nfp_net_common.c 86.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

67
#include <net/pkt_cls.h>
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#include <net/vxlan.h>

#include "nfp_net_ctrl.h"
#include "nfp_net.h"

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
static dma_addr_t
nfp_net_dma_map_rx(struct nfp_net *nn, void *frag, unsigned int bufsz,
		   int direction)
{
	return dma_map_single(&nn->pdev->dev, frag + NFP_NET_RX_BUF_HEADROOM,
			      bufsz - NFP_NET_RX_BUF_NON_DATA, direction);
}

static void
nfp_net_dma_unmap_rx(struct nfp_net *nn, dma_addr_t dma_addr,
		     unsigned int bufsz, int direction)
{
	dma_unmap_single(&nn->pdev->dev, dma_addr,
			 bufsz - NFP_NET_RX_BUF_NON_DATA, direction);
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

213 214 215 216 217 218 219 220 221 222 223 224 225
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
226 227 228
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
229 230 231

	spin_lock_bh(&nn->reconfig_lock);

232
	nn->reconfig_sync_present = true;
233

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
251 252
	}

253 254 255 256 257 258 259 260 261 262
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

263
	spin_unlock_bh(&nn->reconfig_lock);
264

265 266 267 268 269 270 271 272 273 274 275
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
276
 * Clear the ICR for the IRQ entry.
277 278 279 280 281 282 283 284
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
285 286 287 288 289
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
290
 *
291
 * Return: Number of irqs obtained or 0 on error.
292
 */
293 294 295
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
296
{
297 298
	unsigned int i;
	int got_irqs;
299

300 301
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
302

303 304 305 306 307
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
308 309 310
		return 0;
	}

311 312 313 314 315
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
316 317 318
}

/**
319 320 321 322
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
323
 *
324 325
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
326
 */
327 328 329
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
330
{
331 332
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
	nn->num_r_vecs = nn->max_r_vecs;
333

334
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
335

336 337 338 339 340 341 342 343
	if (nn->num_rx_rings > nn->num_r_vecs ||
	    nn->num_tx_rings > nn->num_r_vecs)
		nn_warn(nn, "More rings (%d,%d) than vectors (%d).\n",
			nn->num_rx_rings, nn->num_tx_rings, nn->num_r_vecs);

	nn->num_rx_rings = min(nn->num_r_vecs, nn->num_rx_rings);
	nn->num_tx_rings = min(nn->num_r_vecs, nn->num_tx_rings);
	nn->num_stack_tx_rings = nn->num_tx_rings;
344 345 346 347
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
348
 * @pdev:        PCI device structure
349 350 351
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
352
void nfp_net_irqs_disable(struct pci_dev *pdev)
353
{
354
	pci_disable_msix(pdev);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;

	if (nn->link_up) {
		netif_carrier_on(nn->netdev);
		netdev_info(nn->netdev, "NIC Link is Up\n");
	} else {
		netif_carrier_off(nn->netdev);
		netdev_info(nn->netdev, "NIC Link is Down\n");
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
418 419 420
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
421 422 423

	nfp_net_read_link_status(nn);

424
	nfp_net_irq_unmask(nn, entry->entry);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
448 449
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
450
 */
451 452 453
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
454 455 456
{
	struct nfp_net *nn = r_vec->nfp_net;

457 458 459
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;

460 461 462 463 464 465 466
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
467 468
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
469
 */
470 471 472
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
473 474 475
{
	struct nfp_net *nn = r_vec->nfp_net;

476 477 478
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

479 480 481 482 483 484 485 486
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1);

	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
	rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx);
}

/**
487
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
488 489
 * @netdev:   netdev structure
 */
490
static void nfp_net_vecs_init(struct net_device *netdev)
491 492 493 494 495 496 497 498
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

499
	for (r = 0; r < nn->max_r_vecs; r++) {
500 501 502 503
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

504 505 506
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
507 508
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

	snprintf(name, name_sz, format, netdev_name(nn->netdev));
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
541
	nn_writeb(nn, ctrl_offset, entry->entry);
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
583
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
static void nfp_net_tx_tso(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

	if (!skb->encapsulation)
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
	else
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
	txd->l4_offset = hdrlen;
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
static void nfp_net_tx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
		nn_warn_ratelimit(nn, "partial checksum but ipv=%x!\n",
				  iph->version);
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
		nn_warn_ratelimit(nn, "partial checksum but l4 proto=%x!\n",
				  l4_hdr);
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

723 724 725 726 727 728 729
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_ring *tx_ring;
	struct netdev_queue *nd_q;
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

	qidx = skb_get_queue_mapping(skb);
	tx_ring = &nn->tx_rings[qidx];
	r_vec = tx_ring->r_vec;
	nd_q = netdev_get_tx_queue(nn->netdev, qidx);

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
		nn_warn_ratelimit(nn, "TX ring %d busy. wrp=%u rdp=%u\n",
				  qidx, tx_ring->wr_p, tx_ring->rd_p);
		netif_tx_stop_queue(nd_q);
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
	dma_addr = dma_map_single(&nn->pdev->dev, skb->data, skb_headlen(skb),
				  DMA_TO_DEVICE);
	if (dma_mapping_error(&nn->pdev->dev, dma_addr))
		goto err_free;

775
	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	nfp_net_tx_tso(nn, r_vec, txbuf, txd, skb);

	nfp_net_tx_csum(nn, r_vec, txbuf, txd, skb);

	if (skb_vlan_tag_present(skb) && nn->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

			dma_addr = skb_frag_dma_map(&nn->pdev->dev, frag, 0,
						    fsize, DMA_TO_DEVICE);
			if (dma_mapping_error(&nn->pdev->dev, dma_addr))
				goto err_unmap;

819
			wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
844 845
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
		dma_unmap_page(&nn->pdev->dev,
			       tx_ring->txbufs[wr_idx].dma_addr,
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
	dma_unmap_single(&nn->pdev->dev, tx_ring->txbufs[wr_idx].dma_addr,
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
	nn_warn_ratelimit(nn, "Failed to map DMA TX buffer\n");
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
910
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
		tx_ring->rd_p++;

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
			dma_unmap_single(&nn->pdev->dev,
					 tx_ring->txbufs[idx].dma_addr,
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
			dma_unmap_page(&nn->pdev->dev,
				       tx_ring->txbufs[idx].dma_addr,
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	u32 done_pkts = 0, done_bytes = 0;
	int idx, todo;
	u32 qcp_rd_p;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
		tx_ring->rd_p++;

		if (!tx_ring->txbufs[idx].frag)
			continue;

		nfp_net_dma_unmap_rx(nn, tx_ring->txbufs[idx].dma_addr,
				     nn->fl_bufsz, DMA_BIDIRECTIONAL);
		__free_page(virt_to_page(tx_ring->txbufs[idx].frag));

		done_pkts++;
		done_bytes += tx_ring->txbufs[idx].real_len;

