MethodHandles.java 149.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
24 25
 */

26
package java.lang.invoke;
27

28
import java.lang.reflect.*;
29
import java.util.List;
30 31
import java.util.ArrayList;
import java.util.Arrays;
32

33 34 35 36
import sun.invoke.util.ValueConversions;
import sun.invoke.util.VerifyAccess;
import sun.invoke.util.Wrapper;
import sun.reflect.CallerSensitive;
37
import sun.reflect.Reflection;
38
import sun.reflect.misc.ReflectUtil;
39
import sun.security.util.SecurityConstants;
40
import static java.lang.invoke.MethodHandleStatics.*;
41
import static java.lang.invoke.MethodHandleNatives.Constants.*;
42
import java.util.concurrent.ConcurrentHashMap;
43
import sun.security.util.SecurityConstants;
44 45

/**
46 47
 * This class consists exclusively of static methods that operate on or return
 * method handles. They fall into several categories:
48
 * <ul>
49 50 51
 * <li>Lookup methods which help create method handles for methods and fields.
 * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
 * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
52
 * </ul>
53 54
 * <p>
 * @author John Rose, JSR 292 EG
R
rfield 已提交
55
 * @since 1.7
56 57 58 59 60
 */
public class MethodHandles {

    private MethodHandles() { }  // do not instantiate

61
    private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
62 63 64 65 66
    static { MethodHandleImpl.initStatics(); }
    // See IMPL_LOOKUP below.

    //// Method handle creation from ordinary methods.

67
    /**
68 69 70 71 72 73 74
     * Returns a {@link Lookup lookup object} with
     * full capabilities to emulate all supported bytecode behaviors of the caller.
     * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
     * Factory methods on the lookup object can create
     * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
     * for any member that the caller has access to via bytecodes,
     * including protected and private fields and methods.
75 76
     * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
     * Do not store it in place where untrusted code can access it.
77 78 79 80 81 82 83 84 85 86
     * <p>
     * This method is caller sensitive, which means that it may return different
     * values to different callers.
     * <p>
     * For any given caller class {@code C}, the lookup object returned by this call
     * has equivalent capabilities to any lookup object
     * supplied by the JVM to the bootstrap method of an
     * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
     * executing in the same caller class {@code C}.
     * @return a lookup object for the caller of this method, with private access
87
     */
88
    @CallerSensitive
89
    public static Lookup lookup() {
90
        return new Lookup(Reflection.getCallerClass());
91 92
    }

93
    /**
94
     * Returns a {@link Lookup lookup object} which is trusted minimally.
95 96
     * It can only be used to create method handles to
     * publicly accessible fields and methods.
97 98 99
     * <p>
     * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
     * of this lookup object will be {@link java.lang.Object}.
100 101 102
     *
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
103
     * The lookup class can be changed to any other class {@code C} using an expression of the form
104
     * {@link Lookup#in publicLookup().in(C.class)}.
105 106
     * Since all classes have equal access to public names,
     * such a change would confer no new access rights.
107 108 109 110
     * A public lookup object is always subject to
     * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
     * Also, it cannot access
     * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
111
     * @return a lookup object which is trusted minimally
112 113 114 115 116
     */
    public static Lookup publicLookup() {
        return Lookup.PUBLIC_LOOKUP;
    }

R
rfield 已提交
117
    /**
118 119
     * Performs an unchecked "crack" of a
     * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
R
rfield 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
     * The result is as if the user had obtained a lookup object capable enough
     * to crack the target method handle, called
     * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
     * on the target to obtain its symbolic reference, and then called
     * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
     * to resolve the symbolic reference to a member.
     * <p>
     * If there is a security manager, its {@code checkPermission} method
     * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
     * @param <T> the desired type of the result, either {@link Member} or a subtype
     * @param target a direct method handle to crack into symbolic reference components
     * @param expected a class object representing the desired result type {@code T}
     * @return a reference to the method, constructor, or field object
     * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
     * @exception NullPointerException if either argument is {@code null}
     * @exception IllegalArgumentException if the target is not a direct method handle
     * @exception ClassCastException if the member is not of the expected type
     * @since 1.8
     */
    public static <T extends Member> T
    reflectAs(Class<T> expected, MethodHandle target) {
        SecurityManager smgr = System.getSecurityManager();
        if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
        Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
        return lookup.revealDirect(target).reflectAs(expected, lookup);
    }
    // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
    static final private java.security.Permission ACCESS_PERMISSION =
        new ReflectPermission("suppressAccessChecks");

150
    /**
151 152 153
     * A <em>lookup object</em> is a factory for creating method handles,
     * when the creation requires access checking.
     * Method handles do not perform
154
     * access checks when they are called, but rather when they are created.
155 156
     * Therefore, method handle access
     * restrictions must be enforced when a method handle is created.
157
     * The caller class against which those restrictions are enforced
158
     * is known as the {@linkplain #lookupClass lookup class}.
159 160 161 162 163 164 165 166 167
     * <p>
     * A lookup class which needs to create method handles will call
     * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
     * When the {@code Lookup} factory object is created, the identity of the lookup class is
     * determined, and securely stored in the {@code Lookup} object.
     * The lookup class (or its delegates) may then use factory methods
     * on the {@code Lookup} object to create method handles for access-checked members.
     * This includes all methods, constructors, and fields which are allowed to the lookup class,
     * even private ones.
168 169
     *
     * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
170 171
     * The factory methods on a {@code Lookup} object correspond to all major
     * use cases for methods, constructors, and fields.
172 173 174
     * Each method handle created by a factory method is the functional
     * equivalent of a particular <em>bytecode behavior</em>.
     * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
175 176 177
     * Here is a summary of the correspondence between these factory methods and
     * the behavior the resulting method handles:
     * <table border=1 cellpadding=5 summary="lookup method behaviors">
178 179 180 181 182
     * <tr>
     *     <th><a name="equiv"></a>lookup expression</th>
     *     <th>member</th>
     *     <th>bytecode behavior</th>
     * </tr>
183
     * <tr>
184 185
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
     *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
186 187
     * </tr>
     * <tr>
188 189
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
     *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
190 191
     * </tr>
     * <tr>
192 193
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
     *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
194 195
     * </tr>
     * <tr>
196 197
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
     *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
198 199
     * </tr>
     * <tr>
200 201
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
     *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
202 203
     * </tr>
     * <tr>
204 205
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
     *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
206 207
     * </tr>
     * <tr>
208 209
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
     *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
210 211
     * </tr>
     * <tr>
212 213
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
     *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
214 215
     * </tr>
     * <tr>
216 217
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
     *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
218 219
     * </tr>
     * <tr>
220 221
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
     *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
222 223
     * </tr>
     * <tr>
224 225
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
     *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
226 227
     * </tr>
     * <tr>
228 229
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
     *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
230 231
     * </tr>
     * <tr>
232 233
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
     *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
234 235
     * </tr>
     * </table>
236
     *
237 238
     * Here, the type {@code C} is the class or interface being searched for a member,
     * documented as a parameter named {@code refc} in the lookup methods.
239
     * The method type {@code MT} is composed from the return type {@code T}
240
     * and the sequence of argument types {@code A*}.
241 242
     * The constructor also has a sequence of argument types {@code A*} and
     * is deemed to return the newly-created object of type {@code C}.
243 244 245
     * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
     * The formal parameter {@code this} stands for the self-reference of type {@code C};
     * if it is present, it is always the leading argument to the method handle invocation.
246 247
     * (In the case of some {@code protected} members, {@code this} may be
     * restricted in type to the lookup class; see below.)
248 249 250 251 252 253 254
     * The name {@code arg} stands for all the other method handle arguments.
     * In the code examples for the Core Reflection API, the name {@code thisOrNull}
     * stands for a null reference if the accessed method or field is static,
     * and {@code this} otherwise.
     * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
     * for reflective objects corresponding to the given members.
     * <p>
255 256 257
     * In cases where the given member is of variable arity (i.e., a method or constructor)
     * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
     * In all other cases, the returned method handle will be of fixed arity.
258 259
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
260
     * The equivalence between looked-up method handles and underlying
261 262 263
     * class members and bytecode behaviors
     * can break down in a few ways:
     * <ul style="font-size:smaller;">
264 265 266 267 268 269 270
     * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed, even when there is no equivalent
     * Java expression or bytecoded constant.
     * <li>Likewise, if {@code T} or {@code MT}
     * is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed.
     * For example, lookups for {@code MethodHandle.invokeExact} and
271
     * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
272
     * <li>If there is a security manager installed, it can forbid the lookup
273 274 275
     * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
     * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
     * constant is not subject to security manager checks.
276 277 278 279
     * <li>If the looked-up method has a
     * <a href="MethodHandle.html#maxarity">very large arity</a>,
     * the method handle creation may fail, due to the method handle
     * type having too many parameters.
280 281
     * </ul>
     *
282
     * <h1><a name="access"></a>Access checking</h1>
283 284 285
     * Access checks are applied in the factory methods of {@code Lookup},
     * when a method handle is created.
     * This is a key difference from the Core Reflection API, since
286
     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
287 288 289 290 291 292
     * performs access checking against every caller, on every call.
     * <p>
     * All access checks start from a {@code Lookup} object, which
     * compares its recorded lookup class against all requests to
     * create method handles.
     * A single {@code Lookup} object can be used to create any number
293 294 295
     * of access-checked method handles, all checked against a single
     * lookup class.
     * <p>
296 297 298 299 300 301 302
     * A {@code Lookup} object can be shared with other trusted code,
     * such as a metaobject protocol.
     * A shared {@code Lookup} object delegates the capability
     * to create method handles on private members of the lookup class.
     * Even if privileged code uses the {@code Lookup} object,
     * the access checking is confined to the privileges of the
     * original lookup class.
303
     * <p>
304
     * A lookup can fail, because
305 306
     * the containing class is not accessible to the lookup class, or
     * because the desired class member is missing, or because the
307 308
     * desired class member is not accessible to the lookup class, or
     * because the lookup object is not trusted enough to access the member.
309 310 311 312 313 314 315 316
     * In any of these cases, a {@code ReflectiveOperationException} will be
     * thrown from the attempted lookup.  The exact class will be one of
     * the following:
     * <ul>
     * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
     * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
     * <li>IllegalAccessException &mdash; if the member exists but an access check fails
     * </ul>
317
     * <p>
318
     * In general, the conditions under which a method handle may be
319 320
     * looked up for a method {@code M} are no more restrictive than the conditions
     * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
321 322 323
     * Where the JVM would raise exceptions like {@code NoSuchMethodError},
     * a method handle lookup will generally raise a corresponding
     * checked exception, such as {@code NoSuchMethodException}.
324
     * And the effect of invoking the method handle resulting from the lookup
325 326
     * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
     * to executing the compiled, verified, and resolved call to {@code M}.
327
     * The same point is true of fields and constructors.
328 329 330 331 332 333 334 335
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * Access checks only apply to named and reflected methods,
     * constructors, and fields.
     * Other method handle creation methods, such as
     * {@link MethodHandle#asType MethodHandle.asType},
     * do not require any access checks, and are used
     * independently of any {@code Lookup} object.
336
     * <p>
337 338 339 340 341 342 343 344 345 346 347 348
     * If the desired member is {@code protected}, the usual JVM rules apply,
     * including the requirement that the lookup class must be either be in the
     * same package as the desired member, or must inherit that member.
     * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
     * In addition, if the desired member is a non-static field or method
     * in a different package, the resulting method handle may only be applied
     * to objects of the lookup class or one of its subclasses.
     * This requirement is enforced by narrowing the type of the leading
     * {@code this} parameter from {@code C}
     * (which will necessarily be a superclass of the lookup class)
     * to the lookup class itself.
     * <p>
349 350 351 352 353 354
     * The JVM imposes a similar requirement on {@code invokespecial} instruction,
     * that the receiver argument must match both the resolved method <em>and</em>
     * the current class.  Again, this requirement is enforced by narrowing the
     * type of the leading parameter to the resulting method handle.
     * (See the Java Virtual Machine Specification, section 4.10.1.9.)
     * <p>
355 356 357 358 359 360
     * The JVM represents constructors and static initializer blocks as internal methods
     * with special names ({@code "<init>"} and {@code "<clinit>"}).
     * The internal syntax of invocation instructions allows them to refer to such internal
     * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
     * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
     * <p>
361
     * In some cases, access between nested classes is obtained by the Java compiler by creating
362 363
     * an wrapper method to access a private method of another class
     * in the same top-level declaration.
364
     * For example, a nested class {@code C.D}
365
     * can access private members within other related classes such as
366 367 368 369 370 371 372
     * {@code C}, {@code C.D.E}, or {@code C.B},
     * but the Java compiler may need to generate wrapper methods in
     * those related classes.  In such cases, a {@code Lookup} object on
     * {@code C.E} would be unable to those private members.
     * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
     * which can transform a lookup on {@code C.E} into one on any of those other
     * classes, without special elevation of privilege.
373
     * <p>
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
     * The accesses permitted to a given lookup object may be limited,
     * according to its set of {@link #lookupModes lookupModes},
     * to a subset of members normally accessible to the lookup class.
     * For example, the {@link MethodHandles#publicLookup publicLookup}
     * method produces a lookup object which is only allowed to access
     * public members in public classes.
     * The caller sensitive method {@link MethodHandles#lookup lookup}
     * produces a lookup object with full capabilities relative to
     * its caller class, to emulate all supported bytecode behaviors.
     * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
     * with fewer access modes than the original lookup object.
     *
     * <p style="font-size:smaller;">
     * <a name="privacc"></a>
     * <em>Discussion of private access:</em>
     * We say that a lookup has <em>private access</em>
     * if its {@linkplain #lookupModes lookup modes}
     * include the possibility of accessing {@code private} members.
     * As documented in the relevant methods elsewhere,
     * only lookups with private access possess the following capabilities:
     * <ul style="font-size:smaller;">
     * <li>access private fields, methods, and constructors of the lookup class
     * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
     *     such as {@code Class.forName}
     * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
     * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
     *     for classes accessible to the lookup class
     * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
     *     within the same package member
     * </ul>
     * <p style="font-size:smaller;">
     * Each of these permissions is a consequence of the fact that a lookup object
     * with private access can be securely traced back to an originating class,
     * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
     * can be reliably determined and emulated by method handles.
     *
     * <h1><a name="secmgr"></a>Security manager interactions</h1>
411 412 413 414 415 416 417 418 419 420 421 422 423 424
     * Although bytecode instructions can only refer to classes in
     * a related class loader, this API can search for methods in any
     * class, as long as a reference to its {@code Class} object is
     * available.  Such cross-loader references are also possible with the
     * Core Reflection API, and are impossible to bytecode instructions
     * such as {@code invokestatic} or {@code getfield}.
     * There is a {@linkplain java.lang.SecurityManager security manager API}
     * to allow applications to check such cross-loader references.
     * These checks apply to both the {@code MethodHandles.Lookup} API
     * and the Core Reflection API
     * (as found on {@link java.lang.Class Class}).
     * <p>
     * If a security manager is present, member lookups are subject to
     * additional checks.
425
     * From one to three calls are made to the security manager.
426 427 428
     * Any of these calls can refuse access by throwing a
     * {@link java.lang.SecurityException SecurityException}.
     * Define {@code smgr} as the security manager,
429
     * {@code lookc} as the lookup class of the current lookup object,
430 431 432
     * {@code refc} as the containing class in which the member
     * is being sought, and {@code defc} as the class in which the
     * member is actually defined.
433 434
     * The value {@code lookc} is defined as <em>not present</em>
     * if the current lookup object does not have
435
     * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
436 437
     * The calls are made according to the following rules:
     * <ul>
438 439
     * <li><b>Step 1:</b>
     *     If {@code lookc} is not present, or if its class loader is not
440 441 442 443
     *     the same as or an ancestor of the class loader of {@code refc},
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(refcPkg)} is called,
     *     where {@code refcPkg} is the package of {@code refc}.
444 445
     * <li><b>Step 2:</b>
     *     If the retrieved member is not public and
446 447 448
     *     {@code lookc} is not present, then
     *     {@link SecurityManager#checkPermission smgr.checkPermission}
     *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
449 450
     * <li><b>Step 3:</b>
     *     If the retrieved member is not public,
451
     *     and if {@code lookc} is not present,
452
     *     and if {@code defc} and {@code refc} are different,
453 454 455 456
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(defcPkg)} is called,
     *     where {@code defcPkg} is the package of {@code defc}.
     * </ul>
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
     * Security checks are performed after other access checks have passed.
     * Therefore, the above rules presuppose a member that is public,
     * or else that is being accessed from a lookup class that has
     * rights to access the member.
     *
     * <h1><a name="callsens"></a>Caller sensitive methods</h1>
     * A small number of Java methods have a special property called caller sensitivity.
     * A <em>caller-sensitive</em> method can behave differently depending on the
     * identity of its immediate caller.
     * <p>
     * If a method handle for a caller-sensitive method is requested,
     * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
     * but they take account of the lookup class in a special way.
     * The resulting method handle behaves as if it were called
     * from an instruction contained in the lookup class,
     * so that the caller-sensitive method detects the lookup class.
     * (By contrast, the invoker of the method handle is disregarded.)
     * Thus, in the case of caller-sensitive methods,
     * different lookup classes may give rise to
     * differently behaving method handles.
     * <p>
     * In cases where the lookup object is
     * {@link MethodHandles#publicLookup() publicLookup()},
     * or some other lookup object without
481
     * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
482 483 484 485
     * the lookup class is disregarded.
     * In such cases, no caller-sensitive method handle can be created,
     * access is forbidden, and the lookup fails with an
     * {@code IllegalAccessException}.
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * For example, the caller-sensitive method
     * {@link java.lang.Class#forName(String) Class.forName(x)}
     * can return varying classes or throw varying exceptions,
     * depending on the class loader of the class that calls it.
     * A public lookup of {@code Class.forName} will fail, because
     * there is no reasonable way to determine its bytecode behavior.
     * <p style="font-size:smaller;">
     * If an application caches method handles for broad sharing,
     * it should use {@code publicLookup()} to create them.
     * If there is a lookup of {@code Class.forName}, it will fail,
     * and the application must take appropriate action in that case.
     * It may be that a later lookup, perhaps during the invocation of a
     * bootstrap method, can incorporate the specific identity
     * of the caller, making the method accessible.
     * <p style="font-size:smaller;">
     * The function {@code MethodHandles.lookup} is caller sensitive
     * so that there can be a secure foundation for lookups.
     * Nearly all other methods in the JSR 292 API rely on lookup
     * objects to check access requests.
507 508 509
     */
    public static final
    class Lookup {
510
        /** The class on behalf of whom the lookup is being performed. */
511 512
        private final Class<?> lookupClass;

