MethodHandles.java 155.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
24 25
 */

26
package java.lang.invoke;
27

28
import java.lang.reflect.*;
29
import java.util.BitSet;
30
import java.util.List;
31 32
import java.util.ArrayList;
import java.util.Arrays;
33

34 35 36 37
import sun.invoke.util.ValueConversions;
import sun.invoke.util.VerifyAccess;
import sun.invoke.util.Wrapper;
import sun.reflect.CallerSensitive;
38
import sun.reflect.Reflection;
39
import sun.reflect.misc.ReflectUtil;
40
import sun.security.util.SecurityConstants;
41 42
import java.lang.invoke.LambdaForm.BasicType;
import static java.lang.invoke.LambdaForm.BasicType.*;
43
import static java.lang.invoke.MethodHandleStatics.*;
44
import static java.lang.invoke.MethodHandleImpl.Intrinsic;
45
import static java.lang.invoke.MethodHandleNatives.Constants.*;
46

47
import java.util.concurrent.ConcurrentHashMap;
48

49
/**
50 51
 * This class consists exclusively of static methods that operate on or return
 * method handles. They fall into several categories:
52
 * <ul>
53 54 55
 * <li>Lookup methods which help create method handles for methods and fields.
 * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
 * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
56
 * </ul>
57 58
 * <p>
 * @author John Rose, JSR 292 EG
R
rfield 已提交
59
 * @since 1.7
60 61 62 63 64
 */
public class MethodHandles {

    private MethodHandles() { }  // do not instantiate

65
    private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
66 67 68 69 70
    static { MethodHandleImpl.initStatics(); }
    // See IMPL_LOOKUP below.

    //// Method handle creation from ordinary methods.

71
    /**
72 73 74 75 76 77 78
     * Returns a {@link Lookup lookup object} with
     * full capabilities to emulate all supported bytecode behaviors of the caller.
     * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
     * Factory methods on the lookup object can create
     * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
     * for any member that the caller has access to via bytecodes,
     * including protected and private fields and methods.
79 80
     * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
     * Do not store it in place where untrusted code can access it.
81 82 83 84 85 86 87 88 89 90
     * <p>
     * This method is caller sensitive, which means that it may return different
     * values to different callers.
     * <p>
     * For any given caller class {@code C}, the lookup object returned by this call
     * has equivalent capabilities to any lookup object
     * supplied by the JVM to the bootstrap method of an
     * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
     * executing in the same caller class {@code C}.
     * @return a lookup object for the caller of this method, with private access
91
     */
92
    @CallerSensitive
93
    public static Lookup lookup() {
94
        return new Lookup(Reflection.getCallerClass());
95 96
    }

97
    /**
98
     * Returns a {@link Lookup lookup object} which is trusted minimally.
99 100
     * It can only be used to create method handles to
     * publicly accessible fields and methods.
101 102 103
     * <p>
     * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
     * of this lookup object will be {@link java.lang.Object}.
104 105 106
     *
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
107
     * The lookup class can be changed to any other class {@code C} using an expression of the form
108
     * {@link Lookup#in publicLookup().in(C.class)}.
109 110
     * Since all classes have equal access to public names,
     * such a change would confer no new access rights.
111 112 113 114
     * A public lookup object is always subject to
     * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
     * Also, it cannot access
     * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
115
     * @return a lookup object which is trusted minimally
116 117 118 119 120
     */
    public static Lookup publicLookup() {
        return Lookup.PUBLIC_LOOKUP;
    }

R
rfield 已提交
121
    /**
122 123
     * Performs an unchecked "crack" of a
     * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
R
rfield 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
     * The result is as if the user had obtained a lookup object capable enough
     * to crack the target method handle, called
     * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
     * on the target to obtain its symbolic reference, and then called
     * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
     * to resolve the symbolic reference to a member.
     * <p>
     * If there is a security manager, its {@code checkPermission} method
     * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
     * @param <T> the desired type of the result, either {@link Member} or a subtype
     * @param target a direct method handle to crack into symbolic reference components
     * @param expected a class object representing the desired result type {@code T}
     * @return a reference to the method, constructor, or field object
     * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
     * @exception NullPointerException if either argument is {@code null}
     * @exception IllegalArgumentException if the target is not a direct method handle
     * @exception ClassCastException if the member is not of the expected type
     * @since 1.8
     */
    public static <T extends Member> T
    reflectAs(Class<T> expected, MethodHandle target) {
        SecurityManager smgr = System.getSecurityManager();
        if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
        Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
        return lookup.revealDirect(target).reflectAs(expected, lookup);
    }
    // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
    static final private java.security.Permission ACCESS_PERMISSION =
        new ReflectPermission("suppressAccessChecks");

154
    /**
155 156 157
     * A <em>lookup object</em> is a factory for creating method handles,
     * when the creation requires access checking.
     * Method handles do not perform
158
     * access checks when they are called, but rather when they are created.
159 160
     * Therefore, method handle access
     * restrictions must be enforced when a method handle is created.
161
     * The caller class against which those restrictions are enforced
162
     * is known as the {@linkplain #lookupClass lookup class}.
163 164 165 166 167 168 169 170 171
     * <p>
     * A lookup class which needs to create method handles will call
     * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
     * When the {@code Lookup} factory object is created, the identity of the lookup class is
     * determined, and securely stored in the {@code Lookup} object.
     * The lookup class (or its delegates) may then use factory methods
     * on the {@code Lookup} object to create method handles for access-checked members.
     * This includes all methods, constructors, and fields which are allowed to the lookup class,
     * even private ones.
172 173
     *
     * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
174 175
     * The factory methods on a {@code Lookup} object correspond to all major
     * use cases for methods, constructors, and fields.
176 177 178
     * Each method handle created by a factory method is the functional
     * equivalent of a particular <em>bytecode behavior</em>.
     * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
179 180 181
     * Here is a summary of the correspondence between these factory methods and
     * the behavior the resulting method handles:
     * <table border=1 cellpadding=5 summary="lookup method behaviors">
182 183 184 185 186
     * <tr>
     *     <th><a name="equiv"></a>lookup expression</th>
     *     <th>member</th>
     *     <th>bytecode behavior</th>
     * </tr>
187
     * <tr>
188 189
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
     *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
190 191
     * </tr>
     * <tr>
192 193
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
     *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
194 195
     * </tr>
     * <tr>
196 197
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
     *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
198 199
     * </tr>
     * <tr>
200 201
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
     *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
202 203
     * </tr>
     * <tr>
204 205
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
     *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
206 207
     * </tr>
     * <tr>
208 209
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
     *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
210 211
     * </tr>
     * <tr>
212 213
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
     *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
214 215
     * </tr>
     * <tr>
216 217
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
     *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
218 219
     * </tr>
     * <tr>
220 221
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
     *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
222 223
     * </tr>
     * <tr>
224 225
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
     *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
226 227
     * </tr>
     * <tr>
228 229
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
     *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
230 231
     * </tr>
     * <tr>
232 233
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
     *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
234 235
     * </tr>
     * <tr>
236 237
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
     *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
238 239
     * </tr>
     * </table>
240
     *
241 242
     * Here, the type {@code C} is the class or interface being searched for a member,
     * documented as a parameter named {@code refc} in the lookup methods.
243
     * The method type {@code MT} is composed from the return type {@code T}
244
     * and the sequence of argument types {@code A*}.
245 246
     * The constructor also has a sequence of argument types {@code A*} and
     * is deemed to return the newly-created object of type {@code C}.
247 248 249
     * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
     * The formal parameter {@code this} stands for the self-reference of type {@code C};
     * if it is present, it is always the leading argument to the method handle invocation.
250 251
     * (In the case of some {@code protected} members, {@code this} may be
     * restricted in type to the lookup class; see below.)
252 253 254 255 256 257 258
     * The name {@code arg} stands for all the other method handle arguments.
     * In the code examples for the Core Reflection API, the name {@code thisOrNull}
     * stands for a null reference if the accessed method or field is static,
     * and {@code this} otherwise.
     * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
     * for reflective objects corresponding to the given members.
     * <p>
259 260 261
     * In cases where the given member is of variable arity (i.e., a method or constructor)
     * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
     * In all other cases, the returned method handle will be of fixed arity.
262 263
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
264
     * The equivalence between looked-up method handles and underlying
265 266 267
     * class members and bytecode behaviors
     * can break down in a few ways:
     * <ul style="font-size:smaller;">
268 269 270 271 272 273 274
     * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed, even when there is no equivalent
     * Java expression or bytecoded constant.
     * <li>Likewise, if {@code T} or {@code MT}
     * is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed.
     * For example, lookups for {@code MethodHandle.invokeExact} and
275
     * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
276
     * <li>If there is a security manager installed, it can forbid the lookup
277 278 279
     * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
     * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
     * constant is not subject to security manager checks.
280 281 282 283
     * <li>If the looked-up method has a
     * <a href="MethodHandle.html#maxarity">very large arity</a>,
     * the method handle creation may fail, due to the method handle
     * type having too many parameters.
284 285
     * </ul>
     *
286
     * <h1><a name="access"></a>Access checking</h1>
287 288 289
     * Access checks are applied in the factory methods of {@code Lookup},
     * when a method handle is created.
     * This is a key difference from the Core Reflection API, since
290
     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
291 292 293 294 295 296
     * performs access checking against every caller, on every call.
     * <p>
     * All access checks start from a {@code Lookup} object, which
     * compares its recorded lookup class against all requests to
     * create method handles.
     * A single {@code Lookup} object can be used to create any number
297 298 299
     * of access-checked method handles, all checked against a single
     * lookup class.
     * <p>
300 301 302 303 304 305 306
     * A {@code Lookup} object can be shared with other trusted code,
     * such as a metaobject protocol.
     * A shared {@code Lookup} object delegates the capability
     * to create method handles on private members of the lookup class.
     * Even if privileged code uses the {@code Lookup} object,
     * the access checking is confined to the privileges of the
     * original lookup class.
307
     * <p>
308
     * A lookup can fail, because
309 310
     * the containing class is not accessible to the lookup class, or
     * because the desired class member is missing, or because the
311 312
     * desired class member is not accessible to the lookup class, or
     * because the lookup object is not trusted enough to access the member.
313 314 315 316 317 318 319 320
     * In any of these cases, a {@code ReflectiveOperationException} will be
     * thrown from the attempted lookup.  The exact class will be one of
     * the following:
     * <ul>
     * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
     * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
     * <li>IllegalAccessException &mdash; if the member exists but an access check fails
     * </ul>
321
     * <p>
322
     * In general, the conditions under which a method handle may be
323 324
     * looked up for a method {@code M} are no more restrictive than the conditions
     * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
325 326 327
     * Where the JVM would raise exceptions like {@code NoSuchMethodError},
     * a method handle lookup will generally raise a corresponding
     * checked exception, such as {@code NoSuchMethodException}.
328
     * And the effect of invoking the method handle resulting from the lookup
329 330
     * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
     * to executing the compiled, verified, and resolved call to {@code M}.
331
     * The same point is true of fields and constructors.
332 333 334 335 336 337 338 339
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * Access checks only apply to named and reflected methods,
     * constructors, and fields.
     * Other method handle creation methods, such as
     * {@link MethodHandle#asType MethodHandle.asType},
     * do not require any access checks, and are used
     * independently of any {@code Lookup} object.
340
     * <p>
341 342 343 344 345 346 347 348 349 350 351 352
     * If the desired member is {@code protected}, the usual JVM rules apply,
     * including the requirement that the lookup class must be either be in the
     * same package as the desired member, or must inherit that member.
     * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
     * In addition, if the desired member is a non-static field or method
     * in a different package, the resulting method handle may only be applied
     * to objects of the lookup class or one of its subclasses.
     * This requirement is enforced by narrowing the type of the leading
     * {@code this} parameter from {@code C}
     * (which will necessarily be a superclass of the lookup class)
     * to the lookup class itself.
     * <p>
353 354 355 356 357 358
     * The JVM imposes a similar requirement on {@code invokespecial} instruction,
     * that the receiver argument must match both the resolved method <em>and</em>
     * the current class.  Again, this requirement is enforced by narrowing the
     * type of the leading parameter to the resulting method handle.
     * (See the Java Virtual Machine Specification, section 4.10.1.9.)
     * <p>
359 360 361 362 363 364
     * The JVM represents constructors and static initializer blocks as internal methods
     * with special names ({@code "<init>"} and {@code "<clinit>"}).
     * The internal syntax of invocation instructions allows them to refer to such internal
     * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
     * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
     * <p>
365
     * In some cases, access between nested classes is obtained by the Java compiler by creating
366 367
     * an wrapper method to access a private method of another class
     * in the same top-level declaration.
368
     * For example, a nested class {@code C.D}
369
     * can access private members within other related classes such as
370 371 372 373 374 375 376
     * {@code C}, {@code C.D.E}, or {@code C.B},
     * but the Java compiler may need to generate wrapper methods in
     * those related classes.  In such cases, a {@code Lookup} object on
     * {@code C.E} would be unable to those private members.
     * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
     * which can transform a lookup on {@code C.E} into one on any of those other
     * classes, without special elevation of privilege.
377
     * <p>
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
     * The accesses permitted to a given lookup object may be limited,
     * according to its set of {@link #lookupModes lookupModes},
     * to a subset of members normally accessible to the lookup class.
     * For example, the {@link MethodHandles#publicLookup publicLookup}
     * method produces a lookup object which is only allowed to access
     * public members in public classes.
     * The caller sensitive method {@link MethodHandles#lookup lookup}
     * produces a lookup object with full capabilities relative to
     * its caller class, to emulate all supported bytecode behaviors.
     * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
     * with fewer access modes than the original lookup object.
     *
     * <p style="font-size:smaller;">
     * <a name="privacc"></a>
     * <em>Discussion of private access:</em>
     * We say that a lookup has <em>private access</em>
     * if its {@linkplain #lookupModes lookup modes}
     * include the possibility of accessing {@code private} members.
     * As documented in the relevant methods elsewhere,
     * only lookups with private access possess the following capabilities:
     * <ul style="font-size:smaller;">
     * <li>access private fields, methods, and constructors of the lookup class
     * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
     *     such as {@code Class.forName}
     * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
     * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
     *     for classes accessible to the lookup class
     * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
     *     within the same package member
     * </ul>
     * <p style="font-size:smaller;">
     * Each of these permissions is a consequence of the fact that a lookup object
     * with private access can be securely traced back to an originating class,
     * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
     * can be reliably determined and emulated by method handles.
     *
     * <h1><a name="secmgr"></a>Security manager interactions</h1>
415 416 417 418 419 420 421 422 423 424 425 426 427 428
     * Although bytecode instructions can only refer to classes in
     * a related class loader, this API can search for methods in any
     * class, as long as a reference to its {@code Class} object is
     * available.  Such cross-loader references are also possible with the
     * Core Reflection API, and are impossible to bytecode instructions
     * such as {@code invokestatic} or {@code getfield}.
     * There is a {@linkplain java.lang.SecurityManager security manager API}
     * to allow applications to check such cross-loader references.
     * These checks apply to both the {@code MethodHandles.Lookup} API
     * and the Core Reflection API
     * (as found on {@link java.lang.Class Class}).
     * <p>
     * If a security manager is present, member lookups are subject to
     * additional checks.
429
     * From one to three calls are made to the security manager.
430 431 432
     * Any of these calls can refuse access by throwing a
     * {@link java.lang.SecurityException SecurityException}.
     * Define {@code smgr} as the security manager,
433
     * {@code lookc} as the lookup class of the current lookup object,
434 435 436
     * {@code refc} as the containing class in which the member
     * is being sought, and {@code defc} as the class in which the
     * member is actually defined.
437 438
     * The value {@code lookc} is defined as <em>not present</em>
     * if the current lookup object does not have
439
     * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
440 441
     * The calls are made according to the following rules:
     * <ul>
442 443
     * <li><b>Step 1:</b>
     *     If {@code lookc} is not present, or if its class loader is not
444 445 446 447
     *     the same as or an ancestor of the class loader of {@code refc},
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(refcPkg)} is called,
     *     where {@code refcPkg} is the package of {@code refc}.
448 449
     * <li><b>Step 2:</b>
     *     If the retrieved member is not public and
450 451 452
     *     {@code lookc} is not present, then
     *     {@link SecurityManager#checkPermission smgr.checkPermission}
     *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
453 454
     * <li><b>Step 3:</b>
     *     If the retrieved member is not public,
455
     *     and if {@code lookc} is not present,
456
     *     and if {@code defc} and {@code refc} are different,
457 458 459 460
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(defcPkg)} is called,
     *     where {@code defcPkg} is the package of {@code defc}.
     * </ul>
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
     * Security checks are performed after other access checks have passed.
     * Therefore, the above rules presuppose a member that is public,
     * or else that is being accessed from a lookup class that has
     * rights to access the member.
     *
     * <h1><a name="callsens"></a>Caller sensitive methods</h1>
     * A small number of Java methods have a special property called caller sensitivity.
     * A <em>caller-sensitive</em> method can behave differently depending on the
     * identity of its immediate caller.
     * <p>
     * If a method handle for a caller-sensitive method is requested,
     * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
     * but they take account of the lookup class in a special way.
     * The resulting method handle behaves as if it were called
     * from an instruction contained in the lookup class,
     * so that the caller-sensitive method detects the lookup class.
     * (By contrast, the invoker of the method handle is disregarded.)
     * Thus, in the case of caller-sensitive methods,
     * different lookup classes may give rise to
     * differently behaving method handles.
     * <p>
     * In cases where the lookup object is
     * {@link MethodHandles#publicLookup() publicLookup()},
     * or some other lookup object without
485
     * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
486 487 488 489
     * the lookup class is disregarded.
     * In such cases, no caller-sensitive method handle can be created,
     * access is forbidden, and the lookup fails with an
     * {@code IllegalAccessException}.
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * For example, the caller-sensitive method
     * {@link java.lang.Class#forName(String) Class.forName(x)}
     * can return varying classes or throw varying exceptions,
     * depending on the class loader of the class that calls it.
     * A public lookup of {@code Class.forName} will fail, because
     * there is no reasonable way to determine its bytecode behavior.
     * <p style="font-size:smaller;">
     * If an application caches method handles for broad sharing,
     * it should use {@code publicLookup()} to create them.
     * If there is a lookup of {@code Class.forName}, it will fail,
     * and the application must take appropriate action in that case.
     * It may be that a later lookup, perhaps during the invocation of a
     * bootstrap method, can incorporate the specific identity
     * of the caller, making the method accessible.
     * <p style="font-size:smaller;">
     * The function {@code MethodHandles.lookup} is caller sensitive
     * so that there can be a secure foundation for lookups.
     * Nearly all other methods in the JSR 292 API rely on lookup
     * objects to check access requests.
511 512 513
     */
    public static final
    class Lookup {
514
        /** The class on behalf of whom the lookup is being performed. */
515 516
        private final Class<?> lookupClass;