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].frag = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1017
/**
1018 1019 1020
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
 * @nn:		NFP Net device
 * @tx_ring:	TX ring structure
1021 1022 1023
 *
 * Assumes that the device is stopped
 */
1024 1025
static void
nfp_net_tx_ring_reset(struct nfp_net *nn, struct nfp_net_tx_ring *tx_ring)
1026
{
1027
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1028
	const struct skb_frag_struct *frag;
1029
	struct pci_dev *pdev = nn->pdev;
1030
	struct netdev_queue *nd_q;
1031 1032

	while (tx_ring->rd_p != tx_ring->wr_p) {
1033 1034
		struct nfp_net_tx_buf *tx_buf;
		int idx;
1035

1036
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
1037
		tx_buf = &tx_ring->txbufs[idx];
1038

1039 1040 1041 1042
		if (tx_ring == r_vec->xdp_ring) {
			nfp_net_dma_unmap_rx(nn, tx_buf->dma_addr,
					     nn->fl_bufsz, DMA_BIDIRECTIONAL);
			__free_page(virt_to_page(tx_ring->txbufs[idx].frag));
1043
		} else {
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
			struct sk_buff *skb = tx_ring->txbufs[idx].skb;
			int nr_frags = skb_shinfo(skb)->nr_frags;

			if (tx_buf->fidx == -1) {
				/* unmap head */
				dma_unmap_single(&pdev->dev, tx_buf->dma_addr,
						 skb_headlen(skb),
						 DMA_TO_DEVICE);
			} else {
				/* unmap fragment */
				frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
				dma_unmap_page(&pdev->dev, tx_buf->dma_addr,
					       skb_frag_size(frag),
					       DMA_TO_DEVICE);
			}
1059

1060 1061 1062 1063
			/* check for last gather fragment */
			if (tx_buf->fidx == nr_frags - 1)
				dev_kfree_skb_any(skb);
		}
1064

1065 1066 1067
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1068 1069 1070 1071 1072

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1073 1074 1075 1076 1077 1078
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1079 1080 1081
	if (tx_ring == r_vec->xdp_ring)
		return;

1082 1083 1084 1085 1086 1087 1088 1089 1090
	nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1091
	for (i = 0; i < nn->netdev->real_num_tx_queues; i++) {
1092 1093 1094 1095 1096 1097 1098 1099 1100
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1101 1102 1103 1104 1105
static unsigned int
nfp_net_calc_fl_bufsz(struct nfp_net *nn, unsigned int mtu)
{
	unsigned int fl_bufsz;

1106
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1107
	if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1108
		fl_bufsz += NFP_NET_MAX_PREPEND;
1109
	else
1110
		fl_bufsz += nn->rx_offset;
1111 1112
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + mtu;

1113 1114 1115
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1116 1117
	return fl_bufsz;
}
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1128
/**
1129
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1130 1131
 * @rx_ring:	RX ring structure of the skb
 * @dma_addr:	Pointer to storage for DMA address (output param)
1132
 * @fl_bufsz:	size of freelist buffers
1133
 * @xdp:	Whether XDP is enabled
1134
 *
1135
 * This function will allcate a new page frag, map it for DMA.
1136
 *
1137
 * Return: allocated page frag or NULL on failure.
1138
 */
1139
static void *
1140
nfp_net_rx_alloc_one(struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr,
1141
		     unsigned int fl_bufsz, bool xdp)
1142 1143
{
	struct nfp_net *nn = rx_ring->r_vec->nfp_net;
1144
	int direction;
1145
	void *frag;
1146

1147 1148 1149 1150
	if (!xdp)
		frag = netdev_alloc_frag(fl_bufsz);
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1151 1152
	if (!frag) {
		nn_warn_ratelimit(nn, "Failed to alloc receive page frag\n");
1153 1154 1155
		return NULL;
	}

1156 1157 1158
	direction = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;

	*dma_addr = nfp_net_dma_map_rx(nn, frag, fl_bufsz, direction);
1159
	if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) {
1160
		nfp_net_free_frag(frag, xdp);
1161 1162 1163 1164
		nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
		return NULL;
	}

1165
	return frag;
1166 1167
}

1168 1169
static void *
nfp_net_napi_alloc_one(struct nfp_net *nn, int direction, dma_addr_t *dma_addr)
1170 1171 1172
{
	void *frag;

1173 1174 1175 1176
	if (!nn->xdp_prog)
		frag = napi_alloc_frag(nn->fl_bufsz);
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1177 1178 1179 1180 1181
	if (!frag) {
		nn_warn_ratelimit(nn, "Failed to alloc receive page frag\n");
		return NULL;
	}

1182
	*dma_addr = nfp_net_dma_map_rx(nn, frag, nn->fl_bufsz, direction);
1183
	if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) {
1184
		nfp_net_free_frag(frag, nn->xdp_prog);
1185 1186 1187 1188 1189 1190 1191
		nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
		return NULL;
	}

	return frag;
}

1192 1193 1194
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
 * @rx_ring:	RX ring structure
1195
 * @frag:	page fragment buffer
1196 1197 1198
 * @dma_addr:	DMA address of skb mapping
 */
static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring,
1199
				void *frag, dma_addr_t dma_addr)
1200 1201 1202
{
	unsigned int wr_idx;

1203
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1204 1205

	/* Stash SKB and DMA address away */
1206
	rx_ring->rxbufs[wr_idx].frag = frag;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr);

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1227 1228
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1229
 *
1230 1231
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1232
 */
1233
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1234
{
1235
	unsigned int wr_idx, last_idx;
1236

1237
	/* Move the empty entry to the end of the list */
1238
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1239 1240
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1241
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1242
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1243
	rx_ring->rxbufs[last_idx].frag = NULL;
1244

1245 1246 1247 1248 1249
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1250

1251 1252 1253 1254
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
 * @nn:		NFP Net device
 * @rx_ring:	RX ring to remove buffers from
1255
 * @xdp:	Whether XDP is enabled
1256 1257 1258 1259 1260 1261
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1262 1263
nfp_net_rx_ring_bufs_free(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
			  bool xdp)
1264
{
1265
	int direction = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1266
	unsigned int i;
1267

1268 1269 1270 1271 1272
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1273
		if (!rx_ring->rxbufs[i].frag)
1274 1275
			continue;