513
        /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
514 515
        private final int allowedModes;

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        /** A single-bit mask representing {@code public} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x01}, happens to be the same as the value of the
         *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
         */
        public static final int PUBLIC = Modifier.PUBLIC;

        /** A single-bit mask representing {@code private} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x02}, happens to be the same as the value of the
         *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
         */
        public static final int PRIVATE = Modifier.PRIVATE;

        /** A single-bit mask representing {@code protected} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x04}, happens to be the same as the value of the
         *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
         */
        public static final int PROTECTED = Modifier.PROTECTED;

        /** A single-bit mask representing {@code package} access (default access),
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value is {@code 0x08}, which does not correspond meaningfully to
         *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
         */
        public static final int PACKAGE = Modifier.STATIC;

        private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
        private static final int TRUSTED   = -1;
546 547 548 549 550 551

        private static int fixmods(int mods) {
            mods &= (ALL_MODES - PACKAGE);
            return (mods != 0) ? mods : PACKAGE;
        }

552
        /** Tells which class is performing the lookup.  It is this class against
553 554
         *  which checks are performed for visibility and access permissions.
         *  <p>
555 556
         *  The class implies a maximum level of access permission,
         *  but the permissions may be additionally limited by the bitmask
557
         *  {@link #lookupModes lookupModes}, which controls whether non-public members
558
         *  can be accessed.
559
         *  @return the lookup class, on behalf of which this lookup object finds members
560 561 562 563 564
         */
        public Class<?> lookupClass() {
            return lookupClass;
        }

565 566 567 568 569
        // This is just for calling out to MethodHandleImpl.
        private Class<?> lookupClassOrNull() {
            return (allowedModes == TRUSTED) ? null : lookupClass;
        }

570
        /** Tells which access-protection classes of members this lookup object can produce.
571 572 573 574 575
         *  The result is a bit-mask of the bits
         *  {@linkplain #PUBLIC PUBLIC (0x01)},
         *  {@linkplain #PRIVATE PRIVATE (0x02)},
         *  {@linkplain #PROTECTED PROTECTED (0x04)},
         *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
576 577
         *  <p>
         *  A freshly-created lookup object
578
         *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
579 580
         *  has all possible bits set, since the caller class can access all its own members.
         *  A lookup object on a new lookup class
581
         *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
582 583 584 585
         *  may have some mode bits set to zero.
         *  The purpose of this is to restrict access via the new lookup object,
         *  so that it can access only names which can be reached by the original
         *  lookup object, and also by the new lookup class.
586
         *  @return the lookup modes, which limit the kinds of access performed by this lookup object
587
         */
588
        public int lookupModes() {
589 590 591
            return allowedModes & ALL_MODES;
        }

592 593 594 595 596
        /** Embody the current class (the lookupClass) as a lookup class
         * for method handle creation.
         * Must be called by from a method in this package,
         * which in turn is called by a method not in this package.
         */
597
        Lookup(Class<?> lookupClass) {
598
            this(lookupClass, ALL_MODES);
599
            // make sure we haven't accidentally picked up a privileged class:
600
            checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
601 602 603
        }

        private Lookup(Class<?> lookupClass, int allowedModes) {
604
            this.lookupClass = lookupClass;
605
            this.allowedModes = allowedModes;
606 607 608
        }

        /**
609
         * Creates a lookup on the specified new lookup class.
610
         * The resulting object will report the specified
611
         * class as its own {@link #lookupClass lookupClass}.
612 613 614
         * <p>
         * However, the resulting {@code Lookup} object is guaranteed
         * to have no more access capabilities than the original.
615
         * In particular, access capabilities can be lost as follows:<ul>
616 617
         * <li>If the new lookup class differs from the old one,
         * protected members will not be accessible by virtue of inheritance.
618
         * (Protected members may continue to be accessible because of package sharing.)
619 620 621 622
         * <li>If the new lookup class is in a different package
         * than the old one, protected and default (package) members will not be accessible.
         * <li>If the new lookup class is not within the same package member
         * as the old one, private members will not be accessible.
623 624 625
         * <li>If the new lookup class is not accessible to the old lookup class,
         * then no members, not even public members, will be accessible.
         * (In all other cases, public members will continue to be accessible.)
626
         * </ul>
627 628 629 630
         *
         * @param requestedLookupClass the desired lookup class for the new lookup object
         * @return a lookup object which reports the desired lookup class
         * @throws NullPointerException if the argument is null
631
         */
632 633 634 635 636 637 638 639 640 641
        public Lookup in(Class<?> requestedLookupClass) {
            requestedLookupClass.getClass();  // null check
            if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
                return new Lookup(requestedLookupClass, ALL_MODES);
            if (requestedLookupClass == this.lookupClass)
                return this;  // keep same capabilities
            int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
            if ((newModes & PACKAGE) != 0
                && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
                newModes &= ~(PACKAGE|PRIVATE);
642
            }
643
            // Allow nestmate lookups to be created without special privilege:
644 645 646 647
            if ((newModes & PRIVATE) != 0
                && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
                newModes &= ~PRIVATE;
            }
648 649
            if ((newModes & PUBLIC) != 0
                && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
650 651 652 653
                // The requested class it not accessible from the lookup class.
                // No permissions.
                newModes = 0;
            }
654
            checkUnprivilegedlookupClass(requestedLookupClass, newModes);
655
            return new Lookup(requestedLookupClass, newModes);
656 657
        }

658
        // Make sure outer class is initialized first.
659
        static { IMPL_NAMES.getClass(); }
660

661 662 663 664
        /** Version of lookup which is trusted minimally.
         *  It can only be used to create method handles to
         *  publicly accessible members.
         */
665
        static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
666 667

        /** Package-private version of lookup which is trusted. */
668
        static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
669

670
        private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
671
            String name = lookupClass.getName();
672
            if (name.startsWith("java.lang.invoke."))
673
                throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
674 675 676 677 678 679 680 681 682

            // For caller-sensitive MethodHandles.lookup()
            // disallow lookup more restricted packages
            if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) {
                if (name.startsWith("java.") ||
                        (name.startsWith("sun.") && !name.startsWith("sun.invoke."))) {
                    throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
                }
            }
683 684
        }

685
        /**
686
         * Displays the name of the class from which lookups are to be made.
687 688 689
         * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
         * If there are restrictions on the access permitted to this lookup,
         * this is indicated by adding a suffix to the class name, consisting
690 691
         * of a slash and a keyword.  The keyword represents the strongest
         * allowed access, and is chosen as follows:
692 693 694 695 696 697 698 699 700 701
         * <ul>
         * <li>If no access is allowed, the suffix is "/noaccess".
         * <li>If only public access is allowed, the suffix is "/public".
         * <li>If only public and package access are allowed, the suffix is "/package".
         * <li>If only public, package, and private access are allowed, the suffix is "/private".
         * </ul>
         * If none of the above cases apply, it is the case that full
         * access (public, package, private, and protected) is allowed.
         * In this case, no suffix is added.
         * This is true only of an object obtained originally from
702 703
         * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
         * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
704
         * always have restricted access, and will display a suffix.
705 706 707 708 709 710 711
         * <p>
         * (It may seem strange that protected access should be
         * stronger than private access.  Viewed independently from
         * package access, protected access is the first to be lost,
         * because it requires a direct subclass relationship between
         * caller and callee.)
         * @see #in
712
         */
713 714
        @Override
        public String toString() {
715 716
            String cname = lookupClass.getName();
            switch (allowedModes) {
717 718
            case 0:  // no privileges
                return cname + "/noaccess";
719
            case PUBLIC:
720
                return cname + "/public";
721 722
            case PUBLIC|PACKAGE:
                return cname + "/package";
723 724
            case ALL_MODES & ~PROTECTED:
                return cname + "/private";
725 726
            case ALL_MODES:
                return cname;
727 728 729 730 731 732
            case TRUSTED:
                return "/trusted";  // internal only; not exported
            default:  // Should not happen, but it's a bitfield...
                cname = cname + "/" + Integer.toHexString(allowedModes);
                assert(false) : cname;
                return cname;
733
            }
734 735 736
        }