517
        /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
518 519
        private final int allowedModes;

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
        /** A single-bit mask representing {@code public} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x01}, happens to be the same as the value of the
         *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
         */
        public static final int PUBLIC = Modifier.PUBLIC;

        /** A single-bit mask representing {@code private} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x02}, happens to be the same as the value of the
         *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
         */
        public static final int PRIVATE = Modifier.PRIVATE;

        /** A single-bit mask representing {@code protected} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x04}, happens to be the same as the value of the
         *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
         */
        public static final int PROTECTED = Modifier.PROTECTED;

        /** A single-bit mask representing {@code package} access (default access),
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value is {@code 0x08}, which does not correspond meaningfully to
         *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
         */
        public static final int PACKAGE = Modifier.STATIC;

        private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
        private static final int TRUSTED   = -1;
550 551 552 553 554 555

        private static int fixmods(int mods) {
            mods &= (ALL_MODES - PACKAGE);
            return (mods != 0) ? mods : PACKAGE;
        }

556
        /** Tells which class is performing the lookup.  It is this class against
557 558
         *  which checks are performed for visibility and access permissions.
         *  <p>
559 560
         *  The class implies a maximum level of access permission,
         *  but the permissions may be additionally limited by the bitmask
561
         *  {@link #lookupModes lookupModes}, which controls whether non-public members
562
         *  can be accessed.
563
         *  @return the lookup class, on behalf of which this lookup object finds members
564 565 566 567 568
         */
        public Class<?> lookupClass() {
            return lookupClass;
        }

569 570 571 572 573
        // This is just for calling out to MethodHandleImpl.
        private Class<?> lookupClassOrNull() {
            return (allowedModes == TRUSTED) ? null : lookupClass;
        }

574
        /** Tells which access-protection classes of members this lookup object can produce.
575 576 577 578 579
         *  The result is a bit-mask of the bits
         *  {@linkplain #PUBLIC PUBLIC (0x01)},
         *  {@linkplain #PRIVATE PRIVATE (0x02)},
         *  {@linkplain #PROTECTED PROTECTED (0x04)},
         *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
580 581
         *  <p>
         *  A freshly-created lookup object
582
         *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
583 584
         *  has all possible bits set, since the caller class can access all its own members.
         *  A lookup object on a new lookup class
585
         *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
586 587 588 589
         *  may have some mode bits set to zero.
         *  The purpose of this is to restrict access via the new lookup object,
         *  so that it can access only names which can be reached by the original
         *  lookup object, and also by the new lookup class.
590
         *  @return the lookup modes, which limit the kinds of access performed by this lookup object
591
         */
592
        public int lookupModes() {
593 594 595
            return allowedModes & ALL_MODES;
        }

596 597 598 599 600
        /** Embody the current class (the lookupClass) as a lookup class
         * for method handle creation.
         * Must be called by from a method in this package,
         * which in turn is called by a method not in this package.
         */
601
        Lookup(Class<?> lookupClass) {
602
            this(lookupClass, ALL_MODES);
603
            // make sure we haven't accidentally picked up a privileged class:
604
            checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
605 606 607
        }

        private Lookup(Class<?> lookupClass, int allowedModes) {
608
            this.lookupClass = lookupClass;
609
            this.allowedModes = allowedModes;
610 611 612
        }

        /**
613
         * Creates a lookup on the specified new lookup class.
614
         * The resulting object will report the specified
615
         * class as its own {@link #lookupClass lookupClass}.
616 617 618
         * <p>
         * However, the resulting {@code Lookup} object is guaranteed
         * to have no more access capabilities than the original.
619
         * In particular, access capabilities can be lost as follows:<ul>
620 621
         * <li>If the new lookup class differs from the old one,
         * protected members will not be accessible by virtue of inheritance.
622
         * (Protected members may continue to be accessible because of package sharing.)
623 624 625 626
         * <li>If the new lookup class is in a different package
         * than the old one, protected and default (package) members will not be accessible.
         * <li>If the new lookup class is not within the same package member
         * as the old one, private members will not be accessible.
627 628 629
         * <li>If the new lookup class is not accessible to the old lookup class,
         * then no members, not even public members, will be accessible.
         * (In all other cases, public members will continue to be accessible.)
630
         * </ul>
631 632 633 634
         *
         * @param requestedLookupClass the desired lookup class for the new lookup object
         * @return a lookup object which reports the desired lookup class
         * @throws NullPointerException if the argument is null
635
         */
636 637 638 639 640 641 642 643 644 645
        public Lookup in(Class<?> requestedLookupClass) {
            requestedLookupClass.getClass();  // null check
            if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
                return new Lookup(requestedLookupClass, ALL_MODES);
            if (requestedLookupClass == this.lookupClass)
                return this;  // keep same capabilities
            int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
            if ((newModes & PACKAGE) != 0
                && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
                newModes &= ~(PACKAGE|PRIVATE);
646
            }
647
            // Allow nestmate lookups to be created without special privilege:
648 649 650 651
            if ((newModes & PRIVATE) != 0
                && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
                newModes &= ~PRIVATE;
            }
652 653
            if ((newModes & PUBLIC) != 0
                && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
654 655 656 657
                // The requested class it not accessible from the lookup class.
                // No permissions.
                newModes = 0;
            }
658
            checkUnprivilegedlookupClass(requestedLookupClass, newModes);
659
            return new Lookup(requestedLookupClass, newModes);
660 661
        }

662
        // Make sure outer class is initialized first.
663
        static { IMPL_NAMES.getClass(); }
664

665 666 667 668
        /** Version of lookup which is trusted minimally.
         *  It can only be used to create method handles to
         *  publicly accessible members.
         */
669
        static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
670 671

        /** Package-private version of lookup which is trusted. */
672
        static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
673

674
        private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
675
            String name = lookupClass.getName();
676
            if (name.startsWith("java.lang.invoke."))
677
                throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
678 679 680 681 682 683 684 685 686

            // For caller-sensitive MethodHandles.lookup()
            // disallow lookup more restricted packages
            if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) {
                if (name.startsWith("java.") ||
                        (name.startsWith("sun.") && !name.startsWith("sun.invoke."))) {
                    throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
                }
            }
687 688
        }

689
        /**
690
         * Displays the name of the class from which lookups are to be made.
691 692 693
         * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
         * If there are restrictions on the access permitted to this lookup,
         * this is indicated by adding a suffix to the class name, consisting
694 695
         * of a slash and a keyword.  The keyword represents the strongest
         * allowed access, and is chosen as follows:
696 697 698 699 700 701 702 703 704 705
         * <ul>
         * <li>If no access is allowed, the suffix is "/noaccess".
         * <li>If only public access is allowed, the suffix is "/public".
         * <li>If only public and package access are allowed, the suffix is "/package".
         * <li>If only public, package, and private access are allowed, the suffix is "/private".
         * </ul>
         * If none of the above cases apply, it is the case that full
         * access (public, package, private, and protected) is allowed.
         * In this case, no suffix is added.
         * This is true only of an object obtained originally from
706 707
         * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
         * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
708
         * always have restricted access, and will display a suffix.
709 710 711 712 713 714 715
         * <p>
         * (It may seem strange that protected access should be
         * stronger than private access.  Viewed independently from
         * package access, protected access is the first to be lost,
         * because it requires a direct subclass relationship between
         * caller and callee.)
         * @see #in
716
         */
717 718
        @Override
        public String toString() {
719 720
            String cname = lookupClass.getName();
            switch (allowedModes) {
721 722
            case 0:  // no privileges
                return cname + "/noaccess";
723
            case PUBLIC:
724
                return cname + "/public";
725 726
            case PUBLIC|PACKAGE:
                return cname + "/package";
727 728
            case ALL_MODES & ~PROTECTED:
                return cname + "/private";
729 730
            case ALL_MODES:
                return cname;
731 732 733 734 735 736
            case TRUSTED:
                return "/trusted";  // internal only; not exported
            default:  // Should not happen, but it's a bitfield...
                cname = cname + "/" + Integer.toHexString(allowedModes);
                assert(false) : cname;
                return cname;
737
            }
738 739 740
        }