1276
		nfp_net_dma_unmap_rx(nn, rx_ring->rxbufs[i].dma_addr,
1277 1278
				     rx_ring->bufsz, direction);
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, xdp);
1279
		rx_ring->rxbufs[i].dma_addr = 0;
1280
		rx_ring->rxbufs[i].frag = NULL;
1281 1282 1283 1284
	}
}

/**
1285 1286 1287
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
 * @nn:		NFP Net device
 * @rx_ring:	RX ring to remove buffers from
1288
 * @xdp:	Whether XDP is enabled
1289
 */
1290
static int
1291 1292
nfp_net_rx_ring_bufs_alloc(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
			   bool xdp)
1293
{
1294 1295 1296 1297
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1298

1299
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1300
		rxbufs[i].frag =
1301
			nfp_net_rx_alloc_one(rx_ring, &rxbufs[i].dma_addr,
1302
					     rx_ring->bufsz, xdp);
1303
		if (!rxbufs[i].frag) {
1304
			nfp_net_rx_ring_bufs_free(nn, rx_ring, xdp);
1305 1306 1307 1308 1309 1310 1311
			return -ENOMEM;
		}
	}

	return 0;
}

1312 1313 1314 1315 1316 1317 1318 1319 1320
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
 * @rx_ring: RX ring to fill
 */
static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring)
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1321
		nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].frag,
1322 1323 1324
				    rx_ring->rxbufs[i].dma_addr);
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
 * @skb: Pointer to SKB
 */
static void nfp_net_rx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			    struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

	if (!(nn->netdev->features & NETIF_F_RXCSUM))
		return;

	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1383
			     unsigned int type, __be32 *hash)
1384
{
1385
	if (!(netdev->features & NETIF_F_RXHASH))
1386 1387
		return;

1388
	switch (type) {
1389 1390 1391
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1392
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3);
1393 1394
		break;
	default:
1395
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4);
1396 1397 1398 1399
		break;
	}
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
static void
nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb,
		      struct nfp_net_rx_desc *rxd)
{
	struct nfp_net_rx_hash *rx_hash;

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

	rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash));

	nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type),
			 &rx_hash->hash);
}

static void *
nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb,
		   int meta_len)
{
	u8 *data = skb->data - meta_len;
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
			nfp_net_set_hash(netdev, skb,
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
			skb->mark = get_unaligned_be32(data);
			data += 4;
			break;
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1448 1449 1450 1451 1452 1453 1454 1455
static void
nfp_net_rx_drop(struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring,
		struct nfp_net_rx_buf *rxbuf, struct sk_buff *skb)
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1456 1457 1458 1459 1460
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1461
	if (rxbuf)
1462
		nfp_net_rx_give_one(rx_ring, rxbuf->frag, rxbuf->dma_addr);
1463 1464 1465 1466
	if (skb)
		dev_kfree_skb_any(skb);
}

1467
static bool
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
nfp_net_tx_xdp_buf(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
		   struct nfp_net_tx_ring *tx_ring,
		   struct nfp_net_rx_buf *rxbuf, unsigned int pkt_off,
		   unsigned int pkt_len)
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	dma_addr_t new_dma_addr;
	void *new_frag;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1481
		return false;
1482 1483 1484 1485 1486
	}

	new_frag = nfp_net_napi_alloc_one(nn, DMA_BIDIRECTIONAL, &new_dma_addr);
	if (unlikely(!new_frag)) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1487
		return false;
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	}
	nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

	dma_sync_single_for_device(&nn->pdev->dev, rxbuf->dma_addr + pkt_off,
1502
				   pkt_len, DMA_BIDIRECTIONAL);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + pkt_off);
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1517
	return true;
1518 1519 1520 1521 1522 1523 1524 1525 1526
}

static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, unsigned int len)
{
	struct xdp_buff xdp;

	xdp.data = data;
	xdp.data_end = data + len;

1527
	return bpf_prog_run_xdp(prog, &xdp);
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
1545 1546 1547
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
	unsigned int true_bufsz;
1548
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1549
	int pkts_polled = 0;
1550
	int rx_dma_map_dir;
1551 1552
	int idx;

1553 1554 1555 1556 1557 1558
	rcu_read_lock();
	xdp_prog = READ_ONCE(nn->xdp_prog);
	rx_dma_map_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
	true_bufsz = xdp_prog ? PAGE_SIZE : nn->fl_bufsz;
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1559
	while (pkts_polled < budget) {
1560 1561 1562 1563 1564 1565
		unsigned int meta_len, data_len, data_off, pkt_len, pkt_off;
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
		dma_addr_t new_dma_addr;
		void *new_frag;

1566
		idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1567 1568

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1569
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1570
			break;
J
Jakub Kicinski 已提交
1571

1572 1573 1574 1575 1576 1577 1578 1579
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

		rx_ring->rd_p++;
		pkts_polled++;

1580
		rxbuf =	&rx_ring->rxbufs[idx];
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1593 1594
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1595
		pkt_len = data_len - meta_len;
1596

1597
		if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1598
			pkt_off = meta_len;
1599
		else
1600 1601
			pkt_off = nn->rx_offset;
		data_off = NFP_NET_RX_BUF_HEADROOM + pkt_off;
1602 1603 1604 1605

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1606
		r_vec->rx_bytes += pkt_len;
1607 1608
		u64_stats_update_end(&r_vec->rx_sync);

1609 1610
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
				  nn->bpf_offload_xdp)) {
1611 1612 1613 1614
			int act;

			dma_sync_single_for_cpu(&nn->pdev->dev,
						rxbuf->dma_addr + pkt_off,
1615
						pkt_len, DMA_BIDIRECTIONAL);
1616 1617 1618 1619 1620 1621
			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag + data_off,
					      pkt_len);
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1622 1623 1624 1625
				if (unlikely(!nfp_net_tx_xdp_buf(nn, rx_ring,
								 tx_ring, rxbuf,
								 pkt_off, pkt_len)))
					trace_xdp_exception(nn->netdev, xdp_prog, act);
1626 1627 1628 1629
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
			case XDP_ABORTED:
1630
				trace_xdp_exception(nn->netdev, xdp_prog, act);
1631 1632 1633 1634 1635 1636 1637 1638
			case XDP_DROP:
				nfp_net_rx_give_one(rx_ring, rxbuf->frag,
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1639 1640 1641 1642
		if (unlikely(!skb)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, NULL);
			continue;
		}
1643 1644
		new_frag = nfp_net_napi_alloc_one(nn, rx_dma_map_dir,
						  &new_dma_addr);
1645 1646 1647 1648 1649
		if (unlikely(!new_frag)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, skb);
			continue;
		}

