MethodHandles.java 112.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
24 25
 */

26
package java.lang.invoke;
27

28
import java.lang.reflect.*;
29 30 31 32
import sun.invoke.WrapperInstance;
import sun.invoke.util.ValueConversions;
import sun.invoke.util.VerifyAccess;
import sun.invoke.util.Wrapper;
33
import java.util.List;
34 35 36
import java.util.ArrayList;
import java.util.Arrays;
import sun.reflect.Reflection;
37
import static java.lang.invoke.MethodHandleStatics.*;
38 39

/**
40 41
 * This class consists exclusively of static methods that operate on or return
 * method handles. They fall into several categories:
42
 * <ul>
43 44 45
 * <li>Lookup methods which help create method handles for methods and fields.
 * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
 * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
46
 * <li>Wrapper methods which can convert between method handles and interface types.
47
 * </ul>
48 49 50 51 52 53 54
 * <p>
 * @author John Rose, JSR 292 EG
 */
public class MethodHandles {

    private MethodHandles() { }  // do not instantiate

55
    private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
56 57 58 59 60
    static { MethodHandleImpl.initStatics(); }
    // See IMPL_LOOKUP below.

    //// Method handle creation from ordinary methods.

61
    /**
62
     * Returns a {@link Lookup lookup object} on the caller,
63 64 65 66
     * which has the capability to access any method handle that the caller has access to,
     * including direct method handles to private fields and methods.
     * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
     * Do not store it in place where untrusted code can access it.
67
     */
68 69 70 71
    public static Lookup lookup() {
        return new Lookup();
    }

72
    /**
73
     * Returns a {@link Lookup lookup object} which is trusted minimally.
74 75
     * It can only be used to create method handles to
     * publicly accessible fields and methods.
76 77 78 79 80 81 82 83
     * <p>
     * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
     * of this lookup object will be {@link java.lang.Object}.
     * <p>
     * The lookup class can be changed to any other class {@code C} using an expression of the form
     * {@linkplain Lookup#in <code>publicLookup().in(C.class)</code>}.
     * Since all classes have equal access to public names,
     * such a change would confer no new access rights.
84 85 86 87 88
     */
    public static Lookup publicLookup() {
        return Lookup.PUBLIC_LOOKUP;
    }

89
    /**
90 91 92
     * A <em>lookup object</em> is a factory for creating method handles,
     * when the creation requires access checking.
     * Method handles do not perform
93
     * access checks when they are called, but rather when they are created.
94 95
     * Therefore, method handle access
     * restrictions must be enforced when a method handle is created.
96
     * The caller class against which those restrictions are enforced
97
     * is known as the {@linkplain #lookupClass lookup class}.
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
     * <p>
     * A lookup class which needs to create method handles will call
     * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
     * When the {@code Lookup} factory object is created, the identity of the lookup class is
     * determined, and securely stored in the {@code Lookup} object.
     * The lookup class (or its delegates) may then use factory methods
     * on the {@code Lookup} object to create method handles for access-checked members.
     * This includes all methods, constructors, and fields which are allowed to the lookup class,
     * even private ones.
     * <p>
     * The factory methods on a {@code Lookup} object correspond to all major
     * use cases for methods, constructors, and fields.
     * Here is a summary of the correspondence between these factory methods and
     * the behavior the resulting method handles:
     * <code>
     * <table border=1 cellpadding=5 summary="lookup method behaviors">
     * <tr><th>lookup expression</th><th>member</th><th>behavior</th></tr>
     * <tr>
116
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
117 118 119
     *     <td>FT f;</td><td>(T) this.f;</td>
     * </tr>
     * <tr>
120
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
121 122 123
     *     <td>static<br>FT f;</td><td>(T) C.f;</td>
     * </tr>
     * <tr>
124
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
125 126 127
     *     <td>FT f;</td><td>this.f = x;</td>
     * </tr>
     * <tr>
128
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
129 130 131
     *     <td>static<br>FT f;</td><td>C.f = arg;</td>
     * </tr>
     * <tr>
132
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
133 134 135
     *     <td>T m(A*);</td><td>(T) this.m(arg*);</td>
     * </tr>
     * <tr>
136
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
137 138 139
     *     <td>static<br>T m(A*);</td><td>(T) C.m(arg*);</td>
     * </tr>
     * <tr>
140
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
141 142 143
     *     <td>T m(A*);</td><td>(T) super.m(arg*);</td>
     * </tr>
     * <tr>
144
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
145 146 147
     *     <td>C(A*);</td><td>(T) new C(arg*);</td>
     * </tr>
     * <tr>
148
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
149 150 151
     *     <td>(static)?<br>FT f;</td><td>(FT) aField.get(thisOrNull);</td>
     * </tr>
     * <tr>
152
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
153 154 155
     *     <td>(static)?<br>FT f;</td><td>aField.set(thisOrNull, arg);</td>
     * </tr>
     * <tr>
156
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
157 158 159
     *     <td>(static)?<br>T m(A*);</td><td>(T) aMethod.invoke(thisOrNull, arg*);</td>
     * </tr>
     * <tr>
160
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
161 162 163
     *     <td>C(A*);</td><td>(C) aConstructor.newInstance(arg*);</td>
     * </tr>
     * <tr>
164
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
     *     <td>(static)?<br>T m(A*);</td><td>(T) aMethod.invoke(thisOrNull, arg*);</td>
     * </tr>
     * </table>
     * </code>
     * Here, the type {@code C} is the class or interface being searched for a member,
     * documented as a parameter named {@code refc} in the lookup methods.
     * The method or constructor type {@code MT} is composed from the return type {@code T}
     * and the sequence of argument types {@code A*}.
     * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
     * The formal parameter {@code this} stands for the self-reference of type {@code C};
     * if it is present, it is always the leading argument to the method handle invocation.
     * The name {@code arg} stands for all the other method handle arguments.
     * In the code examples for the Core Reflection API, the name {@code thisOrNull}
     * stands for a null reference if the accessed method or field is static,
     * and {@code this} otherwise.
     * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
     * for reflective objects corresponding to the given members.
     * <p>
183 184 185 186
     * In cases where the given member is of variable arity (i.e., a method or constructor)
     * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
     * In all other cases, the returned method handle will be of fixed arity.
     * <p>
187 188 189 190 191 192 193 194 195 196
     * The equivalence between looked-up method handles and underlying
     * class members can break down in a few ways:
     * <ul>
     * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed, even when there is no equivalent
     * Java expression or bytecoded constant.
     * <li>Likewise, if {@code T} or {@code MT}
     * is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed.
     * For example, lookups for {@code MethodHandle.invokeExact} and
197
     * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
198 199 200 201
     * <li>If there is a security manager installed, it can forbid the lookup
     * on various grounds (<a href="#secmgr">see below</a>).
     * By contrast, the {@code ldc} instruction is not subject to
     * security manager checks.
202 203 204 205 206 207
     * </ul>
     *
     * <h3><a name="access"></a>Access checking</h3>
     * Access checks are applied in the factory methods of {@code Lookup},
     * when a method handle is created.
     * This is a key difference from the Core Reflection API, since
208
     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
209 210 211 212 213 214
     * performs access checking against every caller, on every call.
     * <p>
     * All access checks start from a {@code Lookup} object, which
     * compares its recorded lookup class against all requests to
     * create method handles.
     * A single {@code Lookup} object can be used to create any number
215 216 217
     * of access-checked method handles, all checked against a single
     * lookup class.
     * <p>
218 219 220 221 222 223 224
     * A {@code Lookup} object can be shared with other trusted code,
     * such as a metaobject protocol.
     * A shared {@code Lookup} object delegates the capability
     * to create method handles on private members of the lookup class.
     * Even if privileged code uses the {@code Lookup} object,
     * the access checking is confined to the privileges of the
     * original lookup class.
225
     * <p>
226
     * A lookup can fail, because
227 228 229
     * the containing class is not accessible to the lookup class, or
     * because the desired class member is missing, or because the
     * desired class member is not accessible to the lookup class.
230 231 232 233 234 235 236 237
     * In any of these cases, a {@code ReflectiveOperationException} will be
     * thrown from the attempted lookup.  The exact class will be one of
     * the following:
     * <ul>
     * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
     * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
     * <li>IllegalAccessException &mdash; if the member exists but an access check fails
     * </ul>
238
     * <p>
239
     * In general, the conditions under which a method handle may be
240 241 242 243
     * looked up for a method {@code M} are exactly equivalent to the conditions
     * under which the lookup class could have compiled and resolved a call to {@code M}.
     * And the effect of invoking the method handle resulting from the lookup
     * is exactly equivalent to executing the compiled and resolved call to {@code M}.
244
     * The same point is true of fields and constructors.
245
     * <p>
246
     * In some cases, access between nested classes is obtained by the Java compiler by creating
247 248
     * an wrapper method to access a private method of another class
     * in the same top-level declaration.
249
     * For example, a nested class {@code C.D}
250
     * can access private members within other related classes such as
251 252 253 254 255 256 257
     * {@code C}, {@code C.D.E}, or {@code C.B},
     * but the Java compiler may need to generate wrapper methods in
     * those related classes.  In such cases, a {@code Lookup} object on
     * {@code C.E} would be unable to those private members.
     * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
     * which can transform a lookup on {@code C.E} into one on any of those other
     * classes, without special elevation of privilege.
258
     * <p>
259 260 261 262 263 264 265 266 267 268 269 270
     * Although bytecode instructions can only refer to classes in
     * a related class loader, this API can search for methods in any
     * class, as long as a reference to its {@code Class} object is
     * available.  Such cross-loader references are also possible with the
     * Core Reflection API, and are impossible to bytecode instructions
     * such as {@code invokestatic} or {@code getfield}.
     * There is a {@linkplain java.lang.SecurityManager security manager API}
     * to allow applications to check such cross-loader references.
     * These checks apply to both the {@code MethodHandles.Lookup} API
     * and the Core Reflection API
     * (as found on {@link java.lang.Class Class}).
     * <p>
271 272 273
     * Access checks only apply to named and reflected methods,
     * constructors, and fields.
     * Other method handle creation methods, such as
274
     * {@link MethodHandle#asType MethodHandle.asType},
275 276 277
     * do not require any access checks, and are done
     * with static methods of {@link MethodHandles},
     * independently of any {@code Lookup} object.
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
     *
     * <h3>Security manager interactions</h3>
     * <a name="secmgr"></a>
     * If a security manager is present, member lookups are subject to
     * additional checks.
     * From one to four calls are made to the security manager.
     * Any of these calls can refuse access by throwing a
     * {@link java.lang.SecurityException SecurityException}.
     * Define {@code smgr} as the security manager,
     * {@code refc} as the containing class in which the member
     * is being sought, and {@code defc} as the class in which the
     * member is actually defined.
     * The calls are made according to the following rules:
     * <ul>
     * <li>In all cases, {@link SecurityManager#checkMemberAccess
     *     smgr.checkMemberAccess(refc, Member.PUBLIC)} is called.
     * <li>If the class loader of the lookup class is not
     *     the same as or an ancestor of the class loader of {@code refc},
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(refcPkg)} is called,
     *     where {@code refcPkg} is the package of {@code refc}.
     * <li>If the retrieved member is not public,
     *     {@link SecurityManager#checkMemberAccess
     *     smgr.checkMemberAccess(defc, Member.DECLARED)} is called.
     *     (Note that {@code defc} might be the same as {@code refc}.)
303 304 305 306 307 308
     *     The default implementation of this security manager method
     *     inspects the stack to determine the original caller of
     *     the reflective request (such as {@code findStatic}),
     *     and performs additional permission checks if the
     *     class loader of {@code defc} differs from the class
     *     loader of the class from which the reflective request came.
309 310 311 312 313 314 315 316
     * <li>If the retrieved member is not public,
     *     and if {@code defc} and {@code refc} are in different class loaders,
     *     and if the class loader of the lookup class is not
     *     the same as or an ancestor of the class loader of {@code defc},
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(defcPkg)} is called,
     *     where {@code defcPkg} is the package of {@code defc}.
     * </ul>
317 318 319
     */
    public static final
    class Lookup {
320
        /** The class on behalf of whom the lookup is being performed. */
321 322
        private final Class<?> lookupClass;

