MethodHandles.java 117.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
24 25
 */

26
package java.lang.invoke;
27

28
import java.lang.reflect.*;
29 30
import java.security.AccessController;
import java.security.PrivilegedAction;
31
import java.util.List;
32 33
import java.util.ArrayList;
import java.util.Arrays;
34

35 36 37 38
import sun.invoke.util.ValueConversions;
import sun.invoke.util.VerifyAccess;
import sun.invoke.util.Wrapper;
import sun.reflect.CallerSensitive;
39
import sun.reflect.Reflection;
40
import sun.reflect.misc.ReflectUtil;
41
import sun.security.util.SecurityConstants;
42
import static java.lang.invoke.MethodHandleStatics.*;
43
import static java.lang.invoke.MethodHandleNatives.Constants.*;
44 45

/**
46 47
 * This class consists exclusively of static methods that operate on or return
 * method handles. They fall into several categories:
48
 * <ul>
49 50 51
 * <li>Lookup methods which help create method handles for methods and fields.
 * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
 * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
52
 * <li>Wrapper methods which can convert between method handles and interface types.
53
 * </ul>
54 55 56 57 58 59 60
 * <p>
 * @author John Rose, JSR 292 EG
 */
public class MethodHandles {

    private MethodHandles() { }  // do not instantiate

61
    private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
62 63 64 65 66
    static { MethodHandleImpl.initStatics(); }
    // See IMPL_LOOKUP below.

    //// Method handle creation from ordinary methods.

67
    /**
68
     * Returns a {@link Lookup lookup object} on the caller,
69 70 71 72
     * which has the capability to access any method handle that the caller has access to,
     * including direct method handles to private fields and methods.
     * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
     * Do not store it in place where untrusted code can access it.
73
     */
74
    @CallerSensitive
75
    public static Lookup lookup() {
76
        return new Lookup(Reflection.getCallerClass());
77 78
    }

79
    /**
80
     * Returns a {@link Lookup lookup object} which is trusted minimally.
81 82
     * It can only be used to create method handles to
     * publicly accessible fields and methods.
83 84 85 86 87 88 89 90
     * <p>
     * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
     * of this lookup object will be {@link java.lang.Object}.
     * <p>
     * The lookup class can be changed to any other class {@code C} using an expression of the form
     * {@linkplain Lookup#in <code>publicLookup().in(C.class)</code>}.
     * Since all classes have equal access to public names,
     * such a change would confer no new access rights.
91 92 93 94 95
     */
    public static Lookup publicLookup() {
        return Lookup.PUBLIC_LOOKUP;
    }

96
    /**
97 98 99
     * A <em>lookup object</em> is a factory for creating method handles,
     * when the creation requires access checking.
     * Method handles do not perform
100
     * access checks when they are called, but rather when they are created.
101 102
     * Therefore, method handle access
     * restrictions must be enforced when a method handle is created.
103
     * The caller class against which those restrictions are enforced
104
     * is known as the {@linkplain #lookupClass lookup class}.
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
     * <p>
     * A lookup class which needs to create method handles will call
     * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
     * When the {@code Lookup} factory object is created, the identity of the lookup class is
     * determined, and securely stored in the {@code Lookup} object.
     * The lookup class (or its delegates) may then use factory methods
     * on the {@code Lookup} object to create method handles for access-checked members.
     * This includes all methods, constructors, and fields which are allowed to the lookup class,
     * even private ones.
     * <p>
     * The factory methods on a {@code Lookup} object correspond to all major
     * use cases for methods, constructors, and fields.
     * Here is a summary of the correspondence between these factory methods and
     * the behavior the resulting method handles:
     * <code>
     * <table border=1 cellpadding=5 summary="lookup method behaviors">
     * <tr><th>lookup expression</th><th>member</th><th>behavior</th></tr>
     * <tr>
123
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
124 125 126
     *     <td>FT f;</td><td>(T) this.f;</td>
     * </tr>
     * <tr>
127
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
128 129 130
     *     <td>static<br>FT f;</td><td>(T) C.f;</td>
     * </tr>
     * <tr>
131
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
132 133 134
     *     <td>FT f;</td><td>this.f = x;</td>
     * </tr>
     * <tr>
135
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
136 137 138
     *     <td>static<br>FT f;</td><td>C.f = arg;</td>
     * </tr>
     * <tr>
139
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
140 141 142
     *     <td>T m(A*);</td><td>(T) this.m(arg*);</td>
     * </tr>
     * <tr>
143
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
144 145 146
     *     <td>static<br>T m(A*);</td><td>(T) C.m(arg*);</td>
     * </tr>
     * <tr>
147
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
148 149 150
     *     <td>T m(A*);</td><td>(T) super.m(arg*);</td>
     * </tr>
     * <tr>
151
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
152 153 154
     *     <td>C(A*);</td><td>(T) new C(arg*);</td>
     * </tr>
     * <tr>
155
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
156 157 158
     *     <td>(static)?<br>FT f;</td><td>(FT) aField.get(thisOrNull);</td>
     * </tr>
     * <tr>
159
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
160 161 162
     *     <td>(static)?<br>FT f;</td><td>aField.set(thisOrNull, arg);</td>
     * </tr>
     * <tr>
163
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
164 165 166
     *     <td>(static)?<br>T m(A*);</td><td>(T) aMethod.invoke(thisOrNull, arg*);</td>
     * </tr>
     * <tr>
167
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
168 169 170
     *     <td>C(A*);</td><td>(C) aConstructor.newInstance(arg*);</td>
     * </tr>
     * <tr>
171
     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
172 173 174 175 176 177 178 179 180 181 182
     *     <td>(static)?<br>T m(A*);</td><td>(T) aMethod.invoke(thisOrNull, arg*);</td>
     * </tr>
     * </table>
     * </code>
     * Here, the type {@code C} is the class or interface being searched for a member,
     * documented as a parameter named {@code refc} in the lookup methods.
     * The method or constructor type {@code MT} is composed from the return type {@code T}
     * and the sequence of argument types {@code A*}.
     * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
     * The formal parameter {@code this} stands for the self-reference of type {@code C};
     * if it is present, it is always the leading argument to the method handle invocation.
183 184
     * (In the case of some {@code protected} members, {@code this} may be
     * restricted in type to the lookup class; see below.)
185 186 187 188 189 190 191
     * The name {@code arg} stands for all the other method handle arguments.
     * In the code examples for the Core Reflection API, the name {@code thisOrNull}
     * stands for a null reference if the accessed method or field is static,
     * and {@code this} otherwise.
     * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
     * for reflective objects corresponding to the given members.
     * <p>
192 193 194 195
     * In cases where the given member is of variable arity (i.e., a method or constructor)
     * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
     * In all other cases, the returned method handle will be of fixed arity.
     * <p>
196 197 198 199 200 201 202 203 204 205
     * The equivalence between looked-up method handles and underlying
     * class members can break down in a few ways:
     * <ul>
     * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed, even when there is no equivalent
     * Java expression or bytecoded constant.
     * <li>Likewise, if {@code T} or {@code MT}
     * is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed.
     * For example, lookups for {@code MethodHandle.invokeExact} and
206
     * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
207 208 209 210
     * <li>If there is a security manager installed, it can forbid the lookup
     * on various grounds (<a href="#secmgr">see below</a>).
     * By contrast, the {@code ldc} instruction is not subject to
     * security manager checks.
211 212 213 214 215 216
     * </ul>
     *
     * <h3><a name="access"></a>Access checking</h3>
     * Access checks are applied in the factory methods of {@code Lookup},
     * when a method handle is created.
     * This is a key difference from the Core Reflection API, since
217
     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
218 219 220 221 222 223
     * performs access checking against every caller, on every call.
     * <p>
     * All access checks start from a {@code Lookup} object, which
     * compares its recorded lookup class against all requests to
     * create method handles.
     * A single {@code Lookup} object can be used to create any number
224 225 226
     * of access-checked method handles, all checked against a single
     * lookup class.
     * <p>
227 228 229 230 231 232 233
     * A {@code Lookup} object can be shared with other trusted code,
     * such as a metaobject protocol.
     * A shared {@code Lookup} object delegates the capability
     * to create method handles on private members of the lookup class.
     * Even if privileged code uses the {@code Lookup} object,
     * the access checking is confined to the privileges of the
     * original lookup class.
234
     * <p>
235
     * A lookup can fail, because
236 237 238
     * the containing class is not accessible to the lookup class, or
     * because the desired class member is missing, or because the
     * desired class member is not accessible to the lookup class.
239 240 241 242 243 244 245 246
     * In any of these cases, a {@code ReflectiveOperationException} will be
     * thrown from the attempted lookup.  The exact class will be one of
     * the following:
     * <ul>
     * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
     * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
     * <li>IllegalAccessException &mdash; if the member exists but an access check fails
     * </ul>
247
     * <p>
248
     * In general, the conditions under which a method handle may be
249 250 251 252
     * looked up for a method {@code M} are exactly equivalent to the conditions
     * under which the lookup class could have compiled and resolved a call to {@code M}.
     * And the effect of invoking the method handle resulting from the lookup
     * is exactly equivalent to executing the compiled and resolved call to {@code M}.
253
     * The same point is true of fields and constructors.
254
     * <p>
255 256 257 258 259 260 261 262 263 264 265 266
     * If the desired member is {@code protected}, the usual JVM rules apply,
     * including the requirement that the lookup class must be either be in the
     * same package as the desired member, or must inherit that member.
     * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
     * In addition, if the desired member is a non-static field or method
     * in a different package, the resulting method handle may only be applied
     * to objects of the lookup class or one of its subclasses.
     * This requirement is enforced by narrowing the type of the leading
     * {@code this} parameter from {@code C}
     * (which will necessarily be a superclass of the lookup class)
     * to the lookup class itself.
     * <p>
267
     * In some cases, access between nested classes is obtained by the Java compiler by creating
268 269
     * an wrapper method to access a private method of another class
     * in the same top-level declaration.
270
     * For example, a nested class {@code C.D}
271
     * can access private members within other related classes such as
272 273 274 275 276 277 278
     * {@code C}, {@code C.D.E}, or {@code C.B},
     * but the Java compiler may need to generate wrapper methods in
     * those related classes.  In such cases, a {@code Lookup} object on
     * {@code C.E} would be unable to those private members.
     * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
     * which can transform a lookup on {@code C.E} into one on any of those other
     * classes, without special elevation of privilege.
279
     * <p>
280 281 282 283 284 285 286 287 288 289 290 291
     * Although bytecode instructions can only refer to classes in
     * a related class loader, this API can search for methods in any
     * class, as long as a reference to its {@code Class} object is
     * available.  Such cross-loader references are also possible with the
     * Core Reflection API, and are impossible to bytecode instructions
     * such as {@code invokestatic} or {@code getfield}.
     * There is a {@linkplain java.lang.SecurityManager security manager API}
     * to allow applications to check such cross-loader references.
     * These checks apply to both the {@code MethodHandles.Lookup} API
     * and the Core Reflection API
     * (as found on {@link java.lang.Class Class}).
     * <p>
292 293 294
     * Access checks only apply to named and reflected methods,
     * constructors, and fields.
     * Other method handle creation methods, such as
295
     * {@link MethodHandle#asType MethodHandle.asType},
296 297 298
     * do not require any access checks, and are done
     * with static methods of {@link MethodHandles},
     * independently of any {@code Lookup} object.
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
     *
     * <h3>Security manager interactions</h3>
     * <a name="secmgr"></a>
     * If a security manager is present, member lookups are subject to
     * additional checks.
     * From one to four calls are made to the security manager.
     * Any of these calls can refuse access by throwing a
     * {@link java.lang.SecurityException SecurityException}.
     * Define {@code smgr} as the security manager,
     * {@code refc} as the containing class in which the member
     * is being sought, and {@code defc} as the class in which the
     * member is actually defined.
     * The calls are made according to the following rules:
     * <ul>
     * <li>In all cases, {@link SecurityManager#checkMemberAccess
     *     smgr.checkMemberAccess(refc, Member.PUBLIC)} is called.
     * <li>If the class loader of the lookup class is not
     *     the same as or an ancestor of the class loader of {@code refc},
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(refcPkg)} is called,
     *     where {@code refcPkg} is the package of {@code refc}.
     * <li>If the retrieved member is not public,
     *     {@link SecurityManager#checkMemberAccess
     *     smgr.checkMemberAccess(defc, Member.DECLARED)} is called.
     *     (Note that {@code defc} might be the same as {@code refc}.)
324 325 326 327 328 329
     *     The default implementation of this security manager method
     *     inspects the stack to determine the original caller of
     *     the reflective request (such as {@code findStatic}),
     *     and performs additional permission checks if the
     *     class loader of {@code defc} differs from the class
     *     loader of the class from which the reflective request came.
330 331 332 333 334 335 336 337
     * <li>If the retrieved member is not public,
     *     and if {@code defc} and {@code refc} are in different class loaders,
     *     and if the class loader of the lookup class is not
     *     the same as or an ancestor of the class loader of {@code defc},
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(defcPkg)} is called,
     *     where {@code defcPkg} is the package of {@code defc}.
     * </ul>
338
     */
339
    // FIXME in MR1: clarify that the bytecode behavior of a caller-ID method (like Class.forName) is relative to the lookupClass used to create the method handle, not the dynamic caller of the method handle
340 341
    public static final
    class Lookup {
342
        /** The class on behalf of whom the lookup is being performed. */
343 344
        private final Class<?> lookupClass;

