types[i].guid)) {
			*(table_types[i].ptr) = table;
			if (table_types[i].name[0])
				pr_cont("%s=0x%lx ",
					table_types[i].name, table);
			return 1;
559 560 561 562 563 564
		}
	}

	return 0;
}

565 566 567
int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
				   int count,
				   const efi_config_table_type_t *arch_tables)
568
{
569 570 571 572
	const efi_config_table_64_t *tbl64 = (void *)config_tables;
	const efi_config_table_32_t *tbl32 = (void *)config_tables;
	const efi_guid_t *guid;
	unsigned long table;
573
	int i;
574 575

	pr_info("");
576
	for (i = 0; i < count; i++) {
577 578 579 580 581 582 583 584 585
		if (!IS_ENABLED(CONFIG_X86)) {
			guid = &config_tables[i].guid;
			table = (unsigned long)config_tables[i].table;
		} else if (efi_enabled(EFI_64BIT)) {
			guid = &tbl64[i].guid;
			table = tbl64[i].table;

			if (IS_ENABLED(CONFIG_X86_32) &&
			    tbl64[i].table > U32_MAX) {
586 587 588 589 590
				pr_cont("\n");
				pr_err("Table located above 4GB, disabling EFI.\n");
				return -EINVAL;
			}
		} else {
591 592
			guid = &tbl32[i].guid;
			table = tbl32[i].table;
593 594
		}

595
		if (!match_config_table(guid, table, common_tables) && arch_tables)
596
			match_config_table(guid, table, arch_tables);
597 598
	}
	pr_cont("\n");
599
	set_bit(EFI_CONFIG_TABLES, &efi.flags);
600

601
	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
602 603 604
		struct linux_efi_random_seed *seed;
		u32 size = 0;

605
		seed = early_memremap(efi_rng_seed, sizeof(*seed));
606
		if (seed != NULL) {
607
			size = READ_ONCE(seed->size);
608 609 610 611 612
			early_memunmap(seed, sizeof(*seed));
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
		if (size > 0) {
613 614
			seed = early_memremap(efi_rng_seed,
					      sizeof(*seed) + size);
615
			if (seed != NULL) {
616
				pr_notice("seeding entropy pool\n");
617
				add_bootloader_randomness(seed->bits, size);
618 619 620 621 622 623 624
				early_memunmap(seed, sizeof(*seed) + size);
			} else {
				pr_err("Could not map UEFI random seed!\n");
			}
		}
	}

625
	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
626
		efi_memattr_init();
627

628 629
	efi_tpm_eventlog_init();

630 631
	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
		unsigned long prsv = mem_reserve;
632 633 634

		while (prsv) {
			struct linux_efi_memreserve *rsv;
635 636 637 638 639 640 641 642 643 644
			u8 *p;

			/*
			 * Just map a full page: that is what we will get
			 * anyway, and it permits us to map the entire entry
			 * before knowing its size.
			 */
			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
					   PAGE_SIZE);
			if (p == NULL) {
645 646 647 648
				pr_err("Could not map UEFI memreserve entry!\n");
				return -ENOMEM;
			}

649 650 651
			rsv = (void *)(p + prsv % PAGE_SIZE);

			/* reserve the entry itself */
652 653
			memblock_reserve(prsv,
					 struct_size(rsv, entry, rsv->size));
654 655 656 657 658

			for (i = 0; i < atomic_read(&rsv->count); i++) {
				memblock_reserve(rsv->entry[i].base,
						 rsv->entry[i].size);
			}
659 660

			prsv = rsv->next;
661
			early_memunmap(p, PAGE_SIZE);
662 663 664
		}
	}

665 666 667 668 669 670 671 672 673 674
	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
		efi_rt_properties_table_t *tbl;

		tbl = early_memremap(rt_prop, sizeof(*tbl));
		if (tbl) {
			efi.runtime_supported_mask &= tbl->runtime_services_supported;
			early_memunmap(tbl, sizeof(*tbl));
		}
	}

675 676
	return 0;
}
677

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
				   int min_major_version)
{
	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
		pr_err("System table signature incorrect!\n");
		return -EINVAL;
	}

	if ((systab_hdr->revision >> 16) < min_major_version)
		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
		       systab_hdr->revision >> 16,
		       systab_hdr->revision & 0xffff,
		       min_major_version);

	return 0;
}

#ifndef CONFIG_IA64
static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
						size_t size)
{
	const efi_char16_t *ret;

	ret = early_memremap_ro(fw_vendor, size);
	if (!ret)
		pr_err("Could not map the firmware vendor!\n");
	return ret;
}

static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
{
	early_memunmap((void *)fw_vendor, size);
}
#else
#define map_fw_vendor(p, s)	__va(p)
#define unmap_fw_vendor(v, s)
#endif

void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
				     unsigned long fw_vendor)
{
	char vendor[100] = "unknown";
	const efi_char16_t *c16;
	size_t i;