323
        /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
324 325
        private final int allowedModes;

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        /** A single-bit mask representing {@code public} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x01}, happens to be the same as the value of the
         *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
         */
        public static final int PUBLIC = Modifier.PUBLIC;

        /** A single-bit mask representing {@code private} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x02}, happens to be the same as the value of the
         *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
         */
        public static final int PRIVATE = Modifier.PRIVATE;

        /** A single-bit mask representing {@code protected} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x04}, happens to be the same as the value of the
         *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
         */
        public static final int PROTECTED = Modifier.PROTECTED;

        /** A single-bit mask representing {@code package} access (default access),
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value is {@code 0x08}, which does not correspond meaningfully to
         *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
         */
        public static final int PACKAGE = Modifier.STATIC;

        private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
        private static final int TRUSTED   = -1;
356 357 358 359 360 361

        private static int fixmods(int mods) {
            mods &= (ALL_MODES - PACKAGE);
            return (mods != 0) ? mods : PACKAGE;
        }

362
        /** Tells which class is performing the lookup.  It is this class against
363 364
         *  which checks are performed for visibility and access permissions.
         *  <p>
365 366
         *  The class implies a maximum level of access permission,
         *  but the permissions may be additionally limited by the bitmask
367
         *  {@link #lookupModes lookupModes}, which controls whether non-public members
368
         *  can be accessed.
369 370 371 372 373
         */
        public Class<?> lookupClass() {
            return lookupClass;
        }

374 375 376 377 378
        // This is just for calling out to MethodHandleImpl.
        private Class<?> lookupClassOrNull() {
            return (allowedModes == TRUSTED) ? null : lookupClass;
        }

379
        /** Tells which access-protection classes of members this lookup object can produce.
380 381 382 383 384
         *  The result is a bit-mask of the bits
         *  {@linkplain #PUBLIC PUBLIC (0x01)},
         *  {@linkplain #PRIVATE PRIVATE (0x02)},
         *  {@linkplain #PROTECTED PROTECTED (0x04)},
         *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
385 386
         *  <p>
         *  A freshly-created lookup object
387
         *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
388 389
         *  has all possible bits set, since the caller class can access all its own members.
         *  A lookup object on a new lookup class
390
         *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
391 392 393 394
         *  may have some mode bits set to zero.
         *  The purpose of this is to restrict access via the new lookup object,
         *  so that it can access only names which can be reached by the original
         *  lookup object, and also by the new lookup class.
395
         */
396
        public int lookupModes() {
397 398 399
            return allowedModes & ALL_MODES;
        }

400 401 402 403
        /** Embody the current class (the lookupClass) as a lookup class
         * for method handle creation.
         * Must be called by from a method in this package,
         * which in turn is called by a method not in this package.
404
         * <p>
405 406 407 408
         * Also, don't make it private, lest javac interpose
         * an access$N method.
         */
        Lookup() {
409 410 411
            this(getCallerClassAtEntryPoint(), ALL_MODES);
            // make sure we haven't accidentally picked up a privileged class:
            checkUnprivilegedlookupClass(lookupClass);
412 413
        }

414
        Lookup(Class<?> lookupClass) {
415 416 417 418
            this(lookupClass, ALL_MODES);
        }

        private Lookup(Class<?> lookupClass, int allowedModes) {
419
            this.lookupClass = lookupClass;
420
            this.allowedModes = allowedModes;
421 422 423
        }

        /**
424
         * Creates a lookup on the specified new lookup class.
425
         * The resulting object will report the specified
426
         * class as its own {@link #lookupClass lookupClass}.
427 428 429
         * <p>
         * However, the resulting {@code Lookup} object is guaranteed
         * to have no more access capabilities than the original.
430
         * In particular, access capabilities can be lost as follows:<ul>
431 432
         * <li>If the new lookup class differs from the old one,
         * protected members will not be accessible by virtue of inheritance.
433
         * (Protected members may continue to be accessible because of package sharing.)
434 435 436 437
         * <li>If the new lookup class is in a different package
         * than the old one, protected and default (package) members will not be accessible.
         * <li>If the new lookup class is not within the same package member
         * as the old one, private members will not be accessible.
438 439 440
         * <li>If the new lookup class is not accessible to the old lookup class,
         * then no members, not even public members, will be accessible.
         * (In all other cases, public members will continue to be accessible.)
441
         * </ul>
442 443 444 445
         *
         * @param requestedLookupClass the desired lookup class for the new lookup object
         * @return a lookup object which reports the desired lookup class
         * @throws NullPointerException if the argument is null
446
         */
447 448 449 450 451 452 453 454 455 456
        public Lookup in(Class<?> requestedLookupClass) {
            requestedLookupClass.getClass();  // null check
            if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
                return new Lookup(requestedLookupClass, ALL_MODES);
            if (requestedLookupClass == this.lookupClass)
                return this;  // keep same capabilities
            int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
            if ((newModes & PACKAGE) != 0
                && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
                newModes &= ~(PACKAGE|PRIVATE);
457
            }
458
            // Allow nestmate lookups to be created without special privilege:
459 460 461 462
            if ((newModes & PRIVATE) != 0
                && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
                newModes &= ~PRIVATE;
            }
463 464 465 466 467 468
            if (newModes == PUBLIC
                && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass)) {
                // The requested class it not accessible from the lookup class.
                // No permissions.
                newModes = 0;
            }
469 470
            checkUnprivilegedlookupClass(requestedLookupClass);
            return new Lookup(requestedLookupClass, newModes);
471 472
        }

473
        // Make sure outer class is initialized first.
474
        static { IMPL_NAMES.getClass(); }
475

476 477 478 479
        /** Version of lookup which is trusted minimally.
         *  It can only be used to create method handles to
         *  publicly accessible members.
         */
480
        static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
481 482

        /** Package-private version of lookup which is trusted. */
483
        static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
484 485

        private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
486
            String name = lookupClass.getName();
487
            if (name.startsWith("java.lang.invoke."))
488 489 490
                throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
        }

491
        /**
492
         * Displays the name of the class from which lookups are to be made.
493 494 495
         * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
         * If there are restrictions on the access permitted to this lookup,
         * this is indicated by adding a suffix to the class name, consisting
496 497
         * of a slash and a keyword.  The keyword represents the strongest
         * allowed access, and is chosen as follows:
498 499 500 501 502 503 504 505 506 507
         * <ul>
         * <li>If no access is allowed, the suffix is "/noaccess".
         * <li>If only public access is allowed, the suffix is "/public".
         * <li>If only public and package access are allowed, the suffix is "/package".
         * <li>If only public, package, and private access are allowed, the suffix is "/private".
         * </ul>
         * If none of the above cases apply, it is the case that full
         * access (public, package, private, and protected) is allowed.
         * In this case, no suffix is added.
         * This is true only of an object obtained originally from
508 509
         * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
         * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
510
         * always have restricted access, and will display a suffix.
511 512 513 514 515 516 517
         * <p>
         * (It may seem strange that protected access should be
         * stronger than private access.  Viewed independently from
         * package access, protected access is the first to be lost,
         * because it requires a direct subclass relationship between
         * caller and callee.)
         * @see #in
518
         */
519 520
        @Override
        public String toString() {
521 522
            String cname = lookupClass.getName();
            switch (allowedModes) {
523 524
            case 0:  // no privileges
                return cname + "/noaccess";
525
            case PUBLIC:
526
                return cname + "/public";
527 528
            case PUBLIC|PACKAGE:
                return cname + "/package";
529 530
            case ALL_MODES & ~PROTECTED:
                return cname + "/private";
531 532
            case ALL_MODES:
                return cname;
533 534 535 536 537 538
            case TRUSTED:
                return "/trusted";  // internal only; not exported
            default:  // Should not happen, but it's a bitfield...
                cname = cname + "/" + Integer.toHexString(allowedModes);
                assert(false) : cname;
                return cname;
539
            }
540 541 542 543 544 545 546 547
        }

        // call this from an entry point method in Lookup with extraFrames=0.
        private static Class<?> getCallerClassAtEntryPoint() {
            final int CALLER_DEPTH = 4;
            // 0: Reflection.getCC, 1: getCallerClassAtEntryPoint,
            // 2: Lookup.<init>, 3: MethodHandles.*, 4: caller
            // Note:  This should be the only use of getCallerClass in this file.
548
            assert(Reflection.getCallerClass(CALLER_DEPTH-1) == MethodHandles.class);
549 550 551 552
            return Reflection.getCallerClass(CALLER_DEPTH);
        }