        /**
737
         * Produces a method handle for a static method.
738
         * The type of the method handle will be that of the method.
739 740
         * (Since static methods do not take receivers, there is no
         * additional receiver argument inserted into the method handle type,
741
         * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
742
         * The method and all its argument types must be accessible to the lookup object.
743 744 745 746
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
747 748 749 750
         * <p>
         * If the returned method handle is invoked, the method's class will
         * be initialized, if it has not already been initialized.
         * <p><b>Example:</b>
751
         * <blockquote><pre>{@code
752 753 754 755 756 757 758
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
  "asList", methodType(List.class, Object[].class));
assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
         * }</pre></blockquote>
759
         * @param refc the class from which the method is accessed
760 761 762
         * @param name the name of the method
         * @param type the type of the method
         * @return the desired method handle
763
         * @throws NoSuchMethodException if the method does not exist
764 765 766 767
         * @throws IllegalAccessException if access checking fails,
         *                                or if the method is not {@code static},
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
768 769
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
770
         * @throws NullPointerException if any argument is null
771 772
         */
        public
773
        MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
774
            MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
775
            return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
776
        }
777 778

        /**
779
         * Produces a method handle for a virtual method.
780
         * The type of the method handle will be that of the method,
781
         * with the receiver type (usually {@code refc}) prepended.
782
         * The method and all its argument types must be accessible to the lookup object.
783 784 785 786 787 788
         * <p>
         * When called, the handle will treat the first argument as a receiver
         * and dispatch on the receiver's type to determine which method
         * implementation to enter.
         * (The dispatching action is identical with that performed by an
         * {@code invokevirtual} or {@code invokeinterface} instruction.)
789
         * <p>
790 791 792 793 794
         * The first argument will be of type {@code refc} if the lookup
         * class has full privileges to access the member.  Otherwise
         * the member must be {@code protected} and the first argument
         * will be restricted in type to the lookup class.
         * <p>
795 796 797
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
798
         * <p>
799
         * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
800 801
         * instructions and method handles produced by {@code findVirtual},
         * if the class is {@code MethodHandle} and the name string is
802
         * {@code invokeExact} or {@code invoke}, the resulting
803
         * method handle is equivalent to one produced by
804
         * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
805
         * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
806 807
         * with the same {@code type} argument.
         *
808
         * <b>Example:</b>
809
         * <blockquote><pre>{@code
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_concat = publicLookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
  "hashCode", methodType(int.class));
MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
  "hashCode", methodType(int.class));
assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
// interface method:
MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
  "subSequence", methodType(CharSequence.class, int.class, int.class));
assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
// constructor "internal method" must be accessed differently:
MethodType MT_newString = methodType(void.class); //()V for new String()
try { assertEquals("impossible", lookup()
        .findVirtual(String.class, "<init>", MT_newString));
 } catch (NoSuchMethodException ex) { } // OK
MethodHandle MH_newString = publicLookup()
  .findConstructor(String.class, MT_newString);
assertEquals("", (String) MH_newString.invokeExact());
         * }</pre></blockquote>
         *
836
         * @param refc the class or interface from which the method is accessed
837 838 839
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
840
         * @throws NoSuchMethodException if the method does not exist
841 842 843 844
         * @throws IllegalAccessException if access checking fails,
         *                                or if the method is {@code static}
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
845 846
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
847
         * @throws NullPointerException if any argument is null
848
         */
849
        public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
850 851 852 853 854 855
            if (refc == MethodHandle.class) {
                MethodHandle mh = findVirtualForMH(name, type);
                if (mh != null)  return mh;
            }
            byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
            MemberName method = resolveOrFail(refKind, refc, name, type);
856
            return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
857
        }
858 859 860 861 862 863
        private MethodHandle findVirtualForMH(String name, MethodType type) {
            // these names require special lookups because of the implicit MethodType argument
            if ("invoke".equals(name))
                return invoker(type);
            if ("invokeExact".equals(name))
                return exactInvoker(type);
R
rfield 已提交
864
            assert(!MemberName.isMethodHandleInvokeName(name));
865
            return null;
866 867 868
        }

        /**
869
         * Produces a method handle which creates an object and initializes it, using
870 871 872
         * the constructor of the specified type.
         * The parameter types of the method handle will be those of the constructor,
         * while the return type will be a reference to the constructor's class.
873
         * The constructor and all its argument types must be accessible to the lookup object.
874
         * <p>
875 876
         * The requested type must have a return type of {@code void}.
         * (This is consistent with the JVM's treatment of constructor type descriptors.)
877 878 879 880
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
881 882 883
         * <p>
         * If the returned method handle is invoked, the constructor's class will
         * be initialized, if it has not already been initialized.
884
         * <p><b>Example:</b>
885
         * <blockquote><pre>{@code
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_newArrayList = publicLookup().findConstructor(
  ArrayList.class, methodType(void.class, Collection.class));
Collection orig = Arrays.asList("x", "y");
Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
assert(orig != copy);
assertEquals(orig, copy);
// a variable-arity constructor:
MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
  ProcessBuilder.class, methodType(void.class, String[].class));
ProcessBuilder pb = (ProcessBuilder)
  MH_newProcessBuilder.invoke("x", "y", "z");
assertEquals("[x, y, z]", pb.command().toString());
         * }</pre></blockquote>
902 903 904
         * @param refc the class or interface from which the method is accessed
         * @param type the type of the method, with the receiver argument omitted, and a void return type
         * @return the desired method handle
905 906
         * @throws NoSuchMethodException if the constructor does not exist
         * @throws IllegalAccessException if access checking fails
907 908
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
909 910
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
911
         * @throws NullPointerException if any argument is null
912
         */
913
        public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
914
            String name = "<init>";
915 916
            MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
            return getDirectConstructor(refc, ctor);
917 918 919
        }

        /**
920 921 922 923
         * Produces an early-bound method handle for a virtual method.
         * It will bypass checks for overriding methods on the receiver,
         * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
         * instruction from within the explicitly specified {@code specialCaller}.
924
         * The type of the method handle will be that of the method,
925 926
         * with a suitably restricted receiver type prepended.
         * (The receiver type will be {@code specialCaller} or a subtype.)
927
         * The method and all its argument types must be accessible
928
         * to the lookup object.
929
         * <p>
930 931 932 933
         * Before method resolution,
         * if the explicitly specified caller class is not identical with the
         * lookup class, or if this lookup object does not have
         * <a href="MethodHandles.Lookup.html#privacc">private access</a>
934
         * privileges, the access fails.
935 936 937 938
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
939
         * <p style="font-size:smaller;">
940 941 942 943 944
         * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
         * even though the {@code invokespecial} instruction can refer to them
         * in special circumstances.  Use {@link #findConstructor findConstructor}
         * to access instance initialization methods in a safe manner.)</em>
         * <p><b>Example:</b>
945
         * <blockquote><pre>{@code
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
static class Listie extends ArrayList {
  public String toString() { return "[wee Listie]"; }
  static Lookup lookup() { return MethodHandles.lookup(); }
}
...
// no access to constructor via invokeSpecial:
MethodHandle MH_newListie = Listie.lookup()
  .findConstructor(Listie.class, methodType(void.class));
Listie l = (Listie) MH_newListie.invokeExact();
try { assertEquals("impossible", Listie.lookup().findSpecial(
        Listie.class, "<init>", methodType(void.class), Listie.class));
 } catch (NoSuchMethodException ex) { } // OK
// access to super and self methods via invokeSpecial:
MethodHandle MH_super = Listie.lookup().findSpecial(
  ArrayList.class, "toString" , methodType(String.class), Listie.class);
MethodHandle MH_this = Listie.lookup().findSpecial(
  Listie.class, "toString" , methodType(String.class), Listie.class);
MethodHandle MH_duper = Listie.lookup().findSpecial(
  Object.class, "toString" , methodType(String.class), Listie.class);
assertEquals("[]", (String) MH_super.invokeExact(l));
assertEquals(""+l, (String) MH_this.invokeExact(l));
assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
try { assertEquals("inaccessible", Listie.lookup().findSpecial(
        String.class, "toString", methodType(String.class), Listie.class));
 } catch (IllegalAccessException ex) { } // OK
Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
         * }</pre></blockquote>
         *
978 979
         * @param refc the class or interface from which the method is accessed
         * @param name the name of the method (which must not be "&lt;init&gt;")
980 981 982
         * @param type the type of the method, with the receiver argument omitted
         * @param specialCaller the proposed calling class to perform the {@code invokespecial}
         * @return the desired method handle
983 984
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
985 986
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
987 988
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
989
         * @throws NullPointerException if any argument is null
990
         */
991
        public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
992
                                        Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
993
            checkSpecialCaller(specialCaller);
994 995
            Lookup specialLookup = this.in(specialCaller);
            MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
996
            return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
997
        }
998 999

        /**
1000
         * Produces a method handle giving read access to a non-static field.
1001 1002
         * The type of the method handle will have a return type of the field's
         * value type.
1003
         * The method handle's single argument will be the instance containing
1004 1005
         * the field.
         * Access checking is performed immediately on behalf of the lookup class.
1006
         * @param refc the class or interface from which the method is accessed
1007 1008 1009
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
1010 1011
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1012 1013
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1014
         * @throws NullPointerException if any argument is null
1015
         */
1016
        public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1017 1018
            MemberName field = resolveOrFail(REF_getField, refc, name, type);
            return getDirectField(REF_getField, refc, field);
1019
        }
1020 1021

        /**
1022
         * Produces a method handle giving write access to a non-static field.
1023
         * The type of the method handle will have a void return type.
1024
         * The method handle will take two arguments, the instance containing
1025
         * the field, and the value to be stored.
1026 1027
         * The second argument will be of the field's value type.
         * Access checking is performed immediately on behalf of the lookup class.
1028
         * @param refc the class or interface from which the method is accessed
1029 1030 1031
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can store values into the field
1032 1033
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1034 1035
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1036
         * @throws NullPointerException if any argument is null
1037
         */
1038
        public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1039 1040
            MemberName field = resolveOrFail(REF_putField, refc, name, type);
            return getDirectField(REF_putField, refc, field);
1041
        }
1042 1043

        /**
1044
         * Produces a method handle giving read access to a static field.
1045 1046 1047 1048
         * The type of the method handle will have a return type of the field's
         * value type.
         * The method handle will take no arguments.
         * Access checking is performed immediately on behalf of the lookup class.
1049 1050 1051
         * <p>
         * If the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1052
         * @param refc the class or interface from which the method is accessed
1053 1054 1055
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
1056 1057
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1058 1059
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1060
         * @throws NullPointerException if any argument is null
1061
         */
1062
        public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1063 1064
            MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
            return getDirectField(REF_getStatic, refc, field);
1065
        }
1066 1067

        /**
1068
         * Produces a method handle giving write access to a static field.
1069 1070 1071
         * The type of the method handle will have a void return type.
         * The method handle will take a single
         * argument, of the field's value type, the value to be stored.
1072
         * Access checking is performed immediately on behalf of the lookup class.
1073 1074 1075
         * <p>
         * If the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1076
         * @param refc the class or interface from which the method is accessed
1077 1078
         * @param name the field's name
         * @param type the field's type
1079
         * @return a method handle which can store values into the field
1080 1081
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1082 1083
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1084
         * @throws NullPointerException if any argument is null
1085
         */
1086
        public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1087 1088
            MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
            return getDirectField(REF_putStatic, refc, field);
1089
        }
1090 1091

        /**
1092
         * Produces an early-bound method handle for a non-static method.
1093 1094
         * The receiver must have a supertype {@code defc} in which a method
         * of the given name and type is accessible to the lookup class.
1095
         * The method and all its argument types must be accessible to the lookup object.
1096 1097 1098 1099 1100
         * The type of the method handle will be that of the method,
         * without any insertion of an additional receiver parameter.
         * The given receiver will be bound into the method handle,
         * so that every call to the method handle will invoke the
         * requested method on the given receiver.
1101
         * <p>
1102 1103 1104 1105 1106 1107 1108 1109
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set
         * <em>and</em> the trailing array argument is not the only argument.
         * (If the trailing array argument is the only argument,
         * the given receiver value will be bound to it.)
         * <p>
         * This is equivalent to the following code:
1110
         * <blockquote><pre>{@code
1111 1112 1113
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
1114 1115
MethodHandle mh0 = lookup().findVirtual(defc, name, type);
MethodHandle mh1 = mh0.bindTo(receiver);
1116
MethodType mt1 = mh1.type();
1117
if (mh0.isVarargsCollector())
1118 1119
  mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
return mh1;
1120
         * }</pre></blockquote>
1121 1122 1123
         * where {@code defc} is either {@code receiver.getClass()} or a super
         * type of that class, in which the requested method is accessible
         * to the lookup class.
1124
         * (Note that {@code bindTo} does not preserve variable arity.)
1125 1126 1127 1128
         * @param receiver the object from which the method is accessed
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
1129 1130
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
1131 1132
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1133 1134
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1135
         * @throws NullPointerException if any argument is null
1136 1137
         * @see MethodHandle#bindTo
         * @see #findVirtual
1138
         */
1139
        public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1140
            Class<? extends Object> refc = receiver.getClass(); // may get NPE
1141
            MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1142
            MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1143
            return mh.bindReceiver(receiver).setVarargs(method);
1144 1145 1146
        }