        /**
741
         * Produces a method handle for a static method.
742
         * The type of the method handle will be that of the method.
743 744
         * (Since static methods do not take receivers, there is no
         * additional receiver argument inserted into the method handle type,
745
         * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
746
         * The method and all its argument types must be accessible to the lookup object.
747 748 749 750
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
751 752 753 754
         * <p>
         * If the returned method handle is invoked, the method's class will
         * be initialized, if it has not already been initialized.
         * <p><b>Example:</b>
755
         * <blockquote><pre>{@code
756 757 758 759 760 761 762
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
  "asList", methodType(List.class, Object[].class));
assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
         * }</pre></blockquote>
763
         * @param refc the class from which the method is accessed
764 765 766
         * @param name the name of the method
         * @param type the type of the method
         * @return the desired method handle
767
         * @throws NoSuchMethodException if the method does not exist
768 769 770 771
         * @throws IllegalAccessException if access checking fails,
         *                                or if the method is not {@code static},
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
772 773
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
774
         * @throws NullPointerException if any argument is null
775 776
         */
        public
777
        MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
778
            MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
779
            return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
780
        }
781 782

        /**
783
         * Produces a method handle for a virtual method.
784
         * The type of the method handle will be that of the method,
785
         * with the receiver type (usually {@code refc}) prepended.
786
         * The method and all its argument types must be accessible to the lookup object.
787 788 789 790 791 792
         * <p>
         * When called, the handle will treat the first argument as a receiver
         * and dispatch on the receiver's type to determine which method
         * implementation to enter.
         * (The dispatching action is identical with that performed by an
         * {@code invokevirtual} or {@code invokeinterface} instruction.)
793
         * <p>
794 795 796 797 798
         * The first argument will be of type {@code refc} if the lookup
         * class has full privileges to access the member.  Otherwise
         * the member must be {@code protected} and the first argument
         * will be restricted in type to the lookup class.
         * <p>
799 800 801
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
802
         * <p>
803
         * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
804 805
         * instructions and method handles produced by {@code findVirtual},
         * if the class is {@code MethodHandle} and the name string is
806
         * {@code invokeExact} or {@code invoke}, the resulting
807
         * method handle is equivalent to one produced by
808
         * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
809
         * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
810 811
         * with the same {@code type} argument.
         *
812
         * <b>Example:</b>
813
         * <blockquote><pre>{@code
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_concat = publicLookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
  "hashCode", methodType(int.class));
MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
  "hashCode", methodType(int.class));
assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
// interface method:
MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
  "subSequence", methodType(CharSequence.class, int.class, int.class));
assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
// constructor "internal method" must be accessed differently:
MethodType MT_newString = methodType(void.class); //()V for new String()
try { assertEquals("impossible", lookup()
        .findVirtual(String.class, "<init>", MT_newString));
 } catch (NoSuchMethodException ex) { } // OK
MethodHandle MH_newString = publicLookup()
  .findConstructor(String.class, MT_newString);
assertEquals("", (String) MH_newString.invokeExact());
         * }</pre></blockquote>
         *
840
         * @param refc the class or interface from which the method is accessed
841 842 843
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
844
         * @throws NoSuchMethodException if the method does not exist
845 846 847 848
         * @throws IllegalAccessException if access checking fails,
         *                                or if the method is {@code static}
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
849 850
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
851
         * @throws NullPointerException if any argument is null
852
         */
853
        public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
854 855 856 857 858 859
            if (refc == MethodHandle.class) {
                MethodHandle mh = findVirtualForMH(name, type);
                if (mh != null)  return mh;
            }
            byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
            MemberName method = resolveOrFail(refKind, refc, name, type);
860
            return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
861
        }
862 863 864 865 866 867
        private MethodHandle findVirtualForMH(String name, MethodType type) {
            // these names require special lookups because of the implicit MethodType argument
            if ("invoke".equals(name))
                return invoker(type);
            if ("invokeExact".equals(name))
                return exactInvoker(type);
868 869
            if ("invokeBasic".equals(name))
                return basicInvoker(type);
R
rfield 已提交
870
            assert(!MemberName.isMethodHandleInvokeName(name));
871
            return null;
872 873 874
        }

        /**
875
         * Produces a method handle which creates an object and initializes it, using
876 877 878
         * the constructor of the specified type.
         * The parameter types of the method handle will be those of the constructor,
         * while the return type will be a reference to the constructor's class.
879
         * The constructor and all its argument types must be accessible to the lookup object.
880
         * <p>
881 882
         * The requested type must have a return type of {@code void}.
         * (This is consistent with the JVM's treatment of constructor type descriptors.)
883 884 885 886
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
887 888 889
         * <p>
         * If the returned method handle is invoked, the constructor's class will
         * be initialized, if it has not already been initialized.
890
         * <p><b>Example:</b>
891
         * <blockquote><pre>{@code
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_newArrayList = publicLookup().findConstructor(
  ArrayList.class, methodType(void.class, Collection.class));
Collection orig = Arrays.asList("x", "y");
Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
assert(orig != copy);
assertEquals(orig, copy);
// a variable-arity constructor:
MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
  ProcessBuilder.class, methodType(void.class, String[].class));
ProcessBuilder pb = (ProcessBuilder)
  MH_newProcessBuilder.invoke("x", "y", "z");
assertEquals("[x, y, z]", pb.command().toString());
         * }</pre></blockquote>
908 909 910
         * @param refc the class or interface from which the method is accessed
         * @param type the type of the method, with the receiver argument omitted, and a void return type
         * @return the desired method handle
911 912
         * @throws NoSuchMethodException if the constructor does not exist
         * @throws IllegalAccessException if access checking fails
913 914
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
915 916
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
917
         * @throws NullPointerException if any argument is null
918
         */
919
        public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
920
            String name = "<init>";
921 922
            MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
            return getDirectConstructor(refc, ctor);
923 924 925
        }

        /**
926 927 928 929
         * Produces an early-bound method handle for a virtual method.
         * It will bypass checks for overriding methods on the receiver,
         * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
         * instruction from within the explicitly specified {@code specialCaller}.
930
         * The type of the method handle will be that of the method,
931 932
         * with a suitably restricted receiver type prepended.
         * (The receiver type will be {@code specialCaller} or a subtype.)
933
         * The method and all its argument types must be accessible
934
         * to the lookup object.
935
         * <p>
936 937 938 939
         * Before method resolution,
         * if the explicitly specified caller class is not identical with the
         * lookup class, or if this lookup object does not have
         * <a href="MethodHandles.Lookup.html#privacc">private access</a>
940
         * privileges, the access fails.
941 942 943 944
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
945
         * <p style="font-size:smaller;">
946 947 948 949 950
         * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
         * even though the {@code invokespecial} instruction can refer to them
         * in special circumstances.  Use {@link #findConstructor findConstructor}
         * to access instance initialization methods in a safe manner.)</em>
         * <p><b>Example:</b>
951
         * <blockquote><pre>{@code
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
static class Listie extends ArrayList {
  public String toString() { return "[wee Listie]"; }
  static Lookup lookup() { return MethodHandles.lookup(); }
}
...
// no access to constructor via invokeSpecial:
MethodHandle MH_newListie = Listie.lookup()
  .findConstructor(Listie.class, methodType(void.class));
Listie l = (Listie) MH_newListie.invokeExact();
try { assertEquals("impossible", Listie.lookup().findSpecial(
        Listie.class, "<init>", methodType(void.class), Listie.class));
 } catch (NoSuchMethodException ex) { } // OK
// access to super and self methods via invokeSpecial:
MethodHandle MH_super = Listie.lookup().findSpecial(
  ArrayList.class, "toString" , methodType(String.class), Listie.class);
MethodHandle MH_this = Listie.lookup().findSpecial(
  Listie.class, "toString" , methodType(String.class), Listie.class);
MethodHandle MH_duper = Listie.lookup().findSpecial(
  Object.class, "toString" , methodType(String.class), Listie.class);
assertEquals("[]", (String) MH_super.invokeExact(l));
assertEquals(""+l, (String) MH_this.invokeExact(l));
assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
try { assertEquals("inaccessible", Listie.lookup().findSpecial(
        String.class, "toString", methodType(String.class), Listie.class));
 } catch (IllegalAccessException ex) { } // OK
Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
         * }</pre></blockquote>
         *
984 985
         * @param refc the class or interface from which the method is accessed
         * @param name the name of the method (which must not be "&lt;init&gt;")
986 987 988
         * @param type the type of the method, with the receiver argument omitted
         * @param specialCaller the proposed calling class to perform the {@code invokespecial}
         * @return the desired method handle
989 990
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
991 992
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
993 994
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
995
         * @throws NullPointerException if any argument is null
996
         */
997
        public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
998
                                        Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
999
            checkSpecialCaller(specialCaller);
1000 1001
            Lookup specialLookup = this.in(specialCaller);
            MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1002
            return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1003
        }
1004 1005

        /**
1006
         * Produces a method handle giving read access to a non-static field.
1007 1008
         * The type of the method handle will have a return type of the field's
         * value type.
1009
         * The method handle's single argument will be the instance containing
1010 1011
         * the field.
         * Access checking is performed immediately on behalf of the lookup class.
1012
         * @param refc the class or interface from which the method is accessed
1013 1014 1015
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
1016 1017
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1018 1019
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1020
         * @throws NullPointerException if any argument is null
1021
         */
1022
        public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1023 1024
            MemberName field = resolveOrFail(REF_getField, refc, name, type);
            return getDirectField(REF_getField, refc, field);
1025
        }
1026 1027

        /**
1028
         * Produces a method handle giving write access to a non-static field.
1029
         * The type of the method handle will have a void return type.
1030
         * The method handle will take two arguments, the instance containing
1031
         * the field, and the value to be stored.
1032 1033
         * The second argument will be of the field's value type.
         * Access checking is performed immediately on behalf of the lookup class.
1034
         * @param refc the class or interface from which the method is accessed
1035 1036 1037
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can store values into the field
1038 1039
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1040 1041
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1042
         * @throws NullPointerException if any argument is null
1043
         */
1044
        public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1045 1046
            MemberName field = resolveOrFail(REF_putField, refc, name, type);
            return getDirectField(REF_putField, refc, field);
1047
        }
1048 1049

        /**
1050
         * Produces a method handle giving read access to a static field.
1051 1052 1053 1054
         * The type of the method handle will have a return type of the field's
         * value type.
         * The method handle will take no arguments.
         * Access checking is performed immediately on behalf of the lookup class.
1055 1056 1057
         * <p>
         * If the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1058
         * @param refc the class or interface from which the method is accessed
1059 1060 1061
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
1062 1063
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1064 1065
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1066
         * @throws NullPointerException if any argument is null
1067
         */
1068
        public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1069 1070
            MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
            return getDirectField(REF_getStatic, refc, field);
1071
        }
1072 1073

        /**
1074
         * Produces a method handle giving write access to a static field.
1075 1076 1077
         * The type of the method handle will have a void return type.
         * The method handle will take a single
         * argument, of the field's value type, the value to be stored.
1078
         * Access checking is performed immediately on behalf of the lookup class.
1079 1080 1081
         * <p>
         * If the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1082
         * @param refc the class or interface from which the method is accessed
1083 1084
         * @param name the field's name
         * @param type the field's type
1085
         * @return a method handle which can store values into the field
1086 1087
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1088 1089
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1090
         * @throws NullPointerException if any argument is null
1091
         */
1092
        public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1093 1094
            MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
            return getDirectField(REF_putStatic, refc, field);
1095
        }
1096 1097

        /**
1098
         * Produces an early-bound method handle for a non-static method.
1099 1100
         * The receiver must have a supertype {@code defc} in which a method
         * of the given name and type is accessible to the lookup class.
1101
         * The method and all its argument types must be accessible to the lookup object.
1102 1103 1104 1105 1106
         * The type of the method handle will be that of the method,
         * without any insertion of an additional receiver parameter.
         * The given receiver will be bound into the method handle,
         * so that every call to the method handle will invoke the
         * requested method on the given receiver.
1107
         * <p>
1108 1109 1110 1111 1112 1113 1114 1115
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set
         * <em>and</em> the trailing array argument is not the only argument.
         * (If the trailing array argument is the only argument,
         * the given receiver value will be bound to it.)
         * <p>
         * This is equivalent to the following code:
1116
         * <blockquote><pre>{@code
1117 1118 1119
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
1120 1121
MethodHandle mh0 = lookup().findVirtual(defc, name, type);
MethodHandle mh1 = mh0.bindTo(receiver);
1122
MethodType mt1 = mh1.type();
1123
if (mh0.isVarargsCollector())
1124 1125
  mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
return mh1;
1126
         * }</pre></blockquote>
1127 1128 1129
         * where {@code defc} is either {@code receiver.getClass()} or a super
         * type of that class, in which the requested method is accessible
         * to the lookup class.
1130
         * (Note that {@code bindTo} does not preserve variable arity.)
1131 1132 1133 1134
         * @param receiver the object from which the method is accessed
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
1135 1136
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
1137 1138
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1139 1140
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1141
         * @throws NullPointerException if any argument is null
1142 1143
         * @see MethodHandle#bindTo
         * @see #findVirtual
1144
         */
1145
        public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1146
            Class<? extends Object> refc = receiver.getClass(); // may get NPE
1147
            MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1148
            MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1149
            return mh.bindArgumentL(0, receiver).setVarargs(method);
1150 1151 1152
        }