        /**
553
         * Produces a method handle for a static method.
554
         * The type of the method handle will be that of the method.
555 556
         * (Since static methods do not take receivers, there is no
         * additional receiver argument inserted into the method handle type,
557
         * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
558 559 560
         * The method and all its argument types must be accessible to the lookup class.
         * If the method's class has not yet been initialized, that is done
         * immediately, before the method handle is returned.
561 562 563 564
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
565
         * @param refc the class from which the method is accessed
566 567 568
         * @param name the name of the method
         * @param type the type of the method
         * @return the desired method handle
569
         * @throws NoSuchMethodException if the method does not exist
570 571 572 573
         * @throws IllegalAccessException if access checking fails,
         *                                or if the method is not {@code static},
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
574 575
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
576
         * @throws NullPointerException if any argument is null
577 578
         */
        public
579
        MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
580
            MemberName method = resolveOrFail(refc, name, type, true);
581
            checkSecurityManager(refc, method);  // stack walk magic: do not refactor
582
            checkMethod(refc, method, true);
583
            return MethodHandleImpl.findMethod(method, false, lookupClassOrNull());
584 585 586
        }

        /**
587
         * Produces a method handle for a virtual method.
588
         * The type of the method handle will be that of the method,
589
         * with the receiver type (usually {@code refc}) prepended.
590 591 592 593 594 595 596
         * The method and all its argument types must be accessible to the lookup class.
         * <p>
         * When called, the handle will treat the first argument as a receiver
         * and dispatch on the receiver's type to determine which method
         * implementation to enter.
         * (The dispatching action is identical with that performed by an
         * {@code invokevirtual} or {@code invokeinterface} instruction.)
597 598 599 600
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
601 602 603 604
         * <p>
         * Because of the general equivalence between {@code invokevirtual}
         * instructions and method handles produced by {@code findVirtual},
         * if the class is {@code MethodHandle} and the name string is
605
         * {@code invokeExact} or {@code invoke}, the resulting
606
         * method handle is equivalent to one produced by
607
         * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
608
         * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
609 610
         * with the same {@code type} argument.
         *
611
         * @param refc the class or interface from which the method is accessed
612 613 614
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
615
         * @throws NoSuchMethodException if the method does not exist
616 617 618 619
         * @throws IllegalAccessException if access checking fails,
         *                                or if the method is {@code static}
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
620 621
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
622
         * @throws NullPointerException if any argument is null
623
         */
624
        public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
625
            MemberName method = resolveOrFail(refc, name, type, false);
626
            checkSecurityManager(refc, method);  // stack walk magic: do not refactor
627
            checkMethod(refc, method, false);
628
            MethodHandle mh = MethodHandleImpl.findMethod(method, true, lookupClassOrNull());
629 630 631 632
            return restrictProtectedReceiver(method, mh);
        }

        /**
633
         * Produces a method handle which creates an object and initializes it, using
634 635 636 637 638 639 640 641
         * the constructor of the specified type.
         * The parameter types of the method handle will be those of the constructor,
         * while the return type will be a reference to the constructor's class.
         * The constructor and all its argument types must be accessible to the lookup class.
         * If the constructor's class has not yet been initialized, that is done
         * immediately, before the method handle is returned.
         * <p>
         * Note:  The requested type must have a return type of {@code void}.
642
         * This is consistent with the JVM's treatment of constructor type descriptors.
643 644 645 646
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
647 648 649
         * @param refc the class or interface from which the method is accessed
         * @param type the type of the method, with the receiver argument omitted, and a void return type
         * @return the desired method handle
650 651
         * @throws NoSuchMethodException if the constructor does not exist
         * @throws IllegalAccessException if access checking fails
652 653
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
654 655
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
656
         * @throws NullPointerException if any argument is null
657
         */
658
        public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
659 660 661
            String name = "<init>";
            MemberName ctor = resolveOrFail(refc, name, type, false, false, lookupClassOrNull());
            assert(ctor.isConstructor());
662
            checkSecurityManager(refc, ctor);  // stack walk magic: do not refactor
663
            checkAccess(refc, ctor);
664 665
            MethodHandle rawMH = MethodHandleImpl.findMethod(ctor, false, lookupClassOrNull());
            MethodHandle allocMH = MethodHandleImpl.makeAllocator(rawMH);
666 667 668 669 670 671 672 673 674 675 676 677 678 679
            return fixVarargs(allocMH, rawMH);
        }

        /** Return a version of MH which matches matchMH w.r.t. isVarargsCollector. */
        private static MethodHandle fixVarargs(MethodHandle mh, MethodHandle matchMH) {
            boolean va1 = mh.isVarargsCollector();
            boolean va2 = matchMH.isVarargsCollector();
            if (va1 == va2) {
                return mh;
            } else if (va2) {
                MethodType type = mh.type();
                int arity = type.parameterCount();
                return mh.asVarargsCollector(type.parameterType(arity-1));
            } else {
680
                return mh.asFixedArity();
681
            }
682 683 684
        }

        /**
685
         * Produces an early-bound method handle for a virtual method,
686
         * as if called from an {@code invokespecial}
687
         * instruction from {@code caller}.
688
         * The type of the method handle will be that of the method,
689
         * with a suitably restricted receiver type (such as {@code caller}) prepended.
690
         * The method and all its argument types must be accessible
691 692 693 694 695 696 697 698
         * to the caller.
         * <p>
         * When called, the handle will treat the first argument as a receiver,
         * but will not dispatch on the receiver's type.
         * (This direct invocation action is identical with that performed by an
         * {@code invokespecial} instruction.)
         * <p>
         * If the explicitly specified caller class is not identical with the
699 700
         * lookup class, or if this lookup object does not have private access
         * privileges, the access fails.
701 702 703 704
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
705 706
         * @param refc the class or interface from which the method is accessed
         * @param name the name of the method (which must not be "&lt;init&gt;")
707 708 709
         * @param type the type of the method, with the receiver argument omitted
         * @param specialCaller the proposed calling class to perform the {@code invokespecial}
         * @return the desired method handle
710 711
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
712 713
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
714 715
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
716
         * @throws NullPointerException if any argument is null
717
         */
718
        public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
719
                                        Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
720 721
            checkSpecialCaller(specialCaller);
            MemberName method = resolveOrFail(refc, name, type, false, false, specialCaller);
722
            checkSecurityManager(refc, method);  // stack walk magic: do not refactor
723
            checkMethod(refc, method, false);
724
            MethodHandle mh = MethodHandleImpl.findMethod(method, false, specialCaller);
725 726 727 728
            return restrictReceiver(method, mh, specialCaller);
        }

        /**
729
         * Produces a method handle giving read access to a non-static field.
730 731
         * The type of the method handle will have a return type of the field's
         * value type.
732
         * The method handle's single argument will be the instance containing
733 734
         * the field.
         * Access checking is performed immediately on behalf of the lookup class.
735
         * @param refc the class or interface from which the method is accessed
736 737 738
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
739 740
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
741 742
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
743
         * @throws NullPointerException if any argument is null
744
         */
745
        public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
746 747 748
            MemberName field = resolveOrFail(refc, name, type, false);
            checkSecurityManager(refc, field);  // stack walk magic: do not refactor
            return makeAccessor(refc, field, false, false, 0);
749 750 751
        }

        /**
752
         * Produces a method handle giving write access to a non-static field.
753
         * The type of the method handle will have a void return type.
754
         * The method handle will take two arguments, the instance containing
755
         * the field, and the value to be stored.
756 757
         * The second argument will be of the field's value type.
         * Access checking is performed immediately on behalf of the lookup class.
758
         * @param refc the class or interface from which the method is accessed
759 760 761
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can store values into the field
762 763
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
764 765
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
766
         * @throws NullPointerException if any argument is null
767
         */
768
        public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
769 770 771
            MemberName field = resolveOrFail(refc, name, type, false);
            checkSecurityManager(refc, field);  // stack walk magic: do not refactor
            return makeAccessor(refc, field, false, true, 0);
772 773 774
        }

        /**
775
         * Produces a method handle giving read access to a static field.
776 777 778 779
         * The type of the method handle will have a return type of the field's
         * value type.
         * The method handle will take no arguments.
         * Access checking is performed immediately on behalf of the lookup class.
780
         * @param refc the class or interface from which the method is accessed
781 782 783
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
784 785
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
786 787
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
788
         * @throws NullPointerException if any argument is null
789
         */
790
        public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
791 792 793
            MemberName field = resolveOrFail(refc, name, type, true);
            checkSecurityManager(refc, field);  // stack walk magic: do not refactor
            return makeAccessor(refc, field, false, false, 1);
794 795 796
        }

        /**
797
         * Produces a method handle giving write access to a static field.
798 799 800
         * The type of the method handle will have a void return type.
         * The method handle will take a single
         * argument, of the field's value type, the value to be stored.
801
         * Access checking is performed immediately on behalf of the lookup class.
802
         * @param refc the class or interface from which the method is accessed
803 804
         * @param name the field's name
         * @param type the field's type
805
         * @return a method handle which can store values into the field
806 807
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
808 809
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
810
         * @throws NullPointerException if any argument is null
811
         */
812
        public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
813 814 815
            MemberName field = resolveOrFail(refc, name, type, true);
            checkSecurityManager(refc, field);  // stack walk magic: do not refactor
            return makeAccessor(refc, field, false, true, 1);
816 817 818
        }

        /**
819
         * Produces an early-bound method handle for a non-static method.
820 821 822
         * The receiver must have a supertype {@code defc} in which a method
         * of the given name and type is accessible to the lookup class.
         * The method and all its argument types must be accessible to the lookup class.
823 824 825 826 827
         * The type of the method handle will be that of the method,
         * without any insertion of an additional receiver parameter.
         * The given receiver will be bound into the method handle,
         * so that every call to the method handle will invoke the
         * requested method on the given receiver.
828
         * <p>
829 830 831 832 833 834 835 836 837
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set
         * <em>and</em> the trailing array argument is not the only argument.
         * (If the trailing array argument is the only argument,
         * the given receiver value will be bound to it.)
         * <p>
         * This is equivalent to the following code:
         * <blockquote><pre>
838 839 840 841
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle mh0 = lookup().{@link #findVirtual findVirtual}(defc, name, type);
842 843
MethodHandle mh1 = mh0.{@link MethodHandle#bindTo bindTo}(receiver);
MethodType mt1 = mh1.type();
844
if (mh0.isVarargsCollector())
845 846 847
  mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
return mh1;
         * </pre></blockquote>
848 849 850
         * where {@code defc} is either {@code receiver.getClass()} or a super
         * type of that class, in which the requested method is accessible
         * to the lookup class.
851
         * (Note that {@code bindTo} does not preserve variable arity.)
852 853 854 855
         * @param receiver the object from which the method is accessed
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
856 857
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
858 859
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
860 861
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
862
         * @throws NullPointerException if any argument is null
863
         */
864
        public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
865 866
            Class<? extends Object> refc = receiver.getClass(); // may get NPE
            MemberName method = resolveOrFail(refc, name, type, false);
867
            checkSecurityManager(refc, method);  // stack walk magic: do not refactor
868
            checkMethod(refc, method, false);
869 870
            MethodHandle dmh = MethodHandleImpl.findMethod(method, true, lookupClassOrNull());
            MethodHandle bmh = MethodHandleImpl.bindReceiver(dmh, receiver);
871
            if (bmh == null)
872
                throw method.makeAccessException("no access", this);
873
            return fixVarargs(bmh, dmh);
874 875 876
        }