1650 1651
		nfp_net_dma_unmap_rx(nn, rxbuf->dma_addr, nn->fl_bufsz,
				     rx_dma_map_dir);
1652 1653 1654 1655 1656 1657

		nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

		skb_reserve(skb, data_off);
		skb_put(skb, pkt_len);

1658 1659 1660 1661 1662 1663 1664 1665
		if (nn->fw_ver.major <= 3) {
			nfp_net_set_hash_desc(nn->netdev, skb, rxd);
		} else if (meta_len) {
			void *end;

			end = nfp_net_parse_meta(nn->netdev, skb, meta_len);
			if (unlikely(end != skb->data)) {
				nn_warn_ratelimit(nn, "invalid RX packet metadata\n");
1666
				nfp_net_rx_drop(r_vec, rx_ring, NULL, skb);
1667 1668 1669 1670
				continue;
			}
		}

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
		skb_record_rx_queue(skb, rx_ring->idx);
		skb->protocol = eth_type_trans(skb, nn->netdev);

		nfp_net_rx_csum(nn, r_vec, rxd, skb);

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1683 1684 1685 1686
	if (xdp_prog && tx_ring->wr_ptr_add)
		nfp_net_tx_xmit_more_flush(tx_ring);
	rcu_read_unlock();

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1701
	unsigned int pkts_polled = 0;
1702

1703 1704
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1705
	if (r_vec->rx_ring) {
1706
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1707 1708 1709
		if (r_vec->xdp_ring)
			nfp_net_xdp_complete(r_vec->xdp_ring);
	}
1710 1711 1712

	if (pkts_polled < budget) {
		napi_complete_done(napi, pkts_polled);
1713
		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	}

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
		dma_free_coherent(&pdev->dev, tx_ring->size,
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
 * @tx_ring:   TX Ring structure to allocate
1748
 * @cnt:       Ring buffer count
1749
 * @is_xdp:    True if ring will be used for XDP
1750 1751 1752
 *
 * Return: 0 on success, negative errno otherwise.
 */
1753 1754
static int
nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring, u32 cnt, bool is_xdp)
1755 1756 1757 1758 1759 1760
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;
	int sz;

1761
	tx_ring->cnt = cnt;
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
	tx_ring->txds = dma_zalloc_coherent(&pdev->dev, tx_ring->size,
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1774 1775 1776
	if (!is_xdp)
		netif_set_xps_queue(nn->netdev, &r_vec->affinity_mask,
				    tx_ring->idx);
1777

1778
	nn_dbg(nn, "TxQ%02d: QCidx=%02d cnt=%d dma=%#llx host=%p %s\n",
1779
	       tx_ring->idx, tx_ring->qcidx,
1780 1781
	       tx_ring->cnt, (unsigned long long)tx_ring->dma, tx_ring->txds,
	       is_xdp ? "XDP" : "");
1782 1783 1784 1785 1786 1787 1788 1789

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1790
static struct nfp_net_tx_ring *
1791 1792
nfp_net_tx_ring_set_prepare(struct nfp_net *nn, struct nfp_net_ring_set *s,
			    unsigned int num_stack_tx_rings)
1793 1794 1795 1796
{
	struct nfp_net_tx_ring *rings;
	unsigned int r;

1797
	rings = kcalloc(s->n_rings, sizeof(*rings), GFP_KERNEL);
1798 1799 1800
	if (!rings)
		return NULL;

1801
	for (r = 0; r < s->n_rings; r++) {
1802 1803 1804 1805
		int bias = 0;

		if (r >= num_stack_tx_rings)
			bias = num_stack_tx_rings;
1806

1807 1808 1809
		nfp_net_tx_ring_init(&rings[r], &nn->r_vecs[r - bias], r);

		if (nfp_net_tx_ring_alloc(&rings[r], s->dcnt, bias))
1810 1811 1812
			goto err_free_prev;
	}

1813
	return s->rings = rings;
1814 1815 1816 1817 1818 1819 1820 1821

err_free_prev:
	while (r--)
		nfp_net_tx_ring_free(&rings[r]);
	kfree(rings);
	return NULL;
}

1822
static void
1823
nfp_net_tx_ring_set_swap(struct nfp_net *nn, struct nfp_net_ring_set *s)
1824
{
1825
	struct nfp_net_ring_set new = *s;
1826

1827 1828
	s->dcnt = nn->txd_cnt;
	s->rings = nn->tx_rings;
1829
	s->n_rings = nn->num_tx_rings;
1830 1831 1832

	nn->txd_cnt = new.dcnt;
	nn->tx_rings = new.rings;
1833
	nn->num_tx_rings = new.n_rings;
1834 1835 1836
}

static void
1837
nfp_net_tx_ring_set_free(struct nfp_net *nn, struct nfp_net_ring_set *s)
1838
{
1839
	struct nfp_net_tx_ring *rings = s->rings;
1840 1841
	unsigned int r;

1842
	for (r = 0; r < s->n_rings; r++)
1843 1844 1845 1846 1847
		nfp_net_tx_ring_free(&rings[r]);

	kfree(rings);
}

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
		dma_free_coherent(&pdev->dev, rx_ring->size,
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
 * @rx_ring:  RX ring to allocate
1874
 * @fl_bufsz: Size of buffers to allocate
1875
 * @cnt:      Ring buffer count
1876 1877 1878
 *
 * Return: 0 on success, negative errno otherwise.
 */
1879
static int
1880 1881
nfp_net_rx_ring_alloc(struct nfp_net_rx_ring *rx_ring, unsigned int fl_bufsz,
		      u32 cnt)
1882 1883 1884 1885 1886 1887
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	struct pci_dev *pdev = nn->pdev;
	int sz;

1888
	rx_ring->cnt = cnt;
1889
	rx_ring->bufsz = fl_bufsz;
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
	rx_ring->rxds = dma_zalloc_coherent(&pdev->dev, rx_ring->size,
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	nn_dbg(nn, "RxQ%02d: FlQCidx=%02d RxQCidx=%02d cnt=%d dma=%#llx host=%p\n",
	       rx_ring->idx, rx_ring->fl_qcidx, rx_ring->rx_qcidx,
	       rx_ring->cnt, (unsigned long long)rx_ring->dma, rx_ring->rxds);

