efi.c 26.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * efi.c - EFI subsystem
 *
 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
 *
 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 * The existance of /sys/firmware/efi may also be used by userspace to
 * determine that the system supports EFI.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

17 18 19 20 21
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/efi.h>
22 23
#include <linux/of.h>
#include <linux/of_fdt.h>
24
#include <linux/io.h>
25
#include <linux/kexec.h>
L
Lee, Chun-Yi 已提交
26
#include <linux/platform_device.h>
27 28
#include <linux/random.h>
#include <linux/reboot.h>
29 30 31
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/ucs2_string.h>
32
#include <linux/memblock.h>
33
#include <linux/security.h>
34

35
#include <asm/early_ioremap.h>
36

37
struct efi __read_mostly efi = {
38 39 40 41 42 43 44 45
	.acpi			= EFI_INVALID_TABLE_ADDR,
	.acpi20			= EFI_INVALID_TABLE_ADDR,
	.smbios			= EFI_INVALID_TABLE_ADDR,
	.smbios3		= EFI_INVALID_TABLE_ADDR,
	.fw_vendor		= EFI_INVALID_TABLE_ADDR,
	.runtime		= EFI_INVALID_TABLE_ADDR,
	.config_table		= EFI_INVALID_TABLE_ADDR,
	.esrt			= EFI_INVALID_TABLE_ADDR,
46
	.tpm_log		= EFI_INVALID_TABLE_ADDR,
47
	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
48
	.mem_reserve		= EFI_INVALID_TABLE_ADDR,
49 50
};
EXPORT_SYMBOL(efi);
51

52 53
static unsigned long __ro_after_init rng_seed = EFI_INVALID_TABLE_ADDR;

54 55 56 57 58 59 60
struct mm_struct efi_mm = {
	.mm_rb			= RB_ROOT,
	.mm_users		= ATOMIC_INIT(2),
	.mm_count		= ATOMIC_INIT(1),
	.mmap_sem		= __RWSEM_INITIALIZER(efi_mm.mmap_sem),
	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
61
	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
62 63
};

64 65
struct workqueue_struct *efi_rts_wq;

66 67 68 69 70 71 72 73 74 75 76 77 78
static bool disable_runtime;
static int __init setup_noefi(char *arg)
{
	disable_runtime = true;
	return 0;
}
early_param("noefi", setup_noefi);

bool efi_runtime_disabled(void)
{
	return disable_runtime;
}

79 80 81 82 83
bool __pure __efi_soft_reserve_enabled(void)
{
	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
}

D
Dave Young 已提交
84 85
static int __init parse_efi_cmdline(char *str)
{
86 87 88 89 90
	if (!str) {
		pr_warn("need at least one option\n");
		return -EINVAL;
	}

91 92 93
	if (parse_option_str(str, "debug"))
		set_bit(EFI_DBG, &efi.flags);

D
Dave Young 已提交
94 95 96
	if (parse_option_str(str, "noruntime"))
		disable_runtime = true;

97 98
	if (parse_option_str(str, "nosoftreserve"))
		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
D
Dave Young 已提交
99 100 101 102 103

	return 0;
}
early_param("efi", parse_efi_cmdline);

P
Peter Jones 已提交
104
struct kobject *efi_kobj;
105 106 107 108

/*
 * Let's not leave out systab information that snuck into
 * the efivars driver
109 110
 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 * one value per file rule!
111 112 113 114 115 116 117 118 119 120 121 122 123
 */
static ssize_t systab_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
	char *str = buf;

	if (!kobj || !buf)
		return -EINVAL;

	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
124 125 126 127 128
	/*
	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
	 * SMBIOS3 entry point shall be preferred, so we list it first to
	 * let applications stop parsing after the first match.
	 */
129 130
	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
131 132
	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
133

134
	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86)) {
135 136 137 138 139
		extern char *efi_systab_show_arch(char *str);

		str = efi_systab_show_arch(str);
	}

140 141 142
	return str - buf;
}

143
static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
144

145 146 147 148 149 150 151 152 153 154 155 156 157
#define EFI_FIELD(var) efi.var