        /**
877
         * Makes a direct method handle to <i>m</i>, if the lookup class has permission.
878 879 880 881 882 883 884 885
         * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
         * If <i>m</i> is virtual, overriding is respected on every call.
         * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
         * The type of the method handle will be that of the method,
         * with the receiver type prepended (but only if it is non-static).
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class.
         * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
886 887 888 889
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
890 891
         * @param m the reflected method
         * @return a method handle which can invoke the reflected method
892
         * @throws IllegalAccessException if access checking fails
893 894
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
895
         * @throws NullPointerException if the argument is null
896
         */
897
        public MethodHandle unreflect(Method m) throws IllegalAccessException {
898 899 900
            MemberName method = new MemberName(m);
            assert(method.isMethod());
            if (!m.isAccessible())  checkMethod(method.getDeclaringClass(), method, method.isStatic());
901
            MethodHandle mh = MethodHandleImpl.findMethod(method, true, lookupClassOrNull());
902 903
            if (!m.isAccessible())  mh = restrictProtectedReceiver(method, mh);
            return mh;
904 905 906
        }

        /**
907
         * Produces a method handle for a reflected method.
908
         * It will bypass checks for overriding methods on the receiver,
909
         * as if by a {@code invokespecial} instruction from within the {@code specialCaller}.
910
         * The type of the method handle will be that of the method,
911
         * with the special caller type prepended (and <em>not</em> the receiver of the method).
912 913 914
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class,
         * as if {@code invokespecial} instruction were being linked.
915 916 917 918
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
919
         * @param m the reflected method
920
         * @param specialCaller the class nominally calling the method
921
         * @return a method handle which can invoke the reflected method
922
         * @throws IllegalAccessException if access checking fails
923 924
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
925
         * @throws NullPointerException if any argument is null
926
         */
927
        public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
928 929 930 931 932
            checkSpecialCaller(specialCaller);
            MemberName method = new MemberName(m);
            assert(method.isMethod());
            // ignore m.isAccessible:  this is a new kind of access
            checkMethod(m.getDeclaringClass(), method, false);
933
            MethodHandle mh = MethodHandleImpl.findMethod(method, false, lookupClassOrNull());
934
            return restrictReceiver(method, mh, specialCaller);
935 936 937
        }

        /**
938
         * Produces a method handle for a reflected constructor.
939 940
         * The type of the method handle will be that of the constructor,
         * with the return type changed to the declaring class.
941 942 943 944 945
         * The method handle will perform a {@code newInstance} operation,
         * creating a new instance of the constructor's class on the
         * arguments passed to the method handle.
         * <p>
         * If the constructor's {@code accessible} flag is not set,
946
         * access checking is performed immediately on behalf of the lookup class.
947 948 949 950
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
951
         * @param c the reflected constructor
952
         * @return a method handle which can invoke the reflected constructor
953
         * @throws IllegalAccessException if access checking fails
954 955
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
956
         * @throws NullPointerException if the argument is null
957
         */
958
        public MethodHandle unreflectConstructor(Constructor c) throws IllegalAccessException {
959 960 961
            MemberName ctor = new MemberName(c);
            assert(ctor.isConstructor());
            if (!c.isAccessible())  checkAccess(c.getDeclaringClass(), ctor);
962 963
            MethodHandle rawCtor = MethodHandleImpl.findMethod(ctor, false, lookupClassOrNull());
            MethodHandle allocator = MethodHandleImpl.makeAllocator(rawCtor);
964
            return fixVarargs(allocator, rawCtor);
965 966 967
        }

        /**
968
         * Produces a method handle giving read access to a reflected field.
969
         * The type of the method handle will have a return type of the field's
970 971 972 973
         * value type.
         * If the field is static, the method handle will take no arguments.
         * Otherwise, its single argument will be the instance containing
         * the field.
974
         * If the field's {@code accessible} flag is not set,
975 976 977
         * access checking is performed immediately on behalf of the lookup class.
         * @param f the reflected field
         * @return a method handle which can load values from the reflected field
978 979
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
980
         */
981
        public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
982
            return makeAccessor(f.getDeclaringClass(), new MemberName(f), f.isAccessible(), false, -1);
983 984 985
        }

        /**
986
         * Produces a method handle giving write access to a reflected field.
987
         * The type of the method handle will have a void return type.
988 989 990 991
         * If the field is static, the method handle will take a single
         * argument, of the field's value type, the value to be stored.
         * Otherwise, the two arguments will be the instance containing
         * the field, and the value to be stored.
992
         * If the field's {@code accessible} flag is not set,
993 994 995
         * access checking is performed immediately on behalf of the lookup class.
         * @param f the reflected field
         * @return a method handle which can store values into the reflected field
996 997
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
998
         */
999
        public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1000
            return makeAccessor(f.getDeclaringClass(), new MemberName(f), f.isAccessible(), true, -1);
1001 1002
        }

1003
        /// Helper methods, all package-private.
1004

1005
        MemberName resolveOrFail(Class<?> refc, String name, Class<?> type, boolean isStatic) throws NoSuchFieldException, IllegalAccessException {
1006
            checkSymbolicClass(refc);  // do this before attempting to resolve
1007
            name.getClass(); type.getClass();  // NPE
1008
            int mods = (isStatic ? Modifier.STATIC : 0);
1009 1010
            return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), true, lookupClassOrNull(),
                                            NoSuchFieldException.class);
1011
        }
1012

1013
        MemberName resolveOrFail(Class<?> refc, String name, MethodType type, boolean isStatic) throws NoSuchMethodException, IllegalAccessException {
1014
            checkSymbolicClass(refc);  // do this before attempting to resolve
1015
            name.getClass(); type.getClass();  // NPE
1016
            int mods = (isStatic ? Modifier.STATIC : 0);
1017 1018
            return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), true, lookupClassOrNull(),
                                            NoSuchMethodException.class);
1019 1020
        }

1021
        MemberName resolveOrFail(Class<?> refc, String name, MethodType type, boolean isStatic,
1022
                                 boolean searchSupers, Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1023
            checkSymbolicClass(refc);  // do this before attempting to resolve
1024
            name.getClass(); type.getClass();  // NPE
1025
            int mods = (isStatic ? Modifier.STATIC : 0);
1026 1027
            return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), searchSupers, specialCaller,
                                            NoSuchMethodException.class);
1028
        }
1029

1030
        void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1031 1032
            Class<?> caller = lookupClassOrNull();
            if (caller != null && !VerifyAccess.isClassAccessible(refc, caller))
1033
                throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this);
1034 1035
        }

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        /**
         * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
         * This function performs stack walk magic: do not refactor it.
         */
        void checkSecurityManager(Class<?> refc, MemberName m) {
            SecurityManager smgr = System.getSecurityManager();
            if (smgr == null)  return;
            if (allowedModes == TRUSTED)  return;
            // Step 1:
            smgr.checkMemberAccess(refc, Member.PUBLIC);
            // Step 2:
            if (!VerifyAccess.classLoaderIsAncestor(lookupClass, refc))
                smgr.checkPackageAccess(VerifyAccess.getPackageName(refc));
            // Step 3:
            if (m.isPublic()) return;
            Class<?> defc = m.getDeclaringClass();
            smgr.checkMemberAccess(defc, Member.DECLARED);  // STACK WALK HERE
            // Step 4:
            if (defc != refc)
                smgr.checkPackageAccess(VerifyAccess.getPackageName(defc));

            // Comment from SM.checkMemberAccess, where which=DECLARED:
            /*
             * stack depth of 4 should be the caller of one of the
             * methods in java.lang.Class that invoke checkMember
             * access. The stack should look like:
             *
             * someCaller                        [3]
             * java.lang.Class.someReflectionAPI [2]
             * java.lang.Class.checkMemberAccess [1]
             * SecurityManager.checkMemberAccess [0]
             *
             */
            // For us it is this stack:
            // someCaller                        [3]
            // Lookup.findSomeMember             [2]
            // Lookup.checkSecurityManager       [1]
            // SecurityManager.checkMemberAccess [0]
        }

1076
        void checkMethod(Class<?> refc, MemberName m, boolean wantStatic) throws IllegalAccessException {
1077 1078 1079 1080 1081 1082 1083 1084 1085
            String message;
            if (m.isConstructor())
                message = "expected a method, not a constructor";
            else if (!m.isMethod())
                message = "expected a method";
            else if (wantStatic != m.isStatic())
                message = wantStatic ? "expected a static method" : "expected a non-static method";
            else
                { checkAccess(refc, m); return; }
1086
            throw m.makeAccessException(message, this);
1087 1088
        }

1089
        void checkAccess(Class<?> refc, MemberName m) throws IllegalAccessException {
1090 1091 1092
            int allowedModes = this.allowedModes;
            if (allowedModes == TRUSTED)  return;
            int mods = m.getModifiers();
1093
            if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
                return;  // common case
            int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
            if ((requestedModes & allowedModes) != 0
                && VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
                                                   mods, lookupClass()))
                return;
            if (((requestedModes & ~allowedModes) & PROTECTED) != 0
                && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
                // Protected members can also be checked as if they were package-private.
                return;
1104
            throw m.makeAccessException(accessFailedMessage(refc, m), this);
1105 1106 1107 1108 1109
        }

        String accessFailedMessage(Class<?> refc, MemberName m) {
            Class<?> defc = m.getDeclaringClass();
            int mods = m.getModifiers();
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
            // check the class first:
            boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
                               (defc == refc ||
                                Modifier.isPublic(refc.getModifiers())));
            if (!classOK && (allowedModes & PACKAGE) != 0) {
                classOK = (VerifyAccess.isClassAccessible(defc, lookupClass()) &&
                           (defc == refc ||
                            VerifyAccess.isClassAccessible(refc, lookupClass())));
            }
            if (!classOK)
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
                return "class is not public";
            if (Modifier.isPublic(mods))
                return "access to public member failed";  // (how?)
            if (Modifier.isPrivate(mods))
                return "member is private";
            if (Modifier.isProtected(mods))
                return "member is protected";
            return "member is private to package";
        }

1130 1131
        private static final boolean ALLOW_NESTMATE_ACCESS = false;