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1913
static struct nfp_net_rx_ring *
1914 1915
nfp_net_rx_ring_set_prepare(struct nfp_net *nn, struct nfp_net_ring_set *s,
			    bool xdp)
1916
{
1917
	unsigned int fl_bufsz =	nfp_net_calc_fl_bufsz(nn, s->mtu);
1918 1919 1920
	struct nfp_net_rx_ring *rings;
	unsigned int r;

1921
	rings = kcalloc(s->n_rings, sizeof(*rings), GFP_KERNEL);
1922 1923 1924
	if (!rings)
		return NULL;

1925 1926
	for (r = 0; r < s->n_rings; r++) {
		nfp_net_rx_ring_init(&rings[r], &nn->r_vecs[r], r);
1927

1928
		if (nfp_net_rx_ring_alloc(&rings[r], fl_bufsz, s->dcnt))
1929 1930
			goto err_free_prev;

1931
		if (nfp_net_rx_ring_bufs_alloc(nn, &rings[r], xdp))
1932 1933 1934
			goto err_free_ring;
	}

1935
	return s->rings = rings;
1936 1937 1938

err_free_prev:
	while (r--) {
1939
		nfp_net_rx_ring_bufs_free(nn, &rings[r], xdp);
1940 1941 1942 1943 1944 1945 1946
err_free_ring:
		nfp_net_rx_ring_free(&rings[r]);
	}
	kfree(rings);
	return NULL;
}

1947
static void
1948
nfp_net_rx_ring_set_swap(struct nfp_net *nn, struct nfp_net_ring_set *s)
1949
{
1950
	struct nfp_net_ring_set new = *s;
1951

1952 1953 1954
	s->mtu = nn->netdev->mtu;
	s->dcnt = nn->rxd_cnt;
	s->rings = nn->rx_rings;
1955
	s->n_rings = nn->num_rx_rings;
1956 1957 1958 1959 1960

	nn->netdev->mtu = new.mtu;
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, new.mtu);
	nn->rxd_cnt = new.dcnt;
	nn->rx_rings = new.rings;
1961
	nn->num_rx_rings = new.n_rings;
1962 1963 1964
}

static void
1965 1966
nfp_net_rx_ring_set_free(struct nfp_net *nn, struct nfp_net_ring_set *s,
			 bool xdp)
1967
{
1968
	struct nfp_net_rx_ring *rings = s->rings;
1969 1970
	unsigned int r;

1971
	for (r = 0; r < s->n_rings; r++) {
1972
		nfp_net_rx_ring_bufs_free(nn, &rings[r], xdp);
1973 1974 1975 1976 1977 1978
		nfp_net_rx_ring_free(&rings[r]);
	}

	kfree(rings);
}

1979 1980 1981 1982 1983
static void
nfp_net_vector_assign_rings(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			    int idx)
{
	r_vec->rx_ring = idx < nn->num_rx_rings ? &nn->rx_rings[idx] : NULL;
1984 1985 1986 1987 1988
	r_vec->tx_ring =
		idx < nn->num_stack_tx_rings ? &nn->tx_rings[idx] : NULL;

	r_vec->xdp_ring = idx < nn->num_tx_rings - nn->num_stack_tx_rings ?
		&nn->tx_rings[nn->num_stack_tx_rings + idx] : NULL;
1989 1990
}

1991 1992 1993
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
1994
{
1995
	int err;
1996

1997 1998 1999 2000
	/* Setup NAPI */
	netif_napi_add(nn->netdev, &r_vec->napi,
		       nfp_net_poll, NAPI_POLL_WEIGHT);

2001 2002
	snprintf(r_vec->name, sizeof(r_vec->name),
		 "%s-rxtx-%d", nn->netdev->name, idx);
2003 2004
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
2005
	if (err) {
2006
		netif_napi_del(&r_vec->napi);
2007
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2008 2009
		return err;
	}
2010
	disable_irq(r_vec->irq_vector);
2011

2012
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2013

2014 2015
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
2016

2017
	return 0;
2018 2019
}

2020 2021
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2022
{
2023
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2024
	netif_napi_del(&r_vec->napi);
2025
	free_irq(r_vec->irq_vector, r_vec);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

2049
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2073
	for (i = 0; i < nn->num_rx_rings; i++)
2074 2075 2076 2077 2078
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2079
	for (i = 0; i < nn->num_tx_rings; i++)
2080 2081 2082 2083
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2084
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2085 2086
 * @nn:      NFP Net device to reconfigure
 *
2087 2088 2089
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2090
 */
2091
static void nfp_net_write_mac_addr(struct nfp_net *nn)
2092 2093 2094
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
		  get_unaligned_be32(nn->netdev->dev_addr));
J
Jakub Kicinski 已提交
2095 2096
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
		  get_unaligned_be16(nn->netdev->dev_addr + 4));
2097 2098
}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2110 2111 2112 2113 2114 2115 2116
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2117
	unsigned int r;
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	int err;

	new_ctrl = nn->ctrl;
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2134
	if (err)
2135 2136
		nn_err(nn, "Could not disable device: %d\n", err);

2137
	for (r = 0; r < nn->num_rx_rings; r++)
2138
		nfp_net_rx_ring_reset(&nn->rx_rings[r]);
2139
	for (r = 0; r < nn->num_tx_rings; r++)
2140
		nfp_net_tx_ring_reset(nn, &nn->tx_rings[r]);
2141
	for (r = 0; r < nn->num_r_vecs; r++)
2142 2143
		nfp_net_vec_clear_ring_data(nn, r);

2144 2145 2146
	nn->ctrl = new_ctrl;
}

2147
static void
2148 2149
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2150 2151
{
	/* Write the DMA address, size and MSI-X info to the device */
2152 2153
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2154
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2155
}
2156

2157 2158 2159 2160 2161 2162
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2163
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2164 2165
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
static int __nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	u32 new_ctrl, update = 0;
	unsigned int r;
	int err;

	new_ctrl = nn->ctrl;

	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_coalesce_write_cfg(nn);

		new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2188 2189 2190 2191
	for (r = 0; r < nn->num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->tx_rings[r], r);
	for (r = 0; r < nn->num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->rx_rings[r], r);
2192 2193 2194 2195 2196 2197 2198

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->num_tx_rings) - 1);

	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->num_rx_rings) - 1);

2199
	nfp_net_write_mac_addr(nn);
2200 2201

	nn_writel(nn, NFP_NET_CFG_MTU, nn->netdev->mtu);
2202 2203
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ,
		  nn->fl_bufsz - NFP_NET_RX_BUF_NON_DATA);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);

	nn->ctrl = new_ctrl;

2218
	for (r = 0; r < nn->num_rx_rings; r++)
2219
		nfp_net_rx_ring_fill_freelist(&nn->rx_rings[r]);
2220