        /**
1147 1148
         * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
         * to <i>m</i>, if the lookup class has permission.
1149 1150 1151 1152 1153 1154 1155 1156
         * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
         * If <i>m</i> is virtual, overriding is respected on every call.
         * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
         * The type of the method handle will be that of the method,
         * with the receiver type prepended (but only if it is non-static).
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class.
         * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1157 1158 1159 1160
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
1161 1162 1163 1164
         * <p>
         * If <i>m</i> is static, and
         * if the returned method handle is invoked, the method's class will
         * be initialized, if it has not already been initialized.
1165 1166
         * @param m the reflected method
         * @return a method handle which can invoke the reflected method
1167
         * @throws IllegalAccessException if access checking fails
1168 1169
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1170
         * @throws NullPointerException if the argument is null
1171
         */
1172
        public MethodHandle unreflect(Method m) throws IllegalAccessException {
R
rfield 已提交
1173 1174 1175 1176
            if (m.getDeclaringClass() == MethodHandle.class) {
                MethodHandle mh = unreflectForMH(m);
                if (mh != null)  return mh;
            }
1177
            MemberName method = new MemberName(m);
1178 1179 1180
            byte refKind = method.getReferenceKind();
            if (refKind == REF_invokeSpecial)
                refKind = REF_invokeVirtual;
1181
            assert(method.isMethod());
1182
            Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1183
            return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1184
        }
R
rfield 已提交
1185 1186 1187 1188 1189 1190
        private MethodHandle unreflectForMH(Method m) {
            // these names require special lookups because they throw UnsupportedOperationException
            if (MemberName.isMethodHandleInvokeName(m.getName()))
                return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
            return null;
        }
1191 1192

        /**
1193
         * Produces a method handle for a reflected method.
1194
         * It will bypass checks for overriding methods on the receiver,
1195 1196
         * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
         * instruction from within the explicitly specified {@code specialCaller}.
1197
         * The type of the method handle will be that of the method,
1198 1199
         * with a suitably restricted receiver type prepended.
         * (The receiver type will be {@code specialCaller} or a subtype.)
1200 1201 1202
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class,
         * as if {@code invokespecial} instruction were being linked.
1203
         * <p>
1204 1205 1206 1207 1208 1209
         * Before method resolution,
         * if the explicitly specified caller class is not identical with the
         * lookup class, or if this lookup object does not have
         * <a href="MethodHandles.Lookup.html#privacc">private access</a>
         * privileges, the access fails.
         * <p>
1210 1211 1212
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
1213
         * @param m the reflected method
1214
         * @param specialCaller the class nominally calling the method
1215
         * @return a method handle which can invoke the reflected method
1216
         * @throws IllegalAccessException if access checking fails
1217 1218
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1219
         * @throws NullPointerException if any argument is null
1220
         */
1221
        public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1222
            checkSpecialCaller(specialCaller);
1223 1224
            Lookup specialLookup = this.in(specialCaller);
            MemberName method = new MemberName(m, true);
1225 1226
            assert(method.isMethod());
            // ignore m.isAccessible:  this is a new kind of access
1227
            return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1228 1229 1230
        }

        /**
1231
         * Produces a method handle for a reflected constructor.
1232 1233
         * The type of the method handle will be that of the constructor,
         * with the return type changed to the declaring class.
1234 1235 1236 1237 1238
         * The method handle will perform a {@code newInstance} operation,
         * creating a new instance of the constructor's class on the
         * arguments passed to the method handle.
         * <p>
         * If the constructor's {@code accessible} flag is not set,
1239
         * access checking is performed immediately on behalf of the lookup class.
1240 1241 1242 1243
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1244 1245 1246
         * <p>
         * If the returned method handle is invoked, the constructor's class will
         * be initialized, if it has not already been initialized.
1247
         * @param c the reflected constructor
1248
         * @return a method handle which can invoke the reflected constructor
1249
         * @throws IllegalAccessException if access checking fails
1250 1251
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1252
         * @throws NullPointerException if the argument is null
1253
         */
1254
        public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1255 1256
            MemberName ctor = new MemberName(c);
            assert(ctor.isConstructor());
1257
            Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1258
            return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1259 1260 1261
        }

        /**
1262
         * Produces a method handle giving read access to a reflected field.
1263
         * The type of the method handle will have a return type of the field's
1264 1265 1266 1267
         * value type.
         * If the field is static, the method handle will take no arguments.
         * Otherwise, its single argument will be the instance containing
         * the field.
1268
         * If the field's {@code accessible} flag is not set,
1269
         * access checking is performed immediately on behalf of the lookup class.
1270 1271 1272 1273
         * <p>
         * If the field is static, and
         * if the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1274 1275
         * @param f the reflected field
         * @return a method handle which can load values from the reflected field
1276 1277
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
1278
         */
1279
        public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1280 1281 1282 1283 1284 1285 1286 1287
            return unreflectField(f, false);
        }
        private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
            MemberName field = new MemberName(f, isSetter);
            assert(isSetter
                    ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
                    : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
            Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1288
            return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1289 1290 1291
        }

        /**
1292
         * Produces a method handle giving write access to a reflected field.
1293
         * The type of the method handle will have a void return type.
1294 1295 1296 1297
         * If the field is static, the method handle will take a single
         * argument, of the field's value type, the value to be stored.
         * Otherwise, the two arguments will be the instance containing
         * the field, and the value to be stored.
1298
         * If the field's {@code accessible} flag is not set,
1299
         * access checking is performed immediately on behalf of the lookup class.
1300 1301 1302 1303
         * <p>
         * If the field is static, and
         * if the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1304 1305
         * @param f the reflected field
         * @return a method handle which can store values into the reflected field
1306 1307
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
1308
         */
1309
        public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1310
            return unreflectField(f, true);
1311 1312
        }

R
rfield 已提交
1313
        /**
1314 1315
         * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
         * created by this lookup object or a similar one.
R
rfield 已提交
1316 1317 1318 1319
         * Security and access checks are performed to ensure that this lookup object
         * is capable of reproducing the target method handle.
         * This means that the cracking may fail if target is a direct method handle
         * but was created by an unrelated lookup object.
1320 1321
         * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
         * and was created by a lookup object for a different class.
R
rfield 已提交
1322 1323 1324 1325 1326 1327
         * @param target a direct method handle to crack into symbolic reference components
         * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
         * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
         * @exception NullPointerException if the target is {@code null}
1328
         * @see MethodHandleInfo
R
rfield 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
         * @since 1.8
         */
        public MethodHandleInfo revealDirect(MethodHandle target) {
            MemberName member = target.internalMemberName();
            if (member == null || (!member.isResolved() && !member.isMethodHandleInvoke()))
                throw newIllegalArgumentException("not a direct method handle");
            Class<?> defc = member.getDeclaringClass();
            byte refKind = member.getReferenceKind();
            assert(MethodHandleNatives.refKindIsValid(refKind));
            if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
                // Devirtualized method invocation is usually formally virtual.
                // To avoid creating extra MemberName objects for this common case,
                // we encode this extra degree of freedom using MH.isInvokeSpecial.
                refKind = REF_invokeVirtual;
            if (refKind == REF_invokeVirtual && defc.isInterface())
                // Symbolic reference is through interface but resolves to Object method (toString, etc.)
                refKind = REF_invokeInterface;
            // Check SM permissions and member access before cracking.
            try {
                checkAccess(refKind, defc, member);
1349
                checkSecurityManager(defc, member);
R
rfield 已提交
1350 1351 1352
            } catch (IllegalAccessException ex) {
                throw new IllegalArgumentException(ex);
            }
1353 1354 1355 1356 1357
            if (allowedModes != TRUSTED && member.isCallerSensitive()) {
                Class<?> callerClass = target.internalCallerClass();
                if (!hasPrivateAccess() || callerClass != lookupClass())
                    throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
            }
R
rfield 已提交
1358 1359 1360 1361
            // Produce the handle to the results.
            return new InfoFromMemberName(this, member, refKind);
        }

1362
        /// Helper methods, all package-private.
1363

1364
        MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1365
            checkSymbolicClass(refc);  // do this before attempting to resolve
1366 1367
            name.getClass();  // NPE
            type.getClass();  // NPE
1368
            return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1369
                                            NoSuchFieldException.class);
1370
        }
1371

1372
        MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1373
            checkSymbolicClass(refc);  // do this before attempting to resolve
1374 1375
            name.getClass();  // NPE
            type.getClass();  // NPE
1376
            checkMethodName(refKind, name);  // NPE check on name
1377
            return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1378
                                            NoSuchMethodException.class);
1379
        }
1380

1381 1382 1383 1384 1385 1386 1387 1388
        MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
            checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
            member.getName().getClass();  // NPE
            member.getType().getClass();  // NPE
            return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
                                            ReflectiveOperationException.class);
        }

1389
        void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1390
            refc.getClass();  // NPE
1391
            Class<?> caller = lookupClassOrNull();
1392
            if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
1393
                throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this);
1394 1395
        }

1396
        /** Check name for an illegal leading "&lt;" character. */
1397 1398 1399 1400 1401 1402
        void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
            if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
                throw new NoSuchMethodException("illegal method name: "+name);
        }


1403 1404 1405
        /**
         * Find my trustable caller class if m is a caller sensitive method.
         * If this lookup object has private access, then the caller class is the lookupClass.
1406
         * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
1407
         */
1408
        Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
1409 1410
            Class<?> callerClass = null;
            if (MethodHandleNatives.isCallerSensitive(m)) {
1411 1412
                // Only lookups with private access are allowed to resolve caller-sensitive methods
                if (hasPrivateAccess()) {
1413 1414 1415 1416
                    callerClass = lookupClass;
                } else {
                    throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
                }
1417 1418 1419
            }
            return callerClass;
        }
1420

1421
        private boolean hasPrivateAccess() {
1422 1423 1424
            return (allowedModes & PRIVATE) != 0;
        }

1425 1426
        /**
         * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
1427 1428
         * Determines a trustable caller class to compare with refc, the symbolic reference class.
         * If this lookup object has private access, then the caller class is the lookupClass.
1429
         */
1430
        void checkSecurityManager(Class<?> refc, MemberName m) {
1431 1432 1433
            SecurityManager smgr = System.getSecurityManager();
            if (smgr == null)  return;
            if (allowedModes == TRUSTED)  return;
1434

1435
            // Step 1:
1436 1437
            boolean fullPowerLookup = hasPrivateAccess();
            if (!fullPowerLookup ||
1438 1439 1440
                !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
                ReflectUtil.checkPackageAccess(refc);
            }
1441

1442
            // Step 2:
1443
            if (m.isPublic()) return;
1444 1445
            if (!fullPowerLookup) {
                smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
1446 1447
            }

1448
            // Step 3:
1449 1450
            Class<?> defc = m.getDeclaringClass();
            if (!fullPowerLookup && defc != refc) {
1451 1452
                ReflectUtil.checkPackageAccess(defc);
            }
1453 1454
        }

1455 1456
        void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            boolean wantStatic = (refKind == REF_invokeStatic);
1457 1458 1459 1460 1461 1462 1463 1464
            String message;
            if (m.isConstructor())
                message = "expected a method, not a constructor";
            else if (!m.isMethod())
                message = "expected a method";
            else if (wantStatic != m.isStatic())
                message = wantStatic ? "expected a static method" : "expected a non-static method";
            else
1465
                { checkAccess(refKind, refc, m); return; }
1466
            throw m.makeAccessException(message, this);
1467 1468
        }

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
        void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
            String message;
            if (wantStatic != m.isStatic())
                message = wantStatic ? "expected a static field" : "expected a non-static field";
            else
                { checkAccess(refKind, refc, m); return; }
            throw m.makeAccessException(message, this);
        }