1132
        void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
1133
            if (allowedModes == TRUSTED)  return;
1134 1135 1136 1137
            if ((allowedModes & PRIVATE) == 0
                || (specialCaller != lookupClass()
                    && !(ALLOW_NESTMATE_ACCESS &&
                         VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
1138 1139
                throw new MemberName(specialCaller).
                    makeAccessException("no private access for invokespecial", this);
1140 1141
        }

1142
        MethodHandle restrictProtectedReceiver(MemberName method, MethodHandle mh) throws IllegalAccessException {
1143 1144 1145 1146
            // The accessing class only has the right to use a protected member
            // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
            if (!method.isProtected() || method.isStatic()
                || allowedModes == TRUSTED
1147
                || method.getDeclaringClass() == lookupClass()
1148
                || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
1149 1150
                || (ALLOW_NESTMATE_ACCESS &&
                    VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
1151 1152 1153 1154
                return mh;
            else
                return restrictReceiver(method, mh, lookupClass());
        }
1155
        MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException {
1156 1157 1158
            assert(!method.isStatic());
            Class<?> defc = method.getDeclaringClass();  // receiver type of mh is too wide
            if (defc.isInterface() || !defc.isAssignableFrom(caller)) {
1159
                throw method.makeAccessException("caller class must be a subclass below the method", caller);
1160
            }
1161 1162 1163
            MethodType rawType = mh.type();
            if (rawType.parameterType(0) == caller)  return mh;
            MethodType narrowType = rawType.changeParameterType(0, caller);
1164
            MethodHandle narrowMH = MethodHandleImpl.convertArguments(mh, narrowType, rawType, 0);
1165
            return fixVarargs(narrowMH, mh);
1166 1167 1168
        }

        MethodHandle makeAccessor(Class<?> refc, MemberName field,
1169 1170
                                  boolean trusted, boolean isSetter,
                                  int checkStatic) throws IllegalAccessException {
1171
            assert(field.isField());
1172 1173 1174 1175
            if (checkStatic >= 0 && (checkStatic != 0) != field.isStatic())
                throw field.makeAccessException((checkStatic != 0)
                                                ? "expected a static field"
                                                : "expected a non-static field", this);
1176
            if (trusted)
1177
                return MethodHandleImpl.accessField(field, isSetter, lookupClassOrNull());
1178
            checkAccess(refc, field);
1179
            MethodHandle mh = MethodHandleImpl.accessField(field, isSetter, lookupClassOrNull());
1180
            return restrictProtectedReceiver(field, mh);
1181 1182 1183 1184
        }
    }

    /**
1185
     * Produces a method handle giving read access to elements of an array.
1186 1187 1188 1189 1190
     * The type of the method handle will have a return type of the array's
     * element type.  Its first argument will be the array type,
     * and the second will be {@code int}.
     * @param arrayClass an array type
     * @return a method handle which can load values from the given array type
1191
     * @throws NullPointerException if the argument is null
1192 1193 1194 1195
     * @throws  IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
1196
        return MethodHandleImpl.accessArrayElement(arrayClass, false);
1197 1198 1199
    }

    /**
1200
     * Produces a method handle giving write access to elements of an array.
1201 1202 1203 1204
     * The type of the method handle will have a void return type.
     * Its last argument will be the array's element type.
     * The first and second arguments will be the array type and int.
     * @return a method handle which can store values into the array type
1205
     * @throws NullPointerException if the argument is null
1206 1207 1208 1209
     * @throws IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
1210
        return MethodHandleImpl.accessArrayElement(arrayClass, true);
1211 1212 1213 1214 1215
    }

    /// method handle invocation (reflective style)

    /**
1216
     * Produces a method handle which will invoke any method handle of the
1217 1218
     * given {@code type}, with a given number of trailing arguments replaced by
     * a single trailing {@code Object[]} array.
1219 1220 1221 1222
     * The resulting invoker will be a method handle with the following
     * arguments:
     * <ul>
     * <li>a single {@code MethodHandle} target
1223 1224
     * <li>zero or more leading values (counted by {@code leadingArgCount})
     * <li>an {@code Object[]} array containing trailing arguments
1225
     * </ul>
1226
     * <p>
1227
     * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
1228 1229
     * the indicated {@code type}.
     * That is, if the target is exactly of the given {@code type}, it will behave
1230
     * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
1231 1232 1233
     * is used to convert the target to the required {@code type}.
     * <p>
     * The type of the returned invoker will not be the given {@code type}, but rather
1234 1235 1236
     * will have all parameters except the first {@code leadingArgCount}
     * replaced by a single array of type {@code Object[]}, which will be
     * the final parameter.
1237
     * <p>
1238
     * Before invoking its target, the invoker will spread the final array, apply
1239
     * reference casts as necessary, and unbox and widen primitive arguments.
1240 1241 1242
     * <p>
     * This method is equivalent to the following code (though it may be more efficient):
     * <p><blockquote><pre>
1243
MethodHandle invoker = MethodHandles.invoker(type);
1244
int spreadArgCount = type.parameterCount() - leadingArgCount;
1245 1246
invoker = invoker.asSpreader(Object[].class, spreadArgCount);
return invoker;
1247
     * </pre></blockquote>
1248 1249
     * <p>
     * This method throws no reflective or security exceptions.
1250
     * @param type the desired target type
1251
     * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
1252
     * @return a method handle suitable for invoking any method handle of the given type
1253 1254 1255
     * @throws NullPointerException if {@code type} is null
     * @throws IllegalArgumentException if {@code leadingArgCount} is not in
     *                  the range from 0 to {@code type.parameterCount()} inclusive
1256 1257
     */
    static public
1258 1259 1260 1261
    MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
        if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
            throw new IllegalArgumentException("bad argument count "+leadingArgCount);
        return type.invokers().spreadInvoker(leadingArgCount);
1262 1263 1264
    }

    /**
1265
     * Produces a special <em>invoker method handle</em> which can be used to
1266
     * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
1267
     * The resulting invoker will have a type which is
1268 1269 1270
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
1271 1272
     * This method is equivalent to the following code (though it may be more efficient):
     * <p><blockquote><pre>
1273
publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)
1274
     * </pre></blockquote>
1275 1276 1277 1278 1279 1280 1281 1282
     *
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * Invoker method handles can be useful when working with variable method handles
     * of unknown types.
     * For example, to emulate an {@code invokeExact} call to a variable method
     * handle {@code M}, extract its type {@code T},
     * look up the invoker method {@code X} for {@code T},
1283
     * and call the invoker method, as {@code X.invoke(T, A...)}.
1284 1285 1286 1287 1288 1289 1290
     * (It would not work to call {@code X.invokeExact}, since the type {@code T}
     * is unknown.)
     * If spreading, collecting, or other argument transformations are required,
     * they can be applied once to the invoker {@code X} and reused on many {@code M}
     * method handle values, as long as they are compatible with the type of {@code X}.
     * <p>
     * <em>(Note:  The invoker method is not available via the Core Reflection API.
1291
     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1292
     * on the declared {@code invokeExact} or {@code invoke} method will raise an
1293 1294 1295
     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
     * <p>
     * This method throws no reflective or security exceptions.
1296 1297 1298 1299 1300
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle of the given type
     */
    static public
    MethodHandle exactInvoker(MethodType type) {
1301
        return type.invokers().exactInvoker();
1302 1303
    }

1304 1305
    /**
     * Produces a special <em>invoker method handle</em> which can be used to
1306
     * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
1307 1308 1309 1310
     * The resulting invoker will have a type which is
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
1311 1312
     * Before invoking its target, if the target differs from the expected type,
     * the invoker will apply reference casts as
1313 1314 1315 1316
     * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
     * Similarly, the return value will be converted as necessary.
     * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
     * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
1317
     * <p>
1318 1319 1320 1321 1322
     * A {@linkplain MethodType#genericMethodType general method type},
     * mentions only {@code Object} arguments and return values.
     * An invoker for such a type is capable of calling any method handle
     * of the same arity as the general type.
     * <p>
1323 1324
     * This method is equivalent to the following code (though it may be more efficient):
     * <p><blockquote><pre>
1325
publicLookup().findVirtual(MethodHandle.class, "invoke", type)
1326 1327 1328 1329 1330 1331 1332
     * </pre></blockquote>
     * <p>
     * This method throws no reflective or security exceptions.
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle convertible to the given type
     */
    static public
1333 1334 1335 1336
    MethodHandle invoker(MethodType type) {
        return type.invokers().generalInvoker();
    }

1337 1338 1339
    /**
     * Perform value checking, exactly as if for an adapted method handle.
     * It is assumed that the given value is either null, of type T0,
1340
     * or (if T0 is primitive) of the wrapper class corresponding to T0.
1341 1342 1343 1344 1345 1346 1347
     * The following checks and conversions are made:
     * <ul>
     * <li>If T0 and T1 are references, then a cast to T1 is applied.
     *     (The types do not need to be related in any particular way.)
     * <li>If T0 and T1 are primitives, then a widening or narrowing
     *     conversion is applied, if one exists.
     * <li>If T0 is a primitive and T1 a reference, and
1348
     *     T0 has a wrapper class TW, a boxing conversion to TW is applied,
1349 1350 1351
     *     possibly followed by a reference conversion.
     *     T1 must be TW or a supertype.
     * <li>If T0 is a reference and T1 a primitive, and
1352
     *     T1 has a wrapper class TW, an unboxing conversion is applied,
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
     *     possibly preceded by a reference conversion.
     *     T0 must be TW or a supertype.
     * <li>If T1 is void, the return value is discarded
     * <li>If T0 is void and T1 a reference, a null value is introduced.
     * <li>If T0 is void and T1 a primitive, a zero value is introduced.
     * </ul>
     * If the value is discarded, null will be returned.
     * @param valueType
     * @param value
     * @return the value, converted if necessary
     * @throws java.lang.ClassCastException if a cast fails
     */
1365
    // FIXME: This is used in just one place.  Refactor away.
1366 1367 1368 1369 1370 1371 1372 1373 1374
    static
    <T0, T1> T1 checkValue(Class<T0> t0, Class<T1> t1, Object value)
       throws ClassCastException
    {
        if (t0 == t1) {
            // no conversion needed; just reassert the same type
            if (t0.isPrimitive())
                return Wrapper.asPrimitiveType(t1).cast(value);
            else
1375
                return Wrapper.OBJECT.convert(value, t1);
1376 1377 1378 1379
        }
        boolean prim0 = t0.isPrimitive(), prim1 = t1.isPrimitive();
        if (!prim0) {
            // check contract with caller
1380
            Wrapper.OBJECT.convert(value, t0);
1381
            if (!prim1) {
1382
                return Wrapper.OBJECT.convert(value, t1);
1383 1384 1385
            }
            // convert reference to primitive by unboxing
            Wrapper w1 = Wrapper.forPrimitiveType(t1);
1386
            return w1.convert(value, t1);
1387 1388 1389 1390
        }
        // check contract with caller:
        Wrapper.asWrapperType(t0).cast(value);
        Wrapper w1 = Wrapper.forPrimitiveType(t1);
1391
        return w1.convert(value, t1);
1392 1393
    }