345
        /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
346 347
        private final int allowedModes;

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        /** A single-bit mask representing {@code public} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x01}, happens to be the same as the value of the
         *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
         */
        public static final int PUBLIC = Modifier.PUBLIC;

        /** A single-bit mask representing {@code private} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x02}, happens to be the same as the value of the
         *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
         */
        public static final int PRIVATE = Modifier.PRIVATE;

        /** A single-bit mask representing {@code protected} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x04}, happens to be the same as the value of the
         *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
         */
        public static final int PROTECTED = Modifier.PROTECTED;

        /** A single-bit mask representing {@code package} access (default access),
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value is {@code 0x08}, which does not correspond meaningfully to
         *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
         */
        public static final int PACKAGE = Modifier.STATIC;

        private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
        private static final int TRUSTED   = -1;
378 379 380 381 382 383

        private static int fixmods(int mods) {
            mods &= (ALL_MODES - PACKAGE);
            return (mods != 0) ? mods : PACKAGE;
        }

384
        /** Tells which class is performing the lookup.  It is this class against
385 386
         *  which checks are performed for visibility and access permissions.
         *  <p>
387 388
         *  The class implies a maximum level of access permission,
         *  but the permissions may be additionally limited by the bitmask
389
         *  {@link #lookupModes lookupModes}, which controls whether non-public members
390
         *  can be accessed.
391 392 393 394 395
         */
        public Class<?> lookupClass() {
            return lookupClass;
        }

396 397 398 399 400
        // This is just for calling out to MethodHandleImpl.
        private Class<?> lookupClassOrNull() {
            return (allowedModes == TRUSTED) ? null : lookupClass;
        }

401
        /** Tells which access-protection classes of members this lookup object can produce.
402 403 404 405 406
         *  The result is a bit-mask of the bits
         *  {@linkplain #PUBLIC PUBLIC (0x01)},
         *  {@linkplain #PRIVATE PRIVATE (0x02)},
         *  {@linkplain #PROTECTED PROTECTED (0x04)},
         *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
407 408
         *  <p>
         *  A freshly-created lookup object
409
         *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
410 411
         *  has all possible bits set, since the caller class can access all its own members.
         *  A lookup object on a new lookup class
412
         *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
413 414 415 416
         *  may have some mode bits set to zero.
         *  The purpose of this is to restrict access via the new lookup object,
         *  so that it can access only names which can be reached by the original
         *  lookup object, and also by the new lookup class.
417
         */
418
        public int lookupModes() {
419 420 421
            return allowedModes & ALL_MODES;
        }

422 423 424 425 426
        /** Embody the current class (the lookupClass) as a lookup class
         * for method handle creation.
         * Must be called by from a method in this package,
         * which in turn is called by a method not in this package.
         */
427
        Lookup(Class<?> lookupClass) {
428
            this(lookupClass, ALL_MODES);
429 430
            // make sure we haven't accidentally picked up a privileged class:
            checkUnprivilegedlookupClass(lookupClass);
431 432 433
        }

        private Lookup(Class<?> lookupClass, int allowedModes) {
434
            this.lookupClass = lookupClass;
435
            this.allowedModes = allowedModes;
436 437 438
        }

        /**
439
         * Creates a lookup on the specified new lookup class.
440
         * The resulting object will report the specified
441
         * class as its own {@link #lookupClass lookupClass}.
442 443 444
         * <p>
         * However, the resulting {@code Lookup} object is guaranteed
         * to have no more access capabilities than the original.
445
         * In particular, access capabilities can be lost as follows:<ul>
446 447
         * <li>If the new lookup class differs from the old one,
         * protected members will not be accessible by virtue of inheritance.
448
         * (Protected members may continue to be accessible because of package sharing.)
449 450 451 452
         * <li>If the new lookup class is in a different package
         * than the old one, protected and default (package) members will not be accessible.
         * <li>If the new lookup class is not within the same package member
         * as the old one, private members will not be accessible.
453 454 455
         * <li>If the new lookup class is not accessible to the old lookup class,
         * then no members, not even public members, will be accessible.
         * (In all other cases, public members will continue to be accessible.)
456
         * </ul>
457 458 459 460
         *
         * @param requestedLookupClass the desired lookup class for the new lookup object
         * @return a lookup object which reports the desired lookup class
         * @throws NullPointerException if the argument is null
461
         */
462 463 464 465 466 467 468 469 470 471
        public Lookup in(Class<?> requestedLookupClass) {
            requestedLookupClass.getClass();  // null check
            if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
                return new Lookup(requestedLookupClass, ALL_MODES);
            if (requestedLookupClass == this.lookupClass)
                return this;  // keep same capabilities
            int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
            if ((newModes & PACKAGE) != 0
                && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
                newModes &= ~(PACKAGE|PRIVATE);
472
            }
473
            // Allow nestmate lookups to be created without special privilege:
474 475 476 477
            if ((newModes & PRIVATE) != 0
                && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
                newModes &= ~PRIVATE;
            }
478 479
            if ((newModes & PUBLIC) != 0
                && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
480 481 482 483
                // The requested class it not accessible from the lookup class.
                // No permissions.
                newModes = 0;
            }
484 485
            checkUnprivilegedlookupClass(requestedLookupClass);
            return new Lookup(requestedLookupClass, newModes);
486 487
        }

488
        // Make sure outer class is initialized first.
489
        static { IMPL_NAMES.getClass(); }
490

491 492 493 494
        /** Version of lookup which is trusted minimally.
         *  It can only be used to create method handles to
         *  publicly accessible members.
         */
495
        static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
496 497

        /** Package-private version of lookup which is trusted. */
498
        static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
499 500

        private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
501
            String name = lookupClass.getName();
502
            if (name.startsWith("java.lang.invoke."))
503 504 505
                throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
        }

506
        /**
507
         * Displays the name of the class from which lookups are to be made.
508 509 510
         * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
         * If there are restrictions on the access permitted to this lookup,
         * this is indicated by adding a suffix to the class name, consisting
511 512
         * of a slash and a keyword.  The keyword represents the strongest
         * allowed access, and is chosen as follows:
513 514 515 516 517 518 519 520 521 522
         * <ul>
         * <li>If no access is allowed, the suffix is "/noaccess".
         * <li>If only public access is allowed, the suffix is "/public".
         * <li>If only public and package access are allowed, the suffix is "/package".
         * <li>If only public, package, and private access are allowed, the suffix is "/private".
         * </ul>
         * If none of the above cases apply, it is the case that full
         * access (public, package, private, and protected) is allowed.
         * In this case, no suffix is added.
         * This is true only of an object obtained originally from
523 524
         * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
         * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
525
         * always have restricted access, and will display a suffix.
526 527 528 529 530 531 532
         * <p>
         * (It may seem strange that protected access should be
         * stronger than private access.  Viewed independently from
         * package access, protected access is the first to be lost,
         * because it requires a direct subclass relationship between
         * caller and callee.)
         * @see #in
533
         */
534 535
        @Override
        public String toString() {
536 537
            String cname = lookupClass.getName();
            switch (allowedModes) {
538 539
            case 0:  // no privileges
                return cname + "/noaccess";
540
            case PUBLIC:
541
                return cname + "/public";
542 543
            case PUBLIC|PACKAGE:
                return cname + "/package";
544 545
            case ALL_MODES & ~PROTECTED:
                return cname + "/private";
546 547
            case ALL_MODES:
                return cname;
548 549 550 551 552 553
            case TRUSTED:
                return "/trusted";  // internal only; not exported
            default:  // Should not happen, but it's a bitfield...
                cname = cname + "/" + Integer.toHexString(allowedModes);
                assert(false) : cname;
                return cname;
554
            }
555 556 557
        }