#define EFI_ATTR_SHOW(name) \
static ssize_t name##_show(struct kobject *kobj, \
				struct kobj_attribute *attr, char *buf) \
{ \
	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
}

EFI_ATTR_SHOW(fw_vendor);
EFI_ATTR_SHOW(runtime);
EFI_ATTR_SHOW(config_table);

158 159 160 161 162 163
static ssize_t fw_platform_size_show(struct kobject *kobj,
				     struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
}

164 165 166
static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
167 168
static struct kobj_attribute efi_attr_fw_platform_size =
	__ATTR_RO(fw_platform_size);
169

170 171
static struct attribute *efi_subsys_attrs[] = {
	&efi_attr_systab.attr,
172 173 174
	&efi_attr_fw_vendor.attr,
	&efi_attr_runtime.attr,
	&efi_attr_config_table.attr,
175
	&efi_attr_fw_platform_size.attr,
176
	NULL,
177 178
};

179 180 181
static umode_t efi_attr_is_visible(struct kobject *kobj,
				   struct attribute *attr, int n)
{
D
Daniel Kiper 已提交
182 183 184 185 186 187 188 189 190 191 192
	if (attr == &efi_attr_fw_vendor.attr) {
		if (efi_enabled(EFI_PARAVIRT) ||
				efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
			return 0;
	} else if (attr == &efi_attr_runtime.attr) {
		if (efi.runtime == EFI_INVALID_TABLE_ADDR)
			return 0;
	} else if (attr == &efi_attr_config_table.attr) {
		if (efi.config_table == EFI_INVALID_TABLE_ADDR)
			return 0;
	}
193

D
Daniel Kiper 已提交
194
	return attr->mode;
195 196
}

197
static const struct attribute_group efi_subsys_attr_group = {
198
	.attrs = efi_subsys_attrs,
199
	.is_visible = efi_attr_is_visible,
200 201 202 203 204 205 206 207 208
};

static struct efivars generic_efivars;
static struct efivar_operations generic_ops;

static int generic_ops_register(void)
{
	generic_ops.get_variable = efi.get_variable;
	generic_ops.set_variable = efi.set_variable;
209
	generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
210
	generic_ops.get_next_variable = efi.get_next_variable;
211
	generic_ops.query_variable_store = efi_query_variable_store;
212 213 214 215 216 217 218 219 220

	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
}

static void generic_ops_unregister(void)
{
	efivars_unregister(&generic_efivars);
}

221 222 223 224 225
#if IS_ENABLED(CONFIG_ACPI)
#define EFIVAR_SSDT_NAME_MAX	16
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
static int __init efivar_ssdt_setup(char *str)
{
226 227 228 229 230
	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);

	if (ret)
		return ret;

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	if (strlen(str) < sizeof(efivar_ssdt))
		memcpy(efivar_ssdt, str, strlen(str));
	else
		pr_warn("efivar_ssdt: name too long: %s\n", str);
	return 0;
}
__setup("efivar_ssdt=", efivar_ssdt_setup);

static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
				   unsigned long name_size, void *data)
{
	struct efivar_entry *entry;
	struct list_head *list = data;
	char utf8_name[EFIVAR_SSDT_NAME_MAX];
	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);

	ucs2_as_utf8(utf8_name, name, limit - 1);
	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
		return 0;

	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return 0;

	memcpy(entry->var.VariableName, name, name_size);
	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));

	efivar_entry_add(entry, list);

	return 0;
}

static __init int efivar_ssdt_load(void)
{
	LIST_HEAD(entries);
	struct efivar_entry *entry, *aux;
	unsigned long size;
	void *data;
	int ret;

271 272 273
	if (!efivar_ssdt[0])
		return 0;