1394 1395
    // FIXME: Delete this.  It is used only for insertArguments & bindTo.
    // Replace by a more standard check.
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
    static
    Object checkValue(Class<?> T1, Object value)
       throws ClassCastException
    {
        Class<?> T0;
        if (value == null)
            T0 = Object.class;
        else
            T0 = value.getClass();
        return checkValue(T0, T1, value);
    }

    /// method handle modification (creation from other method handles)

    /**
1411
     * Produces a method handle which adapts the type of the
1412
     * given method handle to a new type by pairwise argument and return type conversion.
1413 1414 1415 1416 1417 1418
     * The original type and new type must have the same number of arguments.
     * The resulting method handle is guaranteed to report a type
     * which is equal to the desired new type.
     * <p>
     * If the original type and new type are equal, returns target.
     * <p>
1419
     * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
1420
     * and some additional conversions are also applied if those conversions fail.
1421 1422
     * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
     * if possible, before or instead of any conversions done by {@code asType}:
1423
     * <ul>
1424 1425
     * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
     *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
1426
     *     (This treatment of interfaces follows the usage of the bytecode verifier.)
1427 1428
     * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
     *     the boolean is converted to a byte value, 1 for true, 0 for false.
1429
     *     (This treatment follows the usage of the bytecode verifier.)
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
     * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
     *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
     *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
     * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
     *     then a Java casting conversion (JLS 5.5) is applied.
     *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
     *     widening and/or narrowing.)
     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
     *     conversion will be applied at runtime, possibly followed
     *     by a Java casting conversion (JLS 5.5) on the primitive value,
     *     possibly followed by a conversion from byte to boolean by testing
     *     the low-order bit.
     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
     *     and if the reference is null at runtime, a zero value is introduced.
1444 1445 1446
     * </ul>
     * @param target the method handle to invoke after arguments are retyped
     * @param newType the expected type of the new method handle
1447
     * @return a method handle which delegates to the target after performing
1448 1449
     *           any necessary argument conversions, and arranges for any
     *           necessary return value conversions
1450
     * @throws NullPointerException if either argument is null
1451 1452 1453 1454 1455
     * @throws WrongMethodTypeException if the conversion cannot be made
     * @see MethodHandle#asType
     */
    public static
    MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
1456
        return MethodHandleImpl.convertArguments(target, newType, 2);
1457 1458 1459
    }

    /**
1460
     * Produces a method handle which adapts the calling sequence of the
1461
     * given method handle to a new type, by reordering the arguments.
1462
     * The resulting method handle is guaranteed to report a type
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
     * which is equal to the desired new type.
     * <p>
     * The given array controls the reordering.
     * Call {@code #I} the number of incoming parameters (the value
     * {@code newType.parameterCount()}, and call {@code #O} the number
     * of outgoing parameters (the value {@code target.type().parameterCount()}).
     * Then the length of the reordering array must be {@code #O},
     * and each element must be a non-negative number less than {@code #I}.
     * For every {@code N} less than {@code #O}, the {@code N}-th
     * outgoing argument will be taken from the {@code I}-th incoming
     * argument, where {@code I} is {@code reorder[N]}.
     * <p>
1475 1476
     * No argument or return value conversions are applied.
     * The type of each incoming argument, as determined by {@code newType},
1477 1478
     * must be identical to the type of the corresponding outgoing parameter
     * or parameters in the target method handle.
1479 1480 1481
     * The return type of {@code newType} must be identical to the return
     * type of the original target.
     * <p>
1482 1483 1484 1485
     * The reordering array need not specify an actual permutation.
     * An incoming argument will be duplicated if its index appears
     * more than once in the array, and an incoming argument will be dropped
     * if its index does not appear in the array.
1486 1487 1488 1489
     * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
     * incoming arguments which are not mentioned in the reordering array
     * are may be any type, as determined only by {@code newType}.
     * <blockquote><pre>
1490 1491 1492 1493 1494
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodType intfn1 = methodType(int.class, int.class);
MethodType intfn2 = methodType(int.class, int.class, int.class);
1495 1496
MethodHandle sub = ... {int x, int y => x-y} ...;
assert(sub.type().equals(intfn2));
1497 1498
MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
1499 1500 1501
assert((int)rsub.invokeExact(1, 100) == 99);
MethodHandle add = ... {int x, int y => x+y} ...;
assert(add.type().equals(intfn2));
1502
MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
1503 1504 1505
assert(twice.type().equals(intfn1));
assert((int)twice.invokeExact(21) == 42);
     * </pre></blockquote>
1506 1507
     * @param target the method handle to invoke after arguments are reordered
     * @param newType the expected type of the new method handle
1508 1509
     * @param reorder an index array which controls the reordering
     * @return a method handle which delegates to the target after it
1510
     *           drops unused arguments and moves and/or duplicates the other arguments
1511
     * @throws NullPointerException if any argument is null
1512 1513 1514 1515 1516
     * @throws IllegalArgumentException if the index array length is not equal to
     *                  the arity of the target, or if any index array element
     *                  not a valid index for a parameter of {@code newType},
     *                  or if two corresponding parameter types in
     *                  {@code target.type()} and {@code newType} are not identical,
1517 1518
     */
    public static
1519
    MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
1520 1521
        MethodType oldType = target.type();
        checkReorder(reorder, newType, oldType);
1522
        return MethodHandleImpl.permuteArguments(target,
1523 1524 1525 1526 1527
                                                 newType, oldType,
                                                 reorder);
    }

    private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) {
1528 1529 1530
        if (newType.returnType() != oldType.returnType())
            throw newIllegalArgumentException("return types do not match",
                    oldType, newType);
1531 1532 1533
        if (reorder.length == oldType.parameterCount()) {
            int limit = newType.parameterCount();
            boolean bad = false;
1534 1535
            for (int j = 0; j < reorder.length; j++) {
                int i = reorder[j];
1536 1537 1538
                if (i < 0 || i >= limit) {
                    bad = true; break;
                }
1539 1540 1541 1542 1543
                Class<?> src = newType.parameterType(i);
                Class<?> dst = oldType.parameterType(j);
                if (src != dst)
                    throw newIllegalArgumentException("parameter types do not match after reorder",
                            oldType, newType);
1544 1545 1546
            }
            if (!bad)  return;
        }
1547
        throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
1548 1549 1550
    }

    /**
1551
     * Produces a method handle of the requested return type which returns the given
1552 1553 1554 1555 1556
     * constant value every time it is invoked.
     * <p>
     * Before the method handle is returned, the passed-in value is converted to the requested type.
     * If the requested type is primitive, widening primitive conversions are attempted,
     * else reference conversions are attempted.
1557
     * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
1558 1559 1560
     * @param type the return type of the desired method handle
     * @param value the value to return
     * @return a method handle of the given return type and no arguments, which always returns the given value
1561 1562 1563
     * @throws NullPointerException if the {@code type} argument is null
     * @throws ClassCastException if the value cannot be converted to the required return type
     * @throws IllegalArgumentException if the given type is {@code void.class}
1564 1565 1566 1567
     */
    public static
    MethodHandle constant(Class<?> type, Object value) {
        if (type.isPrimitive()) {
1568 1569
            if (type == void.class)
                throw newIllegalArgumentException("void type");
1570
            Wrapper w = Wrapper.forPrimitiveType(type);
1571
            return insertArguments(identity(type), 0, w.convert(value, type));
1572 1573 1574 1575 1576 1577
        } else {
            return identity(type).bindTo(type.cast(value));
        }
    }

    /**
1578 1579 1580 1581 1582
     * Produces a method handle which returns its sole argument when invoked.
     * @param type the type of the sole parameter and return value of the desired method handle
     * @return a unary method handle which accepts and returns the given type
     * @throws NullPointerException if the argument is null
     * @throws IllegalArgumentException if the given type is {@code void.class}
1583 1584 1585
     */
    public static
    MethodHandle identity(Class<?> type) {
1586 1587
        if (type == void.class)
            throw newIllegalArgumentException("void type");
1588 1589 1590 1591 1592 1593 1594
        else if (type == Object.class)
            return ValueConversions.identity();
        else if (type.isPrimitive())
            return ValueConversions.identity(Wrapper.forPrimitiveType(type));
        else
            return AdapterMethodHandle.makeRetypeRaw(
                    MethodType.methodType(type, type), ValueConversions.identity());
1595 1596 1597
    }

    /**
1598 1599 1600 1601 1602 1603 1604 1605 1606
     * Provides a target method handle with one or more <em>bound arguments</em>
     * in advance of the method handle's invocation.
     * The formal parameters to the target corresponding to the bound
     * arguments are called <em>bound parameters</em>.
     * Returns a new method handle which saves away the bound arguments.
     * When it is invoked, it receives arguments for any non-bound parameters,
     * binds the saved arguments to their corresponding parameters,
     * and calls the original target.
     * <p>
1607 1608 1609
     * The type of the new method handle will drop the types for the bound
     * parameters from the original target type, since the new method handle
     * will no longer require those arguments to be supplied by its callers.
1610
     * <p>
1611 1612 1613
     * Each given argument object must match the corresponding bound parameter type.
     * If a bound parameter type is a primitive, the argument object
     * must be a wrapper, and will be unboxed to produce the primitive value.
1614
     * <p>
1615 1616 1617 1618
     * The {@code pos} argument selects which parameters are to be bound.
     * It may range between zero and <i>N-L</i> (inclusively),
     * where <i>N</i> is the arity of the target method handle
     * and <i>L</i> is the length of the values array.
1619 1620
     * @param target the method handle to invoke after the argument is inserted
     * @param pos where to insert the argument (zero for the first)
1621
     * @param values the series of arguments to insert
1622
     * @return a method handle which inserts an additional argument,
1623
     *         before calling the original method handle
1624
     * @throws NullPointerException if the target or the {@code values} array is null
1625
     * @see MethodHandle#bindTo
1626 1627
     */
    public static
1628 1629
    MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
        int insCount = values.length;
1630 1631
        MethodType oldType = target.type();
        int outargs = oldType.parameterCount();
1632 1633 1634 1635
        int inargs  = outargs - insCount;
        if (inargs < 0)
            throw newIllegalArgumentException("too many values to insert");
        if (pos < 0 || pos > inargs)
1636
            throw newIllegalArgumentException("no argument type to append");
1637 1638 1639 1640 1641 1642 1643
        MethodHandle result = target;
        for (int i = 0; i < insCount; i++) {
            Object value = values[i];
            Class<?> valueType = oldType.parameterType(pos+i);
            value = checkValue(valueType, value);
            if (pos == 0 && !valueType.isPrimitive()) {
                // At least for now, make bound method handles a special case.
1644
                MethodHandle bmh = MethodHandleImpl.bindReceiver(result, value);
1645 1646 1647 1648 1649 1650
                if (bmh != null) {
                    result = bmh;
                    continue;
                }
                // else fall through to general adapter machinery
            }
1651
            result = MethodHandleImpl.bindArgument(result, pos, value);
1652
        }
1653 1654 1655
        return result;
    }