2221 2222 2223 2224 2225 2226
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
	if (nn->ctrl & NFP_NET_CFG_CTRL_VXLAN) {
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2227
		udp_tunnel_get_rx_info(nn->netdev);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	}

	return err;
}

/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	int err;

	err = __nfp_net_set_config_and_enable(nn);
	if (err)
		nfp_net_clear_config_and_disable(nn);

	return err;
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2256 2257
	for (r = 0; r < nn->num_r_vecs; r++) {
		napi_enable(&nn->r_vecs[r].napi);
2258
		enable_irq(nn->r_vecs[r].irq_vector);
2259
	}
2260 2261 2262

	netif_tx_wake_all_queues(nn->netdev);

2263
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2264 2265 2266
	nfp_net_read_link_status(nn);
}

2267 2268 2269
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
2270
	struct nfp_net_ring_set rx = {
2271
		.n_rings = nn->num_rx_rings,
2272 2273 2274 2275
		.mtu = nn->netdev->mtu,
		.dcnt = nn->rxd_cnt,
	};
	struct nfp_net_ring_set tx = {
2276
		.n_rings = nn->num_tx_rings,
2277 2278
		.dcnt = nn->txd_cnt,
	};
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	int err, r;

	if (nn->ctrl & NFP_NET_CFG_CTRL_ENABLE) {
		nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->ctrl);
		return -EBUSY;
	}

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2296 2297 2298 2299 2300
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2301
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2302

2303 2304 2305
	for (r = 0; r < nn->num_r_vecs; r++) {
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2306 2307
			goto err_cleanup_vec_p;
	}
2308

2309
	nn->rx_rings = nfp_net_rx_ring_set_prepare(nn, &rx, nn->xdp_prog);
2310 2311 2312
	if (!nn->rx_rings) {
		err = -ENOMEM;
		goto err_cleanup_vec;
2313
	}
2314

2315 2316
	nn->tx_rings = nfp_net_tx_ring_set_prepare(nn, &tx,
						   nn->num_stack_tx_rings);
2317 2318 2319
	if (!nn->tx_rings) {
		err = -ENOMEM;
		goto err_free_rx_rings;
2320
	}
2321

2322 2323 2324
	for (r = 0; r < nn->max_r_vecs; r++)
		nfp_net_vector_assign_rings(nn, &nn->r_vecs[r], r);

2325
	err = netif_set_real_num_tx_queues(netdev, nn->num_stack_tx_rings);
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	if (err)
		goto err_free_rings;

	err = netif_set_real_num_rx_queues(netdev, nn->num_rx_rings);
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2340
	err = nfp_net_set_config_and_enable(nn);
2341
	if (err)
2342
		goto err_free_rings;
2343 2344 2345 2346 2347 2348 2349

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2350
	nfp_net_open_stack(nn);
2351 2352 2353 2354

	return 0;

err_free_rings:
2355 2356
	nfp_net_tx_ring_set_free(nn, &tx);
err_free_rx_rings:
2357
	nfp_net_rx_ring_set_free(nn, &rx, nn->xdp_prog);
2358
err_cleanup_vec:
2359
	r = nn->num_r_vecs;
2360
err_cleanup_vec_p:
2361
	while (r--)
2362
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2363
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2364 2365 2366 2367 2368 2369
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2370 2371
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2372
 */
2373
static void nfp_net_close_stack(struct nfp_net *nn)
2374
{
2375
	unsigned int r;
2376

2377
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2378
	netif_carrier_off(nn->netdev);
2379 2380
	nn->link_up = false;

2381
	for (r = 0; r < nn->num_r_vecs; r++) {
2382
		disable_irq(nn->r_vecs[r].irq_vector);
2383
		napi_disable(&nn->r_vecs[r].napi);
2384
	}
2385

2386 2387
	netif_tx_disable(nn->netdev);
}
2388

2389 2390 2391 2392 2393 2394 2395
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2396

2397
	for (r = 0; r < nn->num_rx_rings; r++) {
2398
		nfp_net_rx_ring_bufs_free(nn, &nn->rx_rings[r], nn->xdp_prog);
2399
		nfp_net_rx_ring_free(&nn->rx_rings[r]);
2400 2401
	}
	for (r = 0; r < nn->num_tx_rings; r++)
2402
		nfp_net_tx_ring_free(&nn->tx_rings[r]);
2403
	for (r = 0; r < nn->num_r_vecs; r++)
2404
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2405

2406 2407 2408
	kfree(nn->rx_rings);
	kfree(nn->tx_rings);

2409
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2410
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_ENABLE)) {
		nn_err(nn, "Dev is not up: 0x%08x\n", nn->ctrl);
		return 0;
	}

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

	new_ctrl = nn->ctrl;

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

	if (new_ctrl == nn->ctrl)
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2462
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2463 2464 2465 2466

	nn->ctrl = new_ctrl;
}

2467 2468 2469 2470 2471 2472 2473 2474 2475
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
			ethtool_rxfh_indir_default(i, nn->num_rx_rings);
}

2476
static int
2477
nfp_net_ring_swap_enable(struct nfp_net *nn, unsigned int *num_vecs,
2478 2479
			 unsigned int *stack_tx_rings,
			 struct bpf_prog **xdp_prog,
2480 2481
			 struct nfp_net_ring_set *rx,
			 struct nfp_net_ring_set *tx)
2482
{
2483
	unsigned int r;
2484
	int err;
2485

2486
	if (rx)
2487
		nfp_net_rx_ring_set_swap(nn, rx);
2488
	if (tx)
2489
		nfp_net_tx_ring_set_swap(nn, tx);
2490

2491
	swap(*num_vecs, nn->num_r_vecs);
2492 2493
	swap(*stack_tx_rings, nn->num_stack_tx_rings);
	*xdp_prog = xchg(&nn->xdp_prog, *xdp_prog);
2494

2495 2496 2497
	for (r = 0; r <	nn->max_r_vecs; r++)
		nfp_net_vector_assign_rings(nn, &nn->r_vecs[r], r);

2498 2499
	if (!netif_is_rxfh_configured(nn->netdev))
		nfp_net_rss_init_itbl(nn);
2500

2501 2502 2503 2504
	err = netif_set_real_num_rx_queues(nn->netdev,
					   nn->num_rx_rings);
	if (err)
		return err;
2505

2506
	if (nn->netdev->real_num_tx_queues != nn->num_stack_tx_rings) {
2507
		err = netif_set_real_num_tx_queues(nn->netdev,
2508
						   nn->num_stack_tx_rings);
2509 2510 2511 2512
		if (err)
			return err;
	}