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);

	list_for_each_entry_safe(entry, aux, &entries, list) {
		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
			&entry->var.VendorGuid);

		list_del(&entry->list);

		ret = efivar_entry_size(entry, &size);
		if (ret) {
			pr_err("failed to get var size\n");
			goto free_entry;
		}

		data = kmalloc(size, GFP_KERNEL);
289 290
		if (!data) {
			ret = -ENOMEM;
291
			goto free_entry;
292
		}
293 294 295 296 297 298 299

		ret = efivar_entry_get(entry, NULL, &size, data);
		if (ret) {
			pr_err("failed to get var data\n");
			goto free_data;
		}

300
		ret = acpi_load_table(data, NULL);
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
		if (ret) {
			pr_err("failed to load table: %d\n", ret);
			goto free_data;
		}

		goto free_entry;

free_data:
		kfree(data);

free_entry:
		kfree(entry);
	}

	return ret;
}
#else
static inline int efivar_ssdt_load(void) { return 0; }
#endif

321 322 323 324 325 326 327 328 329 330 331 332
/*
 * We register the efi subsystem with the firmware subsystem and the
 * efivars subsystem with the efi subsystem, if the system was booted with
 * EFI.
 */
static int __init efisubsys_init(void)
{
	int error;

	if (!efi_enabled(EFI_BOOT))
		return 0;

333 334 335 336 337 338 339 340 341 342 343 344
	/*
	 * Since we process only one efi_runtime_service() at a time, an
	 * ordered workqueue (which creates only one execution context)
	 * should suffice all our needs.
	 */
	efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
	if (!efi_rts_wq) {
		pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
		return 0;
	}

345 346 347 348 349 350 351 352 353 354 355
	/* We register the efi directory at /sys/firmware/efi */
	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
	if (!efi_kobj) {
		pr_err("efi: Firmware registration failed.\n");
		return -ENOMEM;
	}

	error = generic_ops_register();
	if (error)
		goto err_put;

356 357 358
	if (efi_enabled(EFI_RUNTIME_SERVICES))
		efivar_ssdt_load();

359 360 361 362 363 364 365
	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
	if (error) {
		pr_err("efi: Sysfs attribute export failed with error %d.\n",
		       error);
		goto err_unregister;
	}

366 367 368 369
	error = efi_runtime_map_init(efi_kobj);
	if (error)
		goto err_remove_group;

370
	/* and the standard mountpoint for efivarfs */
371 372
	error = sysfs_create_mount_point(efi_kobj, "efivars");
	if (error) {
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
		pr_err("efivars: Subsystem registration failed.\n");
		goto err_remove_group;
	}

	return 0;

err_remove_group:
	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
err_unregister:
	generic_ops_unregister();
err_put:
	kobject_put(efi_kobj);
	return error;
}

subsys_initcall(efisubsys_init);
389

P
Peter Jones 已提交
390 391
/*
 * Find the efi memory descriptor for a given physical address.  Given a
392
 * physical address, determine if it exists within an EFI Memory Map entry,
P
Peter Jones 已提交
393 394 395
 * and if so, populate the supplied memory descriptor with the appropriate
 * data.
 */
396
int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
P
Peter Jones 已提交
397
{
398
	efi_memory_desc_t *md;
P
Peter Jones 已提交
399 400 401 402 403 404 405 406 407 408 409

	if (!efi_enabled(EFI_MEMMAP)) {
		pr_err_once("EFI_MEMMAP is not enabled.\n");
		return -EINVAL;
	}

	if (!out_md) {
		pr_err_once("out_md is null.\n");
		return -EINVAL;
        }

410
	for_each_efi_memory_desc(md) {
P
Peter Jones 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
		u64 size;
		u64 end;

		size = md->num_pages << EFI_PAGE_SHIFT;
		end = md->phys_addr + size;
		if (phys_addr >= md->phys_addr && phys_addr < end) {
			memcpy(out_md, md, sizeof(*out_md));
			return 0;
		}
	}
	return -ENOENT;
}

/*
 * Calculate the highest address of an efi memory descriptor.
 */
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
{
	u64 size = md->num_pages << EFI_PAGE_SHIFT;
	u64 end = md->phys_addr + size;
	return end;
}
433