        /**
558
         * Produces a method handle for a static method.
559
         * The type of the method handle will be that of the method.
560 561
         * (Since static methods do not take receivers, there is no
         * additional receiver argument inserted into the method handle type,
562
         * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
563 564 565
         * The method and all its argument types must be accessible to the lookup class.
         * If the method's class has not yet been initialized, that is done
         * immediately, before the method handle is returned.
566 567 568 569
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
570
         * @param refc the class from which the method is accessed
571 572 573
         * @param name the name of the method
         * @param type the type of the method
         * @return the desired method handle
574
         * @throws NoSuchMethodException if the method does not exist
575 576 577 578
         * @throws IllegalAccessException if access checking fails,
         *                                or if the method is not {@code static},
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
579 580
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
581
         * @throws NullPointerException if any argument is null
582 583
         */
        public
584
        MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
585
            MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
586 587
            checkSecurityManager(refc, method);
            return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
588
        }
589 590

        /**
591
         * Produces a method handle for a virtual method.
592
         * The type of the method handle will be that of the method,
593
         * with the receiver type (usually {@code refc}) prepended.
594 595 596 597 598 599 600
         * The method and all its argument types must be accessible to the lookup class.
         * <p>
         * When called, the handle will treat the first argument as a receiver
         * and dispatch on the receiver's type to determine which method
         * implementation to enter.
         * (The dispatching action is identical with that performed by an
         * {@code invokevirtual} or {@code invokeinterface} instruction.)
601
         * <p>
602 603 604 605 606
         * The first argument will be of type {@code refc} if the lookup
         * class has full privileges to access the member.  Otherwise
         * the member must be {@code protected} and the first argument
         * will be restricted in type to the lookup class.
         * <p>
607 608 609
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
610 611 612 613
         * <p>
         * Because of the general equivalence between {@code invokevirtual}
         * instructions and method handles produced by {@code findVirtual},
         * if the class is {@code MethodHandle} and the name string is
614
         * {@code invokeExact} or {@code invoke}, the resulting
615
         * method handle is equivalent to one produced by
616
         * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
617
         * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
618 619
         * with the same {@code type} argument.
         *
620
         * @param refc the class or interface from which the method is accessed
621 622 623
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
624
         * @throws NoSuchMethodException if the method does not exist
625 626 627 628
         * @throws IllegalAccessException if access checking fails,
         *                                or if the method is {@code static}
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
629 630
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
631
         * @throws NullPointerException if any argument is null
632
         */
633
        public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
634 635 636 637 638 639
            if (refc == MethodHandle.class) {
                MethodHandle mh = findVirtualForMH(name, type);
                if (mh != null)  return mh;
            }
            byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
            MemberName method = resolveOrFail(refKind, refc, name, type);
640 641
            checkSecurityManager(refc, method);
            return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
642
        }
643 644 645 646 647 648 649
        private MethodHandle findVirtualForMH(String name, MethodType type) {
            // these names require special lookups because of the implicit MethodType argument
            if ("invoke".equals(name))
                return invoker(type);
            if ("invokeExact".equals(name))
                return exactInvoker(type);
            return null;
650 651 652
        }

        /**
653
         * Produces a method handle which creates an object and initializes it, using
654 655 656 657 658 659 660 661
         * the constructor of the specified type.
         * The parameter types of the method handle will be those of the constructor,
         * while the return type will be a reference to the constructor's class.
         * The constructor and all its argument types must be accessible to the lookup class.
         * If the constructor's class has not yet been initialized, that is done
         * immediately, before the method handle is returned.
         * <p>
         * Note:  The requested type must have a return type of {@code void}.
662
         * This is consistent with the JVM's treatment of constructor type descriptors.
663 664 665 666
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
667 668 669
         * @param refc the class or interface from which the method is accessed
         * @param type the type of the method, with the receiver argument omitted, and a void return type
         * @return the desired method handle
670 671
         * @throws NoSuchMethodException if the constructor does not exist
         * @throws IllegalAccessException if access checking fails
672 673
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
674 675
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
676
         * @throws NullPointerException if any argument is null
677
         */
678
        public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
679
            String name = "<init>";
680
            MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
681
            checkSecurityManager(refc, ctor);
682
            return getDirectConstructor(refc, ctor);
683 684 685
        }

        /**
686
         * Produces an early-bound method handle for a virtual method,
687
         * as if called from an {@code invokespecial}
688
         * instruction from {@code caller}.
689
         * The type of the method handle will be that of the method,
690
         * with a suitably restricted receiver type (such as {@code caller}) prepended.
691
         * The method and all its argument types must be accessible
692 693 694 695 696 697 698 699
         * to the caller.
         * <p>
         * When called, the handle will treat the first argument as a receiver,
         * but will not dispatch on the receiver's type.
         * (This direct invocation action is identical with that performed by an
         * {@code invokespecial} instruction.)
         * <p>
         * If the explicitly specified caller class is not identical with the
700 701
         * lookup class, or if this lookup object does not have private access
         * privileges, the access fails.
702 703 704 705
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
706 707
         * @param refc the class or interface from which the method is accessed
         * @param name the name of the method (which must not be "&lt;init&gt;")
708 709 710
         * @param type the type of the method, with the receiver argument omitted
         * @param specialCaller the proposed calling class to perform the {@code invokespecial}
         * @return the desired method handle
711 712
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
713 714
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
715 716
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
717
         * @throws NullPointerException if any argument is null
718
         */
719
        public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
720
                                        Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
721
            checkSpecialCaller(specialCaller);
722 723
            Lookup specialLookup = this.in(specialCaller);
            MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
724 725
            checkSecurityManager(refc, method);
            return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
726
        }
727 728

        /**
729
         * Produces a method handle giving read access to a non-static field.
730 731
         * The type of the method handle will have a return type of the field's
         * value type.
732
         * The method handle's single argument will be the instance containing
733 734
         * the field.
         * Access checking is performed immediately on behalf of the lookup class.
735
         * @param refc the class or interface from which the method is accessed
736 737 738
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
739 740
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
741 742
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
743
         * @throws NullPointerException if any argument is null
744
         */
745
        public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
746
            MemberName field = resolveOrFail(REF_getField, refc, name, type);
747
            checkSecurityManager(refc, field);
748
            return getDirectField(REF_getField, refc, field);
749
        }
750 751

        /**
752
         * Produces a method handle giving write access to a non-static field.
753
         * The type of the method handle will have a void return type.
754
         * The method handle will take two arguments, the instance containing
755
         * the field, and the value to be stored.
756 757
         * The second argument will be of the field's value type.
         * Access checking is performed immediately on behalf of the lookup class.
758
         * @param refc the class or interface from which the method is accessed
759 760 761
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can store values into the field
762 763
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
764 765
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
766
         * @throws NullPointerException if any argument is null
767
         */
768
        public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
769
            MemberName field = resolveOrFail(REF_putField, refc, name, type);
770
            checkSecurityManager(refc, field);
771
            return getDirectField(REF_putField, refc, field);
772
        }
773 774

        /**
775
         * Produces a method handle giving read access to a static field.
776 777 778 779
         * The type of the method handle will have a return type of the field's
         * value type.
         * The method handle will take no arguments.
         * Access checking is performed immediately on behalf of the lookup class.
780
         * @param refc the class or interface from which the method is accessed
781 782 783
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
784 785
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
786 787
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
788
         * @throws NullPointerException if any argument is null
789
         */
790
        public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
791
            MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
792
            checkSecurityManager(refc, field);
793
            return getDirectField(REF_getStatic, refc, field);
794
        }
795 796

        /**
797
         * Produces a method handle giving write access to a static field.
798 799 800
         * The type of the method handle will have a void return type.
         * The method handle will take a single
         * argument, of the field's value type, the value to be stored.
801
         * Access checking is performed immediately on behalf of the lookup class.
802
         * @param refc the class or interface from which the method is accessed
803 804
         * @param name the field's name
         * @param type the field's type
805
         * @return a method handle which can store values into the field
806 807
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
808 809
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
810
         * @throws NullPointerException if any argument is null
811
         */
812
        public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
813
            MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
814
            checkSecurityManager(refc, field);
815
            return getDirectField(REF_putStatic, refc, field);
816
        }
817 818

        /**
819
         * Produces an early-bound method handle for a non-static method.
820 821 822
         * The receiver must have a supertype {@code defc} in which a method
         * of the given name and type is accessible to the lookup class.
         * The method and all its argument types must be accessible to the lookup class.
823 824 825 826 827
         * The type of the method handle will be that of the method,
         * without any insertion of an additional receiver parameter.
         * The given receiver will be bound into the method handle,
         * so that every call to the method handle will invoke the
         * requested method on the given receiver.
828
         * <p>
829 830 831 832 833 834 835 836 837
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set
         * <em>and</em> the trailing array argument is not the only argument.
         * (If the trailing array argument is the only argument,
         * the given receiver value will be bound to it.)
         * <p>
         * This is equivalent to the following code:
         * <blockquote><pre>
838 839 840 841
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle mh0 = lookup().{@link #findVirtual findVirtual}(defc, name, type);
842 843
MethodHandle mh1 = mh0.{@link MethodHandle#bindTo bindTo}(receiver);
MethodType mt1 = mh1.type();
844
if (mh0.isVarargsCollector())
845 846 847
  mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
return mh1;
         * </pre></blockquote>
848 849 850
         * where {@code defc} is either {@code receiver.getClass()} or a super
         * type of that class, in which the requested method is accessible
         * to the lookup class.
851
         * (Note that {@code bindTo} does not preserve variable arity.)
852 853 854 855
         * @param receiver the object from which the method is accessed
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
856 857
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
858 859
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
860 861
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
862
         * @throws NullPointerException if any argument is null
863
         */
864
        public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
865
            Class<? extends Object> refc = receiver.getClass(); // may get NPE
866
            MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
867 868
            checkSecurityManager(refc, method);
            MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
869
            return mh.bindReceiver(receiver).setVarargs(method);
870 871 872
        }

        /**
873
         * Makes a direct method handle to <i>m</i>, if the lookup class has permission.
874 875 876 877 878 879 880 881
         * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
         * If <i>m</i> is virtual, overriding is respected on every call.
         * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
         * The type of the method handle will be that of the method,
         * with the receiver type prepended (but only if it is non-static).
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class.
         * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
882 883 884 885
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
886 887
         * @param m the reflected method
         * @return a method handle which can invoke the reflected method
888
         * @throws IllegalAccessException if access checking fails
889 890
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
891
         * @throws NullPointerException if the argument is null
892
         */
893
        public MethodHandle unreflect(Method m) throws IllegalAccessException {
894
            MemberName method = new MemberName(m);
895 896 897
            byte refKind = method.getReferenceKind();
            if (refKind == REF_invokeSpecial)
                refKind = REF_invokeVirtual;
898
            assert(method.isMethod());
899
            Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
900
            return lookup.getDirectMethod(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
901 902 903
        }