2513 2514
	return __nfp_net_set_config_and_enable(nn);
}
2515

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
static int
nfp_net_check_config(struct nfp_net *nn, struct bpf_prog *xdp_prog,
		     struct nfp_net_ring_set *rx, struct nfp_net_ring_set *tx)
{
	/* XDP-enabled tests */
	if (!xdp_prog)
		return 0;
	if (rx && nfp_net_calc_fl_bufsz(nn, rx->mtu) > PAGE_SIZE) {
		nn_warn(nn, "MTU too large w/ XDP enabled\n");
		return -EINVAL;
	}
	if (tx && tx->n_rings > nn->max_tx_rings) {
		nn_warn(nn, "Insufficient number of TX rings w/ XDP enabled\n");
		return -EINVAL;
	}

	return 0;
}

2535
static void
2536
nfp_net_ring_reconfig_down(struct nfp_net *nn, struct bpf_prog **xdp_prog,
2537
			   struct nfp_net_ring_set *rx,
2538
			   struct nfp_net_ring_set *tx,
2539
			   unsigned int stack_tx_rings, unsigned int num_vecs)
2540 2541 2542 2543 2544
{
	nn->netdev->mtu = rx ? rx->mtu : nn->netdev->mtu;
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, nn->netdev->mtu);
	nn->rxd_cnt = rx ? rx->dcnt : nn->rxd_cnt;
	nn->txd_cnt = tx ? tx->dcnt : nn->txd_cnt;
2545 2546
	nn->num_rx_rings = rx ? rx->n_rings : nn->num_rx_rings;
	nn->num_tx_rings = tx ? tx->n_rings : nn->num_tx_rings;
2547
	nn->num_stack_tx_rings = stack_tx_rings;
2548
	nn->num_r_vecs = num_vecs;
2549
	*xdp_prog = xchg(&nn->xdp_prog, *xdp_prog);
2550 2551 2552

	if (!netif_is_rxfh_configured(nn->netdev))
		nfp_net_rss_init_itbl(nn);
2553 2554
}

2555
int
2556 2557
nfp_net_ring_reconfig(struct nfp_net *nn, struct bpf_prog **xdp_prog,
		      struct nfp_net_ring_set *rx, struct nfp_net_ring_set *tx)
2558
{
2559
	unsigned int stack_tx_rings, num_vecs, r;
2560 2561
	int err;

2562 2563 2564 2565 2566 2567 2568 2569 2570
	stack_tx_rings = tx ? tx->n_rings : nn->num_tx_rings;
	if (*xdp_prog)
		stack_tx_rings -= rx ? rx->n_rings : nn->num_rx_rings;

	num_vecs = max(rx ? rx->n_rings : nn->num_rx_rings, stack_tx_rings);

	err = nfp_net_check_config(nn, *xdp_prog, rx, tx);
	if (err)
		return err;
2571

2572
	if (!netif_running(nn->netdev)) {
2573 2574
		nfp_net_ring_reconfig_down(nn, xdp_prog, rx, tx,
					   stack_tx_rings, num_vecs);
2575 2576 2577 2578
		return 0;
	}

	/* Prepare new rings */
2579 2580 2581 2582 2583 2584 2585
	for (r = nn->num_r_vecs; r < num_vecs; r++) {
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
			num_vecs = r;
			goto err_cleanup_vecs;
		}
	}
2586
	if (rx) {
2587
		if (!nfp_net_rx_ring_set_prepare(nn, rx, *xdp_prog)) {
2588 2589 2590
			err = -ENOMEM;
			goto err_cleanup_vecs;
		}
2591
	}
2592
	if (tx) {
2593
		if (!nfp_net_tx_ring_set_prepare(nn, tx, stack_tx_rings)) {
2594 2595
			err = -ENOMEM;
			goto err_free_rx;
2596 2597 2598 2599 2600 2601 2602
		}
	}

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2603 2604
	err = nfp_net_ring_swap_enable(nn, &num_vecs, &stack_tx_rings,
				       xdp_prog, rx, tx);
2605
	if (err) {
2606
		int err2;
2607

2608
		nfp_net_clear_config_and_disable(nn);
2609

2610
		/* Try with old configuration and old rings */
2611 2612
		err2 = nfp_net_ring_swap_enable(nn, &num_vecs, &stack_tx_rings,
						xdp_prog, rx, tx);
2613
		if (err2)
2614
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2615
			       err, err2);
2616
	}
2617 2618
	for (r = num_vecs - 1; r >= nn->num_r_vecs; r--)
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2619

2620
	if (rx)
2621
		nfp_net_rx_ring_set_free(nn, rx, *xdp_prog);
2622
	if (tx)
2623
		nfp_net_tx_ring_set_free(nn, tx);
2624 2625 2626 2627

	nfp_net_open_stack(nn);

	return err;
2628 2629 2630

err_free_rx:
	if (rx)
2631
		nfp_net_rx_ring_set_free(nn, rx, *xdp_prog);
2632 2633 2634
err_cleanup_vecs:
	for (r = num_vecs - 1; r >= nn->num_r_vecs; r--)
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2635 2636 2637 2638 2639 2640 2641
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_ring_set rx = {
2642
		.n_rings = nn->num_rx_rings,
2643 2644 2645 2646
		.mtu = new_mtu,
		.dcnt = nn->rxd_cnt,
	};

2647
	return nfp_net_ring_reconfig(nn, &nn->xdp_prog, &rx, NULL);
2648 2649
}

2650 2651
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

	for (r = 0; r < nn->num_r_vecs; r++) {
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
		return -ENOTSUPP;
	if (proto != htons(ETH_P_ALL))
		return -ENOTSUPP;

2702 2703 2704 2705 2706 2707
	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
		if (!nn->bpf_offload_xdp)
			return nfp_net_bpf_offload(nn, tc->cls_bpf);
		else
			return -EBUSY;
	}
2708 2709 2710 2711

	return -EINVAL;
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

	new_ctrl = nn->ctrl;

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
			new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
			new_ctrl |= NFP_NET_CFG_CTRL_LSO;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2766 2767 2768 2769 2770
	if (changed & NETIF_F_HW_TC && nn->ctrl & NFP_NET_CFG_CTRL_BPF) {
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

	if (new_ctrl == nn->ctrl)
		return 0;

	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->ctrl, new_ctrl);
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	nn->ctrl = new_ctrl;