        /**
1153 1154
         * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
         * to <i>m</i>, if the lookup class has permission.
1155 1156 1157 1158 1159 1160 1161 1162
         * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
         * If <i>m</i> is virtual, overriding is respected on every call.
         * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
         * The type of the method handle will be that of the method,
         * with the receiver type prepended (but only if it is non-static).
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class.
         * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1163 1164 1165 1166
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
1167 1168 1169 1170
         * <p>
         * If <i>m</i> is static, and
         * if the returned method handle is invoked, the method's class will
         * be initialized, if it has not already been initialized.
1171 1172
         * @param m the reflected method
         * @return a method handle which can invoke the reflected method
1173
         * @throws IllegalAccessException if access checking fails
1174 1175
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1176
         * @throws NullPointerException if the argument is null
1177
         */
1178
        public MethodHandle unreflect(Method m) throws IllegalAccessException {
R
rfield 已提交
1179 1180 1181 1182
            if (m.getDeclaringClass() == MethodHandle.class) {
                MethodHandle mh = unreflectForMH(m);
                if (mh != null)  return mh;
            }
1183
            MemberName method = new MemberName(m);
1184 1185 1186
            byte refKind = method.getReferenceKind();
            if (refKind == REF_invokeSpecial)
                refKind = REF_invokeVirtual;
1187
            assert(method.isMethod());
1188
            Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1189
            return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1190
        }
R
rfield 已提交
1191 1192 1193 1194 1195 1196
        private MethodHandle unreflectForMH(Method m) {
            // these names require special lookups because they throw UnsupportedOperationException
            if (MemberName.isMethodHandleInvokeName(m.getName()))
                return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
            return null;
        }
1197 1198

        /**
1199
         * Produces a method handle for a reflected method.
1200
         * It will bypass checks for overriding methods on the receiver,
1201 1202
         * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
         * instruction from within the explicitly specified {@code specialCaller}.
1203
         * The type of the method handle will be that of the method,
1204 1205
         * with a suitably restricted receiver type prepended.
         * (The receiver type will be {@code specialCaller} or a subtype.)
1206 1207 1208
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class,
         * as if {@code invokespecial} instruction were being linked.
1209
         * <p>
1210 1211 1212 1213 1214 1215
         * Before method resolution,
         * if the explicitly specified caller class is not identical with the
         * lookup class, or if this lookup object does not have
         * <a href="MethodHandles.Lookup.html#privacc">private access</a>
         * privileges, the access fails.
         * <p>
1216 1217 1218
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
1219
         * @param m the reflected method
1220
         * @param specialCaller the class nominally calling the method
1221
         * @return a method handle which can invoke the reflected method
1222
         * @throws IllegalAccessException if access checking fails
1223 1224
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1225
         * @throws NullPointerException if any argument is null
1226
         */
1227
        public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1228
            checkSpecialCaller(specialCaller);
1229 1230
            Lookup specialLookup = this.in(specialCaller);
            MemberName method = new MemberName(m, true);
1231 1232
            assert(method.isMethod());
            // ignore m.isAccessible:  this is a new kind of access
1233
            return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1234 1235 1236
        }

        /**
1237
         * Produces a method handle for a reflected constructor.
1238 1239
         * The type of the method handle will be that of the constructor,
         * with the return type changed to the declaring class.
1240 1241 1242 1243 1244
         * The method handle will perform a {@code newInstance} operation,
         * creating a new instance of the constructor's class on the
         * arguments passed to the method handle.
         * <p>
         * If the constructor's {@code accessible} flag is not set,
1245
         * access checking is performed immediately on behalf of the lookup class.
1246 1247 1248 1249
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1250 1251 1252
         * <p>
         * If the returned method handle is invoked, the constructor's class will
         * be initialized, if it has not already been initialized.
1253
         * @param c the reflected constructor
1254
         * @return a method handle which can invoke the reflected constructor
1255
         * @throws IllegalAccessException if access checking fails
1256 1257
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1258
         * @throws NullPointerException if the argument is null
1259
         */
1260
        public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1261 1262
            MemberName ctor = new MemberName(c);
            assert(ctor.isConstructor());
1263
            Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1264
            return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1265 1266 1267
        }

        /**
1268
         * Produces a method handle giving read access to a reflected field.
1269
         * The type of the method handle will have a return type of the field's
1270 1271 1272 1273
         * value type.
         * If the field is static, the method handle will take no arguments.
         * Otherwise, its single argument will be the instance containing
         * the field.
1274
         * If the field's {@code accessible} flag is not set,
1275
         * access checking is performed immediately on behalf of the lookup class.
1276 1277 1278 1279
         * <p>
         * If the field is static, and
         * if the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1280 1281
         * @param f the reflected field
         * @return a method handle which can load values from the reflected field
1282 1283
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
1284
         */
1285
        public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1286 1287 1288 1289 1290 1291 1292 1293
            return unreflectField(f, false);
        }
        private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
            MemberName field = new MemberName(f, isSetter);
            assert(isSetter
                    ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
                    : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
            Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1294
            return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1295 1296 1297
        }

        /**
1298
         * Produces a method handle giving write access to a reflected field.
1299
         * The type of the method handle will have a void return type.
1300 1301 1302 1303
         * If the field is static, the method handle will take a single
         * argument, of the field's value type, the value to be stored.
         * Otherwise, the two arguments will be the instance containing
         * the field, and the value to be stored.
1304
         * If the field's {@code accessible} flag is not set,
1305
         * access checking is performed immediately on behalf of the lookup class.
1306 1307 1308 1309
         * <p>
         * If the field is static, and
         * if the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1310 1311
         * @param f the reflected field
         * @return a method handle which can store values into the reflected field
1312 1313
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
1314
         */
1315
        public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1316
            return unreflectField(f, true);
1317 1318
        }

R
rfield 已提交
1319
        /**
1320 1321
         * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
         * created by this lookup object or a similar one.
R
rfield 已提交
1322 1323 1324 1325
         * Security and access checks are performed to ensure that this lookup object
         * is capable of reproducing the target method handle.
         * This means that the cracking may fail if target is a direct method handle
         * but was created by an unrelated lookup object.
1326 1327
         * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
         * and was created by a lookup object for a different class.
R
rfield 已提交
1328 1329 1330 1331 1332 1333
         * @param target a direct method handle to crack into symbolic reference components
         * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
         * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
         * @exception NullPointerException if the target is {@code null}
1334
         * @see MethodHandleInfo
R
rfield 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
         * @since 1.8
         */
        public MethodHandleInfo revealDirect(MethodHandle target) {
            MemberName member = target.internalMemberName();
            if (member == null || (!member.isResolved() && !member.isMethodHandleInvoke()))
                throw newIllegalArgumentException("not a direct method handle");
            Class<?> defc = member.getDeclaringClass();
            byte refKind = member.getReferenceKind();
            assert(MethodHandleNatives.refKindIsValid(refKind));
            if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
                // Devirtualized method invocation is usually formally virtual.
                // To avoid creating extra MemberName objects for this common case,
                // we encode this extra degree of freedom using MH.isInvokeSpecial.
                refKind = REF_invokeVirtual;
            if (refKind == REF_invokeVirtual && defc.isInterface())
                // Symbolic reference is through interface but resolves to Object method (toString, etc.)
                refKind = REF_invokeInterface;
            // Check SM permissions and member access before cracking.
            try {
                checkAccess(refKind, defc, member);
1355
                checkSecurityManager(defc, member);
R
rfield 已提交
1356 1357 1358
            } catch (IllegalAccessException ex) {
                throw new IllegalArgumentException(ex);
            }
1359 1360 1361 1362 1363
            if (allowedModes != TRUSTED && member.isCallerSensitive()) {
                Class<?> callerClass = target.internalCallerClass();
                if (!hasPrivateAccess() || callerClass != lookupClass())
                    throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
            }
R
rfield 已提交
1364 1365 1366 1367
            // Produce the handle to the results.
            return new InfoFromMemberName(this, member, refKind);
        }

1368
        /// Helper methods, all package-private.
1369

1370
        MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1371
            checkSymbolicClass(refc);  // do this before attempting to resolve
1372 1373
            name.getClass();  // NPE
            type.getClass();  // NPE
1374
            return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1375
                                            NoSuchFieldException.class);
1376
        }
1377

1378
        MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1379
            checkSymbolicClass(refc);  // do this before attempting to resolve
1380 1381
            name.getClass();  // NPE
            type.getClass();  // NPE
1382
            checkMethodName(refKind, name);  // NPE check on name
1383
            return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1384
                                            NoSuchMethodException.class);
1385
        }
1386

1387 1388 1389 1390 1391 1392 1393 1394
        MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
            checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
            member.getName().getClass();  // NPE
            member.getType().getClass();  // NPE
            return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
                                            ReflectiveOperationException.class);
        }

1395
        void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1396
            refc.getClass();  // NPE
1397
            Class<?> caller = lookupClassOrNull();
1398
            if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
1399
                throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this);
1400 1401
        }

1402
        /** Check name for an illegal leading "&lt;" character. */
1403 1404 1405 1406 1407 1408
        void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
            if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
                throw new NoSuchMethodException("illegal method name: "+name);
        }


1409 1410 1411
        /**
         * Find my trustable caller class if m is a caller sensitive method.
         * If this lookup object has private access, then the caller class is the lookupClass.
1412
         * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
1413
         */
1414
        Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
1415 1416
            Class<?> callerClass = null;
            if (MethodHandleNatives.isCallerSensitive(m)) {
1417 1418
                // Only lookups with private access are allowed to resolve caller-sensitive methods
                if (hasPrivateAccess()) {
1419 1420 1421 1422
                    callerClass = lookupClass;
                } else {
                    throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
                }
1423 1424 1425
            }
            return callerClass;
        }
1426

1427
        private boolean hasPrivateAccess() {
1428 1429 1430
            return (allowedModes & PRIVATE) != 0;
        }

1431 1432
        /**
         * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
1433 1434
         * Determines a trustable caller class to compare with refc, the symbolic reference class.
         * If this lookup object has private access, then the caller class is the lookupClass.
1435
         */
1436
        void checkSecurityManager(Class<?> refc, MemberName m) {
1437 1438 1439
            SecurityManager smgr = System.getSecurityManager();
            if (smgr == null)  return;
            if (allowedModes == TRUSTED)  return;
1440

1441
            // Step 1:
1442 1443
            boolean fullPowerLookup = hasPrivateAccess();
            if (!fullPowerLookup ||
1444 1445 1446
                !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
                ReflectUtil.checkPackageAccess(refc);
            }
1447

1448
            // Step 2:
1449
            if (m.isPublic()) return;
1450 1451
            if (!fullPowerLookup) {
                smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
1452 1453
            }

1454
            // Step 3:
1455 1456
            Class<?> defc = m.getDeclaringClass();
            if (!fullPowerLookup && defc != refc) {
1457 1458
                ReflectUtil.checkPackageAccess(defc);
            }
1459 1460
        }

1461 1462
        void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            boolean wantStatic = (refKind == REF_invokeStatic);
1463 1464 1465 1466 1467 1468 1469 1470
            String message;
            if (m.isConstructor())
                message = "expected a method, not a constructor";
            else if (!m.isMethod())
                message = "expected a method";
            else if (wantStatic != m.isStatic())
                message = wantStatic ? "expected a static method" : "expected a non-static method";
            else
1471
                { checkAccess(refKind, refc, m); return; }
1472
            throw m.makeAccessException(message, this);
1473 1474
        }

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
        void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
            String message;
            if (wantStatic != m.isStatic())
                message = wantStatic ? "expected a static field" : "expected a non-static field";
            else
                { checkAccess(refKind, refc, m); return; }
            throw m.makeAccessException(message, this);
        }

1485
        /** Check public/protected/private bits on the symbolic reference class and its member. */
1486 1487 1488 1489
        void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            assert(m.referenceKindIsConsistentWith(refKind) &&
                   MethodHandleNatives.refKindIsValid(refKind) &&
                   (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
1490 1491 1492
            int allowedModes = this.allowedModes;
            if (allowedModes == TRUSTED)  return;
            int mods = m.getModifiers();
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
            if (Modifier.isProtected(mods) &&
                    refKind == REF_invokeVirtual &&
                    m.getDeclaringClass() == Object.class &&
                    m.getName().equals("clone") &&
                    refc.isArray()) {
                // The JVM does this hack also.
                // (See ClassVerifier::verify_invoke_instructions
                // and LinkResolver::check_method_accessability.)
                // Because the JVM does not allow separate methods on array types,
                // there is no separate method for int[].clone.
                // All arrays simply inherit Object.clone.
                // But for access checking logic, we make Object.clone
                // (normally protected) appear to be public.
                // Later on, when the DirectMethodHandle is created,
                // its leading argument will be restricted to the
                // requested array type.
                // N.B. The return type is not adjusted, because
                // that is *not* the bytecode behavior.
                mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
            }
1513 1514 1515 1516
            if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
                // cannot "new" a protected ctor in a different package
                mods ^= Modifier.PROTECTED;
            }
1517 1518 1519
            if (Modifier.isFinal(mods) &&
                    MethodHandleNatives.refKindIsSetter(refKind))
                throw m.makeAccessException("unexpected set of a final field", this);
1520
            if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
1521 1522
                return;  // common case
            int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
1523 1524 1525 1526 1527
            if ((requestedModes & allowedModes) != 0) {
                if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
                                                    mods, lookupClass(), allowedModes))
                    return;
            } else {
1528
                // Protected members can also be checked as if they were package-private.
1529 1530 1531 1532
                if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
                        && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
                    return;
            }
1533
            throw m.makeAccessException(accessFailedMessage(refc, m), this);
1534 1535 1536 1537 1538
        }