1479
        /** Check public/protected/private bits on the symbolic reference class and its member. */
1480 1481 1482 1483
        void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            assert(m.referenceKindIsConsistentWith(refKind) &&
                   MethodHandleNatives.refKindIsValid(refKind) &&
                   (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
1484 1485 1486
            int allowedModes = this.allowedModes;
            if (allowedModes == TRUSTED)  return;
            int mods = m.getModifiers();
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
            if (Modifier.isProtected(mods) &&
                    refKind == REF_invokeVirtual &&
                    m.getDeclaringClass() == Object.class &&
                    m.getName().equals("clone") &&
                    refc.isArray()) {
                // The JVM does this hack also.
                // (See ClassVerifier::verify_invoke_instructions
                // and LinkResolver::check_method_accessability.)
                // Because the JVM does not allow separate methods on array types,
                // there is no separate method for int[].clone.
                // All arrays simply inherit Object.clone.
                // But for access checking logic, we make Object.clone
                // (normally protected) appear to be public.
                // Later on, when the DirectMethodHandle is created,
                // its leading argument will be restricted to the
                // requested array type.
                // N.B. The return type is not adjusted, because
                // that is *not* the bytecode behavior.
                mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
            }
1507 1508 1509
            if (Modifier.isFinal(mods) &&
                    MethodHandleNatives.refKindIsSetter(refKind))
                throw m.makeAccessException("unexpected set of a final field", this);
1510
            if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
1511 1512
                return;  // common case
            int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
1513 1514 1515 1516 1517
            if ((requestedModes & allowedModes) != 0) {
                if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
                                                    mods, lookupClass(), allowedModes))
                    return;
            } else {
1518
                // Protected members can also be checked as if they were package-private.
1519 1520 1521 1522
                if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
                        && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
                    return;
            }
1523
            throw m.makeAccessException(accessFailedMessage(refc, m), this);
1524 1525 1526 1527 1528
        }

        String accessFailedMessage(Class<?> refc, MemberName m) {
            Class<?> defc = m.getDeclaringClass();
            int mods = m.getModifiers();
1529 1530 1531 1532 1533
            // check the class first:
            boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
                               (defc == refc ||
                                Modifier.isPublic(refc.getModifiers())));
            if (!classOK && (allowedModes & PACKAGE) != 0) {
1534
                classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
1535
                           (defc == refc ||
1536
                            VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
1537 1538
            }
            if (!classOK)
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
                return "class is not public";
            if (Modifier.isPublic(mods))
                return "access to public member failed";  // (how?)
            if (Modifier.isPrivate(mods))
                return "member is private";
            if (Modifier.isProtected(mods))
                return "member is protected";
            return "member is private to package";
        }

1549 1550
        private static final boolean ALLOW_NESTMATE_ACCESS = false;

1551 1552
        private void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
            int allowedModes = this.allowedModes;
1553
            if (allowedModes == TRUSTED)  return;
1554
            if (!hasPrivateAccess()
1555 1556 1557
                || (specialCaller != lookupClass()
                    && !(ALLOW_NESTMATE_ACCESS &&
                         VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
1558 1559
                throw new MemberName(specialCaller).
                    makeAccessException("no private access for invokespecial", this);
1560 1561
        }

1562
        private boolean restrictProtectedReceiver(MemberName method) {
1563 1564 1565 1566
            // The accessing class only has the right to use a protected member
            // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
            if (!method.isProtected() || method.isStatic()
                || allowedModes == TRUSTED
1567
                || method.getDeclaringClass() == lookupClass()
1568
                || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
1569 1570
                || (ALLOW_NESTMATE_ACCESS &&
                    VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
1571 1572
                return false;
            return true;
1573
        }
1574
        private MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException {
1575
            assert(!method.isStatic());
1576 1577
            // receiver type of mh is too wide; narrow to caller
            if (!method.getDeclaringClass().isAssignableFrom(caller)) {
1578
                throw method.makeAccessException("caller class must be a subclass below the method", caller);
1579
            }
1580 1581 1582
            MethodType rawType = mh.type();
            if (rawType.parameterType(0) == caller)  return mh;
            MethodType narrowType = rawType.changeParameterType(0, caller);
1583
            return mh.viewAsType(narrowType);
1584 1585
        }

1586
        /** Check access and get the requested method. */
1587
        private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1588 1589 1590
            final boolean doRestrict    = true;
            final boolean checkSecurity = true;
            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1591
        }
1592
        /** Check access and get the requested method, eliding receiver narrowing rules. */
1593
        private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1594 1595 1596 1597 1598 1599 1600 1601 1602
            final boolean doRestrict    = false;
            final boolean checkSecurity = true;
            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
        }
        /** Check access and get the requested method, eliding security manager checks. */
        private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
            final boolean doRestrict    = true;
            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1603
        }
1604
        /** Common code for all methods; do not call directly except from immediately above. */
1605
        private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
1606
                                                   boolean checkSecurity,
1607
                                                   boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
1608
            checkMethod(refKind, refc, method);
1609 1610 1611
            // Optionally check with the security manager; this isn't needed for unreflect* calls.
            if (checkSecurity)
                checkSecurityManager(refc, method);
R
rfield 已提交
1612
            assert(!method.isMethodHandleInvoke());
1613 1614 1615 1616

            Class<?> refcAsSuper;
            if (refKind == REF_invokeSpecial &&
                refc != lookupClass() &&
R
rfield 已提交
1617
                !refc.isInterface() &&
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
                refc != (refcAsSuper = lookupClass().getSuperclass()) &&
                refc.isAssignableFrom(lookupClass())) {
                assert(!method.getName().equals("<init>"));  // not this code path
                // Per JVMS 6.5, desc. of invokespecial instruction:
                // If the method is in a superclass of the LC,
                // and if our original search was above LC.super,
                // repeat the search (symbolic lookup) from LC.super.
                // FIXME: MemberName.resolve should handle this instead.
                MemberName m2 = new MemberName(refcAsSuper,
                                               method.getName(),
                                               method.getMethodType(),
                                               REF_invokeSpecial);
                m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
                if (m2 == null)  throw new InternalError(method.toString());
                method = m2;
                refc = refcAsSuper;
                // redo basic checks
                checkMethod(refKind, refc, method);
            }

1638
            MethodHandle mh = DirectMethodHandle.make(refKind, refc, method);
1639
            mh = maybeBindCaller(method, mh, callerClass);
1640
            mh = mh.setVarargs(method);
1641 1642 1643 1644 1645
            // Optionally narrow the receiver argument to refc using restrictReceiver.
            if (doRestrict &&
                   (refKind == REF_invokeSpecial ||
                       (MethodHandleNatives.refKindHasReceiver(refKind) &&
                           restrictProtectedReceiver(method))))
1646 1647 1648
                mh = restrictReceiver(method, mh, lookupClass());
            return mh;
        }
1649 1650 1651
        private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
                                             Class<?> callerClass)
                                             throws IllegalAccessException {
1652 1653 1654
            if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
                return mh;
            Class<?> hostClass = lookupClass;
1655
            if (!hasPrivateAccess())  // caller must have private access
1656
                hostClass = callerClass;  // callerClass came from a security manager style stack walk
1657 1658 1659 1660
            MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
            // Note: caller will apply varargs after this step happens.
            return cbmh;
        }
1661
        /** Check access and get the requested field. */
1662
        private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
            final boolean checkSecurity = true;
            return getDirectFieldCommon(refKind, refc, field, checkSecurity);
        }
        /** Check access and get the requested field, eliding security manager checks. */
        private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
            return getDirectFieldCommon(refKind, refc, field, checkSecurity);
        }
        /** Common code for all fields; do not call directly except from immediately above. */
        private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
                                                  boolean checkSecurity) throws IllegalAccessException {
1674
            checkField(refKind, refc, field);
1675 1676 1677
            // Optionally check with the security manager; this isn't needed for unreflect* calls.
            if (checkSecurity)
                checkSecurityManager(refc, field);
1678 1679 1680 1681 1682 1683 1684
            MethodHandle mh = DirectMethodHandle.make(refc, field);
            boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
                                    restrictProtectedReceiver(field));
            if (doRestrict)
                mh = restrictReceiver(field, mh, lookupClass());
            return mh;
        }
1685
        /** Check access and get the requested constructor. */
1686
        private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
            final boolean checkSecurity = true;
            return getDirectConstructorCommon(refc, ctor, checkSecurity);
        }
        /** Check access and get the requested constructor, eliding security manager checks. */
        private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
            return getDirectConstructorCommon(refc, ctor, checkSecurity);
        }
        /** Common code for all constructors; do not call directly except from immediately above. */
        private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
                                                  boolean checkSecurity) throws IllegalAccessException {
1698 1699
            assert(ctor.isConstructor());
            checkAccess(REF_newInvokeSpecial, refc, ctor);
1700 1701 1702
            // Optionally check with the security manager; this isn't needed for unreflect* calls.
            if (checkSecurity)
                checkSecurityManager(refc, ctor);
1703
            assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
1704
            return DirectMethodHandle.make(ctor).setVarargs(ctor);
1705
        }
1706 1707 1708 1709

        /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
         */
        /*non-public*/
1710
        MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
1711 1712 1713 1714 1715 1716 1717 1718 1719
            if (!(type instanceof Class || type instanceof MethodType))
                throw new InternalError("unresolved MemberName");
            MemberName member = new MemberName(refKind, defc, name, type);
            MethodHandle mh = LOOKASIDE_TABLE.get(member);
            if (mh != null) {
                checkSymbolicClass(defc);
                return mh;
            }
            MemberName resolved = resolveOrFail(refKind, member);
1720
            mh = getDirectMethodForConstant(refKind, defc, resolved);
1721 1722 1723 1724 1725 1726 1727 1728 1729
            if (mh instanceof DirectMethodHandle
                    && canBeCached(refKind, defc, resolved)) {
                MemberName key = mh.internalMemberName();
                if (key != null) {
                    key = key.asNormalOriginal();
                }
                if (member.equals(key)) {  // better safe than sorry
                    LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
                }
1730
            }
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
            return mh;
        }
        private
        boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
            if (refKind == REF_invokeSpecial) {
                return false;
            }
            if (!Modifier.isPublic(defc.getModifiers()) ||
                    !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
                    !member.isPublic() ||
                    member.isCallerSensitive()) {
                return false;
            }
            ClassLoader loader = defc.getClassLoader();
            if (!sun.misc.VM.isSystemDomainLoader(loader)) {
                ClassLoader sysl = ClassLoader.getSystemClassLoader();
                boolean found = false;
                while (sysl != null) {
                    if (loader == sysl) { found = true; break; }
                    sysl = sysl.getParent();
                }
                if (!found) {
                    return false;
                }
            }
            try {
                MemberName resolved2 = publicLookup().resolveOrFail(refKind,
                    new MemberName(refKind, defc, member.getName(), member.getType()));
                checkSecurityManager(defc, resolved2);
            } catch (ReflectiveOperationException | SecurityException ex) {
                return false;
            }
            return true;
        }
        private
1766 1767
        MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
                throws ReflectiveOperationException {
1768
            if (MethodHandleNatives.refKindIsField(refKind)) {
1769
                return getDirectFieldNoSecurityManager(refKind, defc, member);
1770
            } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
1771
                if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
C
Merge  
chegar 已提交
1772 1773 1774 1775
                    MethodHandle mh = findVirtualForMH(member.getName(), member.getMethodType());
                    if (mh != null) {
                        return mh;
                    }
1776
                }
1777
                return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
1778
            } else if (refKind == REF_newInvokeSpecial) {
1779
                return getDirectConstructorNoSecurityManager(defc, member);
1780 1781
            }
            // oops
1782
            throw newIllegalArgumentException("bad MethodHandle constant #"+member);
1783
        }
1784 1785

        static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
1786 1787 1788
    }

    /**
1789
     * Produces a method handle giving read access to elements of an array.
1790 1791 1792 1793 1794
     * The type of the method handle will have a return type of the array's
     * element type.  Its first argument will be the array type,
     * and the second will be {@code int}.
     * @param arrayClass an array type
     * @return a method handle which can load values from the given array type
1795
     * @throws NullPointerException if the argument is null
1796 1797 1798 1799
     * @throws  IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
1800
        return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false);
1801 1802 1803
    }

    /**
1804
     * Produces a method handle giving write access to elements of an array.
1805 1806 1807
     * The type of the method handle will have a void return type.
     * Its last argument will be the array's element type.
     * The first and second arguments will be the array type and int.
1808
     * @param arrayClass the class of an array
1809
     * @return a method handle which can store values into the array type
1810
     * @throws NullPointerException if the argument is null
1811 1812 1813 1814
     * @throws IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
1815
        return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true);
1816 1817 1818 1819 1820
    }

    /// method handle invocation (reflective style)