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}

/**
 * efi_mem_reserve - Reserve an EFI memory region
 * @addr: Physical address to reserve
 * @size: Size of reservation
 *
 * Mark a region as reserved from general kernel allocation and
 * prevent it being released by efi_free_boot_services().
 *
 * This function should be called drivers once they've parsed EFI
 * configuration tables to figure out where their data lives, e.g.
 * efi_esrt_init().
 */
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
{
	if (!memblock_is_region_reserved(addr, size))
		memblock_reserve(addr, size);

	/*
	 * Some architectures (x86) reserve all boot services ranges
	 * until efi_free_boot_services() because of buggy firmware
	 * implementations. This means the above memblock_reserve() is
	 * superfluous on x86 and instead what it needs to do is
	 * ensure the @start, @size is not freed.
	 */
	efi_arch_mem_reserve(addr, size);
}

463 464 465 466
static __initdata efi_config_table_type_t common_tables[] = {
	{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
	{ACPI_TABLE_GUID, "ACPI", &efi.acpi},
	{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
467
	{SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
P
Peter Jones 已提交
468
	{EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
469
	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID, "MEMATTR", &efi_mem_attr_table},
470
	{LINUX_EFI_RANDOM_SEED_TABLE_GUID, "RNG", &rng_seed},
471
	{LINUX_EFI_TPM_EVENT_LOG_GUID, "TPMEventLog", &efi.tpm_log},
472
	{LINUX_EFI_TPM_FINAL_LOG_GUID, "TPMFinalLog", &efi.tpm_final_log},
473
	{LINUX_EFI_MEMRESERVE_TABLE_GUID, "MEMRESERVE", &efi.mem_reserve},
474 475 476
#ifdef CONFIG_EFI_RCI2_TABLE
	{DELLEMC_EFI_RCI2_TABLE_GUID, NULL, &rci2_table_phys},
#endif
477
	{NULL_GUID, NULL, NULL},
478 479 480 481 482 483 484 485 486 487 488 489
};

static __init int match_config_table(efi_guid_t *guid,
				     unsigned long table,
				     efi_config_table_type_t *table_types)
{
	int i;

	if (table_types) {
		for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
			if (!efi_guidcmp(*guid, table_types[i].guid)) {
				*(table_types[i].ptr) = table;
490 491 492
				if (table_types[i].name)
					pr_cont(" %s=0x%lx ",
						table_types[i].name, table);
493 494 495 496 497 498 499 500
				return 1;
			}
		}
	}

	return 0;
}

501 502
int __init efi_config_parse_tables(void *config_tables, int count, int sz,
				   efi_config_table_type_t *arch_tables)
503
{
504 505
	void *tablep;
	int i;
506 507 508

	tablep = config_tables;
	pr_info("");
509
	for (i = 0; i < count; i++) {
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		efi_guid_t guid;
		unsigned long table;

		if (efi_enabled(EFI_64BIT)) {
			u64 table64;
			guid = ((efi_config_table_64_t *)tablep)->guid;
			table64 = ((efi_config_table_64_t *)tablep)->table;
			table = table64;
#ifndef CONFIG_64BIT
			if (table64 >> 32) {
				pr_cont("\n");
				pr_err("Table located above 4GB, disabling EFI.\n");
				return -EINVAL;
			}
#endif
		} else {
			guid = ((efi_config_table_32_t *)tablep)->guid;
			table = ((efi_config_table_32_t *)tablep)->table;
		}

		if (!match_config_table(&guid, table, common_tables))
			match_config_table(&guid, table, arch_tables);

		tablep += sz;
	}
	pr_cont("\n");
536
	set_bit(EFI_CONFIG_TABLES, &efi.flags);
537

538
	if (rng_seed != EFI_INVALID_TABLE_ADDR) {
539 540 541
		struct linux_efi_random_seed *seed;
		u32 size = 0;