        String accessFailedMessage(Class<?> refc, MemberName m) {
            Class<?> defc = m.getDeclaringClass();
            int mods = m.getModifiers();
1539 1540 1541 1542 1543
            // check the class first:
            boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
                               (defc == refc ||
                                Modifier.isPublic(refc.getModifiers())));
            if (!classOK && (allowedModes & PACKAGE) != 0) {
1544
                classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
1545
                           (defc == refc ||
1546
                            VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
1547 1548
            }
            if (!classOK)
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
                return "class is not public";
            if (Modifier.isPublic(mods))
                return "access to public member failed";  // (how?)
            if (Modifier.isPrivate(mods))
                return "member is private";
            if (Modifier.isProtected(mods))
                return "member is protected";
            return "member is private to package";
        }

1559 1560
        private static final boolean ALLOW_NESTMATE_ACCESS = false;

1561 1562
        private void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
            int allowedModes = this.allowedModes;
1563
            if (allowedModes == TRUSTED)  return;
1564
            if (!hasPrivateAccess()
1565 1566 1567
                || (specialCaller != lookupClass()
                    && !(ALLOW_NESTMATE_ACCESS &&
                         VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
1568 1569
                throw new MemberName(specialCaller).
                    makeAccessException("no private access for invokespecial", this);
1570 1571
        }

1572
        private boolean restrictProtectedReceiver(MemberName method) {
1573 1574 1575 1576
            // The accessing class only has the right to use a protected member
            // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
            if (!method.isProtected() || method.isStatic()
                || allowedModes == TRUSTED
1577
                || method.getDeclaringClass() == lookupClass()
1578
                || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
1579 1580
                || (ALLOW_NESTMATE_ACCESS &&
                    VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
1581 1582
                return false;
            return true;
1583
        }
1584
        private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
1585
            assert(!method.isStatic());
1586 1587
            // receiver type of mh is too wide; narrow to caller
            if (!method.getDeclaringClass().isAssignableFrom(caller)) {
1588
                throw method.makeAccessException("caller class must be a subclass below the method", caller);
1589
            }
1590 1591 1592
            MethodType rawType = mh.type();
            if (rawType.parameterType(0) == caller)  return mh;
            MethodType narrowType = rawType.changeParameterType(0, caller);
1593 1594 1595
            assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
            assert(mh.viewAsTypeChecks(narrowType, true));
            return mh.copyWith(narrowType, mh.form);
1596 1597
        }

1598
        /** Check access and get the requested method. */
1599
        private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1600 1601 1602
            final boolean doRestrict    = true;
            final boolean checkSecurity = true;
            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1603
        }
1604
        /** Check access and get the requested method, eliding receiver narrowing rules. */
1605
        private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1606 1607 1608 1609 1610 1611 1612 1613 1614
            final boolean doRestrict    = false;
            final boolean checkSecurity = true;
            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
        }
        /** Check access and get the requested method, eliding security manager checks. */
        private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
            final boolean doRestrict    = true;
            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1615
        }
1616
        /** Common code for all methods; do not call directly except from immediately above. */
1617
        private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
1618
                                                   boolean checkSecurity,
1619
                                                   boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
1620
            checkMethod(refKind, refc, method);
1621 1622 1623
            // Optionally check with the security manager; this isn't needed for unreflect* calls.
            if (checkSecurity)
                checkSecurityManager(refc, method);
R
rfield 已提交
1624
            assert(!method.isMethodHandleInvoke());
1625 1626 1627

            if (refKind == REF_invokeSpecial &&
                refc != lookupClass() &&
R
rfield 已提交
1628
                !refc.isInterface() &&
1629
                refc != lookupClass().getSuperclass() &&
1630 1631 1632 1633 1634
                refc.isAssignableFrom(lookupClass())) {
                assert(!method.getName().equals("<init>"));  // not this code path
                // Per JVMS 6.5, desc. of invokespecial instruction:
                // If the method is in a superclass of the LC,
                // and if our original search was above LC.super,
1635 1636 1637
                // repeat the search (symbolic lookup) from LC.super
                // and continue with the direct superclass of that class,
                // and so forth, until a match is found or no further superclasses exist.
1638
                // FIXME: MemberName.resolve should handle this instead.
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
                Class<?> refcAsSuper = lookupClass();
                MemberName m2;
                do {
                    refcAsSuper = refcAsSuper.getSuperclass();
                    m2 = new MemberName(refcAsSuper,
                                        method.getName(),
                                        method.getMethodType(),
                                        REF_invokeSpecial);
                    m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
                } while (m2 == null &&         // no method is found yet
                         refc != refcAsSuper); // search up to refc
1650 1651 1652 1653 1654 1655 1656
                if (m2 == null)  throw new InternalError(method.toString());
                method = m2;
                refc = refcAsSuper;
                // redo basic checks
                checkMethod(refKind, refc, method);
            }

1657 1658
            DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method);
            MethodHandle mh = dmh;
1659 1660 1661 1662
            // Optionally narrow the receiver argument to refc using restrictReceiver.
            if (doRestrict &&
                   (refKind == REF_invokeSpecial ||
                       (MethodHandleNatives.refKindHasReceiver(refKind) &&
1663 1664 1665 1666 1667
                           restrictProtectedReceiver(method)))) {
                mh = restrictReceiver(method, dmh, lookupClass());
            }
            mh = maybeBindCaller(method, mh, callerClass);
            mh = mh.setVarargs(method);
1668 1669
            return mh;
        }
1670 1671 1672
        private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
                                             Class<?> callerClass)
                                             throws IllegalAccessException {
1673 1674 1675
            if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
                return mh;
            Class<?> hostClass = lookupClass;
1676
            if (!hasPrivateAccess())  // caller must have private access
1677
                hostClass = callerClass;  // callerClass came from a security manager style stack walk
1678 1679 1680 1681
            MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
            // Note: caller will apply varargs after this step happens.
            return cbmh;
        }
1682
        /** Check access and get the requested field. */
1683
        private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
            final boolean checkSecurity = true;
            return getDirectFieldCommon(refKind, refc, field, checkSecurity);
        }
        /** Check access and get the requested field, eliding security manager checks. */
        private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
            return getDirectFieldCommon(refKind, refc, field, checkSecurity);
        }
        /** Common code for all fields; do not call directly except from immediately above. */
        private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
                                                  boolean checkSecurity) throws IllegalAccessException {
1695
            checkField(refKind, refc, field);
1696 1697 1698
            // Optionally check with the security manager; this isn't needed for unreflect* calls.
            if (checkSecurity)
                checkSecurityManager(refc, field);
1699
            DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
1700 1701 1702
            boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
                                    restrictProtectedReceiver(field));
            if (doRestrict)
1703 1704
                return restrictReceiver(field, dmh, lookupClass());
            return dmh;
1705
        }
1706
        /** Check access and get the requested constructor. */
1707
        private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
            final boolean checkSecurity = true;
            return getDirectConstructorCommon(refc, ctor, checkSecurity);
        }
        /** Check access and get the requested constructor, eliding security manager checks. */
        private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
            return getDirectConstructorCommon(refc, ctor, checkSecurity);
        }
        /** Common code for all constructors; do not call directly except from immediately above. */
        private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
                                                  boolean checkSecurity) throws IllegalAccessException {
1719 1720
            assert(ctor.isConstructor());
            checkAccess(REF_newInvokeSpecial, refc, ctor);
1721 1722 1723
            // Optionally check with the security manager; this isn't needed for unreflect* calls.
            if (checkSecurity)
                checkSecurityManager(refc, ctor);
1724
            assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
1725
            return DirectMethodHandle.make(ctor).setVarargs(ctor);
1726
        }
1727 1728 1729 1730

        /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
         */
        /*non-public*/
1731
        MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
1732 1733 1734 1735 1736 1737 1738 1739
            if (!(type instanceof Class || type instanceof MethodType))
                throw new InternalError("unresolved MemberName");
            MemberName member = new MemberName(refKind, defc, name, type);
            MethodHandle mh = LOOKASIDE_TABLE.get(member);
            if (mh != null) {
                checkSymbolicClass(defc);
                return mh;
            }
1740 1741 1742 1743 1744 1745 1746
            // Treat MethodHandle.invoke and invokeExact specially.
            if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
                mh = findVirtualForMH(member.getName(), member.getMethodType());
                if (mh != null) {
                    return mh;
                }
            }
1747
            MemberName resolved = resolveOrFail(refKind, member);
1748
            mh = getDirectMethodForConstant(refKind, defc, resolved);
1749 1750 1751 1752 1753 1754 1755 1756 1757
            if (mh instanceof DirectMethodHandle
                    && canBeCached(refKind, defc, resolved)) {
                MemberName key = mh.internalMemberName();
                if (key != null) {
                    key = key.asNormalOriginal();
                }
                if (member.equals(key)) {  // better safe than sorry
                    LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
                }
1758
            }
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
            return mh;
        }
        private
        boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
            if (refKind == REF_invokeSpecial) {
                return false;
            }
            if (!Modifier.isPublic(defc.getModifiers()) ||
                    !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
                    !member.isPublic() ||
                    member.isCallerSensitive()) {
                return false;
            }
            ClassLoader loader = defc.getClassLoader();
            if (!sun.misc.VM.isSystemDomainLoader(loader)) {
                ClassLoader sysl = ClassLoader.getSystemClassLoader();
                boolean found = false;
                while (sysl != null) {
                    if (loader == sysl) { found = true; break; }
                    sysl = sysl.getParent();
                }
                if (!found) {
                    return false;
                }
            }
            try {
                MemberName resolved2 = publicLookup().resolveOrFail(refKind,
                    new MemberName(refKind, defc, member.getName(), member.getType()));
                checkSecurityManager(defc, resolved2);
            } catch (ReflectiveOperationException | SecurityException ex) {
                return false;
            }
            return true;
        }
        private
1794 1795
        MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
                throws ReflectiveOperationException {
1796
            if (MethodHandleNatives.refKindIsField(refKind)) {
1797
                return getDirectFieldNoSecurityManager(refKind, defc, member);
1798
            } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
1799
                return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
1800
            } else if (refKind == REF_newInvokeSpecial) {
1801
                return getDirectConstructorNoSecurityManager(defc, member);
1802 1803
            }
            // oops
1804
            throw newIllegalArgumentException("bad MethodHandle constant #"+member);
1805
        }
1806 1807

        static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
1808 1809 1810
    }

    /**
1811
     * Produces a method handle giving read access to elements of an array.
1812 1813 1814 1815 1816
     * The type of the method handle will have a return type of the array's
     * element type.  Its first argument will be the array type,
     * and the second will be {@code int}.
     * @param arrayClass an array type
     * @return a method handle which can load values from the given array type
1817
     * @throws NullPointerException if the argument is null
1818 1819 1820 1821
     * @throws  IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
1822
        return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false);
1823 1824 1825
    }

    /**
1826
     * Produces a method handle giving write access to elements of an array.
1827 1828 1829
     * The type of the method handle will have a void return type.
     * Its last argument will be the array's element type.
     * The first and second arguments will be the array type and int.
1830
     * @param arrayClass the class of an array
1831
     * @return a method handle which can store values into the array type
1832
     * @throws NullPointerException if the argument is null
1833 1834 1835 1836
     * @throws IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
1837
        return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true);
1838 1839 1840 1841 1842
    }

    /// method handle invocation (reflective style)

    /**
1843
     * Produces a method handle which will invoke any method handle of the
1844 1845
     * given {@code type}, with a given number of trailing arguments replaced by
     * a single trailing {@code Object[]} array.
1846 1847 1848 1849
     * The resulting invoker will be a method handle with the following
     * arguments:
     * <ul>
     * <li>a single {@code MethodHandle} target
1850 1851
     * <li>zero or more leading values (counted by {@code leadingArgCount})
     * <li>an {@code Object[]} array containing trailing arguments
1852
     * </ul>
1853
     * <p>
1854
     * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
1855 1856
     * the indicated {@code type}.
     * That is, if the target is exactly of the given {@code type}, it will behave
1857
     * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
1858 1859 1860
     * is used to convert the target to the required {@code type}.
     * <p>
     * The type of the returned invoker will not be the given {@code type}, but rather
1861 1862 1863
     * will have all parameters except the first {@code leadingArgCount}
     * replaced by a single array of type {@code Object[]}, which will be
     * the final parameter.
1864
     * <p>
1865
     * Before invoking its target, the invoker will spread the final array, apply
1866
     * reference casts as necessary, and unbox and widen primitive arguments.
1867 1868 1869
     * If, when the invoker is called, the supplied array argument does
     * not have the correct number of elements, the invoker will throw
     * an {@link IllegalArgumentException} instead of invoking the target.
1870 1871
     * <p>
     * This method is equivalent to the following code (though it may be more efficient):
1872
     * <blockquote><pre>{@code
1873
MethodHandle invoker = MethodHandles.invoker(type);
1874
int spreadArgCount = type.parameterCount() - leadingArgCount;
1875 1876
invoker = invoker.asSpreader(Object[].class, spreadArgCount);
return invoker;
1877
     * }</pre></blockquote>
1878
     * This method throws no reflective or security exceptions.
1879
     * @param type the desired target type
1880
     * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
1881
     * @return a method handle suitable for invoking any method handle of the given type
1882 1883
     * @throws NullPointerException if {@code type} is null
     * @throws IllegalArgumentException if {@code leadingArgCount} is not in
1884 1885 1886
     *                  the range from 0 to {@code type.parameterCount()} inclusive,
     *                  or if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1887 1888
     */
    static public
1889 1890
    MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
        if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
1891
            throw newIllegalArgumentException("bad argument count", leadingArgCount);
1892
        type = type.asSpreaderType(Object[].class, type.parameterCount() - leadingArgCount);
1893
        return type.invokers().spreadInvoker(leadingArgCount);
1894 1895 1896
    }