	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
	if (c16) {
		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
			vendor[i] = c16[i];
		vendor[i] = '\0';

		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
	}

	pr_info("EFI v%u.%.02u by %s\n",
		systab_hdr->revision >> 16,
		systab_hdr->revision & 0xffff,
		vendor);
736 737 738 739 740 741 742

	if (IS_ENABLED(CONFIG_X86_64) &&
	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
	    !strcmp(vendor, "Apple")) {
		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
	}
743 744
}

745
static __initdata char memory_type_name[][13] = {
746 747 748 749 750 751 752
	"Reserved",
	"Loader Code",
	"Loader Data",
	"Boot Code",
	"Boot Data",
	"Runtime Code",
	"Runtime Data",
753 754 755 756 757 758
	"Conventional",
	"Unusable",
	"ACPI Reclaim",
	"ACPI Mem NVS",
	"MMIO",
	"MMIO Port",
759
	"PAL Code",
760
	"Persistent",
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
};

char * __init efi_md_typeattr_format(char *buf, size_t size,
				     const efi_memory_desc_t *md)
{
	char *pos;
	int type_len;
	u64 attr;

	pos = buf;
	if (md->type >= ARRAY_SIZE(memory_type_name))
		type_len = snprintf(pos, size, "[type=%u", md->type);
	else
		type_len = snprintf(pos, size, "[%-*s",
				    (int)(sizeof(memory_type_name[0]) - 1),
				    memory_type_name[md->type]);
	if (type_len >= size)
		return buf;

	pos += type_len;
	size -= type_len;

	attr = md->attribute;
	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
785 786
		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
787
		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
788
		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
789 790 791
		snprintf(pos, size, "|attr=0x%016llx]",
			 (unsigned long long)attr);
	else
R
Robert Elliott 已提交
792
		snprintf(pos, size,
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
			 attr & EFI_MEMORY_SP			? "SP"  : "",
			 attr & EFI_MEMORY_NV			? "NV"  : "",
			 attr & EFI_MEMORY_XP			? "XP"  : "",
			 attr & EFI_MEMORY_RP			? "RP"  : "",
			 attr & EFI_MEMORY_WP			? "WP"  : "",
			 attr & EFI_MEMORY_RO			? "RO"  : "",
			 attr & EFI_MEMORY_UCE			? "UCE" : "",
			 attr & EFI_MEMORY_WB			? "WB"  : "",
			 attr & EFI_MEMORY_WT			? "WT"  : "",
			 attr & EFI_MEMORY_WC			? "WC"  : "",
			 attr & EFI_MEMORY_UC			? "UC"  : "");
808 809
	return buf;
}
810

811 812 813 814 815
/*
 * IA64 has a funky EFI memory map that doesn't work the same way as
 * other architectures.
 */
#ifndef CONFIG_IA64
816 817 818 819 820 821 822 823
/*
 * efi_mem_attributes - lookup memmap attributes for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering
 * @phys_addr. Returns the EFI memory attributes if the region
 * was found in the memory map, 0 otherwise.
 */
824
u64 efi_mem_attributes(unsigned long phys_addr)
825 826 827 828 829 830
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return 0;

831
	for_each_efi_memory_desc(md) {
832 833 834 835 836 837 838
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
		    (md->num_pages << EFI_PAGE_SHIFT))))
			return md->attribute;
	}
	return 0;
}
839

840 841 842 843 844 845
/*
 * efi_mem_type - lookup memmap type for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering @phys_addr.
 * Returns the EFI memory type if the region was found in the memory
846
 * map, -EINVAL otherwise.
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
 */
int efi_mem_type(unsigned long phys_addr)
{
	const efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return -ENOTSUPP;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
				  (md->num_pages << EFI_PAGE_SHIFT))))
			return md->type;
	}
	return -EINVAL;
}
#endif

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
int efi_status_to_err(efi_status_t status)
{
	int err;

	switch (status) {
	case EFI_SUCCESS:
		err = 0;
		break;
	case EFI_INVALID_PARAMETER:
		err = -EINVAL;
		break;
	case EFI_OUT_OF_RESOURCES:
		err = -ENOSPC;
		break;
	case EFI_DEVICE_ERROR:
		err = -EIO;
		break;
	case EFI_WRITE_PROTECTED:
		err = -EROFS;
		break;
	case EFI_SECURITY_VIOLATION:
		err = -EACCES;
		break;
	case EFI_NOT_FOUND:
		err = -ENOENT;
		break;
891 892 893
	case EFI_ABORTED:
		err = -EINTR;
		break;
894 895 896 897 898
	default:
		err = -EINVAL;
	}

	return err;
899 900
}

901
static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
902
static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
903