542
		seed = early_memremap(rng_seed, sizeof(*seed));
543 544 545 546 547 548 549
		if (seed != NULL) {
			size = seed->size;
			early_memunmap(seed, sizeof(*seed));
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
		if (size > 0) {
550
			seed = early_memremap(rng_seed, sizeof(*seed) + size);
551
			if (seed != NULL) {
552
				pr_notice("seeding entropy pool\n");
553
				add_bootloader_randomness(seed->bits, seed->size);
554 555 556 557 558 559 560
				early_memunmap(seed, sizeof(*seed) + size);
			} else {
				pr_err("Could not map UEFI random seed!\n");
			}
		}
	}

561 562
	if (efi_enabled(EFI_MEMMAP))
		efi_memattr_init();
563

564 565
	efi_tpm_eventlog_init();

566 567 568 569 570
	if (efi.mem_reserve != EFI_INVALID_TABLE_ADDR) {
		unsigned long prsv = efi.mem_reserve;

		while (prsv) {
			struct linux_efi_memreserve *rsv;
571 572 573 574 575 576 577 578 579 580 581
			u8 *p;
			int i;

			/*
			 * Just map a full page: that is what we will get
			 * anyway, and it permits us to map the entire entry
			 * before knowing its size.
			 */
			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
					   PAGE_SIZE);
			if (p == NULL) {
582 583 584 585
				pr_err("Could not map UEFI memreserve entry!\n");
				return -ENOMEM;
			}

586 587 588 589 590 591 592 593 594
			rsv = (void *)(p + prsv % PAGE_SIZE);

			/* reserve the entry itself */
			memblock_reserve(prsv, EFI_MEMRESERVE_SIZE(rsv->size));

			for (i = 0; i < atomic_read(&rsv->count); i++) {
				memblock_reserve(rsv->entry[i].base,
						 rsv->entry[i].size);
			}
595 596

			prsv = rsv->next;
597
			early_memunmap(p, PAGE_SIZE);
598 599 600
		}
	}

601 602
	return 0;
}
603

604 605 606 607 608
int __init efi_config_init(efi_config_table_type_t *arch_tables)
{
	void *config_tables;
	int sz, ret;

609 610 611
	if (efi.systab->nr_tables == 0)
		return 0;

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	if (efi_enabled(EFI_64BIT))
		sz = sizeof(efi_config_table_64_t);
	else
		sz = sizeof(efi_config_table_32_t);

	/*
	 * Let's see what config tables the firmware passed to us.
	 */
	config_tables = early_memremap(efi.systab->tables,
				       efi.systab->nr_tables * sz);
	if (config_tables == NULL) {
		pr_err("Could not map Configuration table!\n");
		return -ENOMEM;
	}

	ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
				      arch_tables);

	early_memunmap(config_tables, efi.systab->nr_tables * sz);
	return ret;
}

L
Lee, Chun-Yi 已提交
634 635 636 637 638 639 640 641 642
#ifdef CONFIG_EFI_VARS_MODULE
static int __init efi_load_efivars(void)
{
	struct platform_device *pdev;

	if (!efi_enabled(EFI_RUNTIME_SERVICES))
		return 0;

	pdev = platform_device_register_simple("efivars", 0, NULL, 0);
V
Vasyl Gomonovych 已提交
643
	return PTR_ERR_OR_ZERO(pdev);
L
Lee, Chun-Yi 已提交
644 645 646 647
}
device_initcall(efi_load_efivars);
#endif

648 649 650 651 652 653 654
#ifdef CONFIG_EFI_PARAMS_FROM_FDT

#define UEFI_PARAM(name, prop, field)			   \
	{						   \
		{ name },				   \
		{ prop },				   \
		offsetof(struct efi_fdt_params, field),    \
655
		sizeof_field(struct efi_fdt_params, field) \
656 657
	}

658
struct params {
659 660 661 662
	const char name[32];
	const char propname[32];
	int offset;
	int size;
663 664 665
};

static __initdata struct params fdt_params[] = {
666 667 668 669 670 671 672
	UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
	UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
	UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
	UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
	UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
};

