MethodHandles.java 150.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
24 25
 */

26
package java.lang.invoke;
27

28
import java.lang.reflect.*;
29
import java.util.List;
30 31
import java.util.ArrayList;
import java.util.Arrays;
32

33 34 35 36
import sun.invoke.util.ValueConversions;
import sun.invoke.util.VerifyAccess;
import sun.invoke.util.Wrapper;
import sun.reflect.CallerSensitive;
37
import sun.reflect.Reflection;
38
import sun.reflect.misc.ReflectUtil;
39
import sun.security.util.SecurityConstants;
40
import static java.lang.invoke.MethodHandleStatics.*;
41
import static java.lang.invoke.MethodHandleNatives.Constants.*;
42

43
import java.util.concurrent.ConcurrentHashMap;
44

45
import sun.security.util.SecurityConstants;
46 47

/**
48 49
 * This class consists exclusively of static methods that operate on or return
 * method handles. They fall into several categories:
50
 * <ul>
51 52 53
 * <li>Lookup methods which help create method handles for methods and fields.
 * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
 * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
54
 * </ul>
55 56
 * <p>
 * @author John Rose, JSR 292 EG
R
rfield 已提交
57
 * @since 1.7
58 59 60 61 62
 */
public class MethodHandles {

    private MethodHandles() { }  // do not instantiate

63
    private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
64 65 66 67 68
    static { MethodHandleImpl.initStatics(); }
    // See IMPL_LOOKUP below.

    //// Method handle creation from ordinary methods.

69
    /**
70 71 72 73 74 75 76
     * Returns a {@link Lookup lookup object} with
     * full capabilities to emulate all supported bytecode behaviors of the caller.
     * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
     * Factory methods on the lookup object can create
     * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
     * for any member that the caller has access to via bytecodes,
     * including protected and private fields and methods.
77 78
     * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
     * Do not store it in place where untrusted code can access it.
79 80 81 82 83 84 85 86 87 88
     * <p>
     * This method is caller sensitive, which means that it may return different
     * values to different callers.
     * <p>
     * For any given caller class {@code C}, the lookup object returned by this call
     * has equivalent capabilities to any lookup object
     * supplied by the JVM to the bootstrap method of an
     * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
     * executing in the same caller class {@code C}.
     * @return a lookup object for the caller of this method, with private access
89
     */
90
    @CallerSensitive
91
    public static Lookup lookup() {
92
        return new Lookup(Reflection.getCallerClass());
93 94
    }

95
    /**
96
     * Returns a {@link Lookup lookup object} which is trusted minimally.
97 98
     * It can only be used to create method handles to
     * publicly accessible fields and methods.
99 100 101
     * <p>
     * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
     * of this lookup object will be {@link java.lang.Object}.
102 103 104
     *
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
105
     * The lookup class can be changed to any other class {@code C} using an expression of the form
106
     * {@link Lookup#in publicLookup().in(C.class)}.
107 108
     * Since all classes have equal access to public names,
     * such a change would confer no new access rights.
109 110 111 112
     * A public lookup object is always subject to
     * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
     * Also, it cannot access
     * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
113
     * @return a lookup object which is trusted minimally
114 115 116 117 118
     */
    public static Lookup publicLookup() {
        return Lookup.PUBLIC_LOOKUP;
    }

R
rfield 已提交
119
    /**
120 121
     * Performs an unchecked "crack" of a
     * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
R
rfield 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
     * The result is as if the user had obtained a lookup object capable enough
     * to crack the target method handle, called
     * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
     * on the target to obtain its symbolic reference, and then called
     * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
     * to resolve the symbolic reference to a member.
     * <p>
     * If there is a security manager, its {@code checkPermission} method
     * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
     * @param <T> the desired type of the result, either {@link Member} or a subtype
     * @param target a direct method handle to crack into symbolic reference components
     * @param expected a class object representing the desired result type {@code T}
     * @return a reference to the method, constructor, or field object
     * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
     * @exception NullPointerException if either argument is {@code null}
     * @exception IllegalArgumentException if the target is not a direct method handle
     * @exception ClassCastException if the member is not of the expected type
     * @since 1.8
     */
    public static <T extends Member> T
    reflectAs(Class<T> expected, MethodHandle target) {
        SecurityManager smgr = System.getSecurityManager();
        if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
        Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
        return lookup.revealDirect(target).reflectAs(expected, lookup);
    }
    // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
    static final private java.security.Permission ACCESS_PERMISSION =
        new ReflectPermission("suppressAccessChecks");