    /**
1897
     * Produces a special <em>invoker method handle</em> which can be used to
1898
     * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
1899
     * The resulting invoker will have a type which is
1900 1901 1902
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
1903
     * This method is equivalent to the following code (though it may be more efficient):
1904
     * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
1905 1906 1907 1908 1909 1910 1911 1912
     *
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * Invoker method handles can be useful when working with variable method handles
     * of unknown types.
     * For example, to emulate an {@code invokeExact} call to a variable method
     * handle {@code M}, extract its type {@code T},
     * look up the invoker method {@code X} for {@code T},
1913
     * and call the invoker method, as {@code X.invoke(T, A...)}.
1914 1915 1916 1917 1918
     * (It would not work to call {@code X.invokeExact}, since the type {@code T}
     * is unknown.)
     * If spreading, collecting, or other argument transformations are required,
     * they can be applied once to the invoker {@code X} and reused on many {@code M}
     * method handle values, as long as they are compatible with the type of {@code X}.
1919
     * <p style="font-size:smaller;">
1920
     * <em>(Note:  The invoker method is not available via the Core Reflection API.
1921
     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1922
     * on the declared {@code invokeExact} or {@code invoke} method will raise an
1923 1924 1925
     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
     * <p>
     * This method throws no reflective or security exceptions.
1926 1927
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle of the given type
1928 1929
     * @throws IllegalArgumentException if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1930 1931 1932
     */
    static public
    MethodHandle exactInvoker(MethodType type) {
1933
        return type.invokers().exactInvoker();
1934 1935
    }

1936 1937
    /**
     * Produces a special <em>invoker method handle</em> which can be used to
1938
     * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
1939 1940 1941 1942
     * The resulting invoker will have a type which is
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
1943 1944
     * Before invoking its target, if the target differs from the expected type,
     * the invoker will apply reference casts as
1945 1946 1947 1948
     * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
     * Similarly, the return value will be converted as necessary.
     * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
     * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
1949
     * <p>
1950 1951 1952 1953 1954
     * This method is equivalent to the following code (though it may be more efficient):
     * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * A {@linkplain MethodType#genericMethodType general method type} is one which
1955 1956 1957
     * mentions only {@code Object} arguments and return values.
     * An invoker for such a type is capable of calling any method handle
     * of the same arity as the general type.
1958 1959 1960 1961 1962
     * <p style="font-size:smaller;">
     * <em>(Note:  The invoker method is not available via the Core Reflection API.
     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
     * on the declared {@code invokeExact} or {@code invoke} method will raise an
     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
1963 1964 1965 1966
     * <p>
     * This method throws no reflective or security exceptions.
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle convertible to the given type
1967 1968
     * @throws IllegalArgumentException if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1969 1970
     */
    static public
1971
    MethodHandle invoker(MethodType type) {
1972
        return type.invokers().genericInvoker();
1973 1974
    }

1975 1976
    static /*non-public*/
    MethodHandle basicInvoker(MethodType type) {
1977
        return type.invokers().basicInvoker();
1978 1979
    }

1980
     /// method handle modification (creation from other method handles)
1981 1982

    /**
1983
     * Produces a method handle which adapts the type of the
1984
     * given method handle to a new type by pairwise argument and return type conversion.
1985 1986 1987 1988 1989 1990
     * The original type and new type must have the same number of arguments.
     * The resulting method handle is guaranteed to report a type
     * which is equal to the desired new type.
     * <p>
     * If the original type and new type are equal, returns target.
     * <p>
1991
     * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
1992
     * and some additional conversions are also applied if those conversions fail.
1993 1994
     * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
     * if possible, before or instead of any conversions done by {@code asType}:
1995
     * <ul>
1996 1997
     * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
     *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
1998
     *     (This treatment of interfaces follows the usage of the bytecode verifier.)
1999 2000
     * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
     *     the boolean is converted to a byte value, 1 for true, 0 for false.
2001
     *     (This treatment follows the usage of the bytecode verifier.)
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
     * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
     *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
     *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
     * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
     *     then a Java casting conversion (JLS 5.5) is applied.
     *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
     *     widening and/or narrowing.)
     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
     *     conversion will be applied at runtime, possibly followed
     *     by a Java casting conversion (JLS 5.5) on the primitive value,
     *     possibly followed by a conversion from byte to boolean by testing
     *     the low-order bit.
     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
     *     and if the reference is null at runtime, a zero value is introduced.
2016 2017 2018
     * </ul>
     * @param target the method handle to invoke after arguments are retyped
     * @param newType the expected type of the new method handle
2019
     * @return a method handle which delegates to the target after performing
2020 2021
     *           any necessary argument conversions, and arranges for any
     *           necessary return value conversions
2022
     * @throws NullPointerException if either argument is null
2023 2024 2025 2026 2027
     * @throws WrongMethodTypeException if the conversion cannot be made
     * @see MethodHandle#asType
     */
    public static
    MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
2028 2029 2030
        if (!target.type().isCastableTo(newType)) {
            throw new WrongMethodTypeException("cannot explicitly cast "+target+" to "+newType);
        }
2031
        return MethodHandleImpl.makePairwiseConvert(target, newType, false);
2032 2033 2034
    }

    /**
2035
     * Produces a method handle which adapts the calling sequence of the
2036
     * given method handle to a new type, by reordering the arguments.
2037
     * The resulting method handle is guaranteed to report a type
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
     * which is equal to the desired new type.
     * <p>
     * The given array controls the reordering.
     * Call {@code #I} the number of incoming parameters (the value
     * {@code newType.parameterCount()}, and call {@code #O} the number
     * of outgoing parameters (the value {@code target.type().parameterCount()}).
     * Then the length of the reordering array must be {@code #O},
     * and each element must be a non-negative number less than {@code #I}.
     * For every {@code N} less than {@code #O}, the {@code N}-th
     * outgoing argument will be taken from the {@code I}-th incoming
     * argument, where {@code I} is {@code reorder[N]}.
     * <p>
2050 2051
     * No argument or return value conversions are applied.
     * The type of each incoming argument, as determined by {@code newType},
2052 2053
     * must be identical to the type of the corresponding outgoing parameter
     * or parameters in the target method handle.
2054 2055 2056
     * The return type of {@code newType} must be identical to the return
     * type of the original target.
     * <p>
2057 2058 2059 2060
     * The reordering array need not specify an actual permutation.
     * An incoming argument will be duplicated if its index appears
     * more than once in the array, and an incoming argument will be dropped
     * if its index does not appear in the array.
2061 2062 2063
     * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
     * incoming arguments which are not mentioned in the reordering array
     * are may be any type, as determined only by {@code newType}.
A
alanb 已提交
2064
     * <blockquote><pre>{@code
2065 2066 2067 2068 2069
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodType intfn1 = methodType(int.class, int.class);
MethodType intfn2 = methodType(int.class, int.class, int.class);
2070
MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2071
assert(sub.type().equals(intfn2));
2072 2073
MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2074
assert((int)rsub.invokeExact(1, 100) == 99);
2075
MethodHandle add = ... (int x, int y) -> (x+y) ...;
2076
assert(add.type().equals(intfn2));
2077
MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2078 2079
assert(twice.type().equals(intfn1));
assert((int)twice.invokeExact(21) == 42);
A
alanb 已提交
2080
     * }</pre></blockquote>
2081 2082
     * @param target the method handle to invoke after arguments are reordered
     * @param newType the expected type of the new method handle
2083 2084
     * @param reorder an index array which controls the reordering
     * @return a method handle which delegates to the target after it
2085
     *           drops unused arguments and moves and/or duplicates the other arguments
2086
     * @throws NullPointerException if any argument is null
2087 2088 2089 2090 2091
     * @throws IllegalArgumentException if the index array length is not equal to
     *                  the arity of the target, or if any index array element
     *                  not a valid index for a parameter of {@code newType},
     *                  or if two corresponding parameter types in
     *                  {@code target.type()} and {@code newType} are not identical,
2092 2093
     */
    public static
2094
    MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
J
jrose 已提交
2095
        reorder = reorder.clone();
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
        permuteArgumentChecks(reorder, newType, target.type());
        // first detect dropped arguments and handle them separately
        MethodHandle originalTarget = target;
        int newArity = newType.parameterCount();
        for (int dropIdx; (dropIdx = findFirstDrop(reorder, newArity)) >= 0; ) {
            // dropIdx is missing from reorder; add it in at the end
            int oldArity = reorder.length;
            target = dropArguments(target, oldArity, newType.parameterType(dropIdx));
            reorder = Arrays.copyOf(reorder, oldArity+1);
            reorder[oldArity] = dropIdx;
        }
        assert(target == originalTarget || permuteArgumentChecks(reorder, newType, target.type()));
        // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
        BoundMethodHandle result = target.rebind();
        LambdaForm form = result.form.permuteArguments(1, reorder, basicTypes(newType.parameterList()));
        return result.copyWith(newType, form);
2112 2113
    }

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
    /** Return the first value in [0..newArity-1] that is not present in reorder. */
    private static int findFirstDrop(int[] reorder, int newArity) {
        final int BIT_LIMIT = 63;  // max number of bits in bit mask
        if (newArity < BIT_LIMIT) {
            long mask = 0;
            for (int arg : reorder) {
                assert(arg < newArity);
                mask |= (1 << arg);
            }
            if (mask == (1 << newArity) - 1) {
                assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
                return -1;
            }
            // find first zero
            long zeroBit = Long.lowestOneBit(~mask);
            int zeroPos = Long.numberOfTrailingZeros(zeroBit);
            assert(zeroPos < newArity);
            return zeroPos;
        }
        BitSet mask = new BitSet(newArity);
        for (int arg : reorder) {
            assert(arg < newArity);
            mask.set(arg);
        }
        int zeroPos = mask.nextClearBit(0);
        if (zeroPos == newArity)
            return -1;
        return zeroPos;
    }

    private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
2145 2146 2147
        if (newType.returnType() != oldType.returnType())
            throw newIllegalArgumentException("return types do not match",
                    oldType, newType);
2148 2149 2150
        if (reorder.length == oldType.parameterCount()) {
            int limit = newType.parameterCount();
            boolean bad = false;
2151 2152
            for (int j = 0; j < reorder.length; j++) {
                int i = reorder[j];
2153 2154 2155
                if (i < 0 || i >= limit) {
                    bad = true; break;
                }
2156 2157 2158 2159 2160
                Class<?> src = newType.parameterType(i);
                Class<?> dst = oldType.parameterType(j);
                if (src != dst)
                    throw newIllegalArgumentException("parameter types do not match after reorder",
                            oldType, newType);
2161
            }
2162
            if (!bad)  return true;
2163
        }
2164
        throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
2165 2166 2167
    }

    /**
2168
     * Produces a method handle of the requested return type which returns the given
2169 2170 2171 2172 2173
     * constant value every time it is invoked.
     * <p>
     * Before the method handle is returned, the passed-in value is converted to the requested type.
     * If the requested type is primitive, widening primitive conversions are attempted,
     * else reference conversions are attempted.
2174
     * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
2175 2176 2177
     * @param type the return type of the desired method handle
     * @param value the value to return
     * @return a method handle of the given return type and no arguments, which always returns the given value
2178 2179 2180
     * @throws NullPointerException if the {@code type} argument is null
     * @throws ClassCastException if the value cannot be converted to the required return type
     * @throws IllegalArgumentException if the given type is {@code void.class}
2181 2182 2183 2184
     */
    public static
    MethodHandle constant(Class<?> type, Object value) {
        if (type.isPrimitive()) {
2185 2186
            if (type == void.class)
                throw newIllegalArgumentException("void type");
2187
            Wrapper w = Wrapper.forPrimitiveType(type);
2188 2189 2190 2191
            value = w.convert(value, type);
            if (w.zero().equals(value))
                return zero(w, type);
            return insertArguments(identity(type), 0, value);
2192
        } else {
2193 2194 2195
            if (value == null)
                return zero(Wrapper.OBJECT, type);
            return identity(type).bindTo(value);
2196 2197 2198 2199
        }
    }

    /**
2200 2201 2202 2203 2204
     * Produces a method handle which returns its sole argument when invoked.
     * @param type the type of the sole parameter and return value of the desired method handle
     * @return a unary method handle which accepts and returns the given type
     * @throws NullPointerException if the argument is null
     * @throws IllegalArgumentException if the given type is {@code void.class}
2205 2206 2207
     */
    public static
    MethodHandle identity(Class<?> type) {
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
        Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
        int pos = btw.ordinal();
        MethodHandle ident = IDENTITY_MHS[pos];
        if (ident == null) {
            ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
        }
        if (ident.type().returnType() == type)
            return ident;
        // something like identity(Foo.class); do not bother to intern these
        assert(btw == Wrapper.OBJECT);
        return makeIdentity(type);
    }
    private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.values().length];
    private static MethodHandle makeIdentity(Class<?> ptype) {
        MethodType mtype = MethodType.methodType(ptype, ptype);
        LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
        return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
    }
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

    private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
        int pos = btw.ordinal();
        MethodHandle zero = ZERO_MHS[pos];
        if (zero == null) {
            zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
        }
        if (zero.type().returnType() == rtype)
            return zero;
        assert(btw == Wrapper.OBJECT);
        return makeZero(rtype);
    }
    private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.values().length];
    private static MethodHandle makeZero(Class<?> rtype) {
        MethodType mtype = MethodType.methodType(rtype);
        LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
        return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
    }

2245 2246 2247 2248 2249
    synchronized private static MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
        // Simulate a CAS, to avoid racy duplication of results.
        MethodHandle prev = cache[pos];
        if (prev != null) return prev;
        return cache[pos] = value;
2250 2251 2252
    }