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
static __initdata struct params xen_fdt_params[] = {
	UEFI_PARAM("System Table", "xen,uefi-system-table", system_table),
	UEFI_PARAM("MemMap Address", "xen,uefi-mmap-start", mmap),
	UEFI_PARAM("MemMap Size", "xen,uefi-mmap-size", mmap_size),
	UEFI_PARAM("MemMap Desc. Size", "xen,uefi-mmap-desc-size", desc_size),
	UEFI_PARAM("MemMap Desc. Version", "xen,uefi-mmap-desc-ver", desc_ver)
};

#define EFI_FDT_PARAMS_SIZE	ARRAY_SIZE(fdt_params)

static __initdata struct {
	const char *uname;
	const char *subnode;
	struct params *params;
} dt_params[] = {
	{ "hypervisor", "uefi", xen_fdt_params },
	{ "chosen", NULL, fdt_params },
};

692
struct param_info {
693
	int found;
694
	void *params;
695
	const char *missing;
696 697
};

698 699 700
static int __init __find_uefi_params(unsigned long node,
				     struct param_info *info,
				     struct params *params)
701
{
702 703
	const void *prop;
	void *dest;
704
	u64 val;
705
	int i, len;
706

707 708 709 710
	for (i = 0; i < EFI_FDT_PARAMS_SIZE; i++) {
		prop = of_get_flat_dt_prop(node, params[i].propname, &len);
		if (!prop) {
			info->missing = params[i].name;
711
			return 0;
712 713 714
		}

		dest = info->params + params[i].offset;
715
		info->found++;
716 717 718

		val = of_read_number(prop, len / sizeof(u32));

719
		if (params[i].size == sizeof(u32))
720 721 722 723
			*(u32 *)dest = val;
		else
			*(u64 *)dest = val;

724
		if (efi_enabled(EFI_DBG))
725 726
			pr_info("  %s: 0x%0*llx\n", params[i].name,
				params[i].size * 2, val);
727
	}
728

729 730 731
	return 1;
}

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
				       int depth, void *data)
{
	struct param_info *info = data;
	int i;

	for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
		const char *subnode = dt_params[i].subnode;

		if (depth != 1 || strcmp(uname, dt_params[i].uname) != 0) {
			info->missing = dt_params[i].params[0].name;
			continue;
		}

		if (subnode) {
747 748 749
			int err = of_get_flat_dt_subnode_by_name(node, subnode);

			if (err < 0)
750
				return 0;
751 752

			node = err;
753 754 755 756 757 758 759 760
		}

		return __find_uefi_params(node, info, dt_params[i].params);
	}

	return 0;
}

761
int __init efi_get_fdt_params(struct efi_fdt_params *params)
762 763
{
	struct param_info info;
764 765 766
	int ret;

	pr_info("Getting EFI parameters from FDT:\n");
767

768
	info.found = 0;
769 770
	info.params = params;

771 772 773 774 775
	ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
	if (!info.found)
		pr_info("UEFI not found.\n");
	else if (!ret)
		pr_err("Can't find '%s' in device tree!\n",
776
		       info.missing);
777 778

	return ret;
779 780
}
#endif /* CONFIG_EFI_PARAMS_FROM_FDT */
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

static __initdata char memory_type_name[][20] = {
	"Reserved",
	"Loader Code",
	"Loader Data",
	"Boot Code",
	"Boot Data",
	"Runtime Code",
	"Runtime Data",
	"Conventional Memory",
	"Unusable Memory",
	"ACPI Reclaim Memory",
	"ACPI Memory NVS",
	"Memory Mapped I/O",
	"MMIO Port Space",
796 797
	"PAL Code",
	"Persistent Memory",
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
};

char * __init efi_md_typeattr_format(char *buf, size_t size,
				     const efi_memory_desc_t *md)
{
	char *pos;
	int type_len;
	u64 attr;

	pos = buf;
	if (md->type >= ARRAY_SIZE(memory_type_name))
		type_len = snprintf(pos, size, "[type=%u", md->type);
	else
		type_len = snprintf(pos, size, "[%-*s",
				    (int)(sizeof(memory_type_name[0]) - 1),
				    memory_type_name[md->type]);
	if (type_len >= size)
		return buf;