    /**
1821
     * Produces a method handle which will invoke any method handle of the
1822 1823
     * given {@code type}, with a given number of trailing arguments replaced by
     * a single trailing {@code Object[]} array.
1824 1825 1826 1827
     * The resulting invoker will be a method handle with the following
     * arguments:
     * <ul>
     * <li>a single {@code MethodHandle} target
1828 1829
     * <li>zero or more leading values (counted by {@code leadingArgCount})
     * <li>an {@code Object[]} array containing trailing arguments
1830
     * </ul>
1831
     * <p>
1832
     * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
1833 1834
     * the indicated {@code type}.
     * That is, if the target is exactly of the given {@code type}, it will behave
1835
     * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
1836 1837 1838
     * is used to convert the target to the required {@code type}.
     * <p>
     * The type of the returned invoker will not be the given {@code type}, but rather
1839 1840 1841
     * will have all parameters except the first {@code leadingArgCount}
     * replaced by a single array of type {@code Object[]}, which will be
     * the final parameter.
1842
     * <p>
1843
     * Before invoking its target, the invoker will spread the final array, apply
1844
     * reference casts as necessary, and unbox and widen primitive arguments.
1845 1846 1847
     * If, when the invoker is called, the supplied array argument does
     * not have the correct number of elements, the invoker will throw
     * an {@link IllegalArgumentException} instead of invoking the target.
1848 1849
     * <p>
     * This method is equivalent to the following code (though it may be more efficient):
1850
     * <blockquote><pre>{@code
1851
MethodHandle invoker = MethodHandles.invoker(type);
1852
int spreadArgCount = type.parameterCount() - leadingArgCount;
1853 1854
invoker = invoker.asSpreader(Object[].class, spreadArgCount);
return invoker;
1855
     * }</pre></blockquote>
1856
     * This method throws no reflective or security exceptions.
1857
     * @param type the desired target type
1858
     * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
1859
     * @return a method handle suitable for invoking any method handle of the given type
1860 1861
     * @throws NullPointerException if {@code type} is null
     * @throws IllegalArgumentException if {@code leadingArgCount} is not in
1862 1863 1864
     *                  the range from 0 to {@code type.parameterCount()} inclusive,
     *                  or if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1865 1866
     */
    static public
1867 1868 1869 1870
    MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
        if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
            throw new IllegalArgumentException("bad argument count "+leadingArgCount);
        return type.invokers().spreadInvoker(leadingArgCount);
1871 1872 1873
    }

    /**
1874
     * Produces a special <em>invoker method handle</em> which can be used to
1875
     * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
1876
     * The resulting invoker will have a type which is
1877 1878 1879
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
1880
     * This method is equivalent to the following code (though it may be more efficient):
1881
     * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
1882 1883 1884 1885 1886 1887 1888 1889
     *
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * Invoker method handles can be useful when working with variable method handles
     * of unknown types.
     * For example, to emulate an {@code invokeExact} call to a variable method
     * handle {@code M}, extract its type {@code T},
     * look up the invoker method {@code X} for {@code T},
1890
     * and call the invoker method, as {@code X.invoke(T, A...)}.
1891 1892 1893 1894 1895
     * (It would not work to call {@code X.invokeExact}, since the type {@code T}
     * is unknown.)
     * If spreading, collecting, or other argument transformations are required,
     * they can be applied once to the invoker {@code X} and reused on many {@code M}
     * method handle values, as long as they are compatible with the type of {@code X}.
1896
     * <p style="font-size:smaller;">
1897
     * <em>(Note:  The invoker method is not available via the Core Reflection API.
1898
     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1899
     * on the declared {@code invokeExact} or {@code invoke} method will raise an
1900 1901 1902
     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
     * <p>
     * This method throws no reflective or security exceptions.
1903 1904
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle of the given type
1905 1906
     * @throws IllegalArgumentException if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1907 1908 1909
     */
    static public
    MethodHandle exactInvoker(MethodType type) {
1910
        return type.invokers().exactInvoker();
1911 1912
    }

1913 1914
    /**
     * Produces a special <em>invoker method handle</em> which can be used to
1915
     * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
1916 1917 1918 1919
     * The resulting invoker will have a type which is
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
1920 1921
     * Before invoking its target, if the target differs from the expected type,
     * the invoker will apply reference casts as
1922 1923 1924 1925
     * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
     * Similarly, the return value will be converted as necessary.
     * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
     * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
1926
     * <p>
1927 1928 1929 1930 1931
     * This method is equivalent to the following code (though it may be more efficient):
     * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * A {@linkplain MethodType#genericMethodType general method type} is one which
1932 1933 1934
     * mentions only {@code Object} arguments and return values.
     * An invoker for such a type is capable of calling any method handle
     * of the same arity as the general type.
1935 1936 1937 1938 1939
     * <p style="font-size:smaller;">
     * <em>(Note:  The invoker method is not available via the Core Reflection API.
     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
     * on the declared {@code invokeExact} or {@code invoke} method will raise an
     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
1940 1941 1942 1943
     * <p>
     * This method throws no reflective or security exceptions.
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle convertible to the given type
1944 1945
     * @throws IllegalArgumentException if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1946 1947
     */
    static public
1948 1949 1950 1951
    MethodHandle invoker(MethodType type) {
        return type.invokers().generalInvoker();
    }

1952 1953 1954
    static /*non-public*/
    MethodHandle basicInvoker(MethodType type) {
        return type.form().basicInvoker();
1955 1956
    }

1957
     /// method handle modification (creation from other method handles)
1958 1959

    /**
1960
     * Produces a method handle which adapts the type of the
1961
     * given method handle to a new type by pairwise argument and return type conversion.
1962 1963 1964 1965 1966 1967
     * The original type and new type must have the same number of arguments.
     * The resulting method handle is guaranteed to report a type
     * which is equal to the desired new type.
     * <p>
     * If the original type and new type are equal, returns target.
     * <p>
1968
     * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
1969
     * and some additional conversions are also applied if those conversions fail.
1970 1971
     * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
     * if possible, before or instead of any conversions done by {@code asType}:
1972
     * <ul>
1973 1974
     * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
     *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
1975
     *     (This treatment of interfaces follows the usage of the bytecode verifier.)
1976 1977
     * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
     *     the boolean is converted to a byte value, 1 for true, 0 for false.
1978
     *     (This treatment follows the usage of the bytecode verifier.)
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
     * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
     *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
     *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
     * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
     *     then a Java casting conversion (JLS 5.5) is applied.
     *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
     *     widening and/or narrowing.)
     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
     *     conversion will be applied at runtime, possibly followed
     *     by a Java casting conversion (JLS 5.5) on the primitive value,
     *     possibly followed by a conversion from byte to boolean by testing
     *     the low-order bit.
     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
     *     and if the reference is null at runtime, a zero value is introduced.
1993 1994 1995
     * </ul>
     * @param target the method handle to invoke after arguments are retyped
     * @param newType the expected type of the new method handle
1996
     * @return a method handle which delegates to the target after performing
1997 1998
     *           any necessary argument conversions, and arranges for any
     *           necessary return value conversions
1999
     * @throws NullPointerException if either argument is null
2000 2001 2002 2003 2004
     * @throws WrongMethodTypeException if the conversion cannot be made
     * @see MethodHandle#asType
     */
    public static
    MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
2005 2006 2007 2008
        if (!target.type().isCastableTo(newType)) {
            throw new WrongMethodTypeException("cannot explicitly cast "+target+" to "+newType);
        }
        return MethodHandleImpl.makePairwiseConvert(target, newType, 2);
2009 2010 2011
    }

    /**
2012
     * Produces a method handle which adapts the calling sequence of the
2013
     * given method handle to a new type, by reordering the arguments.
2014
     * The resulting method handle is guaranteed to report a type
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
     * which is equal to the desired new type.
     * <p>
     * The given array controls the reordering.
     * Call {@code #I} the number of incoming parameters (the value
     * {@code newType.parameterCount()}, and call {@code #O} the number
     * of outgoing parameters (the value {@code target.type().parameterCount()}).
     * Then the length of the reordering array must be {@code #O},
     * and each element must be a non-negative number less than {@code #I}.
     * For every {@code N} less than {@code #O}, the {@code N}-th
     * outgoing argument will be taken from the {@code I}-th incoming
     * argument, where {@code I} is {@code reorder[N]}.
     * <p>
2027 2028
     * No argument or return value conversions are applied.
     * The type of each incoming argument, as determined by {@code newType},
2029 2030
     * must be identical to the type of the corresponding outgoing parameter
     * or parameters in the target method handle.
2031 2032 2033
     * The return type of {@code newType} must be identical to the return
     * type of the original target.
     * <p>
2034 2035 2036 2037
     * The reordering array need not specify an actual permutation.
     * An incoming argument will be duplicated if its index appears
     * more than once in the array, and an incoming argument will be dropped
     * if its index does not appear in the array.
2038 2039 2040
     * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
     * incoming arguments which are not mentioned in the reordering array
     * are may be any type, as determined only by {@code newType}.
A
alanb 已提交
2041
     * <blockquote><pre>{@code
2042 2043 2044 2045 2046
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodType intfn1 = methodType(int.class, int.class);
MethodType intfn2 = methodType(int.class, int.class, int.class);
2047
MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2048
assert(sub.type().equals(intfn2));
2049 2050
MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2051
assert((int)rsub.invokeExact(1, 100) == 99);
2052
MethodHandle add = ... (int x, int y) -> (x+y) ...;
2053
assert(add.type().equals(intfn2));
2054
MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2055 2056
assert(twice.type().equals(intfn1));
assert((int)twice.invokeExact(21) == 42);
A
alanb 已提交
2057
     * }</pre></blockquote>
2058 2059
     * @param target the method handle to invoke after arguments are reordered
     * @param newType the expected type of the new method handle
2060 2061
     * @param reorder an index array which controls the reordering
     * @return a method handle which delegates to the target after it
2062
     *           drops unused arguments and moves and/or duplicates the other arguments
2063
     * @throws NullPointerException if any argument is null
2064 2065 2066 2067 2068
     * @throws IllegalArgumentException if the index array length is not equal to
     *                  the arity of the target, or if any index array element
     *                  not a valid index for a parameter of {@code newType},
     *                  or if two corresponding parameter types in
     *                  {@code target.type()} and {@code newType} are not identical,
2069 2070
     */
    public static
2071
    MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
2072 2073
        checkReorder(reorder, newType, target.type());
        return target.permuteArguments(newType, reorder);
2074 2075 2076
    }

    private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) {
2077 2078 2079
        if (newType.returnType() != oldType.returnType())
            throw newIllegalArgumentException("return types do not match",
                    oldType, newType);
2080 2081 2082
        if (reorder.length == oldType.parameterCount()) {
            int limit = newType.parameterCount();
            boolean bad = false;
2083 2084
            for (int j = 0; j < reorder.length; j++) {
                int i = reorder[j];
2085 2086 2087
                if (i < 0 || i >= limit) {
                    bad = true; break;
                }
2088 2089 2090 2091 2092
                Class<?> src = newType.parameterType(i);
                Class<?> dst = oldType.parameterType(j);
                if (src != dst)
                    throw newIllegalArgumentException("parameter types do not match after reorder",
                            oldType, newType);
2093 2094 2095
            }
            if (!bad)  return;
        }
2096
        throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
2097 2098 2099
    }

    /**
2100
     * Produces a method handle of the requested return type which returns the given
2101 2102 2103 2104 2105
     * constant value every time it is invoked.
     * <p>
     * Before the method handle is returned, the passed-in value is converted to the requested type.
     * If the requested type is primitive, widening primitive conversions are attempted,
     * else reference conversions are attempted.
2106
     * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
2107 2108 2109
     * @param type the return type of the desired method handle
     * @param value the value to return
     * @return a method handle of the given return type and no arguments, which always returns the given value
2110 2111 2112
     * @throws NullPointerException if the {@code type} argument is null
     * @throws ClassCastException if the value cannot be converted to the required return type
     * @throws IllegalArgumentException if the given type is {@code void.class}
2113 2114 2115 2116
     */
    public static
    MethodHandle constant(Class<?> type, Object value) {
        if (type.isPrimitive()) {
2117 2118
            if (type == void.class)
                throw newIllegalArgumentException("void type");
2119
            Wrapper w = Wrapper.forPrimitiveType(type);
2120
            return insertArguments(identity(type), 0, w.convert(value, type));
2121 2122 2123 2124 2125 2126
        } else {
            return identity(type).bindTo(type.cast(value));
        }
    }

    /**
2127 2128 2129 2130 2131
     * Produces a method handle which returns its sole argument when invoked.
     * @param type the type of the sole parameter and return value of the desired method handle
     * @return a unary method handle which accepts and returns the given type
     * @throws NullPointerException if the argument is null
     * @throws IllegalArgumentException if the given type is {@code void.class}
2132 2133 2134
     */
    public static
    MethodHandle identity(Class<?> type) {
2135 2136
        if (type == void.class)
            throw newIllegalArgumentException("void type");
2137 2138 2139 2140 2141
        else if (type == Object.class)
            return ValueConversions.identity();
        else if (type.isPrimitive())
            return ValueConversions.identity(Wrapper.forPrimitiveType(type));
        else
2142
            return MethodHandleImpl.makeReferenceIdentity(type);
2143 2144 2145
    }