        /**
904
         * Produces a method handle for a reflected method.
905
         * It will bypass checks for overriding methods on the receiver,
906
         * as if by a {@code invokespecial} instruction from within the {@code specialCaller}.
907
         * The type of the method handle will be that of the method,
908
         * with the special caller type prepended (and <em>not</em> the receiver of the method).
909 910 911
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class,
         * as if {@code invokespecial} instruction were being linked.
912 913 914 915
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
916
         * @param m the reflected method
917
         * @param specialCaller the class nominally calling the method
918
         * @return a method handle which can invoke the reflected method
919
         * @throws IllegalAccessException if access checking fails
920 921
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
922
         * @throws NullPointerException if any argument is null
923
         */
924
        public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
925
            checkSpecialCaller(specialCaller);
926 927
            Lookup specialLookup = this.in(specialCaller);
            MemberName method = new MemberName(m, true);
928 929
            assert(method.isMethod());
            // ignore m.isAccessible:  this is a new kind of access
930
            return specialLookup.getDirectMethod(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
931 932 933
        }

        /**
934
         * Produces a method handle for a reflected constructor.
935 936
         * The type of the method handle will be that of the constructor,
         * with the return type changed to the declaring class.
937 938 939 940 941
         * The method handle will perform a {@code newInstance} operation,
         * creating a new instance of the constructor's class on the
         * arguments passed to the method handle.
         * <p>
         * If the constructor's {@code accessible} flag is not set,
942
         * access checking is performed immediately on behalf of the lookup class.
943 944 945 946
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
947
         * @param c the reflected constructor
948
         * @return a method handle which can invoke the reflected constructor
949
         * @throws IllegalAccessException if access checking fails
950 951
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
952
         * @throws NullPointerException if the argument is null
953
         */
954
        @SuppressWarnings("rawtypes")  // Will be Constructor<?> after JSR 292 MR
955
        public MethodHandle unreflectConstructor(Constructor c) throws IllegalAccessException {
956 957
            MemberName ctor = new MemberName(c);
            assert(ctor.isConstructor());
958 959
            Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
            return lookup.getDirectConstructor(ctor.getDeclaringClass(), ctor);
960 961 962
        }

        /**
963
         * Produces a method handle giving read access to a reflected field.
964
         * The type of the method handle will have a return type of the field's
965 966 967 968
         * value type.
         * If the field is static, the method handle will take no arguments.
         * Otherwise, its single argument will be the instance containing
         * the field.
969
         * If the field's {@code accessible} flag is not set,
970 971 972
         * access checking is performed immediately on behalf of the lookup class.
         * @param f the reflected field
         * @return a method handle which can load values from the reflected field
973 974
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
975
         */
976
        public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
977 978 979 980 981 982 983 984 985
            return unreflectField(f, false);
        }
        private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
            MemberName field = new MemberName(f, isSetter);
            assert(isSetter
                    ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
                    : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
            Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
            return lookup.getDirectField(field.getReferenceKind(), f.getDeclaringClass(), field);
986 987 988
        }

        /**
989
         * Produces a method handle giving write access to a reflected field.
990
         * The type of the method handle will have a void return type.
991 992 993 994
         * If the field is static, the method handle will take a single
         * argument, of the field's value type, the value to be stored.
         * Otherwise, the two arguments will be the instance containing
         * the field, and the value to be stored.
995
         * If the field's {@code accessible} flag is not set,
996 997 998
         * access checking is performed immediately on behalf of the lookup class.
         * @param f the reflected field
         * @return a method handle which can store values into the reflected field
999 1000
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
1001
         */
1002
        public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1003
            return unreflectField(f, true);
1004 1005
        }

1006
        /// Helper methods, all package-private.
1007

1008
        MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1009
            checkSymbolicClass(refc);  // do this before attempting to resolve
1010
            name.getClass(); type.getClass();  // NPE
1011
            return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1012
                                            NoSuchFieldException.class);
1013
        }
1014

1015
        MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1016
            checkSymbolicClass(refc);  // do this before attempting to resolve
1017
            name.getClass(); type.getClass();  // NPE
1018
            return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1019
                                            NoSuchMethodException.class);
1020
        }
1021

1022
        void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1023
            Class<?> caller = lookupClassOrNull();
1024
            if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
1025
                throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this);
1026 1027
        }

1028 1029 1030
        /**
         * Find my trustable caller class if m is a caller sensitive method.
         * If this lookup object has private access, then the caller class is the lookupClass.
1031
         * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
1032
         */
1033
        Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
1034 1035
            Class<?> callerClass = null;
            if (MethodHandleNatives.isCallerSensitive(m)) {
1036 1037 1038 1039 1040 1041
                // Only full-power lookup is allowed to resolve caller-sensitive methods
                if (isFullPowerLookup()) {
                    callerClass = lookupClass;
                } else {
                    throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
                }
1042 1043 1044
            }
            return callerClass;
        }
1045

1046 1047 1048 1049
        private boolean isFullPowerLookup() {
            return (allowedModes & PRIVATE) != 0;
        }

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        /**
         * Determine whether a security manager has an overridden
         * SecurityManager.checkMemberAccess method.
         */
        private boolean isCheckMemberAccessOverridden(SecurityManager sm) {
            final Class<? extends SecurityManager> cls = sm.getClass();
            if (cls == SecurityManager.class) return false;

            try {
                return cls.getMethod("checkMemberAccess", Class.class, int.class).
                    getDeclaringClass() != SecurityManager.class;
            } catch (NoSuchMethodException e) {
                throw new InternalError("should not reach here");
            }
        }

1066 1067
        /**
         * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
1068 1069
         * Determines a trustable caller class to compare with refc, the symbolic reference class.
         * If this lookup object has private access, then the caller class is the lookupClass.
1070
         */
1071
        void checkSecurityManager(Class<?> refc, MemberName m) {
1072 1073 1074
            SecurityManager smgr = System.getSecurityManager();
            if (smgr == null)  return;
            if (allowedModes == TRUSTED)  return;
1075 1076

            final boolean overridden = isCheckMemberAccessOverridden(smgr);
1077
            // Step 1:
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
            {
                // Default policy is to allow Member.PUBLIC; no need to check
                // permission if SecurityManager is the default implementation
                final int which = Member.PUBLIC;
                final Class<?> clazz = refc;
                if (overridden) {
                    // Don't refactor; otherwise break the stack depth for
                    // checkMemberAccess of subclasses of SecurityManager as specified.
                    smgr.checkMemberAccess(clazz, which);
                }
            }

1090
            // Step 2:
1091 1092 1093 1094
            if (!isFullPowerLookup() ||
                !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
                ReflectUtil.checkPackageAccess(refc);
            }
1095

1096 1097 1098
            // Step 3:
            if (m.isPublic()) return;
            Class<?> defc = m.getDeclaringClass();
1099 1100 1101 1102 1103
            {
                // Inline SecurityManager.checkMemberAccess
                final int which = Member.DECLARED;
                final Class<?> clazz = defc;
                if (!overridden) {
1104
                    if (!isFullPowerLookup()) {
1105 1106 1107 1108 1109 1110 1111 1112 1113
                        smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
                    }
                } else {
                    // Don't refactor; otherwise break the stack depth for
                    // checkMemberAccess of subclasses of SecurityManager as specified.
                    smgr.checkMemberAccess(clazz, which);
                }
            }

1114
            // Step 4:
1115 1116 1117
            if (defc != refc) {
                ReflectUtil.checkPackageAccess(defc);
            }
1118 1119
        }

1120 1121
        void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            boolean wantStatic = (refKind == REF_invokeStatic);
1122 1123 1124 1125 1126 1127 1128 1129
            String message;
            if (m.isConstructor())
                message = "expected a method, not a constructor";
            else if (!m.isMethod())
                message = "expected a method";
            else if (wantStatic != m.isStatic())
                message = wantStatic ? "expected a static method" : "expected a non-static method";
            else
1130
                { checkAccess(refKind, refc, m); return; }
1131
            throw m.makeAccessException(message, this);
1132 1133
        }

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
        void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
            String message;
            if (wantStatic != m.isStatic())
                message = wantStatic ? "expected a static field" : "expected a non-static field";
            else
                { checkAccess(refKind, refc, m); return; }
            throw m.makeAccessException(message, this);
        }

        void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            assert(m.referenceKindIsConsistentWith(refKind) &&
                   MethodHandleNatives.refKindIsValid(refKind) &&
                   (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
1148 1149 1150
            int allowedModes = this.allowedModes;
            if (allowedModes == TRUSTED)  return;
            int mods = m.getModifiers();
1151 1152 1153
            if (Modifier.isFinal(mods) &&
                    MethodHandleNatives.refKindIsSetter(refKind))
                throw m.makeAccessException("unexpected set of a final field", this);
1154
            if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
1155 1156
                return;  // common case
            int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
1157 1158 1159 1160 1161
            if ((requestedModes & allowedModes) != 0) {
                if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
                                                    mods, lookupClass(), allowedModes))
                    return;
            } else {
1162
                // Protected members can also be checked as if they were package-private.
1163 1164 1165 1166
                if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
                        && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
                    return;
            }
1167
            throw m.makeAccessException(accessFailedMessage(refc, m), this);
1168 1169 1170 1171 1172
        }

        String accessFailedMessage(Class<?> refc, MemberName m) {
            Class<?> defc = m.getDeclaringClass();
            int mods = m.getModifiers();
1173 1174 1175 1176 1177
            // check the class first:
            boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
                               (defc == refc ||
                                Modifier.isPublic(refc.getModifiers())));
            if (!classOK && (allowedModes & PACKAGE) != 0) {
1178
                classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
1179
                           (defc == refc ||
1180
                            VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
1181 1182
            }
            if (!classOK)
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
                return "class is not public";
            if (Modifier.isPublic(mods))
                return "access to public member failed";  // (how?)
            if (Modifier.isPrivate(mods))
                return "member is private";
            if (Modifier.isProtected(mods))
                return "member is protected";
            return "member is private to package";
        }

1193 1194
        private static final boolean ALLOW_NESTMATE_ACCESS = false;

1195 1196
        private void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
            int allowedModes = this.allowedModes;
1197
            if (allowedModes == TRUSTED)  return;
1198 1199 1200 1201
            if ((allowedModes & PRIVATE) == 0
                || (specialCaller != lookupClass()
                    && !(ALLOW_NESTMATE_ACCESS &&
                         VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
1202 1203
                throw new MemberName(specialCaller).
                    makeAccessException("no private access for invokespecial", this);
1204 1205
        }