1656
    /**
1657 1658 1659 1660 1661
     * Produces a method handle which will discard some dummy arguments
     * before calling some other specified <i>target</i> method handle.
     * The type of the new method handle will be the same as the target's type,
     * except it will also include the dummy argument types,
     * at some given position.
1662
     * <p>
1663 1664 1665 1666 1667
     * The {@code pos} argument may range between zero and <i>N</i>,
     * where <i>N</i> is the arity of the target.
     * If {@code pos} is zero, the dummy arguments will precede
     * the target's real arguments; if {@code pos} is <i>N</i>
     * they will come after.
1668 1669 1670
     * <p>
     * <b>Example:</b>
     * <p><blockquote><pre>
1671 1672
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
1673 1674 1675 1676
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
1677 1678 1679 1680 1681 1682 1683 1684 1685
MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
assertEquals(bigType, d0.type());
assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
     * </pre></blockquote>
     * <p>
     * This method is also equivalent to the following code:
     * <p><blockquote><pre>
     * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}(target, pos, valueTypes.toArray(new Class[0]))
1686
     * </pre></blockquote>
1687 1688 1689 1690
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
1691
     *         before calling the original method handle
1692
     * @throws NullPointerException if the target is null,
1693
     *                              or if the {@code valueTypes} list or any of its elements is null
1694 1695 1696
     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
     *                  or if {@code pos} is negative or greater than the arity of the target,
     *                  or if the new method handle's type would have too many parameters
1697 1698
     */
    public static
1699
    MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
1700
        MethodType oldType = target.type();  // get NPE
1701
        if (valueTypes.size() == 0)  return target;
1702
        int outargs = oldType.parameterCount();
1703
        int inargs  = outargs + valueTypes.size();
1704 1705 1706 1707
        if (pos < 0 || pos >= inargs)
            throw newIllegalArgumentException("no argument type to remove");
        ArrayList<Class<?>> ptypes =
                new ArrayList<Class<?>>(oldType.parameterList());
1708 1709
        ptypes.addAll(pos, valueTypes);
        MethodType newType = MethodType.methodType(oldType.returnType(), ptypes);
1710
        return MethodHandleImpl.dropArguments(target, newType, pos);
1711 1712
    }

1713
    /**
1714 1715 1716 1717 1718
     * Produces a method handle which will discard some dummy arguments
     * before calling some other specified <i>target</i> method handle.
     * The type of the new method handle will be the same as the target's type,
     * except it will also include the dummy argument types,
     * at some given position.
1719
     * <p>
1720 1721 1722 1723 1724
     * The {@code pos} argument may range between zero and <i>N</i>,
     * where <i>N</i> is the arity of the target.
     * If {@code pos} is zero, the dummy arguments will precede
     * the target's real arguments; if {@code pos} is <i>N</i>
     * they will come after.
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
     * <p>
     * <b>Example:</b>
     * <p><blockquote><pre>
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
MethodHandle d0 = dropArguments(cat, 0, String.class);
assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
MethodHandle d1 = dropArguments(cat, 1, String.class);
assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
MethodHandle d2 = dropArguments(cat, 2, String.class);
assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
     * </pre></blockquote>
     * <p>
     * This method is also equivalent to the following code:
     * <p><blockquote><pre>
1746
     * {@link #dropArguments(MethodHandle,int,List) dropArguments}(target, pos, Arrays.asList(valueTypes))
1747
     * </pre></blockquote>
1748 1749 1750 1751 1752
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
     *         before calling the original method handle
1753
     * @throws NullPointerException if the target is null,
1754
     *                              or if the {@code valueTypes} array or any of its elements is null
1755 1756 1757
     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
     *                  or if {@code pos} is negative or greater than the arity of the target,
     *                  or if the new method handle's type would have too many parameters
1758
     */
1759 1760 1761 1762 1763 1764
    public static
    MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
        return dropArguments(target, pos, Arrays.asList(valueTypes));
    }

    /**
1765
     * Adapts a target method handle by pre-processing
1766 1767 1768 1769 1770
     * one or more of its arguments, each with its own unary filter function,
     * and then calling the target with each pre-processed argument
     * replaced by the result of its corresponding filter function.
     * <p>
     * The pre-processing is performed by one or more method handles,
1771
     * specified in the elements of the {@code filters} array.
1772 1773 1774 1775 1776
     * The first element of the filter array corresponds to the {@code pos}
     * argument of the target, and so on in sequence.
     * <p>
     * Null arguments in the array are treated as identity functions,
     * and the corresponding arguments left unchanged.
1777
     * (If there are no non-null elements in the array, the original target is returned.)
1778
     * Each filter is applied to the corresponding argument of the adapter.
1779 1780
     * <p>
     * If a filter {@code F} applies to the {@code N}th argument of
1781
     * the target, then {@code F} must be a method handle which
1782 1783 1784 1785 1786 1787
     * takes exactly one argument.  The type of {@code F}'s sole argument
     * replaces the corresponding argument type of the target
     * in the resulting adapted method handle.
     * The return type of {@code F} must be identical to the corresponding
     * parameter type of the target.
     * <p>
1788
     * It is an error if there are elements of {@code filters}
1789
     * (null or not)
1790
     * which do not correspond to argument positions in the target.
1791 1792
     * <b>Example:</b>
     * <p><blockquote><pre>
1793 1794
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
1795 1796 1797 1798 1799
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle upcase = lookup().findVirtual(String.class,
  "toUpperCase", methodType(String.class));
1800
assertEquals("xy", (String) cat.invokeExact("x", "y"));
1801
MethodHandle f0 = filterArguments(cat, 0, upcase);
1802
assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
1803
MethodHandle f1 = filterArguments(cat, 1, upcase);
1804
assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
1805
MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
1806
assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
1807 1808 1809 1810 1811 1812 1813 1814
     * </pre></blockquote>
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
     * V target(P... p, A[i]... a[i], B... b);
     * A[i] filter[i](V[i]);
     * T adapter(P... p, V[i]... v[i], B... b) {
     *   return target(p..., f[i](v[i])..., b...);
     * }
1815
     * </pre></blockquote>
1816
     *
1817
     * @param target the method handle to invoke after arguments are filtered
1818
     * @param pos the position of the first argument to filter
1819 1820
     * @param filters method handles to call initially on filtered arguments
     * @return method handle which incorporates the specified argument filtering logic
1821
     * @throws NullPointerException if the target is null
1822 1823
     *                              or if the {@code filters} array is null
     * @throws IllegalArgumentException if a non-null element of {@code filters}
1824
     *          does not match a corresponding argument type of target as described above,
1825
     *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}
1826 1827
     */
    public static
1828
    MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
1829 1830
        MethodType targetType = target.type();
        MethodHandle adapter = target;
1831 1832
        MethodType adapterType = null;
        assert((adapterType = targetType) != null);
1833
        int maxPos = targetType.parameterCount();
1834 1835 1836
        if (pos + filters.length > maxPos)
            throw newIllegalArgumentException("too many filters");
        int curPos = pos-1;  // pre-incremented
1837
        for (MethodHandle filter : filters) {
1838 1839
            curPos += 1;
            if (filter == null)  continue;  // ignore null elements of filters
1840 1841
            adapter = filterArgument(adapter, curPos, filter);
            assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null);
1842
        }
1843
        assert(adapterType.equals(adapter.type()));
1844 1845 1846
        return adapter;
    }

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
    /*non-public*/ static
    MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
        MethodType targetType = target.type();
        MethodType filterType = filter.type();
        if (filterType.parameterCount() != 1
            || filterType.returnType() != targetType.parameterType(pos))
            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
        return MethodHandleImpl.filterArgument(target, pos, filter);
    }

1857
    /**
1858 1859 1860
     * Adapts a target method handle by post-processing
     * its return value (if any) with a filter (another method handle).
     * The result of the filter is returned from the adapter.
1861
     * <p>
1862 1863 1864 1865 1866
     * If the target returns a value, the filter must accept that value as
     * its only argument.
     * If the target returns void, the filter must accept no arguments.
     * <p>
     * The return type of the filter
1867 1868
     * replaces the return type of the target
     * in the resulting adapted method handle.
1869
     * The argument type of the filter (if any) must be identical to the
1870 1871 1872
     * return type of the target.
     * <b>Example:</b>
     * <p><blockquote><pre>
1873 1874
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
1875 1876 1877 1878 1879 1880 1881 1882
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle length = lookup().findVirtual(String.class,
  "length", methodType(int.class));
System.out.println((String) cat.invokeExact("x", "y")); // xy
MethodHandle f0 = filterReturnValue(cat, length);
System.out.println((int) f0.invokeExact("x", "y")); // 2
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
     * </pre></blockquote>
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
     * V target(A...);
     * T filter(V);
     * T adapter(A... a) {
     *   V v = target(a...);
     *   return filter(v);
     * }
     * // and if the target has a void return:
     * void target2(A...);
     * T filter2();
     * T adapter2(A... a) {
     *   target2(a...);
     *   return filter2();
     * }
     * // and if the filter has a void return:
     * V target3(A...);
     * void filter3(V);
     * void adapter3(A... a) {
     *   V v = target3(a...);
     *   filter3(v);
     * }
1906 1907 1908 1909
     * </pre></blockquote>
     * @param target the method handle to invoke before filtering the return value
     * @param filter method handle to call on the return value
     * @return method handle which incorporates the specified return value filtering logic
1910
     * @throws NullPointerException if either argument is null
1911 1912
     * @throws IllegalArgumentException if the argument list of {@code filter}
     *          does not match the return type of target as described above
1913
     */
1914
    public static
1915 1916 1917
    MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
        MethodType targetType = target.type();
        MethodType filterType = filter.type();
1918 1919 1920 1921 1922 1923
        Class<?> rtype = targetType.returnType();
        int filterValues = filterType.parameterCount();
        if (filterValues == 0
                ? (rtype != void.class)
                : (rtype != filterType.parameterType(0)))
            throw newIllegalArgumentException("target and filter types do not match", target, filter);
1924 1925
        // result = fold( lambda(retval, arg...) { filter(retval) },
        //                lambda(        arg...) { target(arg...) } )
1926 1927 1928 1929 1930 1931
        MethodType newType = targetType.changeReturnType(filterType.returnType());
        MethodHandle result = null;
        if (AdapterMethodHandle.canCollectArguments(filterType, targetType, 0, false)) {
            result = AdapterMethodHandle.makeCollectArguments(filter, target, 0, false);
            if (result != null)  return result;
        }
1932
        // FIXME: Too many nodes here.
1933 1934 1935 1936 1937
        assert(MethodHandleNatives.workaroundWithoutRicochetFrames());  // this class is deprecated
        MethodHandle returner = dropArguments(filter, filterValues, targetType.parameterList());
        result = foldArguments(returner, target);
        assert(result.type().equals(newType));
        return result;
1938 1939
    }