	pos += type_len;
	size -= type_len;

	attr = md->attribute;
	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
822 823
		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
D
Dan Williams 已提交
824
		     EFI_MEMORY_NV | EFI_MEMORY_SP |
825
		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
826 827 828
		snprintf(pos, size, "|attr=0x%016llx]",
			 (unsigned long long)attr);
	else
R
Robert Elliott 已提交
829
		snprintf(pos, size,
D
Dan Williams 已提交
830
			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
831
			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
832
			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
D
Dan Williams 已提交
833
			 attr & EFI_MEMORY_SP      ? "SP"  : "",
R
Robert Elliott 已提交
834
			 attr & EFI_MEMORY_NV      ? "NV"  : "",
835 836 837
			 attr & EFI_MEMORY_XP      ? "XP"  : "",
			 attr & EFI_MEMORY_RP      ? "RP"  : "",
			 attr & EFI_MEMORY_WP      ? "WP"  : "",
838
			 attr & EFI_MEMORY_RO      ? "RO"  : "",
839 840 841 842 843 844 845
			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
			 attr & EFI_MEMORY_WB      ? "WB"  : "",
			 attr & EFI_MEMORY_WT      ? "WT"  : "",
			 attr & EFI_MEMORY_WC      ? "WC"  : "",
			 attr & EFI_MEMORY_UC      ? "UC"  : "");
	return buf;
}
846

847 848 849 850 851
/*
 * IA64 has a funky EFI memory map that doesn't work the same way as
 * other architectures.
 */
#ifndef CONFIG_IA64
852 853 854 855 856 857 858 859
/*
 * efi_mem_attributes - lookup memmap attributes for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering
 * @phys_addr. Returns the EFI memory attributes if the region
 * was found in the memory map, 0 otherwise.
 */
860
u64 efi_mem_attributes(unsigned long phys_addr)
861 862 863 864 865 866
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return 0;

867
	for_each_efi_memory_desc(md) {
868 869 870 871 872 873 874
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
		    (md->num_pages << EFI_PAGE_SHIFT))))
			return md->attribute;
	}
	return 0;
}
875

876 877 878 879 880 881
/*
 * efi_mem_type - lookup memmap type for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering @phys_addr.
 * Returns the EFI memory type if the region was found in the memory
882
 * map, -EINVAL otherwise.
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
 */
int efi_mem_type(unsigned long phys_addr)
{
	const efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return -ENOTSUPP;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
				  (md->num_pages << EFI_PAGE_SHIFT))))
			return md->type;
	}
	return -EINVAL;
}
#endif

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
int efi_status_to_err(efi_status_t status)
{
	int err;

	switch (status) {
	case EFI_SUCCESS:
		err = 0;
		break;
	case EFI_INVALID_PARAMETER:
		err = -EINVAL;
		break;
	case EFI_OUT_OF_RESOURCES:
		err = -ENOSPC;
		break;
	case EFI_DEVICE_ERROR:
		err = -EIO;
		break;
	case EFI_WRITE_PROTECTED:
		err = -EROFS;
		break;
	case EFI_SECURITY_VIOLATION:
		err = -EACCES;
		break;
	case EFI_NOT_FOUND:
		err = -ENOENT;
		break;
927 928 929
	case EFI_ABORTED:
		err = -EINTR;
		break;
930 931 932 933 934
	default:
		err = -EINVAL;
	}

	return err;
935 936
}

937
static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
938
static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
939

940 941 942 943 944 945 946 947 948 949 950 951 952
static int __init efi_memreserve_map_root(void)
{
	if (efi.mem_reserve == EFI_INVALID_TABLE_ADDR)
		return -ENODEV;

	efi_memreserve_root = memremap(efi.mem_reserve,
				       sizeof(*efi_memreserve_root),
				       MEMREMAP_WB);
	if (WARN_ON_ONCE(!efi_memreserve_root))
		return -ENOMEM;
	return 0;
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
{
	struct resource *res, *parent;