1206
        private boolean restrictProtectedReceiver(MemberName method) {
1207 1208 1209 1210
            // The accessing class only has the right to use a protected member
            // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
            if (!method.isProtected() || method.isStatic()
                || allowedModes == TRUSTED
1211
                || method.getDeclaringClass() == lookupClass()
1212
                || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
1213 1214
                || (ALLOW_NESTMATE_ACCESS &&
                    VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
1215 1216
                return false;
            return true;
1217
        }
1218
        private MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException {
1219
            assert(!method.isStatic());
1220 1221
            // receiver type of mh is too wide; narrow to caller
            if (!method.getDeclaringClass().isAssignableFrom(caller)) {
1222
                throw method.makeAccessException("caller class must be a subclass below the method", caller);
1223
            }
1224 1225 1226
            MethodType rawType = mh.type();
            if (rawType.parameterType(0) == caller)  return mh;
            MethodType narrowType = rawType.changeParameterType(0, caller);
1227
            return mh.viewAsType(narrowType);
1228 1229
        }

1230
        private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1231 1232 1233
            return getDirectMethodCommon(refKind, refc, method,
                    (refKind == REF_invokeSpecial ||
                        (MethodHandleNatives.refKindHasReceiver(refKind) &&
1234
                            restrictProtectedReceiver(method))), callerClass);
1235
        }
1236 1237
        private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
            return getDirectMethodCommon(refKind, refc, method, false, callerClass);
1238 1239
        }
        private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
1240
                                                   boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
1241 1242 1243
            checkMethod(refKind, refc, method);
            if (method.isMethodHandleInvoke())
                return fakeMethodHandleInvoke(method);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

            Class<?> refcAsSuper;
            if (refKind == REF_invokeSpecial &&
                refc != lookupClass() &&
                refc != (refcAsSuper = lookupClass().getSuperclass()) &&
                refc.isAssignableFrom(lookupClass())) {
                assert(!method.getName().equals("<init>"));  // not this code path
                // Per JVMS 6.5, desc. of invokespecial instruction:
                // If the method is in a superclass of the LC,
                // and if our original search was above LC.super,
                // repeat the search (symbolic lookup) from LC.super.
                // FIXME: MemberName.resolve should handle this instead.
                MemberName m2 = new MemberName(refcAsSuper,
                                               method.getName(),
                                               method.getMethodType(),
                                               REF_invokeSpecial);
                m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
                if (m2 == null)  throw new InternalError(method.toString());
                method = m2;
                refc = refcAsSuper;
                // redo basic checks
                checkMethod(refKind, refc, method);
            }

1268
            MethodHandle mh = DirectMethodHandle.make(refKind, refc, method);
1269
            mh = maybeBindCaller(method, mh, callerClass);
1270 1271 1272 1273 1274 1275 1276 1277
            mh = mh.setVarargs(method);
            if (doRestrict)
                mh = restrictReceiver(method, mh, lookupClass());
            return mh;
        }
        private MethodHandle fakeMethodHandleInvoke(MemberName method) {
            return throwException(method.getReturnType(), UnsupportedOperationException.class);
        }
1278 1279 1280
        private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
                                             Class<?> callerClass)
                                             throws IllegalAccessException {
1281 1282 1283 1284
            if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
                return mh;
            Class<?> hostClass = lookupClass;
            if ((allowedModes & PRIVATE) == 0)  // caller must use full-power lookup
1285
                hostClass = callerClass;  // callerClass came from a security manager style stack walk
1286 1287 1288 1289
            MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
            // Note: caller will apply varargs after this step happens.
            return cbmh;
        }
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
            checkField(refKind, refc, field);
            MethodHandle mh = DirectMethodHandle.make(refc, field);
            boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
                                    restrictProtectedReceiver(field));
            if (doRestrict)
                mh = restrictReceiver(field, mh, lookupClass());
            return mh;
        }
        private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
            assert(ctor.isConstructor());
            checkAccess(REF_newInvokeSpecial, refc, ctor);
1302
            assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
1303
            return DirectMethodHandle.make(ctor).setVarargs(ctor);
1304
        }
1305 1306 1307 1308

        /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
         */
        /*non-public*/
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
            MemberName resolved = null;
            if (type instanceof MemberName) {
                resolved = (MemberName) type;
                if (!resolved.isResolved())  throw new InternalError("unresolved MemberName");
                assert(name == null || name.equals(resolved.getName()));
            }
            if (MethodHandleNatives.refKindIsField(refKind)) {
                MemberName field = (resolved != null) ? resolved
                        : resolveOrFail(refKind, defc, name, (Class<?>) type);
                return getDirectField(refKind, defc, field);
            } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
                MemberName method = (resolved != null) ? resolved
                        : resolveOrFail(refKind, defc, name, (MethodType) type);
1323
                return getDirectMethod(refKind, defc, method, lookupClass);
1324 1325 1326 1327 1328
            } else if (refKind == REF_newInvokeSpecial) {
                assert(name == null || name.equals("<init>"));
                MemberName ctor = (resolved != null) ? resolved
                        : resolveOrFail(REF_newInvokeSpecial, defc, name, (MethodType) type);
                return getDirectConstructor(defc, ctor);
1329 1330 1331 1332
            }
            // oops
            throw new ReflectiveOperationException("bad MethodHandle constant #"+refKind+" "+name+" : "+type);
        }
1333 1334 1335
    }

    /**
1336
     * Produces a method handle giving read access to elements of an array.
1337 1338 1339 1340 1341
     * The type of the method handle will have a return type of the array's
     * element type.  Its first argument will be the array type,
     * and the second will be {@code int}.
     * @param arrayClass an array type
     * @return a method handle which can load values from the given array type
1342
     * @throws NullPointerException if the argument is null
1343 1344 1345 1346
     * @throws  IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
1347
        return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false);
1348 1349 1350
    }

    /**
1351
     * Produces a method handle giving write access to elements of an array.
1352 1353 1354 1355
     * The type of the method handle will have a void return type.
     * Its last argument will be the array's element type.
     * The first and second arguments will be the array type and int.
     * @return a method handle which can store values into the array type
1356
     * @throws NullPointerException if the argument is null
1357 1358 1359 1360
     * @throws IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
1361
        return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true);
1362 1363 1364 1365 1366
    }

    /// method handle invocation (reflective style)

    /**
1367
     * Produces a method handle which will invoke any method handle of the
1368 1369
     * given {@code type}, with a given number of trailing arguments replaced by
     * a single trailing {@code Object[]} array.
1370 1371 1372 1373
     * The resulting invoker will be a method handle with the following
     * arguments:
     * <ul>
     * <li>a single {@code MethodHandle} target
1374 1375
     * <li>zero or more leading values (counted by {@code leadingArgCount})
     * <li>an {@code Object[]} array containing trailing arguments
1376
     * </ul>
1377
     * <p>
1378
     * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
1379 1380
     * the indicated {@code type}.
     * That is, if the target is exactly of the given {@code type}, it will behave
1381
     * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
1382 1383 1384
     * is used to convert the target to the required {@code type}.
     * <p>
     * The type of the returned invoker will not be the given {@code type}, but rather
1385 1386 1387
     * will have all parameters except the first {@code leadingArgCount}
     * replaced by a single array of type {@code Object[]}, which will be
     * the final parameter.
1388
     * <p>
1389
     * Before invoking its target, the invoker will spread the final array, apply
1390
     * reference casts as necessary, and unbox and widen primitive arguments.
1391 1392 1393
     * <p>
     * This method is equivalent to the following code (though it may be more efficient):
     * <p><blockquote><pre>
1394
MethodHandle invoker = MethodHandles.invoker(type);
1395
int spreadArgCount = type.parameterCount() - leadingArgCount;
1396 1397
invoker = invoker.asSpreader(Object[].class, spreadArgCount);
return invoker;
1398
     * </pre></blockquote>
1399 1400
     * <p>
     * This method throws no reflective or security exceptions.
1401
     * @param type the desired target type
1402
     * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
1403
     * @return a method handle suitable for invoking any method handle of the given type
1404 1405 1406
     * @throws NullPointerException if {@code type} is null
     * @throws IllegalArgumentException if {@code leadingArgCount} is not in
     *                  the range from 0 to {@code type.parameterCount()} inclusive
1407 1408
     */
    static public
1409 1410 1411 1412
    MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
        if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
            throw new IllegalArgumentException("bad argument count "+leadingArgCount);
        return type.invokers().spreadInvoker(leadingArgCount);
1413 1414 1415
    }

    /**
1416
     * Produces a special <em>invoker method handle</em> which can be used to
1417
     * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
1418
     * The resulting invoker will have a type which is
1419 1420 1421
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
1422 1423
     * This method is equivalent to the following code (though it may be more efficient):
     * <p><blockquote><pre>
1424
publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)
1425
     * </pre></blockquote>
1426 1427 1428 1429 1430 1431 1432 1433
     *
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * Invoker method handles can be useful when working with variable method handles
     * of unknown types.
     * For example, to emulate an {@code invokeExact} call to a variable method
     * handle {@code M}, extract its type {@code T},
     * look up the invoker method {@code X} for {@code T},
1434
     * and call the invoker method, as {@code X.invoke(T, A...)}.
1435 1436 1437 1438 1439 1440 1441
     * (It would not work to call {@code X.invokeExact}, since the type {@code T}
     * is unknown.)
     * If spreading, collecting, or other argument transformations are required,
     * they can be applied once to the invoker {@code X} and reused on many {@code M}
     * method handle values, as long as they are compatible with the type of {@code X}.
     * <p>
     * <em>(Note:  The invoker method is not available via the Core Reflection API.
1442
     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1443
     * on the declared {@code invokeExact} or {@code invoke} method will raise an
1444 1445 1446
     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
     * <p>
     * This method throws no reflective or security exceptions.
1447 1448 1449 1450 1451
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle of the given type
     */
    static public
    MethodHandle exactInvoker(MethodType type) {
1452
        return type.invokers().exactInvoker();
1453 1454
    }