    /**
2146 2147 2148 2149 2150 2151 2152 2153 2154
     * Provides a target method handle with one or more <em>bound arguments</em>
     * in advance of the method handle's invocation.
     * The formal parameters to the target corresponding to the bound
     * arguments are called <em>bound parameters</em>.
     * Returns a new method handle which saves away the bound arguments.
     * When it is invoked, it receives arguments for any non-bound parameters,
     * binds the saved arguments to their corresponding parameters,
     * and calls the original target.
     * <p>
2155 2156 2157
     * The type of the new method handle will drop the types for the bound
     * parameters from the original target type, since the new method handle
     * will no longer require those arguments to be supplied by its callers.
2158
     * <p>
2159 2160 2161
     * Each given argument object must match the corresponding bound parameter type.
     * If a bound parameter type is a primitive, the argument object
     * must be a wrapper, and will be unboxed to produce the primitive value.
2162
     * <p>
2163 2164 2165 2166
     * The {@code pos} argument selects which parameters are to be bound.
     * It may range between zero and <i>N-L</i> (inclusively),
     * where <i>N</i> is the arity of the target method handle
     * and <i>L</i> is the length of the values array.
2167 2168
     * @param target the method handle to invoke after the argument is inserted
     * @param pos where to insert the argument (zero for the first)
2169
     * @param values the series of arguments to insert
2170
     * @return a method handle which inserts an additional argument,
2171
     *         before calling the original method handle
2172
     * @throws NullPointerException if the target or the {@code values} array is null
2173
     * @see MethodHandle#bindTo
2174 2175
     */
    public static
2176 2177
    MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
        int insCount = values.length;
2178 2179
        MethodType oldType = target.type();
        int outargs = oldType.parameterCount();
2180 2181 2182 2183
        int inargs  = outargs - insCount;
        if (inargs < 0)
            throw newIllegalArgumentException("too many values to insert");
        if (pos < 0 || pos > inargs)
2184
            throw newIllegalArgumentException("no argument type to append");
2185 2186 2187
        MethodHandle result = target;
        for (int i = 0; i < insCount; i++) {
            Object value = values[i];
2188 2189 2190 2191 2192 2193 2194 2195
            Class<?> ptype = oldType.parameterType(pos+i);
            if (ptype.isPrimitive()) {
                char btype = 'I';
                Wrapper w = Wrapper.forPrimitiveType(ptype);
                switch (w) {
                case LONG:    btype = 'J'; break;
                case FLOAT:   btype = 'F'; break;
                case DOUBLE:  btype = 'D'; break;
2196
                }
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
                // perform unboxing and/or primitive conversion
                value = w.convert(value, ptype);
                result = result.bindArgument(pos, btype, value);
                continue;
            }
            value = ptype.cast(value);  // throw CCE if needed
            if (pos == 0) {
                result = result.bindReceiver(value);
            } else {
                result = result.bindArgument(pos, 'L', value);
2207
            }
2208
        }
2209 2210 2211
        return result;
    }

2212
    /**
2213 2214 2215 2216 2217
     * Produces a method handle which will discard some dummy arguments
     * before calling some other specified <i>target</i> method handle.
     * The type of the new method handle will be the same as the target's type,
     * except it will also include the dummy argument types,
     * at some given position.
2218
     * <p>
2219 2220 2221 2222 2223
     * The {@code pos} argument may range between zero and <i>N</i>,
     * where <i>N</i> is the arity of the target.
     * If {@code pos} is zero, the dummy arguments will precede
     * the target's real arguments; if {@code pos} is <i>N</i>
     * they will come after.
2224 2225
     * <p>
     * <b>Example:</b>
2226
     * <blockquote><pre>{@code
2227 2228
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
2229 2230 2231 2232
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
2233 2234 2235 2236
MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
assertEquals(bigType, d0.type());
assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
2237
     * }</pre></blockquote>
2238 2239
     * <p>
     * This method is also equivalent to the following code:
2240
     * <blockquote><pre>
2241
     * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
2242
     * </pre></blockquote>
2243 2244 2245 2246
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
2247
     *         before calling the original method handle
2248
     * @throws NullPointerException if the target is null,
2249
     *                              or if the {@code valueTypes} list or any of its elements is null
2250 2251 2252
     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
     *                  or if {@code pos} is negative or greater than the arity of the target,
     *                  or if the new method handle's type would have too many parameters
2253 2254
     */
    public static
2255
    MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
2256
        MethodType oldType = target.type();  // get NPE
2257 2258 2259
        int dropped = valueTypes.size();
        MethodType.checkSlotCount(dropped);
        if (dropped == 0)  return target;
2260
        int outargs = oldType.parameterCount();
2261
        int inargs  = outargs + dropped;
2262 2263
        if (pos < 0 || pos >= inargs)
            throw newIllegalArgumentException("no argument type to remove");
2264
        ArrayList<Class<?>> ptypes = new ArrayList<>(oldType.parameterList());
2265 2266
        ptypes.addAll(pos, valueTypes);
        MethodType newType = MethodType.methodType(oldType.returnType(), ptypes);
2267
        return target.dropArguments(newType, pos, dropped);
2268 2269
    }

2270
    /**
2271 2272 2273 2274 2275
     * Produces a method handle which will discard some dummy arguments
     * before calling some other specified <i>target</i> method handle.
     * The type of the new method handle will be the same as the target's type,
     * except it will also include the dummy argument types,
     * at some given position.
2276
     * <p>
2277 2278 2279 2280 2281
     * The {@code pos} argument may range between zero and <i>N</i>,
     * where <i>N</i> is the arity of the target.
     * If {@code pos} is zero, the dummy arguments will precede
     * the target's real arguments; if {@code pos} is <i>N</i>
     * they will come after.
2282 2283
     * <p>
     * <b>Example:</b>
2284
     * <blockquote><pre>{@code
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
MethodHandle d0 = dropArguments(cat, 0, String.class);
assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
MethodHandle d1 = dropArguments(cat, 1, String.class);
assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
MethodHandle d2 = dropArguments(cat, 2, String.class);
assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
2299
     * }</pre></blockquote>
2300 2301
     * <p>
     * This method is also equivalent to the following code:
2302
     * <blockquote><pre>
2303
     * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
2304
     * </pre></blockquote>
2305 2306 2307 2308 2309
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
     *         before calling the original method handle
2310
     * @throws NullPointerException if the target is null,
2311
     *                              or if the {@code valueTypes} array or any of its elements is null
2312 2313
     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
     *                  or if {@code pos} is negative or greater than the arity of the target,
2314 2315
     *                  or if the new method handle's type would have
     *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
2316
     */
2317 2318 2319 2320 2321 2322
    public static
    MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
        return dropArguments(target, pos, Arrays.asList(valueTypes));
    }

    /**
2323
     * Adapts a target method handle by pre-processing
2324 2325 2326 2327 2328
     * one or more of its arguments, each with its own unary filter function,
     * and then calling the target with each pre-processed argument
     * replaced by the result of its corresponding filter function.
     * <p>
     * The pre-processing is performed by one or more method handles,
2329
     * specified in the elements of the {@code filters} array.
2330 2331 2332 2333 2334
     * The first element of the filter array corresponds to the {@code pos}
     * argument of the target, and so on in sequence.
     * <p>
     * Null arguments in the array are treated as identity functions,
     * and the corresponding arguments left unchanged.
2335
     * (If there are no non-null elements in the array, the original target is returned.)
2336
     * Each filter is applied to the corresponding argument of the adapter.
2337 2338
     * <p>
     * If a filter {@code F} applies to the {@code N}th argument of
2339
     * the target, then {@code F} must be a method handle which
2340 2341 2342 2343 2344 2345
     * takes exactly one argument.  The type of {@code F}'s sole argument
     * replaces the corresponding argument type of the target
     * in the resulting adapted method handle.
     * The return type of {@code F} must be identical to the corresponding
     * parameter type of the target.
     * <p>
2346
     * It is an error if there are elements of {@code filters}
2347
     * (null or not)
2348
     * which do not correspond to argument positions in the target.
2349
     * <p><b>Example:</b>
2350
     * <blockquote><pre>{@code
2351 2352
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
2353 2354 2355 2356 2357
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle upcase = lookup().findVirtual(String.class,
  "toUpperCase", methodType(String.class));
2358
assertEquals("xy", (String) cat.invokeExact("x", "y"));
2359
MethodHandle f0 = filterArguments(cat, 0, upcase);
2360
assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
2361
MethodHandle f1 = filterArguments(cat, 1, upcase);
2362
assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
2363
MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
2364
assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
2365
     * }</pre></blockquote>
2366
     * <p> Here is pseudocode for the resulting adapter:
2367
     * <blockquote><pre>{@code
2368 2369 2370 2371 2372
     * V target(P... p, A[i]... a[i], B... b);
     * A[i] filter[i](V[i]);
     * T adapter(P... p, V[i]... v[i], B... b) {
     *   return target(p..., f[i](v[i])..., b...);
     * }
2373
     * }</pre></blockquote>
2374
     *
2375
     * @param target the method handle to invoke after arguments are filtered
2376
     * @param pos the position of the first argument to filter
2377 2378
     * @param filters method handles to call initially on filtered arguments
     * @return method handle which incorporates the specified argument filtering logic
2379
     * @throws NullPointerException if the target is null
2380 2381
     *                              or if the {@code filters} array is null
     * @throws IllegalArgumentException if a non-null element of {@code filters}
2382
     *          does not match a corresponding argument type of target as described above,
2383 2384 2385
     *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
     *          or if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2386 2387
     */
    public static
2388
    MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
2389 2390
        MethodType targetType = target.type();
        MethodHandle adapter = target;
2391 2392
        MethodType adapterType = null;
        assert((adapterType = targetType) != null);
2393
        int maxPos = targetType.parameterCount();
2394 2395 2396
        if (pos + filters.length > maxPos)
            throw newIllegalArgumentException("too many filters");
        int curPos = pos-1;  // pre-incremented
2397
        for (MethodHandle filter : filters) {
2398 2399
            curPos += 1;
            if (filter == null)  continue;  // ignore null elements of filters
2400 2401
            adapter = filterArgument(adapter, curPos, filter);
            assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null);
2402
        }
2403
        assert(adapterType.equals(adapter.type()));
2404 2405 2406
        return adapter;
    }

2407 2408 2409 2410 2411 2412 2413
    /*non-public*/ static
    MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
        MethodType targetType = target.type();
        MethodType filterType = filter.type();
        if (filterType.parameterCount() != 1
            || filterType.returnType() != targetType.parameterType(pos))
            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2414
        return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2415 2416
    }

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
    /**
     * Adapts a target method handle by pre-processing
     * a sub-sequence of its arguments with a filter (another method handle).
     * The pre-processed arguments are replaced by the result (if any) of the
     * filter function.
     * The target is then called on the modified (usually shortened) argument list.
     * <p>
     * If the filter returns a value, the target must accept that value as
     * its argument in position {@code pos}, preceded and/or followed by
     * any arguments not passed to the filter.
     * If the filter returns void, the target must accept all arguments
     * not passed to the filter.
     * No arguments are reordered, and a result returned from the filter
     * replaces (in order) the whole subsequence of arguments originally
     * passed to the adapter.
     * <p>
     * The argument types (if any) of the filter
     * replace zero or one argument types of the target, at position {@code pos},
     * in the resulting adapted method handle.
     * The return type of the filter (if any) must be identical to the
     * argument type of the target at position {@code pos}, and that target argument
     * is supplied by the return value of the filter.
     * <p>
     * In all cases, {@code pos} must be greater than or equal to zero, and
     * {@code pos} must also be less than or equal to the target's arity.
     * <p><b>Example:</b>
2443
     * <blockquote><pre>{@code
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle deepToString = publicLookup()
  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));

MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
assertEquals("[strange]", (String) ts1.invokeExact("strange"));

MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));

MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
assertEquals("[top, [up, down], strange]",
             (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));

MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
assertEquals("[top, [up, down], [strange]]",
             (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));

MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
assertEquals("[top, [[up, down, strange], charm], bottom]",
             (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
2468
     * }</pre></blockquote>
2469
     * <p> Here is pseudocode for the resulting adapter:
2470
     * <blockquote><pre>{@code
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
     * T target(A...,V,C...);
     * V filter(B...);
     * T adapter(A... a,B... b,C... c) {
     *   V v = filter(b...);
     *   return target(a...,v,c...);
     * }
     * // and if the filter has no arguments:
     * T target2(A...,V,C...);
     * V filter2();
     * T adapter2(A... a,C... c) {
     *   V v = filter2();
     *   return target2(a...,v,c...);
     * }
     * // and if the filter has a void return:
     * T target3(A...,C...);
     * void filter3(B...);
     * void adapter3(A... a,B... b,C... c) {
     *   filter3(b...);
     *   return target3(a...,c...);
     * }
2491
     * }</pre></blockquote>
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
     * <p>
     * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
     * one which first "folds" the affected arguments, and then drops them, in separate
     * steps as follows:
     * <blockquote><pre>{@code
     * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
     * mh = MethodHandles.foldArguments(mh, coll); //step 1
     * }</pre></blockquote>
     * If the target method handle consumes no arguments besides than the result
     * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
     * is equivalent to {@code filterReturnValue(coll, mh)}.
     * If the filter method handle {@code coll} consumes one argument and produces
     * a non-void result, then {@code collectArguments(mh, N, coll)}
     * is equivalent to {@code filterArguments(mh, N, coll)}.
     * Other equivalences are possible but would require argument permutation.
     *
     * @param target the method handle to invoke after filtering the subsequence of arguments
     * @param pos the position of the first adapter argument to pass to the filter,
     *            and/or the target argument which receives the result of the filter
     * @param filter method handle to call on the subsequence of arguments
     * @return method handle which incorporates the specified argument subsequence filtering logic
     * @throws NullPointerException if either argument is null
     * @throws IllegalArgumentException if the return type of {@code filter}
     *          is non-void and is not the same as the {@code pos} argument of the target,
     *          or if {@code pos} is not between 0 and the target's arity, inclusive,
     *          or if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
     * @see MethodHandles#foldArguments
     * @see MethodHandles#filterArguments
     * @see MethodHandles#filterReturnValue
     */
    public static
    MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
2525
        MethodType targetType = target.type();
2526
        MethodType filterType = filter.type();
2527 2528 2529
        if (filterType.returnType() != void.class &&
            filterType.returnType() != targetType.parameterType(pos))
            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2530
        return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2531 2532
    }