    /**
2253 2254 2255 2256 2257 2258 2259 2260 2261
     * Provides a target method handle with one or more <em>bound arguments</em>
     * in advance of the method handle's invocation.
     * The formal parameters to the target corresponding to the bound
     * arguments are called <em>bound parameters</em>.
     * Returns a new method handle which saves away the bound arguments.
     * When it is invoked, it receives arguments for any non-bound parameters,
     * binds the saved arguments to their corresponding parameters,
     * and calls the original target.
     * <p>
2262 2263 2264
     * The type of the new method handle will drop the types for the bound
     * parameters from the original target type, since the new method handle
     * will no longer require those arguments to be supplied by its callers.
2265
     * <p>
2266 2267 2268
     * Each given argument object must match the corresponding bound parameter type.
     * If a bound parameter type is a primitive, the argument object
     * must be a wrapper, and will be unboxed to produce the primitive value.
2269
     * <p>
2270 2271 2272 2273
     * The {@code pos} argument selects which parameters are to be bound.
     * It may range between zero and <i>N-L</i> (inclusively),
     * where <i>N</i> is the arity of the target method handle
     * and <i>L</i> is the length of the values array.
2274 2275
     * @param target the method handle to invoke after the argument is inserted
     * @param pos where to insert the argument (zero for the first)
2276
     * @param values the series of arguments to insert
2277
     * @return a method handle which inserts an additional argument,
2278
     *         before calling the original method handle
2279
     * @throws NullPointerException if the target or the {@code values} array is null
2280
     * @see MethodHandle#bindTo
2281 2282
     */
    public static
2283 2284
    MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
        int insCount = values.length;
2285 2286 2287
        Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
        if (insCount == 0)  return target;
        BoundMethodHandle result = target.rebind();
2288 2289
        for (int i = 0; i < insCount; i++) {
            Object value = values[i];
2290
            Class<?> ptype = ptypes[pos+i];
2291
            if (ptype.isPrimitive()) {
2292
                result = insertArgumentPrimitive(result, pos, ptype, value);
2293
            } else {
2294 2295
                value = ptype.cast(value);  // throw CCE if needed
                result = result.bindArgumentL(pos, value);
2296
            }
2297
        }
2298 2299 2300
        return result;
    }

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
    private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
                                                             Class<?> ptype, Object value) {
        Wrapper w = Wrapper.forPrimitiveType(ptype);
        // perform unboxing and/or primitive conversion
        value = w.convert(value, ptype);
        switch (w) {
        case INT:     return result.bindArgumentI(pos, (int)value);
        case LONG:    return result.bindArgumentJ(pos, (long)value);
        case FLOAT:   return result.bindArgumentF(pos, (float)value);
        case DOUBLE:  return result.bindArgumentD(pos, (double)value);
        default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
        }
    }

    private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
        MethodType oldType = target.type();
        int outargs = oldType.parameterCount();
        int inargs  = outargs - insCount;
        if (inargs < 0)
            throw newIllegalArgumentException("too many values to insert");
        if (pos < 0 || pos > inargs)
            throw newIllegalArgumentException("no argument type to append");
        return oldType.ptypes();
    }

2326
    /**
2327 2328 2329 2330 2331
     * Produces a method handle which will discard some dummy arguments
     * before calling some other specified <i>target</i> method handle.
     * The type of the new method handle will be the same as the target's type,
     * except it will also include the dummy argument types,
     * at some given position.
2332
     * <p>
2333 2334 2335 2336 2337
     * The {@code pos} argument may range between zero and <i>N</i>,
     * where <i>N</i> is the arity of the target.
     * If {@code pos} is zero, the dummy arguments will precede
     * the target's real arguments; if {@code pos} is <i>N</i>
     * they will come after.
2338 2339
     * <p>
     * <b>Example:</b>
2340
     * <blockquote><pre>{@code
2341 2342
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
2343 2344 2345 2346
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
2347 2348 2349 2350
MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
assertEquals(bigType, d0.type());
assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
2351
     * }</pre></blockquote>
2352 2353
     * <p>
     * This method is also equivalent to the following code:
2354
     * <blockquote><pre>
2355
     * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
2356
     * </pre></blockquote>
2357 2358 2359 2360
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
2361
     *         before calling the original method handle
2362
     * @throws NullPointerException if the target is null,
2363
     *                              or if the {@code valueTypes} list or any of its elements is null
2364 2365 2366
     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
     *                  or if {@code pos} is negative or greater than the arity of the target,
     *                  or if the new method handle's type would have too many parameters
2367 2368
     */
    public static
2369
    MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
2370
        MethodType oldType = target.type();  // get NPE
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
        int dropped = dropArgumentChecks(oldType, pos, valueTypes);
        if (dropped == 0)  return target;
        BoundMethodHandle result = target.rebind();
        LambdaForm lform = result.form;
        lform = lform.addArguments(pos, valueTypes);
        MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
        result = result.copyWith(newType, lform);
        return result;
    }

    private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
2382 2383
        int dropped = valueTypes.size();
        MethodType.checkSlotCount(dropped);
2384
        int outargs = oldType.parameterCount();
2385
        int inargs  = outargs + dropped;
2386 2387 2388 2389 2390
        if (pos < 0 || pos > outargs)
            throw newIllegalArgumentException("no argument type to remove"
                    + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
                    );
        return dropped;
2391 2392
    }

2393
    /**
2394 2395 2396 2397 2398
     * Produces a method handle which will discard some dummy arguments
     * before calling some other specified <i>target</i> method handle.
     * The type of the new method handle will be the same as the target's type,
     * except it will also include the dummy argument types,
     * at some given position.
2399
     * <p>
2400 2401 2402 2403 2404
     * The {@code pos} argument may range between zero and <i>N</i>,
     * where <i>N</i> is the arity of the target.
     * If {@code pos} is zero, the dummy arguments will precede
     * the target's real arguments; if {@code pos} is <i>N</i>
     * they will come after.
2405 2406
     * <p>
     * <b>Example:</b>
2407
     * <blockquote><pre>{@code
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
MethodHandle d0 = dropArguments(cat, 0, String.class);
assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
MethodHandle d1 = dropArguments(cat, 1, String.class);
assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
MethodHandle d2 = dropArguments(cat, 2, String.class);
assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
2422
     * }</pre></blockquote>
2423 2424
     * <p>
     * This method is also equivalent to the following code:
2425
     * <blockquote><pre>
2426
     * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
2427
     * </pre></blockquote>
2428 2429 2430 2431 2432
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
     *         before calling the original method handle
2433
     * @throws NullPointerException if the target is null,
2434
     *                              or if the {@code valueTypes} array or any of its elements is null
2435 2436
     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
     *                  or if {@code pos} is negative or greater than the arity of the target,
2437 2438
     *                  or if the new method handle's type would have
     *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
2439
     */
2440 2441 2442 2443 2444 2445
    public static
    MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
        return dropArguments(target, pos, Arrays.asList(valueTypes));
    }

    /**
2446
     * Adapts a target method handle by pre-processing
2447 2448 2449 2450 2451
     * one or more of its arguments, each with its own unary filter function,
     * and then calling the target with each pre-processed argument
     * replaced by the result of its corresponding filter function.
     * <p>
     * The pre-processing is performed by one or more method handles,
2452
     * specified in the elements of the {@code filters} array.
2453 2454 2455 2456 2457
     * The first element of the filter array corresponds to the {@code pos}
     * argument of the target, and so on in sequence.
     * <p>
     * Null arguments in the array are treated as identity functions,
     * and the corresponding arguments left unchanged.
2458
     * (If there are no non-null elements in the array, the original target is returned.)
2459
     * Each filter is applied to the corresponding argument of the adapter.
2460 2461
     * <p>
     * If a filter {@code F} applies to the {@code N}th argument of
2462
     * the target, then {@code F} must be a method handle which
2463 2464 2465 2466 2467 2468
     * takes exactly one argument.  The type of {@code F}'s sole argument
     * replaces the corresponding argument type of the target
     * in the resulting adapted method handle.
     * The return type of {@code F} must be identical to the corresponding
     * parameter type of the target.
     * <p>
2469
     * It is an error if there are elements of {@code filters}
2470
     * (null or not)
2471
     * which do not correspond to argument positions in the target.
2472
     * <p><b>Example:</b>
2473
     * <blockquote><pre>{@code
2474 2475
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
2476 2477 2478 2479 2480
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle upcase = lookup().findVirtual(String.class,
  "toUpperCase", methodType(String.class));
2481
assertEquals("xy", (String) cat.invokeExact("x", "y"));
2482
MethodHandle f0 = filterArguments(cat, 0, upcase);
2483
assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
2484
MethodHandle f1 = filterArguments(cat, 1, upcase);
2485
assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
2486
MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
2487
assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
2488
     * }</pre></blockquote>
2489
     * <p> Here is pseudocode for the resulting adapter:
2490
     * <blockquote><pre>{@code
2491 2492 2493 2494 2495
     * V target(P... p, A[i]... a[i], B... b);
     * A[i] filter[i](V[i]);
     * T adapter(P... p, V[i]... v[i], B... b) {
     *   return target(p..., f[i](v[i])..., b...);
     * }
2496
     * }</pre></blockquote>
2497
     *
2498
     * @param target the method handle to invoke after arguments are filtered
2499
     * @param pos the position of the first argument to filter
2500 2501
     * @param filters method handles to call initially on filtered arguments
     * @return method handle which incorporates the specified argument filtering logic
2502
     * @throws NullPointerException if the target is null
2503 2504
     *                              or if the {@code filters} array is null
     * @throws IllegalArgumentException if a non-null element of {@code filters}
2505
     *          does not match a corresponding argument type of target as described above,
2506 2507 2508
     *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
     *          or if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2509 2510
     */
    public static
2511
    MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
2512 2513
        MethodType targetType = target.type();
        MethodHandle adapter = target;
2514 2515
        MethodType adapterType = null;
        assert((adapterType = targetType) != null);
2516
        int maxPos = targetType.parameterCount();
2517 2518 2519
        if (pos + filters.length > maxPos)
            throw newIllegalArgumentException("too many filters");
        int curPos = pos-1;  // pre-incremented
2520
        for (MethodHandle filter : filters) {
2521 2522
            curPos += 1;
            if (filter == null)  continue;  // ignore null elements of filters
2523 2524
            adapter = filterArgument(adapter, curPos, filter);
            assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null);
2525
        }
2526
        assert(adapterType.equals(adapter.type()));
2527 2528 2529
        return adapter;
    }

2530 2531 2532 2533 2534 2535 2536
    /*non-public*/ static
    MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
        MethodType targetType = target.type();
        MethodType filterType = filter.type();
        if (filterType.parameterCount() != 1
            || filterType.returnType() != targetType.parameterType(pos))
            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2537
        return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2538 2539
    }

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
    /**
     * Adapts a target method handle by pre-processing
     * a sub-sequence of its arguments with a filter (another method handle).
     * The pre-processed arguments are replaced by the result (if any) of the
     * filter function.
     * The target is then called on the modified (usually shortened) argument list.
     * <p>
     * If the filter returns a value, the target must accept that value as
     * its argument in position {@code pos}, preceded and/or followed by
     * any arguments not passed to the filter.
     * If the filter returns void, the target must accept all arguments
     * not passed to the filter.
     * No arguments are reordered, and a result returned from the filter
     * replaces (in order) the whole subsequence of arguments originally
     * passed to the adapter.
     * <p>
     * The argument types (if any) of the filter
     * replace zero or one argument types of the target, at position {@code pos},
     * in the resulting adapted method handle.
     * The return type of the filter (if any) must be identical to the
     * argument type of the target at position {@code pos}, and that target argument
     * is supplied by the return value of the filter.
     * <p>
     * In all cases, {@code pos} must be greater than or equal to zero, and
     * {@code pos} must also be less than or equal to the target's arity.
     * <p><b>Example:</b>
2566
     * <blockquote><pre>{@code
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle deepToString = publicLookup()
  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));

MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
assertEquals("[strange]", (String) ts1.invokeExact("strange"));

MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));

MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
assertEquals("[top, [up, down], strange]",
             (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));

MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
assertEquals("[top, [up, down], [strange]]",
             (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));

MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
assertEquals("[top, [[up, down, strange], charm], bottom]",
             (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
2591
     * }</pre></blockquote>
2592
     * <p> Here is pseudocode for the resulting adapter:
2593
     * <blockquote><pre>{@code
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
     * T target(A...,V,C...);
     * V filter(B...);
     * T adapter(A... a,B... b,C... c) {
     *   V v = filter(b...);
     *   return target(a...,v,c...);
     * }
     * // and if the filter has no arguments:
     * T target2(A...,V,C...);
     * V filter2();
     * T adapter2(A... a,C... c) {
     *   V v = filter2();
     *   return target2(a...,v,c...);
     * }
     * // and if the filter has a void return:
     * T target3(A...,C...);
     * void filter3(B...);
     * void adapter3(A... a,B... b,C... c) {
     *   filter3(b...);
     *   return target3(a...,c...);
     * }
2614
     * }</pre></blockquote>
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
     * <p>
     * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
     * one which first "folds" the affected arguments, and then drops them, in separate
     * steps as follows:
     * <blockquote><pre>{@code
     * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
     * mh = MethodHandles.foldArguments(mh, coll); //step 1
     * }</pre></blockquote>
     * If the target method handle consumes no arguments besides than the result
     * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
     * is equivalent to {@code filterReturnValue(coll, mh)}.
     * If the filter method handle {@code coll} consumes one argument and produces
     * a non-void result, then {@code collectArguments(mh, N, coll)}
     * is equivalent to {@code filterArguments(mh, N, coll)}.
     * Other equivalences are possible but would require argument permutation.
     *
     * @param target the method handle to invoke after filtering the subsequence of arguments
     * @param pos the position of the first adapter argument to pass to the filter,
     *            and/or the target argument which receives the result of the filter
     * @param filter method handle to call on the subsequence of arguments
     * @return method handle which incorporates the specified argument subsequence filtering logic
     * @throws NullPointerException if either argument is null
     * @throws IllegalArgumentException if the return type of {@code filter}
     *          is non-void and is not the same as the {@code pos} argument of the target,
     *          or if {@code pos} is not between 0 and the target's arity, inclusive,
     *          or if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
     * @see MethodHandles#foldArguments
     * @see MethodHandles#filterArguments
     * @see MethodHandles#filterReturnValue
     */
    public static
    MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
2648
        MethodType targetType = target.type();
2649
        MethodType filterType = filter.type();
2650 2651 2652
        if (filterType.returnType() != void.class &&
            filterType.returnType() != targetType.parameterType(pos))
            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2653
        return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2654 2655
    }