1455 1456
    /**
     * Produces a special <em>invoker method handle</em> which can be used to
1457
     * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
1458 1459 1460 1461
     * The resulting invoker will have a type which is
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
1462 1463
     * Before invoking its target, if the target differs from the expected type,
     * the invoker will apply reference casts as
1464 1465 1466 1467
     * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
     * Similarly, the return value will be converted as necessary.
     * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
     * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
1468
     * <p>
1469 1470 1471 1472 1473
     * A {@linkplain MethodType#genericMethodType general method type},
     * mentions only {@code Object} arguments and return values.
     * An invoker for such a type is capable of calling any method handle
     * of the same arity as the general type.
     * <p>
1474 1475
     * This method is equivalent to the following code (though it may be more efficient):
     * <p><blockquote><pre>
1476
publicLookup().findVirtual(MethodHandle.class, "invoke", type)
1477 1478 1479 1480 1481 1482 1483
     * </pre></blockquote>
     * <p>
     * This method throws no reflective or security exceptions.
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle convertible to the given type
     */
    static public
1484 1485 1486 1487
    MethodHandle invoker(MethodType type) {
        return type.invokers().generalInvoker();
    }

1488 1489 1490
    static /*non-public*/
    MethodHandle basicInvoker(MethodType type) {
        return type.form().basicInvoker();
1491 1492
    }

1493
     /// method handle modification (creation from other method handles)
1494 1495

    /**
1496
     * Produces a method handle which adapts the type of the
1497
     * given method handle to a new type by pairwise argument and return type conversion.
1498 1499 1500 1501 1502 1503
     * The original type and new type must have the same number of arguments.
     * The resulting method handle is guaranteed to report a type
     * which is equal to the desired new type.
     * <p>
     * If the original type and new type are equal, returns target.
     * <p>
1504
     * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
1505
     * and some additional conversions are also applied if those conversions fail.
1506 1507
     * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
     * if possible, before or instead of any conversions done by {@code asType}:
1508
     * <ul>
1509 1510
     * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
     *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
1511
     *     (This treatment of interfaces follows the usage of the bytecode verifier.)
1512 1513
     * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
     *     the boolean is converted to a byte value, 1 for true, 0 for false.
1514
     *     (This treatment follows the usage of the bytecode verifier.)
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
     * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
     *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
     *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
     * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
     *     then a Java casting conversion (JLS 5.5) is applied.
     *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
     *     widening and/or narrowing.)
     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
     *     conversion will be applied at runtime, possibly followed
     *     by a Java casting conversion (JLS 5.5) on the primitive value,
     *     possibly followed by a conversion from byte to boolean by testing
     *     the low-order bit.
     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
     *     and if the reference is null at runtime, a zero value is introduced.
1529 1530 1531
     * </ul>
     * @param target the method handle to invoke after arguments are retyped
     * @param newType the expected type of the new method handle
1532
     * @return a method handle which delegates to the target after performing
1533 1534
     *           any necessary argument conversions, and arranges for any
     *           necessary return value conversions
1535
     * @throws NullPointerException if either argument is null
1536 1537 1538 1539 1540
     * @throws WrongMethodTypeException if the conversion cannot be made
     * @see MethodHandle#asType
     */
    public static
    MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
1541 1542 1543 1544
        if (!target.type().isCastableTo(newType)) {
            throw new WrongMethodTypeException("cannot explicitly cast "+target+" to "+newType);
        }
        return MethodHandleImpl.makePairwiseConvert(target, newType, 2);
1545 1546 1547
    }

    /**
1548
     * Produces a method handle which adapts the calling sequence of the
1549
     * given method handle to a new type, by reordering the arguments.
1550
     * The resulting method handle is guaranteed to report a type
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
     * which is equal to the desired new type.
     * <p>
     * The given array controls the reordering.
     * Call {@code #I} the number of incoming parameters (the value
     * {@code newType.parameterCount()}, and call {@code #O} the number
     * of outgoing parameters (the value {@code target.type().parameterCount()}).
     * Then the length of the reordering array must be {@code #O},
     * and each element must be a non-negative number less than {@code #I}.
     * For every {@code N} less than {@code #O}, the {@code N}-th
     * outgoing argument will be taken from the {@code I}-th incoming
     * argument, where {@code I} is {@code reorder[N]}.
     * <p>
1563 1564
     * No argument or return value conversions are applied.
     * The type of each incoming argument, as determined by {@code newType},
1565 1566
     * must be identical to the type of the corresponding outgoing parameter
     * or parameters in the target method handle.
1567 1568 1569
     * The return type of {@code newType} must be identical to the return
     * type of the original target.
     * <p>
1570 1571 1572 1573
     * The reordering array need not specify an actual permutation.
     * An incoming argument will be duplicated if its index appears
     * more than once in the array, and an incoming argument will be dropped
     * if its index does not appear in the array.
1574 1575 1576
     * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
     * incoming arguments which are not mentioned in the reordering array
     * are may be any type, as determined only by {@code newType}.
A
alanb 已提交
1577
     * <blockquote><pre>{@code
1578 1579 1580 1581 1582
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodType intfn1 = methodType(int.class, int.class);
MethodType intfn2 = methodType(int.class, int.class, int.class);
1583 1584
MethodHandle sub = ... {int x, int y => x-y} ...;
assert(sub.type().equals(intfn2));
1585 1586
MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
1587 1588 1589
assert((int)rsub.invokeExact(1, 100) == 99);
MethodHandle add = ... {int x, int y => x+y} ...;
assert(add.type().equals(intfn2));
1590
MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
1591 1592
assert(twice.type().equals(intfn1));
assert((int)twice.invokeExact(21) == 42);
A
alanb 已提交
1593
     * }</pre></blockquote>
1594 1595
     * @param target the method handle to invoke after arguments are reordered
     * @param newType the expected type of the new method handle
1596 1597
     * @param reorder an index array which controls the reordering
     * @return a method handle which delegates to the target after it
1598
     *           drops unused arguments and moves and/or duplicates the other arguments
1599
     * @throws NullPointerException if any argument is null
1600 1601 1602 1603 1604
     * @throws IllegalArgumentException if the index array length is not equal to
     *                  the arity of the target, or if any index array element
     *                  not a valid index for a parameter of {@code newType},
     *                  or if two corresponding parameter types in
     *                  {@code target.type()} and {@code newType} are not identical,
1605 1606
     */
    public static
1607
    MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
1608 1609
        checkReorder(reorder, newType, target.type());
        return target.permuteArguments(newType, reorder);
1610 1611 1612
    }

    private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) {
1613 1614 1615
        if (newType.returnType() != oldType.returnType())
            throw newIllegalArgumentException("return types do not match",
                    oldType, newType);
1616 1617 1618
        if (reorder.length == oldType.parameterCount()) {
            int limit = newType.parameterCount();
            boolean bad = false;
1619 1620
            for (int j = 0; j < reorder.length; j++) {
                int i = reorder[j];
1621 1622 1623
                if (i < 0 || i >= limit) {
                    bad = true; break;
                }
1624 1625 1626 1627 1628
                Class<?> src = newType.parameterType(i);
                Class<?> dst = oldType.parameterType(j);
                if (src != dst)
                    throw newIllegalArgumentException("parameter types do not match after reorder",
                            oldType, newType);
1629 1630 1631
            }
            if (!bad)  return;
        }
1632
        throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
1633 1634 1635
    }

    /**
1636
     * Produces a method handle of the requested return type which returns the given
1637 1638 1639 1640 1641
     * constant value every time it is invoked.
     * <p>
     * Before the method handle is returned, the passed-in value is converted to the requested type.
     * If the requested type is primitive, widening primitive conversions are attempted,
     * else reference conversions are attempted.
1642
     * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
1643 1644 1645
     * @param type the return type of the desired method handle
     * @param value the value to return
     * @return a method handle of the given return type and no arguments, which always returns the given value
1646 1647 1648
     * @throws NullPointerException if the {@code type} argument is null
     * @throws ClassCastException if the value cannot be converted to the required return type
     * @throws IllegalArgumentException if the given type is {@code void.class}
1649 1650 1651 1652
     */
    public static
    MethodHandle constant(Class<?> type, Object value) {
        if (type.isPrimitive()) {
1653 1654
            if (type == void.class)
                throw newIllegalArgumentException("void type");
1655
            Wrapper w = Wrapper.forPrimitiveType(type);
1656
            return insertArguments(identity(type), 0, w.convert(value, type));
1657 1658 1659 1660 1661 1662
        } else {
            return identity(type).bindTo(type.cast(value));
        }
    }

    /**
1663 1664 1665 1666 1667
     * Produces a method handle which returns its sole argument when invoked.
     * @param type the type of the sole parameter and return value of the desired method handle
     * @return a unary method handle which accepts and returns the given type
     * @throws NullPointerException if the argument is null
     * @throws IllegalArgumentException if the given type is {@code void.class}
1668 1669 1670
     */
    public static
    MethodHandle identity(Class<?> type) {
1671 1672
        if (type == void.class)
            throw newIllegalArgumentException("void type");
1673 1674 1675 1676 1677
        else if (type == Object.class)
            return ValueConversions.identity();
        else if (type.isPrimitive())
            return ValueConversions.identity(Wrapper.forPrimitiveType(type));
        else
1678
            return MethodHandleImpl.makeReferenceIdentity(type);
1679 1680 1681
    }

    /**
1682 1683 1684 1685 1686 1687 1688 1689 1690
     * Provides a target method handle with one or more <em>bound arguments</em>
     * in advance of the method handle's invocation.
     * The formal parameters to the target corresponding to the bound
     * arguments are called <em>bound parameters</em>.
     * Returns a new method handle which saves away the bound arguments.
     * When it is invoked, it receives arguments for any non-bound parameters,
     * binds the saved arguments to their corresponding parameters,
     * and calls the original target.
     * <p>
1691 1692 1693
     * The type of the new method handle will drop the types for the bound
     * parameters from the original target type, since the new method handle
     * will no longer require those arguments to be supplied by its callers.
1694
     * <p>
1695 1696 1697
     * Each given argument object must match the corresponding bound parameter type.
     * If a bound parameter type is a primitive, the argument object
     * must be a wrapper, and will be unboxed to produce the primitive value.
1698
     * <p>
1699 1700 1701 1702
     * The {@code pos} argument selects which parameters are to be bound.
     * It may range between zero and <i>N-L</i> (inclusively),
     * where <i>N</i> is the arity of the target method handle
     * and <i>L</i> is the length of the values array.
1703 1704
     * @param target the method handle to invoke after the argument is inserted
     * @param pos where to insert the argument (zero for the first)
1705
     * @param values the series of arguments to insert
1706
     * @return a method handle which inserts an additional argument,
1707
     *         before calling the original method handle
1708
     * @throws NullPointerException if the target or the {@code values} array is null
1709
     * @see MethodHandle#bindTo
1710 1711
     */
    public static
1712 1713
    MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
        int insCount = values.length;
1714 1715
        MethodType oldType = target.type();
        int outargs = oldType.parameterCount();
1716 1717 1718 1719
        int inargs  = outargs - insCount;
        if (inargs < 0)
            throw newIllegalArgumentException("too many values to insert");
        if (pos < 0 || pos > inargs)
1720
            throw newIllegalArgumentException("no argument type to append");
1721 1722 1723
        MethodHandle result = target;
        for (int i = 0; i < insCount; i++) {
            Object value = values[i];
1724 1725 1726 1727 1728 1729 1730 1731
            Class<?> ptype = oldType.parameterType(pos+i);
            if (ptype.isPrimitive()) {
                char btype = 'I';
                Wrapper w = Wrapper.forPrimitiveType(ptype);
                switch (w) {
                case LONG:    btype = 'J'; break;
                case FLOAT:   btype = 'F'; break;
                case DOUBLE:  btype = 'D'; break;
1732
                }
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
                // perform unboxing and/or primitive conversion
                value = w.convert(value, ptype);
                result = result.bindArgument(pos, btype, value);
                continue;
            }
            value = ptype.cast(value);  // throw CCE if needed
            if (pos == 0) {
                result = result.bindReceiver(value);
            } else {
                result = result.bindArgument(pos, 'L', value);
1743
            }
1744
        }
1745 1746 1747
        return result;
    }