	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
	if (!res)
		return -ENOMEM;

	res->name	= "reserved";
	res->flags	= IORESOURCE_MEM;
	res->start	= addr;
	res->end	= addr + size - 1;

	/* we expect a conflict with a 'System RAM' region */
	parent = request_resource_conflict(&iomem_resource, res);
	return parent ? request_resource(parent, res) : 0;
}

971
int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
972
{
973
	struct linux_efi_memreserve *rsv;
974 975
	unsigned long prsv;
	int rc, index;
976

977
	if (efi_memreserve_root == (void *)ULONG_MAX)
978 979
		return -ENODEV;

980 981 982 983 984 985
	if (!efi_memreserve_root) {
		rc = efi_memreserve_map_root();
		if (rc)
			return rc;
	}

986 987
	/* first try to find a slot in an existing linked list entry */
	for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
988
		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
989 990 991 992 993
		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
		if (index < rsv->size) {
			rsv->entry[index].base = addr;
			rsv->entry[index].size = size;

994
			memunmap(rsv);
995
			return efi_mem_reserve_iomem(addr, size);
996
		}
997
		memunmap(rsv);
998 999 1000 1001
	}

	/* no slot found - allocate a new linked list entry */
	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1002 1003 1004
	if (!rsv)
		return -ENOMEM;

1005 1006 1007 1008 1009 1010
	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
	if (rc) {
		free_page((unsigned long)rsv);
		return rc;
	}

1011 1012 1013 1014 1015 1016 1017
	/*
	 * The memremap() call above assumes that a linux_efi_memreserve entry
	 * never crosses a page boundary, so let's ensure that this remains true
	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
	 * using SZ_4K explicitly in the size calculation below.
	 */
	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1018 1019 1020
	atomic_set(&rsv->count, 1);
	rsv->entry[0].base = addr;
	rsv->entry[0].size = size;
1021 1022

	spin_lock(&efi_mem_reserve_persistent_lock);
1023 1024
	rsv->next = efi_memreserve_root->next;
	efi_memreserve_root->next = __pa(rsv);
1025 1026
	spin_unlock(&efi_mem_reserve_persistent_lock);

1027
	return efi_mem_reserve_iomem(addr, size);
1028
}
1029

1030 1031
static int __init efi_memreserve_root_init(void)
{
1032 1033 1034 1035
	if (efi_memreserve_root)
		return 0;
	if (efi_memreserve_map_root())
		efi_memreserve_root = (void *)ULONG_MAX;
1036 1037
	return 0;
}
1038
early_initcall(efi_memreserve_root_init);
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
#ifdef CONFIG_KEXEC
static int update_efi_random_seed(struct notifier_block *nb,
				  unsigned long code, void *unused)
{
	struct linux_efi_random_seed *seed;
	u32 size = 0;

	if (!kexec_in_progress)
		return NOTIFY_DONE;

1050
	seed = memremap(rng_seed, sizeof(*seed), MEMREMAP_WB);
1051
	if (seed != NULL) {
1052
		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1053 1054 1055 1056 1057
		memunmap(seed);
	} else {
		pr_err("Could not map UEFI random seed!\n");
	}
	if (size > 0) {
1058
		seed = memremap(rng_seed, sizeof(*seed) + size, MEMREMAP_WB);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		if (seed != NULL) {
			seed->size = size;
			get_random_bytes(seed->bits, seed->size);
			memunmap(seed);
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
	}
	return NOTIFY_DONE;
}

static struct notifier_block efi_random_seed_nb = {
	.notifier_call = update_efi_random_seed,
};

1074
static int __init register_update_efi_random_seed(void)
1075
{
1076
	if (rng_seed == EFI_INVALID_TABLE_ADDR)
1077 1078 1079 1080 1081
		return 0;
	return register_reboot_notifier(&efi_random_seed_nb);
}
late_initcall(register_update_efi_random_seed);
#endif