1940
    /**
1941
     * Adapts a target method handle by pre-processing
1942
     * some of its arguments, and then calling the target with
1943 1944
     * the result of the pre-processing, inserted into the original
     * sequence of arguments.
1945
     * <p>
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
     * The pre-processing is performed by {@code combiner}, a second method handle.
     * Of the arguments passed to the adapter, the first {@code N} arguments
     * are copied to the combiner, which is then called.
     * (Here, {@code N} is defined as the parameter count of the combiner.)
     * After this, control passes to the target, with any result
     * from the combiner inserted before the original {@code N} incoming
     * arguments.
     * <p>
     * If the combiner returns a value, the first parameter type of the target
     * must be identical with the return type of the combiner, and the next
     * {@code N} parameter types of the target must exactly match the parameters
     * of the combiner.
     * <p>
     * If the combiner has a void return, no result will be inserted,
     * and the first {@code N} parameter types of the target
     * must exactly match the parameters of the combiner.
1962 1963
     * <p>
     * The resulting adapter is the same type as the target, except that the
1964 1965
     * first parameter type is dropped,
     * if it corresponds to the result of the combiner.
1966
     * <p>
1967
     * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
1968
     * that either the combiner or the target does not wish to receive.
1969
     * If some of the incoming arguments are destined only for the combiner,
1970
     * consider using {@link MethodHandle#asCollector asCollector} instead, since those
1971 1972
     * arguments will not need to be live on the stack on entry to the
     * target.)
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
     * <b>Example:</b>
     * <p><blockquote><pre>
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
  "println", methodType(void.class, String.class))
    .bindTo(System.out);
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
MethodHandle catTrace = foldArguments(cat, trace);
// also prints "boo":
assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
     * </pre></blockquote>
1988 1989
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
1990
     * // there are N arguments in A...
1991 1992 1993 1994 1995 1996
     * T target(V, A[N]..., B...);
     * V combiner(A...);
     * T adapter(A... a, B... b) {
     *   V v = combiner(a...);
     *   return target(v, a..., b...);
     * }
1997 1998 1999 2000 2001 2002 2003
     * // and if the combiner has a void return:
     * T target2(A[N]..., B...);
     * void combiner2(A...);
     * T adapter2(A... a, B... b) {
     *   combiner2(a...);
     *   return target2(a..., b...);
     * }
2004 2005 2006 2007
     * </pre></blockquote>
     * @param target the method handle to invoke after arguments are combined
     * @param combiner method handle to call initially on the incoming arguments
     * @return method handle which incorporates the specified argument folding logic
2008
     * @throws NullPointerException if either argument is null
2009 2010 2011 2012 2013
     * @throws IllegalArgumentException if {@code combiner}'s return type
     *          is non-void and not the same as the first argument type of
     *          the target, or if the initial {@code N} argument types
     *          of the target
     *          (skipping one matching the {@code combiner}'s return type)
2014 2015 2016 2017
     *          are not identical with the argument types of {@code combiner}
     */
    public static
    MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
2018
        int pos = 0;
2019 2020
        MethodType targetType = target.type();
        MethodType combinerType = combiner.type();
2021
        int foldPos = pos;
2022
        int foldArgs = combinerType.parameterCount();
2023 2024 2025 2026 2027 2028
        int foldVals = combinerType.returnType() == void.class ? 0 : 1;
        int afterInsertPos = foldPos + foldVals;
        boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
        if (ok && !(combinerType.parameterList()
                    .equals(targetType.parameterList().subList(afterInsertPos,
                                                               afterInsertPos + foldArgs))))
2029
            ok = false;
2030
        if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0)))
2031
            ok = false;
2032 2033
        if (!ok)
            throw misMatchedTypes("target and combiner types", targetType, combinerType);
2034 2035 2036 2037
        MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos);
        MethodHandle res = MethodHandleImpl.foldArguments(target, newType, foldPos, combiner);
        if (res == null)  throw newIllegalArgumentException("cannot fold from "+newType+" to " +targetType);
        return res;
2038 2039
    }

2040
    /**
2041
     * Makes a method handle which adapts a target method handle,
2042 2043 2044 2045
     * by guarding it with a test, a boolean-valued method handle.
     * If the guard fails, a fallback handle is called instead.
     * All three method handles must have the same corresponding
     * argument and return types, except that the return type
2046 2047
     * of the test must be boolean, and the test is allowed
     * to have fewer arguments than the other two method handles.
2048 2049 2050
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
     * boolean test(A...);
2051 2052 2053
     * T target(A...,B...);
     * T fallback(A...,B...);
     * T adapter(A... a,B... b) {
2054
     *   if (test(a...))
2055
     *     return target(a..., b...);
2056
     *   else
2057
     *     return fallback(a..., b...);
2058 2059
     * }
     * </pre></blockquote>
2060 2061 2062
     * Note that the test arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the test, and so are passed unchanged
     * from the caller to the target or fallback as appropriate.
2063 2064 2065 2066
     * @param test method handle used for test, must return boolean
     * @param target method handle to call if test passes
     * @param fallback method handle to call if test fails
     * @return method handle which incorporates the specified if/then/else logic
2067
     * @throws NullPointerException if any argument is null
2068 2069
     * @throws IllegalArgumentException if {@code test} does not return boolean,
     *          or if all three method types do not match (with the return
2070
     *          type of {@code test} changed to match that of the target).
2071 2072 2073 2074 2075
     */
    public static
    MethodHandle guardWithTest(MethodHandle test,
                               MethodHandle target,
                               MethodHandle fallback) {
2076 2077 2078
        MethodType gtype = test.type();
        MethodType ttype = target.type();
        MethodType ftype = fallback.type();
2079
        if (!ttype.equals(ftype))
2080
            throw misMatchedTypes("target and fallback types", ttype, ftype);
2081 2082 2083 2084 2085 2086 2087
        if (gtype.returnType() != boolean.class)
            throw newIllegalArgumentException("guard type is not a predicate "+gtype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> gargs = gtype.parameterList();
        if (!targs.equals(gargs)) {
            int gpc = gargs.size(), tpc = targs.size();
            if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
2088
                throw misMatchedTypes("target and test types", ttype, gtype);
2089 2090
            test = dropArguments(test, gpc, targs.subList(gpc, tpc));
            gtype = test.type();
2091
        }
2092
        return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
2093 2094
    }

2095 2096 2097 2098
    static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
        return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
    }

2099
    /**
2100
     * Makes a method handle which adapts a target method handle,
2101 2102 2103 2104
     * by running it inside an exception handler.
     * If the target returns normally, the adapter returns that value.
     * If an exception matching the specified type is thrown, the fallback
     * handle is called instead on the exception, plus the original arguments.
2105
     * <p>
2106 2107 2108 2109
     * The target and handler must have the same corresponding
     * argument and return types, except that handler may omit trailing arguments
     * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
     * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
2110 2111
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
2112
     * T target(A..., B...);
2113
     * T handler(ExType, A...);
2114
     * T adapter(A... a, B... b) {
2115
     *   try {
2116
     *     return target(a..., b...);
2117 2118 2119
     *   } catch (ExType ex) {
     *     return handler(ex, a...);
     *   }
2120 2121
     * }
     * </pre></blockquote>
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
     * Note that the saved arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the target, and so are passed unchanged
     * from the caller to the handler, if the handler is invoked.
     * <p>
     * The target and handler must return the same type, even if the handler
     * always throws.  (This might happen, for instance, because the handler
     * is simulating a {@code finally} clause).
     * To create such a throwing handler, compose the handler creation logic
     * with {@link #throwException throwException},
     * in order to create a method handle of the correct return type.
2132 2133 2134 2135
     * @param target method handle to call
     * @param exType the type of exception which the handler will catch
     * @param handler method handle to call if a matching exception is thrown
     * @return method handle which incorporates the specified try/catch logic
2136
     * @throws NullPointerException if any argument is null
2137 2138 2139 2140
     * @throws IllegalArgumentException if {@code handler} does not accept
     *          the given exception type, or if the method handle types do
     *          not match in their return types and their
     *          corresponding parameters
2141 2142
     */
    public static
2143 2144 2145
    MethodHandle catchException(MethodHandle target,
                                Class<? extends Throwable> exType,
                                MethodHandle handler) {
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
        MethodType ttype = target.type();
        MethodType htype = handler.type();
        if (htype.parameterCount() < 1 ||
            !htype.parameterType(0).isAssignableFrom(exType))
            throw newIllegalArgumentException("handler does not accept exception type "+exType);
        if (htype.returnType() != ttype.returnType())
            throw misMatchedTypes("target and handler return types", ttype, htype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> hargs = htype.parameterList();
        hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
        if (!targs.equals(hargs)) {
            int hpc = hargs.size(), tpc = targs.size();
            if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
                throw misMatchedTypes("target and handler types", ttype, htype);
2160
            handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc));
2161 2162
            htype = handler.type();
        }
2163
        return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
2164 2165
    }

2166
    /**
2167
     * Produces a method handle which will throw exceptions of the given {@code exType}.
2168 2169 2170 2171 2172
     * The method handle will accept a single argument of {@code exType},
     * and immediately throw it as an exception.
     * The method type will nominally specify a return of {@code returnType}.
     * The return type may be anything convenient:  It doesn't matter to the
     * method handle's behavior, since it will never return normally.
2173 2174
     * @return method handle which can throw the given exceptions
     * @throws NullPointerException if either argument is null
2175 2176 2177
     */
    public static
    MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
2178
        return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
2179
    }
2180
}