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2820
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2821 2822 2823 2824 2825 2826 2827 2828
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2829
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854

	return features;
}

/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_VXLAN))
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2855
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2882
				   struct udp_tunnel_info *ti)
2883 2884 2885 2886
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2887 2888 2889 2890
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2891 2892 2893 2894
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2895
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2896 2897 2898
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2899
				   struct udp_tunnel_info *ti)
2900 2901 2902 2903
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2904 2905 2906 2907
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2908
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2909 2910 2911 2912 2913 2914
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct tc_cls_bpf_offload cmd = {
		.prog = prog,
	};
	int ret;

	if (!nfp_net_ebpf_capable(nn))
		return -EINVAL;

	if (nn->ctrl & NFP_NET_CFG_CTRL_BPF) {
		if (!nn->bpf_offload_xdp)
			return prog ? -EBUSY : 0;
		cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
	} else {
		if (!prog)
			return 0;
		cmd.command = TC_CLSBPF_ADD;
	}

	ret = nfp_net_bpf_offload(nn, &cmd);
	/* Stop offload if replace not possible */
	if (ret && cmd.command == TC_CLSBPF_REPLACE)
		nfp_net_xdp_offload(nn, NULL);
	nn->bpf_offload_xdp = prog && !ret;
	return ret;
}

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
static int nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct nfp_net_ring_set rx = {
		.n_rings = nn->num_rx_rings,
		.mtu = nn->netdev->mtu,
		.dcnt = nn->rxd_cnt,
	};
	struct nfp_net_ring_set tx = {
		.n_rings = nn->num_tx_rings,
		.dcnt = nn->txd_cnt,
	};
	int err;

2956 2957 2958 2959
	if (prog && prog->xdp_adjust_head) {
		nn_err(nn, "Does not support bpf_xdp_adjust_head()\n");
		return -EOPNOTSUPP;
	}
2960 2961 2962 2963 2964
	if (!prog && !nn->xdp_prog)
		return 0;
	if (prog && nn->xdp_prog) {
		prog = xchg(&nn->xdp_prog, prog);
		bpf_prog_put(prog);
2965
		nfp_net_xdp_offload(nn, nn->xdp_prog);
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
		return 0;
	}

	tx.n_rings += prog ? nn->num_rx_rings : -nn->num_rx_rings;

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
	err = nfp_net_ring_reconfig(nn, &prog, &rx, &tx);
	if (err)
		return err;

	/* @prog got swapped and is now the old one */
	if (prog)
		bpf_prog_put(prog);

2980 2981
	nfp_net_xdp_offload(nn, nn->xdp_prog);

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
		return nfp_net_xdp_setup(nn, xdp->prog);
	case XDP_QUERY_PROG:
		xdp->prog_attached = !!nn->xdp_prog;
		return 0;
	default:
		return -EINVAL;
	}
}

3000 3001 3002 3003 3004
static const struct net_device_ops nfp_net_netdev_ops = {
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
3005
	.ndo_setup_tc		= nfp_net_setup_tc,
3006 3007 3008 3009 3010 3011
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
3012 3013
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3014
	.ndo_xdp		= nfp_net_xdp,
3015 3016 3017 3018 3019 3020 3021 3022
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
3023
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3024 3025 3026 3027 3028 3029 3030
		nn->is_vf ? "VF " : "",
		nn->num_tx_rings, nn->max_tx_rings,
		nn->num_rx_rings, nn->max_rx_rings);
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
3031
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO "      : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS "      : "",
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3048 3049
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "");
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
}

/**
 * nfp_net_netdev_alloc() - Allocate netdev and related structure
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
3064 3065
				     unsigned int max_tx_rings,
				     unsigned int max_rx_rings)
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

	nn->netdev = netdev;
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3084 3085 3086
	nn->num_tx_rings = min_t(unsigned int, max_tx_rings, num_online_cpus());
	nn->num_rx_rings = min_t(unsigned int, max_rx_rings,
				 netif_get_num_default_rss_queues());
3087

J
Jakub Kicinski 已提交
3088 3089 3090
	nn->num_r_vecs = max(nn->num_tx_rings, nn->num_rx_rings);
	nn->num_r_vecs = min_t(unsigned int, nn->num_r_vecs, num_online_cpus());

3091 3092 3093 3094
	nn->txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;

	spin_lock_init(&nn->reconfig_lock);
3095
	spin_lock_init(&nn->rx_filter_lock);
3096 3097
	spin_lock_init(&nn->link_status_lock);

3098 3099
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3100 3101
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3102

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	return nn;
}

/**
 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_netdev_free(struct nfp_net *nn)
{
	free_netdev(nn->netdev);
}

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3136 3137 3138 3139 3140 3141
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
		dev_warn(&nn->pdev->dev,
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3161

3162
	nfp_net_rss_init_itbl(nn);
3163 3164 3165 3166

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3167
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
 * @netdev:      netdev structure
 *
 * Return: 0 on success or negative errno on error.
 */
int nfp_net_netdev_init(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3198
	nfp_net_write_mac_addr(nn);
3199

3200 3201 3202 3203 3204 3205
	/* Determine RX packet/metadata boundary offset */
	if (nn->fw_ver.major >= 2)
		nn->rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
	else
		nn->rx_offset = NFP_NET_RX_OFFSET;

3206 3207 3208 3209 3210
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3211
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, netdev->mtu);
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
		netdev->hw_features |= NETIF_F_RXCSUM;
		nn->ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
		nn->ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
		nn->ctrl |= NFP_NET_CFG_CTRL_GATHER;
	}
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
		nn->ctrl |= NFP_NET_CFG_CTRL_LSO;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
		nn->ctrl |= NFP_NET_CFG_CTRL_RSS;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
		nn->ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
		nn->ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
		nn->ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
	}

	netdev->features = netdev->hw_features;

3264 3265 3266
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
		nn->ctrl |= NFP_NET_CFG_CTRL_L2BC;
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
		nn->ctrl |= NFP_NET_CFG_CTRL_L2MC;

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
		nn->ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3297 3298 3299 3300 3301

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3302
	netif_carrier_off(netdev);
3303 3304

	nfp_net_set_ethtool_ops(netdev);
3305
	nfp_net_vecs_init(netdev);
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315

	return register_netdev(netdev);
}

/**
 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
 * @netdev:      netdev structure
 */
void nfp_net_netdev_clean(struct net_device *netdev)
{
3316 3317 3318 3319
	struct nfp_net *nn = netdev_priv(netdev);

	if (nn->xdp_prog)
		bpf_prog_put(nn->xdp_prog);
3320 3321
	if (nn->bpf_offload_xdp)
		nfp_net_xdp_offload(nn, NULL);
3322
	unregister_netdev(nn->netdev);
3323
}