1748
    /**
1749 1750 1751 1752 1753
     * Produces a method handle which will discard some dummy arguments
     * before calling some other specified <i>target</i> method handle.
     * The type of the new method handle will be the same as the target's type,
     * except it will also include the dummy argument types,
     * at some given position.
1754
     * <p>
1755 1756 1757 1758 1759
     * The {@code pos} argument may range between zero and <i>N</i>,
     * where <i>N</i> is the arity of the target.
     * If {@code pos} is zero, the dummy arguments will precede
     * the target's real arguments; if {@code pos} is <i>N</i>
     * they will come after.
1760 1761 1762
     * <p>
     * <b>Example:</b>
     * <p><blockquote><pre>
1763 1764
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
1765 1766 1767 1768
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
1769 1770 1771 1772 1773 1774 1775 1776 1777
MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
assertEquals(bigType, d0.type());
assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
     * </pre></blockquote>
     * <p>
     * This method is also equivalent to the following code:
     * <p><blockquote><pre>
     * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}(target, pos, valueTypes.toArray(new Class[0]))
1778
     * </pre></blockquote>
1779 1780 1781 1782
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
1783
     *         before calling the original method handle
1784
     * @throws NullPointerException if the target is null,
1785
     *                              or if the {@code valueTypes} list or any of its elements is null
1786 1787 1788
     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
     *                  or if {@code pos} is negative or greater than the arity of the target,
     *                  or if the new method handle's type would have too many parameters
1789 1790
     */
    public static
1791
    MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
1792
        MethodType oldType = target.type();  // get NPE
1793 1794 1795
        int dropped = valueTypes.size();
        MethodType.checkSlotCount(dropped);
        if (dropped == 0)  return target;
1796
        int outargs = oldType.parameterCount();
1797
        int inargs  = outargs + dropped;
1798 1799
        if (pos < 0 || pos >= inargs)
            throw newIllegalArgumentException("no argument type to remove");
1800
        ArrayList<Class<?>> ptypes = new ArrayList<>(oldType.parameterList());
1801 1802
        ptypes.addAll(pos, valueTypes);
        MethodType newType = MethodType.methodType(oldType.returnType(), ptypes);
1803
        return target.dropArguments(newType, pos, dropped);
1804 1805
    }

1806
    /**
1807 1808 1809 1810 1811
     * Produces a method handle which will discard some dummy arguments
     * before calling some other specified <i>target</i> method handle.
     * The type of the new method handle will be the same as the target's type,
     * except it will also include the dummy argument types,
     * at some given position.
1812
     * <p>
1813 1814 1815 1816 1817
     * The {@code pos} argument may range between zero and <i>N</i>,
     * where <i>N</i> is the arity of the target.
     * If {@code pos} is zero, the dummy arguments will precede
     * the target's real arguments; if {@code pos} is <i>N</i>
     * they will come after.
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
     * <p>
     * <b>Example:</b>
     * <p><blockquote><pre>
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
MethodHandle d0 = dropArguments(cat, 0, String.class);
assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
MethodHandle d1 = dropArguments(cat, 1, String.class);
assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
MethodHandle d2 = dropArguments(cat, 2, String.class);
assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
     * </pre></blockquote>
     * <p>
     * This method is also equivalent to the following code:
     * <p><blockquote><pre>
1839
     * {@link #dropArguments(MethodHandle,int,List) dropArguments}(target, pos, Arrays.asList(valueTypes))
1840
     * </pre></blockquote>
1841 1842 1843 1844 1845
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
     *         before calling the original method handle
1846
     * @throws NullPointerException if the target is null,
1847
     *                              or if the {@code valueTypes} array or any of its elements is null
1848 1849 1850
     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
     *                  or if {@code pos} is negative or greater than the arity of the target,
     *                  or if the new method handle's type would have too many parameters
1851
     */
1852 1853 1854 1855 1856 1857
    public static
    MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
        return dropArguments(target, pos, Arrays.asList(valueTypes));
    }

    /**
1858
     * Adapts a target method handle by pre-processing
1859 1860 1861 1862 1863
     * one or more of its arguments, each with its own unary filter function,
     * and then calling the target with each pre-processed argument
     * replaced by the result of its corresponding filter function.
     * <p>
     * The pre-processing is performed by one or more method handles,
1864
     * specified in the elements of the {@code filters} array.
1865 1866 1867 1868 1869
     * The first element of the filter array corresponds to the {@code pos}
     * argument of the target, and so on in sequence.
     * <p>
     * Null arguments in the array are treated as identity functions,
     * and the corresponding arguments left unchanged.
1870
     * (If there are no non-null elements in the array, the original target is returned.)
1871
     * Each filter is applied to the corresponding argument of the adapter.
1872 1873
     * <p>
     * If a filter {@code F} applies to the {@code N}th argument of
1874
     * the target, then {@code F} must be a method handle which
1875 1876 1877 1878 1879 1880
     * takes exactly one argument.  The type of {@code F}'s sole argument
     * replaces the corresponding argument type of the target
     * in the resulting adapted method handle.
     * The return type of {@code F} must be identical to the corresponding
     * parameter type of the target.
     * <p>
1881
     * It is an error if there are elements of {@code filters}
1882
     * (null or not)
1883
     * which do not correspond to argument positions in the target.
1884 1885
     * <b>Example:</b>
     * <p><blockquote><pre>
1886 1887
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
1888 1889 1890 1891 1892
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle upcase = lookup().findVirtual(String.class,
  "toUpperCase", methodType(String.class));
1893
assertEquals("xy", (String) cat.invokeExact("x", "y"));
1894
MethodHandle f0 = filterArguments(cat, 0, upcase);
1895
assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
1896
MethodHandle f1 = filterArguments(cat, 1, upcase);
1897
assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
1898
MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
1899
assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
1900 1901 1902 1903 1904 1905 1906 1907
     * </pre></blockquote>
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
     * V target(P... p, A[i]... a[i], B... b);
     * A[i] filter[i](V[i]);
     * T adapter(P... p, V[i]... v[i], B... b) {
     *   return target(p..., f[i](v[i])..., b...);
     * }
1908
     * </pre></blockquote>
1909
     *
1910
     * @param target the method handle to invoke after arguments are filtered
1911
     * @param pos the position of the first argument to filter
1912 1913
     * @param filters method handles to call initially on filtered arguments
     * @return method handle which incorporates the specified argument filtering logic
1914
     * @throws NullPointerException if the target is null
1915 1916
     *                              or if the {@code filters} array is null
     * @throws IllegalArgumentException if a non-null element of {@code filters}
1917
     *          does not match a corresponding argument type of target as described above,
1918
     *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}
1919 1920
     */
    public static
1921
    MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
1922 1923
        MethodType targetType = target.type();
        MethodHandle adapter = target;
1924 1925
        MethodType adapterType = null;
        assert((adapterType = targetType) != null);
1926
        int maxPos = targetType.parameterCount();
1927 1928 1929
        if (pos + filters.length > maxPos)
            throw newIllegalArgumentException("too many filters");
        int curPos = pos-1;  // pre-incremented
1930
        for (MethodHandle filter : filters) {
1931 1932
            curPos += 1;
            if (filter == null)  continue;  // ignore null elements of filters
1933 1934
            adapter = filterArgument(adapter, curPos, filter);
            assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null);
1935
        }
1936
        assert(adapterType.equals(adapter.type()));
1937 1938 1939
        return adapter;
    }

1940 1941 1942 1943 1944 1945 1946
    /*non-public*/ static
    MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
        MethodType targetType = target.type();
        MethodType filterType = filter.type();
        if (filterType.parameterCount() != 1
            || filterType.returnType() != targetType.parameterType(pos))
            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
1947
        return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
1948 1949
    }

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    // FIXME: Make this public in M1.
    /*non-public*/ static
    MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle collector) {
        MethodType targetType = target.type();
        MethodType filterType = collector.type();
        if (filterType.returnType() != void.class &&
            filterType.returnType() != targetType.parameterType(pos))
            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
        return MethodHandleImpl.makeCollectArguments(target, collector, pos, false);
    }

1961
    /**
1962 1963 1964
     * Adapts a target method handle by post-processing
     * its return value (if any) with a filter (another method handle).
     * The result of the filter is returned from the adapter.
1965
     * <p>
1966 1967 1968 1969 1970
     * If the target returns a value, the filter must accept that value as
     * its only argument.
     * If the target returns void, the filter must accept no arguments.
     * <p>
     * The return type of the filter
1971 1972
     * replaces the return type of the target
     * in the resulting adapted method handle.
1973
     * The argument type of the filter (if any) must be identical to the
1974 1975 1976
     * return type of the target.
     * <b>Example:</b>
     * <p><blockquote><pre>
1977 1978
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
1979 1980 1981 1982 1983 1984 1985 1986
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle length = lookup().findVirtual(String.class,
  "length", methodType(int.class));
System.out.println((String) cat.invokeExact("x", "y")); // xy
MethodHandle f0 = filterReturnValue(cat, length);
System.out.println((int) f0.invokeExact("x", "y")); // 2
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
     * </pre></blockquote>
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
     * V target(A...);
     * T filter(V);
     * T adapter(A... a) {
     *   V v = target(a...);
     *   return filter(v);
     * }
     * // and if the target has a void return:
     * void target2(A...);
     * T filter2();
     * T adapter2(A... a) {
     *   target2(a...);
     *   return filter2();
     * }
     * // and if the filter has a void return:
     * V target3(A...);
     * void filter3(V);
     * void adapter3(A... a) {
     *   V v = target3(a...);
     *   filter3(v);
     * }
2010 2011 2012 2013
     * </pre></blockquote>
     * @param target the method handle to invoke before filtering the return value
     * @param filter method handle to call on the return value
     * @return method handle which incorporates the specified return value filtering logic
2014
     * @throws NullPointerException if either argument is null
2015 2016
     * @throws IllegalArgumentException if the argument list of {@code filter}
     *          does not match the return type of target as described above
2017
     */
2018
    public static
2019 2020 2021
    MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
        MethodType targetType = target.type();
        MethodType filterType = filter.type();
2022 2023 2024 2025 2026 2027
        Class<?> rtype = targetType.returnType();
        int filterValues = filterType.parameterCount();
        if (filterValues == 0
                ? (rtype != void.class)
                : (rtype != filterType.parameterType(0)))
            throw newIllegalArgumentException("target and filter types do not match", target, filter);
2028 2029
        // result = fold( lambda(retval, arg...) { filter(retval) },
        //                lambda(        arg...) { target(arg...) } )
2030
        return MethodHandleImpl.makeCollectArguments(filter, target, 0, false);
2031 2032
    }