904 905
static int __init efi_memreserve_map_root(void)
{
906
	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
907 908
		return -ENODEV;

909
	efi_memreserve_root = memremap(mem_reserve,
910 911 912 913 914 915 916
				       sizeof(*efi_memreserve_root),
				       MEMREMAP_WB);
	if (WARN_ON_ONCE(!efi_memreserve_root))
		return -ENOMEM;
	return 0;
}

917 918 919
static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
{
	struct resource *res, *parent;
920
	int ret;
921 922 923 924 925 926 927 928 929 930 931 932

	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
	if (!res)
		return -ENOMEM;

	res->name	= "reserved";
	res->flags	= IORESOURCE_MEM;
	res->start	= addr;
	res->end	= addr + size - 1;

	/* we expect a conflict with a 'System RAM' region */
	parent = request_resource_conflict(&iomem_resource, res);
933 934 935 936 937 938 939 940 941 942 943
	ret = parent ? request_resource(parent, res) : 0;

	/*
	 * Given that efi_mem_reserve_iomem() can be called at any
	 * time, only call memblock_reserve() if the architecture
	 * keeps the infrastructure around.
	 */
	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
		memblock_reserve(addr, size);

	return ret;
944 945
}

946
int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
947
{
948
	struct linux_efi_memreserve *rsv;
949 950
	unsigned long prsv;
	int rc, index;
951

952
	if (efi_memreserve_root == (void *)ULONG_MAX)
953 954
		return -ENODEV;

955 956 957 958 959 960
	if (!efi_memreserve_root) {
		rc = efi_memreserve_map_root();
		if (rc)
			return rc;
	}

961
	/* first try to find a slot in an existing linked list entry */
962
	for (prsv = efi_memreserve_root->next; prsv; ) {
963
		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
964 965 966 967 968
		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
		if (index < rsv->size) {
			rsv->entry[index].base = addr;
			rsv->entry[index].size = size;

969
			memunmap(rsv);
970
			return efi_mem_reserve_iomem(addr, size);
971
		}
972
		prsv = rsv->next;
973
		memunmap(rsv);
974 975 976 977
	}

	/* no slot found - allocate a new linked list entry */
	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
978 979 980
	if (!rsv)
		return -ENOMEM;

981 982 983 984 985 986
	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
	if (rc) {
		free_page((unsigned long)rsv);
		return rc;
	}

987 988 989 990 991 992 993
	/*
	 * The memremap() call above assumes that a linux_efi_memreserve entry
	 * never crosses a page boundary, so let's ensure that this remains true
	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
	 * using SZ_4K explicitly in the size calculation below.
	 */
	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
994 995 996
	atomic_set(&rsv->count, 1);
	rsv->entry[0].base = addr;
	rsv->entry[0].size = size;
997 998

	spin_lock(&efi_mem_reserve_persistent_lock);
999 1000
	rsv->next = efi_memreserve_root->next;
	efi_memreserve_root->next = __pa(rsv);
1001 1002
	spin_unlock(&efi_mem_reserve_persistent_lock);

1003
	return efi_mem_reserve_iomem(addr, size);
1004
}
1005

1006 1007
static int __init efi_memreserve_root_init(void)
{
1008 1009 1010 1011
	if (efi_memreserve_root)
		return 0;
	if (efi_memreserve_map_root())
		efi_memreserve_root = (void *)ULONG_MAX;
1012 1013
	return 0;
}
1014
early_initcall(efi_memreserve_root_init);
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
#ifdef CONFIG_KEXEC
static int update_efi_random_seed(struct notifier_block *nb,
				  unsigned long code, void *unused)
{
	struct linux_efi_random_seed *seed;
	u32 size = 0;

	if (!kexec_in_progress)
		return NOTIFY_DONE;

1026
	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1027
	if (seed != NULL) {
1028
		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1029 1030 1031 1032 1033
		memunmap(seed);
	} else {
		pr_err("Could not map UEFI random seed!\n");
	}
	if (size > 0) {
1034 1035
		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
				MEMREMAP_WB);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		if (seed != NULL) {
			seed->size = size;
			get_random_bytes(seed->bits, seed->size);
			memunmap(seed);
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
	}
	return NOTIFY_DONE;
}

static struct notifier_block efi_random_seed_nb = {
	.notifier_call = update_efi_random_seed,
};

1051
static int __init register_update_efi_random_seed(void)
1052
{
1053
	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1054 1055 1056 1057 1058
		return 0;
	return register_reboot_notifier(&efi_random_seed_nb);
}
late_initcall(register_update_efi_random_seed);
#endif