2533
    /**
2534 2535 2536
     * Adapts a target method handle by post-processing
     * its return value (if any) with a filter (another method handle).
     * The result of the filter is returned from the adapter.
2537
     * <p>
2538 2539 2540 2541 2542
     * If the target returns a value, the filter must accept that value as
     * its only argument.
     * If the target returns void, the filter must accept no arguments.
     * <p>
     * The return type of the filter
2543 2544
     * replaces the return type of the target
     * in the resulting adapted method handle.
2545
     * The argument type of the filter (if any) must be identical to the
2546
     * return type of the target.
2547
     * <p><b>Example:</b>
2548
     * <blockquote><pre>{@code
2549 2550
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
2551 2552 2553 2554 2555 2556 2557 2558
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle length = lookup().findVirtual(String.class,
  "length", methodType(int.class));
System.out.println((String) cat.invokeExact("x", "y")); // xy
MethodHandle f0 = filterReturnValue(cat, length);
System.out.println((int) f0.invokeExact("x", "y")); // 2
2559
     * }</pre></blockquote>
2560
     * <p> Here is pseudocode for the resulting adapter:
2561
     * <blockquote><pre>{@code
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
     * V target(A...);
     * T filter(V);
     * T adapter(A... a) {
     *   V v = target(a...);
     *   return filter(v);
     * }
     * // and if the target has a void return:
     * void target2(A...);
     * T filter2();
     * T adapter2(A... a) {
     *   target2(a...);
     *   return filter2();
     * }
     * // and if the filter has a void return:
     * V target3(A...);
     * void filter3(V);
     * void adapter3(A... a) {
     *   V v = target3(a...);
     *   filter3(v);
     * }
2582
     * }</pre></blockquote>
2583 2584 2585
     * @param target the method handle to invoke before filtering the return value
     * @param filter method handle to call on the return value
     * @return method handle which incorporates the specified return value filtering logic
2586
     * @throws NullPointerException if either argument is null
2587 2588
     * @throws IllegalArgumentException if the argument list of {@code filter}
     *          does not match the return type of target as described above
2589
     */
2590
    public static
2591 2592 2593
    MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
        MethodType targetType = target.type();
        MethodType filterType = filter.type();
2594 2595 2596 2597 2598 2599
        Class<?> rtype = targetType.returnType();
        int filterValues = filterType.parameterCount();
        if (filterValues == 0
                ? (rtype != void.class)
                : (rtype != filterType.parameterType(0)))
            throw newIllegalArgumentException("target and filter types do not match", target, filter);
2600 2601
        // result = fold( lambda(retval, arg...) { filter(retval) },
        //                lambda(        arg...) { target(arg...) } )
2602
        return MethodHandleImpl.makeCollectArguments(filter, target, 0, false);
2603 2604
    }

2605
    /**
2606
     * Adapts a target method handle by pre-processing
2607
     * some of its arguments, and then calling the target with
2608 2609
     * the result of the pre-processing, inserted into the original
     * sequence of arguments.
2610
     * <p>
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
     * The pre-processing is performed by {@code combiner}, a second method handle.
     * Of the arguments passed to the adapter, the first {@code N} arguments
     * are copied to the combiner, which is then called.
     * (Here, {@code N} is defined as the parameter count of the combiner.)
     * After this, control passes to the target, with any result
     * from the combiner inserted before the original {@code N} incoming
     * arguments.
     * <p>
     * If the combiner returns a value, the first parameter type of the target
     * must be identical with the return type of the combiner, and the next
     * {@code N} parameter types of the target must exactly match the parameters
     * of the combiner.
     * <p>
     * If the combiner has a void return, no result will be inserted,
     * and the first {@code N} parameter types of the target
     * must exactly match the parameters of the combiner.
2627 2628
     * <p>
     * The resulting adapter is the same type as the target, except that the
2629 2630
     * first parameter type is dropped,
     * if it corresponds to the result of the combiner.
2631
     * <p>
2632
     * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
2633
     * that either the combiner or the target does not wish to receive.
2634
     * If some of the incoming arguments are destined only for the combiner,
2635
     * consider using {@link MethodHandle#asCollector asCollector} instead, since those
2636 2637
     * arguments will not need to be live on the stack on entry to the
     * target.)
2638
     * <p><b>Example:</b>
2639
     * <blockquote><pre>{@code
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
  "println", methodType(void.class, String.class))
    .bindTo(System.out);
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
MethodHandle catTrace = foldArguments(cat, trace);
// also prints "boo":
assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
2652
     * }</pre></blockquote>
2653
     * <p> Here is pseudocode for the resulting adapter:
2654
     * <blockquote><pre>{@code
2655
     * // there are N arguments in A...
2656 2657 2658 2659 2660 2661
     * T target(V, A[N]..., B...);
     * V combiner(A...);
     * T adapter(A... a, B... b) {
     *   V v = combiner(a...);
     *   return target(v, a..., b...);
     * }
2662 2663 2664 2665 2666 2667 2668
     * // and if the combiner has a void return:
     * T target2(A[N]..., B...);
     * void combiner2(A...);
     * T adapter2(A... a, B... b) {
     *   combiner2(a...);
     *   return target2(a..., b...);
     * }
2669
     * }</pre></blockquote>
2670 2671 2672
     * @param target the method handle to invoke after arguments are combined
     * @param combiner method handle to call initially on the incoming arguments
     * @return method handle which incorporates the specified argument folding logic
2673
     * @throws NullPointerException if either argument is null
2674 2675 2676 2677 2678
     * @throws IllegalArgumentException if {@code combiner}'s return type
     *          is non-void and not the same as the first argument type of
     *          the target, or if the initial {@code N} argument types
     *          of the target
     *          (skipping one matching the {@code combiner}'s return type)
2679 2680 2681 2682
     *          are not identical with the argument types of {@code combiner}
     */
    public static
    MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
2683
        int pos = 0;
2684 2685
        MethodType targetType = target.type();
        MethodType combinerType = combiner.type();
2686
        int foldPos = pos;
2687
        int foldArgs = combinerType.parameterCount();
2688 2689 2690 2691 2692 2693
        int foldVals = combinerType.returnType() == void.class ? 0 : 1;
        int afterInsertPos = foldPos + foldVals;
        boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
        if (ok && !(combinerType.parameterList()
                    .equals(targetType.parameterList().subList(afterInsertPos,
                                                               afterInsertPos + foldArgs))))
2694
            ok = false;
2695
        if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0)))
2696
            ok = false;
2697 2698
        if (!ok)
            throw misMatchedTypes("target and combiner types", targetType, combinerType);
2699
        MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos);
2700
        return MethodHandleImpl.makeCollectArguments(target, combiner, foldPos, true);
2701 2702
    }

2703
    /**
2704
     * Makes a method handle which adapts a target method handle,
2705 2706 2707 2708
     * by guarding it with a test, a boolean-valued method handle.
     * If the guard fails, a fallback handle is called instead.
     * All three method handles must have the same corresponding
     * argument and return types, except that the return type
2709 2710
     * of the test must be boolean, and the test is allowed
     * to have fewer arguments than the other two method handles.
2711
     * <p> Here is pseudocode for the resulting adapter:
2712
     * <blockquote><pre>{@code
2713
     * boolean test(A...);
2714 2715 2716
     * T target(A...,B...);
     * T fallback(A...,B...);
     * T adapter(A... a,B... b) {
2717
     *   if (test(a...))
2718
     *     return target(a..., b...);
2719
     *   else
2720
     *     return fallback(a..., b...);
2721
     * }
2722
     * }</pre></blockquote>
2723 2724 2725
     * Note that the test arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the test, and so are passed unchanged
     * from the caller to the target or fallback as appropriate.
2726 2727 2728 2729
     * @param test method handle used for test, must return boolean
     * @param target method handle to call if test passes
     * @param fallback method handle to call if test fails
     * @return method handle which incorporates the specified if/then/else logic
2730
     * @throws NullPointerException if any argument is null
2731 2732
     * @throws IllegalArgumentException if {@code test} does not return boolean,
     *          or if all three method types do not match (with the return
2733
     *          type of {@code test} changed to match that of the target).
2734 2735 2736 2737 2738
     */
    public static
    MethodHandle guardWithTest(MethodHandle test,
                               MethodHandle target,
                               MethodHandle fallback) {
2739 2740 2741
        MethodType gtype = test.type();
        MethodType ttype = target.type();
        MethodType ftype = fallback.type();
2742
        if (!ttype.equals(ftype))
2743
            throw misMatchedTypes("target and fallback types", ttype, ftype);
2744 2745 2746 2747 2748 2749 2750
        if (gtype.returnType() != boolean.class)
            throw newIllegalArgumentException("guard type is not a predicate "+gtype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> gargs = gtype.parameterList();
        if (!targs.equals(gargs)) {
            int gpc = gargs.size(), tpc = targs.size();
            if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
2751
                throw misMatchedTypes("target and test types", ttype, gtype);
2752 2753
            test = dropArguments(test, gpc, targs.subList(gpc, tpc));
            gtype = test.type();
2754
        }
2755
        return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
2756 2757
    }

2758 2759 2760 2761
    static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
        return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
    }

2762
    /**
2763
     * Makes a method handle which adapts a target method handle,
2764 2765 2766 2767
     * by running it inside an exception handler.
     * If the target returns normally, the adapter returns that value.
     * If an exception matching the specified type is thrown, the fallback
     * handle is called instead on the exception, plus the original arguments.
2768
     * <p>
2769 2770 2771 2772
     * The target and handler must have the same corresponding
     * argument and return types, except that handler may omit trailing arguments
     * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
     * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
2773
     * <p> Here is pseudocode for the resulting adapter:
2774
     * <blockquote><pre>{@code
2775
     * T target(A..., B...);
2776
     * T handler(ExType, A...);
2777
     * T adapter(A... a, B... b) {
2778
     *   try {
2779
     *     return target(a..., b...);
2780 2781 2782
     *   } catch (ExType ex) {
     *     return handler(ex, a...);
     *   }
2783
     * }
2784
     * }</pre></blockquote>
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
     * Note that the saved arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the target, and so are passed unchanged
     * from the caller to the handler, if the handler is invoked.
     * <p>
     * The target and handler must return the same type, even if the handler
     * always throws.  (This might happen, for instance, because the handler
     * is simulating a {@code finally} clause).
     * To create such a throwing handler, compose the handler creation logic
     * with {@link #throwException throwException},
     * in order to create a method handle of the correct return type.
2795 2796 2797 2798
     * @param target method handle to call
     * @param exType the type of exception which the handler will catch
     * @param handler method handle to call if a matching exception is thrown
     * @return method handle which incorporates the specified try/catch logic
2799
     * @throws NullPointerException if any argument is null
2800 2801 2802 2803
     * @throws IllegalArgumentException if {@code handler} does not accept
     *          the given exception type, or if the method handle types do
     *          not match in their return types and their
     *          corresponding parameters
2804 2805
     */
    public static
2806 2807 2808
    MethodHandle catchException(MethodHandle target,
                                Class<? extends Throwable> exType,
                                MethodHandle handler) {
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
        MethodType ttype = target.type();
        MethodType htype = handler.type();
        if (htype.parameterCount() < 1 ||
            !htype.parameterType(0).isAssignableFrom(exType))
            throw newIllegalArgumentException("handler does not accept exception type "+exType);
        if (htype.returnType() != ttype.returnType())
            throw misMatchedTypes("target and handler return types", ttype, htype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> hargs = htype.parameterList();
        hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
        if (!targs.equals(hargs)) {
            int hpc = hargs.size(), tpc = targs.size();
            if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
                throw misMatchedTypes("target and handler types", ttype, htype);
2823
            handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc));
2824 2825
            htype = handler.type();
        }
2826
        return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
2827 2828
    }

2829
    /**
2830
     * Produces a method handle which will throw exceptions of the given {@code exType}.
2831 2832 2833 2834 2835
     * The method handle will accept a single argument of {@code exType},
     * and immediately throw it as an exception.
     * The method type will nominally specify a return of {@code returnType}.
     * The return type may be anything convenient:  It doesn't matter to the
     * method handle's behavior, since it will never return normally.
2836 2837
     * @param returnType the return type of the desired method handle
     * @param exType the parameter type of the desired method handle
2838 2839
     * @return method handle which can throw the given exceptions
     * @throws NullPointerException if either argument is null
2840 2841 2842
     */
    public static
    MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
2843 2844
        if (!Throwable.class.isAssignableFrom(exType))
            throw new ClassCastException(exType.getName());
2845
        return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
2846
    }
2847
}