2033
    /**
2034
     * Adapts a target method handle by pre-processing
2035
     * some of its arguments, and then calling the target with
2036 2037
     * the result of the pre-processing, inserted into the original
     * sequence of arguments.
2038
     * <p>
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
     * The pre-processing is performed by {@code combiner}, a second method handle.
     * Of the arguments passed to the adapter, the first {@code N} arguments
     * are copied to the combiner, which is then called.
     * (Here, {@code N} is defined as the parameter count of the combiner.)
     * After this, control passes to the target, with any result
     * from the combiner inserted before the original {@code N} incoming
     * arguments.
     * <p>
     * If the combiner returns a value, the first parameter type of the target
     * must be identical with the return type of the combiner, and the next
     * {@code N} parameter types of the target must exactly match the parameters
     * of the combiner.
     * <p>
     * If the combiner has a void return, no result will be inserted,
     * and the first {@code N} parameter types of the target
     * must exactly match the parameters of the combiner.
2055 2056
     * <p>
     * The resulting adapter is the same type as the target, except that the
2057 2058
     * first parameter type is dropped,
     * if it corresponds to the result of the combiner.
2059
     * <p>
2060
     * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
2061
     * that either the combiner or the target does not wish to receive.
2062
     * If some of the incoming arguments are destined only for the combiner,
2063
     * consider using {@link MethodHandle#asCollector asCollector} instead, since those
2064 2065
     * arguments will not need to be live on the stack on entry to the
     * target.)
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
     * <b>Example:</b>
     * <p><blockquote><pre>
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
  "println", methodType(void.class, String.class))
    .bindTo(System.out);
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
MethodHandle catTrace = foldArguments(cat, trace);
// also prints "boo":
assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
     * </pre></blockquote>
2081 2082
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
2083
     * // there are N arguments in A...
2084 2085 2086 2087 2088 2089
     * T target(V, A[N]..., B...);
     * V combiner(A...);
     * T adapter(A... a, B... b) {
     *   V v = combiner(a...);
     *   return target(v, a..., b...);
     * }
2090 2091 2092 2093 2094 2095 2096
     * // and if the combiner has a void return:
     * T target2(A[N]..., B...);
     * void combiner2(A...);
     * T adapter2(A... a, B... b) {
     *   combiner2(a...);
     *   return target2(a..., b...);
     * }
2097 2098 2099 2100
     * </pre></blockquote>
     * @param target the method handle to invoke after arguments are combined
     * @param combiner method handle to call initially on the incoming arguments
     * @return method handle which incorporates the specified argument folding logic
2101
     * @throws NullPointerException if either argument is null
2102 2103 2104 2105 2106
     * @throws IllegalArgumentException if {@code combiner}'s return type
     *          is non-void and not the same as the first argument type of
     *          the target, or if the initial {@code N} argument types
     *          of the target
     *          (skipping one matching the {@code combiner}'s return type)
2107 2108 2109 2110
     *          are not identical with the argument types of {@code combiner}
     */
    public static
    MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
2111
        int pos = 0;
2112 2113
        MethodType targetType = target.type();
        MethodType combinerType = combiner.type();
2114
        int foldPos = pos;
2115
        int foldArgs = combinerType.parameterCount();
2116 2117 2118 2119 2120 2121
        int foldVals = combinerType.returnType() == void.class ? 0 : 1;
        int afterInsertPos = foldPos + foldVals;
        boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
        if (ok && !(combinerType.parameterList()
                    .equals(targetType.parameterList().subList(afterInsertPos,
                                                               afterInsertPos + foldArgs))))
2122
            ok = false;
2123
        if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0)))
2124
            ok = false;
2125 2126
        if (!ok)
            throw misMatchedTypes("target and combiner types", targetType, combinerType);
2127
        MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos);
2128
        return MethodHandleImpl.makeCollectArguments(target, combiner, foldPos, true);
2129 2130
    }

2131
    /**
2132
     * Makes a method handle which adapts a target method handle,
2133 2134 2135 2136
     * by guarding it with a test, a boolean-valued method handle.
     * If the guard fails, a fallback handle is called instead.
     * All three method handles must have the same corresponding
     * argument and return types, except that the return type
2137 2138
     * of the test must be boolean, and the test is allowed
     * to have fewer arguments than the other two method handles.
2139 2140 2141
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
     * boolean test(A...);
2142 2143 2144
     * T target(A...,B...);
     * T fallback(A...,B...);
     * T adapter(A... a,B... b) {
2145
     *   if (test(a...))
2146
     *     return target(a..., b...);
2147
     *   else
2148
     *     return fallback(a..., b...);
2149 2150
     * }
     * </pre></blockquote>
2151 2152 2153
     * Note that the test arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the test, and so are passed unchanged
     * from the caller to the target or fallback as appropriate.
2154 2155 2156 2157
     * @param test method handle used for test, must return boolean
     * @param target method handle to call if test passes
     * @param fallback method handle to call if test fails
     * @return method handle which incorporates the specified if/then/else logic
2158
     * @throws NullPointerException if any argument is null
2159 2160
     * @throws IllegalArgumentException if {@code test} does not return boolean,
     *          or if all three method types do not match (with the return
2161
     *          type of {@code test} changed to match that of the target).
2162 2163 2164 2165 2166
     */
    public static
    MethodHandle guardWithTest(MethodHandle test,
                               MethodHandle target,
                               MethodHandle fallback) {
2167 2168 2169
        MethodType gtype = test.type();
        MethodType ttype = target.type();
        MethodType ftype = fallback.type();
2170
        if (!ttype.equals(ftype))
2171
            throw misMatchedTypes("target and fallback types", ttype, ftype);
2172 2173 2174 2175 2176 2177 2178
        if (gtype.returnType() != boolean.class)
            throw newIllegalArgumentException("guard type is not a predicate "+gtype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> gargs = gtype.parameterList();
        if (!targs.equals(gargs)) {
            int gpc = gargs.size(), tpc = targs.size();
            if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
2179
                throw misMatchedTypes("target and test types", ttype, gtype);
2180 2181
            test = dropArguments(test, gpc, targs.subList(gpc, tpc));
            gtype = test.type();
2182
        }
2183
        return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
2184 2185
    }

2186 2187 2188 2189
    static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
        return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
    }

2190
    /**
2191
     * Makes a method handle which adapts a target method handle,
2192 2193 2194 2195
     * by running it inside an exception handler.
     * If the target returns normally, the adapter returns that value.
     * If an exception matching the specified type is thrown, the fallback
     * handle is called instead on the exception, plus the original arguments.
2196
     * <p>
2197 2198 2199 2200
     * The target and handler must have the same corresponding
     * argument and return types, except that handler may omit trailing arguments
     * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
     * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
2201 2202
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
2203
     * T target(A..., B...);
2204
     * T handler(ExType, A...);
2205
     * T adapter(A... a, B... b) {
2206
     *   try {
2207
     *     return target(a..., b...);
2208 2209 2210
     *   } catch (ExType ex) {
     *     return handler(ex, a...);
     *   }
2211 2212
     * }
     * </pre></blockquote>
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
     * Note that the saved arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the target, and so are passed unchanged
     * from the caller to the handler, if the handler is invoked.
     * <p>
     * The target and handler must return the same type, even if the handler
     * always throws.  (This might happen, for instance, because the handler
     * is simulating a {@code finally} clause).
     * To create such a throwing handler, compose the handler creation logic
     * with {@link #throwException throwException},
     * in order to create a method handle of the correct return type.
2223 2224 2225 2226
     * @param target method handle to call
     * @param exType the type of exception which the handler will catch
     * @param handler method handle to call if a matching exception is thrown
     * @return method handle which incorporates the specified try/catch logic
2227
     * @throws NullPointerException if any argument is null
2228 2229 2230 2231
     * @throws IllegalArgumentException if {@code handler} does not accept
     *          the given exception type, or if the method handle types do
     *          not match in their return types and their
     *          corresponding parameters
2232 2233
     */
    public static
2234 2235 2236
    MethodHandle catchException(MethodHandle target,
                                Class<? extends Throwable> exType,
                                MethodHandle handler) {
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
        MethodType ttype = target.type();
        MethodType htype = handler.type();
        if (htype.parameterCount() < 1 ||
            !htype.parameterType(0).isAssignableFrom(exType))
            throw newIllegalArgumentException("handler does not accept exception type "+exType);
        if (htype.returnType() != ttype.returnType())
            throw misMatchedTypes("target and handler return types", ttype, htype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> hargs = htype.parameterList();
        hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
        if (!targs.equals(hargs)) {
            int hpc = hargs.size(), tpc = targs.size();
            if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
                throw misMatchedTypes("target and handler types", ttype, htype);
2251
            handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc));
2252 2253
            htype = handler.type();
        }
2254
        return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
2255 2256
    }

2257
    /**
2258
     * Produces a method handle which will throw exceptions of the given {@code exType}.
2259 2260 2261 2262 2263
     * The method handle will accept a single argument of {@code exType},
     * and immediately throw it as an exception.
     * The method type will nominally specify a return of {@code returnType}.
     * The return type may be anything convenient:  It doesn't matter to the
     * method handle's behavior, since it will never return normally.
2264 2265
     * @return method handle which can throw the given exceptions
     * @throws NullPointerException if either argument is null
2266 2267 2268
     */
    public static
    MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
2269 2270
        if (!Throwable.class.isAssignableFrom(exType))
            throw new ClassCastException(exType.getName());
2271
        return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
2272
    }
2273
}