2656
    /**
2657 2658 2659
     * Adapts a target method handle by post-processing
     * its return value (if any) with a filter (another method handle).
     * The result of the filter is returned from the adapter.
2660
     * <p>
2661 2662 2663 2664 2665
     * If the target returns a value, the filter must accept that value as
     * its only argument.
     * If the target returns void, the filter must accept no arguments.
     * <p>
     * The return type of the filter
2666 2667
     * replaces the return type of the target
     * in the resulting adapted method handle.
2668
     * The argument type of the filter (if any) must be identical to the
2669
     * return type of the target.
2670
     * <p><b>Example:</b>
2671
     * <blockquote><pre>{@code
2672 2673
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
2674 2675 2676 2677 2678 2679 2680 2681
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle length = lookup().findVirtual(String.class,
  "length", methodType(int.class));
System.out.println((String) cat.invokeExact("x", "y")); // xy
MethodHandle f0 = filterReturnValue(cat, length);
System.out.println((int) f0.invokeExact("x", "y")); // 2
2682
     * }</pre></blockquote>
2683
     * <p> Here is pseudocode for the resulting adapter:
2684
     * <blockquote><pre>{@code
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
     * V target(A...);
     * T filter(V);
     * T adapter(A... a) {
     *   V v = target(a...);
     *   return filter(v);
     * }
     * // and if the target has a void return:
     * void target2(A...);
     * T filter2();
     * T adapter2(A... a) {
     *   target2(a...);
     *   return filter2();
     * }
     * // and if the filter has a void return:
     * V target3(A...);
     * void filter3(V);
     * void adapter3(A... a) {
     *   V v = target3(a...);
     *   filter3(v);
     * }
2705
     * }</pre></blockquote>
2706 2707 2708
     * @param target the method handle to invoke before filtering the return value
     * @param filter method handle to call on the return value
     * @return method handle which incorporates the specified return value filtering logic
2709
     * @throws NullPointerException if either argument is null
2710 2711
     * @throws IllegalArgumentException if the argument list of {@code filter}
     *          does not match the return type of target as described above
2712
     */
2713
    public static
2714 2715 2716
    MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
        MethodType targetType = target.type();
        MethodType filterType = filter.type();
2717 2718 2719 2720 2721 2722
        Class<?> rtype = targetType.returnType();
        int filterValues = filterType.parameterCount();
        if (filterValues == 0
                ? (rtype != void.class)
                : (rtype != filterType.parameterType(0)))
            throw newIllegalArgumentException("target and filter types do not match", target, filter);
2723 2724
        // result = fold( lambda(retval, arg...) { filter(retval) },
        //                lambda(        arg...) { target(arg...) } )
2725
        return MethodHandleImpl.makeCollectArguments(filter, target, 0, false);
2726 2727
    }

2728
    /**
2729
     * Adapts a target method handle by pre-processing
2730
     * some of its arguments, and then calling the target with
2731 2732
     * the result of the pre-processing, inserted into the original
     * sequence of arguments.
2733
     * <p>
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
     * The pre-processing is performed by {@code combiner}, a second method handle.
     * Of the arguments passed to the adapter, the first {@code N} arguments
     * are copied to the combiner, which is then called.
     * (Here, {@code N} is defined as the parameter count of the combiner.)
     * After this, control passes to the target, with any result
     * from the combiner inserted before the original {@code N} incoming
     * arguments.
     * <p>
     * If the combiner returns a value, the first parameter type of the target
     * must be identical with the return type of the combiner, and the next
     * {@code N} parameter types of the target must exactly match the parameters
     * of the combiner.
     * <p>
     * If the combiner has a void return, no result will be inserted,
     * and the first {@code N} parameter types of the target
     * must exactly match the parameters of the combiner.
2750 2751
     * <p>
     * The resulting adapter is the same type as the target, except that the
2752 2753
     * first parameter type is dropped,
     * if it corresponds to the result of the combiner.
2754
     * <p>
2755
     * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
2756
     * that either the combiner or the target does not wish to receive.
2757
     * If some of the incoming arguments are destined only for the combiner,
2758
     * consider using {@link MethodHandle#asCollector asCollector} instead, since those
2759 2760
     * arguments will not need to be live on the stack on entry to the
     * target.)
2761
     * <p><b>Example:</b>
2762
     * <blockquote><pre>{@code
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
  "println", methodType(void.class, String.class))
    .bindTo(System.out);
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
MethodHandle catTrace = foldArguments(cat, trace);
// also prints "boo":
assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
2775
     * }</pre></blockquote>
2776
     * <p> Here is pseudocode for the resulting adapter:
2777
     * <blockquote><pre>{@code
2778
     * // there are N arguments in A...
2779 2780 2781 2782 2783 2784
     * T target(V, A[N]..., B...);
     * V combiner(A...);
     * T adapter(A... a, B... b) {
     *   V v = combiner(a...);
     *   return target(v, a..., b...);
     * }
2785 2786 2787 2788 2789 2790 2791
     * // and if the combiner has a void return:
     * T target2(A[N]..., B...);
     * void combiner2(A...);
     * T adapter2(A... a, B... b) {
     *   combiner2(a...);
     *   return target2(a..., b...);
     * }
2792
     * }</pre></blockquote>
2793 2794 2795
     * @param target the method handle to invoke after arguments are combined
     * @param combiner method handle to call initially on the incoming arguments
     * @return method handle which incorporates the specified argument folding logic
2796
     * @throws NullPointerException if either argument is null
2797 2798 2799 2800 2801
     * @throws IllegalArgumentException if {@code combiner}'s return type
     *          is non-void and not the same as the first argument type of
     *          the target, or if the initial {@code N} argument types
     *          of the target
     *          (skipping one matching the {@code combiner}'s return type)
2802 2803 2804 2805
     *          are not identical with the argument types of {@code combiner}
     */
    public static
    MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
2806
        int pos = 0;
2807 2808
        MethodType targetType = target.type();
        MethodType combinerType = combiner.type();
2809
        int foldPos = pos;
2810
        int foldArgs = combinerType.parameterCount();
2811 2812 2813 2814 2815 2816
        int foldVals = combinerType.returnType() == void.class ? 0 : 1;
        int afterInsertPos = foldPos + foldVals;
        boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
        if (ok && !(combinerType.parameterList()
                    .equals(targetType.parameterList().subList(afterInsertPos,
                                                               afterInsertPos + foldArgs))))
2817
            ok = false;
2818
        if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0)))
2819
            ok = false;
2820 2821
        if (!ok)
            throw misMatchedTypes("target and combiner types", targetType, combinerType);
2822
        MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos);
2823
        return MethodHandleImpl.makeCollectArguments(target, combiner, foldPos, true);
2824 2825
    }

2826
    /**
2827
     * Makes a method handle which adapts a target method handle,
2828 2829 2830 2831
     * by guarding it with a test, a boolean-valued method handle.
     * If the guard fails, a fallback handle is called instead.
     * All three method handles must have the same corresponding
     * argument and return types, except that the return type
2832 2833
     * of the test must be boolean, and the test is allowed
     * to have fewer arguments than the other two method handles.
2834
     * <p> Here is pseudocode for the resulting adapter:
2835
     * <blockquote><pre>{@code
2836
     * boolean test(A...);
2837 2838 2839
     * T target(A...,B...);
     * T fallback(A...,B...);
     * T adapter(A... a,B... b) {
2840
     *   if (test(a...))
2841
     *     return target(a..., b...);
2842
     *   else
2843
     *     return fallback(a..., b...);
2844
     * }
2845
     * }</pre></blockquote>
2846 2847 2848
     * Note that the test arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the test, and so are passed unchanged
     * from the caller to the target or fallback as appropriate.
2849 2850 2851 2852
     * @param test method handle used for test, must return boolean
     * @param target method handle to call if test passes
     * @param fallback method handle to call if test fails
     * @return method handle which incorporates the specified if/then/else logic
2853
     * @throws NullPointerException if any argument is null
2854 2855
     * @throws IllegalArgumentException if {@code test} does not return boolean,
     *          or if all three method types do not match (with the return
2856
     *          type of {@code test} changed to match that of the target).
2857 2858 2859 2860 2861
     */
    public static
    MethodHandle guardWithTest(MethodHandle test,
                               MethodHandle target,
                               MethodHandle fallback) {
2862 2863 2864
        MethodType gtype = test.type();
        MethodType ttype = target.type();
        MethodType ftype = fallback.type();
2865
        if (!ttype.equals(ftype))
2866
            throw misMatchedTypes("target and fallback types", ttype, ftype);
2867 2868 2869 2870 2871 2872 2873
        if (gtype.returnType() != boolean.class)
            throw newIllegalArgumentException("guard type is not a predicate "+gtype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> gargs = gtype.parameterList();
        if (!targs.equals(gargs)) {
            int gpc = gargs.size(), tpc = targs.size();
            if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
2874
                throw misMatchedTypes("target and test types", ttype, gtype);
2875 2876
            test = dropArguments(test, gpc, targs.subList(gpc, tpc));
            gtype = test.type();
2877
        }
2878
        return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
2879 2880
    }

2881 2882 2883 2884
    static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
        return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
    }

2885
    /**
2886
     * Makes a method handle which adapts a target method handle,
2887 2888 2889 2890
     * by running it inside an exception handler.
     * If the target returns normally, the adapter returns that value.
     * If an exception matching the specified type is thrown, the fallback
     * handle is called instead on the exception, plus the original arguments.
2891
     * <p>
2892 2893 2894 2895
     * The target and handler must have the same corresponding
     * argument and return types, except that handler may omit trailing arguments
     * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
     * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
2896
     * <p> Here is pseudocode for the resulting adapter:
2897
     * <blockquote><pre>{@code
2898
     * T target(A..., B...);
2899
     * T handler(ExType, A...);
2900
     * T adapter(A... a, B... b) {
2901
     *   try {
2902
     *     return target(a..., b...);
2903 2904 2905
     *   } catch (ExType ex) {
     *     return handler(ex, a...);
     *   }
2906
     * }
2907
     * }</pre></blockquote>
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
     * Note that the saved arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the target, and so are passed unchanged
     * from the caller to the handler, if the handler is invoked.
     * <p>
     * The target and handler must return the same type, even if the handler
     * always throws.  (This might happen, for instance, because the handler
     * is simulating a {@code finally} clause).
     * To create such a throwing handler, compose the handler creation logic
     * with {@link #throwException throwException},
     * in order to create a method handle of the correct return type.
2918 2919 2920 2921
     * @param target method handle to call
     * @param exType the type of exception which the handler will catch
     * @param handler method handle to call if a matching exception is thrown
     * @return method handle which incorporates the specified try/catch logic
2922
     * @throws NullPointerException if any argument is null
2923 2924 2925 2926
     * @throws IllegalArgumentException if {@code handler} does not accept
     *          the given exception type, or if the method handle types do
     *          not match in their return types and their
     *          corresponding parameters
2927 2928
     */
    public static
2929 2930 2931
    MethodHandle catchException(MethodHandle target,
                                Class<? extends Throwable> exType,
                                MethodHandle handler) {
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
        MethodType ttype = target.type();
        MethodType htype = handler.type();
        if (htype.parameterCount() < 1 ||
            !htype.parameterType(0).isAssignableFrom(exType))
            throw newIllegalArgumentException("handler does not accept exception type "+exType);
        if (htype.returnType() != ttype.returnType())
            throw misMatchedTypes("target and handler return types", ttype, htype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> hargs = htype.parameterList();
        hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
        if (!targs.equals(hargs)) {
            int hpc = hargs.size(), tpc = targs.size();
            if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
                throw misMatchedTypes("target and handler types", ttype, htype);
2946
            handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc));
2947 2948
            htype = handler.type();
        }
2949
        return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
2950 2951
    }

2952
    /**
2953
     * Produces a method handle which will throw exceptions of the given {@code exType}.
2954 2955 2956 2957 2958
     * The method handle will accept a single argument of {@code exType},
     * and immediately throw it as an exception.
     * The method type will nominally specify a return of {@code returnType}.
     * The return type may be anything convenient:  It doesn't matter to the
     * method handle's behavior, since it will never return normally.
2959 2960
     * @param returnType the return type of the desired method handle
     * @param exType the parameter type of the desired method handle
2961 2962
     * @return method handle which can throw the given exceptions
     * @throws NullPointerException if either argument is null
2963 2964 2965
     */
    public static
    MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
2966 2967
        if (!Throwable.class.isAssignableFrom(exType))
            throw new ClassCastException(exType.getName());
2968
        return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
2969
    }
2970
}