152
    /**
153 154 155
     * A <em>lookup object</em> is a factory for creating method handles,
     * when the creation requires access checking.
     * Method handles do not perform
156
     * access checks when they are called, but rather when they are created.
157 158
     * Therefore, method handle access
     * restrictions must be enforced when a method handle is created.
159
     * The caller class against which those restrictions are enforced
160
     * is known as the {@linkplain #lookupClass lookup class}.
161 162 163 164 165 166 167 168 169
     * <p>
     * A lookup class which needs to create method handles will call
     * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
     * When the {@code Lookup} factory object is created, the identity of the lookup class is
     * determined, and securely stored in the {@code Lookup} object.
     * The lookup class (or its delegates) may then use factory methods
     * on the {@code Lookup} object to create method handles for access-checked members.
     * This includes all methods, constructors, and fields which are allowed to the lookup class,
     * even private ones.
170 171
     *
     * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
172 173
     * The factory methods on a {@code Lookup} object correspond to all major
     * use cases for methods, constructors, and fields.
174 175 176
     * Each method handle created by a factory method is the functional
     * equivalent of a particular <em>bytecode behavior</em>.
     * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
177 178 179
     * Here is a summary of the correspondence between these factory methods and
     * the behavior the resulting method handles:
     * <table border=1 cellpadding=5 summary="lookup method behaviors">
180 181 182 183 184
     * <tr>
     *     <th><a name="equiv"></a>lookup expression</th>
     *     <th>member</th>
     *     <th>bytecode behavior</th>
     * </tr>
185
     * <tr>
186 187
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
     *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
188 189
     * </tr>
     * <tr>
190 191
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
     *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
192 193
     * </tr>
     * <tr>
194 195
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
     *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
196 197
     * </tr>
     * <tr>
198 199
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
     *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
200 201
     * </tr>
     * <tr>
202 203
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
     *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
204 205
     * </tr>
     * <tr>
206 207
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
     *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
208 209
     * </tr>
     * <tr>
210 211
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
     *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
212 213
     * </tr>
     * <tr>
214 215
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
     *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
216 217
     * </tr>
     * <tr>
218 219
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
     *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
220 221
     * </tr>
     * <tr>
222 223
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
     *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
224 225
     * </tr>
     * <tr>
226 227
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
     *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
228 229
     * </tr>
     * <tr>
230 231
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
     *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
232 233
     * </tr>
     * <tr>
234 235
     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
     *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
236 237
     * </tr>
     * </table>
238
     *
239 240
     * Here, the type {@code C} is the class or interface being searched for a member,
     * documented as a parameter named {@code refc} in the lookup methods.
241
     * The method type {@code MT} is composed from the return type {@code T}
242
     * and the sequence of argument types {@code A*}.
243 244
     * The constructor also has a sequence of argument types {@code A*} and
     * is deemed to return the newly-created object of type {@code C}.
245 246 247
     * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
     * The formal parameter {@code this} stands for the self-reference of type {@code C};
     * if it is present, it is always the leading argument to the method handle invocation.
248 249
     * (In the case of some {@code protected} members, {@code this} may be
     * restricted in type to the lookup class; see below.)
250 251 252 253 254 255 256
     * The name {@code arg} stands for all the other method handle arguments.
     * In the code examples for the Core Reflection API, the name {@code thisOrNull}
     * stands for a null reference if the accessed method or field is static,
     * and {@code this} otherwise.
     * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
     * for reflective objects corresponding to the given members.
     * <p>
257 258 259
     * In cases where the given member is of variable arity (i.e., a method or constructor)
     * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
     * In all other cases, the returned method handle will be of fixed arity.
260 261
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
262
     * The equivalence between looked-up method handles and underlying
263 264 265
     * class members and bytecode behaviors
     * can break down in a few ways:
     * <ul style="font-size:smaller;">
266 267 268 269 270 271 272
     * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed, even when there is no equivalent
     * Java expression or bytecoded constant.
     * <li>Likewise, if {@code T} or {@code MT}
     * is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed.
     * For example, lookups for {@code MethodHandle.invokeExact} and
273
     * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
274
     * <li>If there is a security manager installed, it can forbid the lookup
275 276 277
     * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
     * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
     * constant is not subject to security manager checks.
278 279 280 281
     * <li>If the looked-up method has a
     * <a href="MethodHandle.html#maxarity">very large arity</a>,
     * the method handle creation may fail, due to the method handle
     * type having too many parameters.
282 283
     * </ul>
     *
284
     * <h1><a name="access"></a>Access checking</h1>
285 286 287
     * Access checks are applied in the factory methods of {@code Lookup},
     * when a method handle is created.
     * This is a key difference from the Core Reflection API, since
288
     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
289 290 291 292 293 294
     * performs access checking against every caller, on every call.
     * <p>
     * All access checks start from a {@code Lookup} object, which
     * compares its recorded lookup class against all requests to
     * create method handles.
     * A single {@code Lookup} object can be used to create any number
295 296 297
     * of access-checked method handles, all checked against a single
     * lookup class.
     * <p>
298 299 300 301 302 303 304
     * A {@code Lookup} object can be shared with other trusted code,
     * such as a metaobject protocol.
     * A shared {@code Lookup} object delegates the capability
     * to create method handles on private members of the lookup class.
     * Even if privileged code uses the {@code Lookup} object,
     * the access checking is confined to the privileges of the
     * original lookup class.
305
     * <p>
306
     * A lookup can fail, because
307 308
     * the containing class is not accessible to the lookup class, or
     * because the desired class member is missing, or because the
309 310
     * desired class member is not accessible to the lookup class, or
     * because the lookup object is not trusted enough to access the member.
311 312 313 314 315 316 317 318
     * In any of these cases, a {@code ReflectiveOperationException} will be
     * thrown from the attempted lookup.  The exact class will be one of
     * the following:
     * <ul>
     * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
     * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
     * <li>IllegalAccessException &mdash; if the member exists but an access check fails
     * </ul>
319
     * <p>
320
     * In general, the conditions under which a method handle may be
321 322
     * looked up for a method {@code M} are no more restrictive than the conditions
     * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
323 324 325
     * Where the JVM would raise exceptions like {@code NoSuchMethodError},
     * a method handle lookup will generally raise a corresponding
     * checked exception, such as {@code NoSuchMethodException}.
326
     * And the effect of invoking the method handle resulting from the lookup
327 328
     * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
     * to executing the compiled, verified, and resolved call to {@code M}.
329
     * The same point is true of fields and constructors.
330 331 332 333 334 335 336 337
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * Access checks only apply to named and reflected methods,
     * constructors, and fields.
     * Other method handle creation methods, such as
     * {@link MethodHandle#asType MethodHandle.asType},
     * do not require any access checks, and are used
     * independently of any {@code Lookup} object.
338
     * <p>
339 340 341 342 343 344 345 346 347 348 349 350
     * If the desired member is {@code protected}, the usual JVM rules apply,
     * including the requirement that the lookup class must be either be in the
     * same package as the desired member, or must inherit that member.
     * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
     * In addition, if the desired member is a non-static field or method
     * in a different package, the resulting method handle may only be applied
     * to objects of the lookup class or one of its subclasses.
     * This requirement is enforced by narrowing the type of the leading
     * {@code this} parameter from {@code C}
     * (which will necessarily be a superclass of the lookup class)
     * to the lookup class itself.
     * <p>
351 352 353 354 355 356
     * The JVM imposes a similar requirement on {@code invokespecial} instruction,
     * that the receiver argument must match both the resolved method <em>and</em>
     * the current class.  Again, this requirement is enforced by narrowing the
     * type of the leading parameter to the resulting method handle.
     * (See the Java Virtual Machine Specification, section 4.10.1.9.)
     * <p>
357 358 359 360 361 362
     * The JVM represents constructors and static initializer blocks as internal methods
     * with special names ({@code "<init>"} and {@code "<clinit>"}).
     * The internal syntax of invocation instructions allows them to refer to such internal
     * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
     * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
     * <p>
363
     * In some cases, access between nested classes is obtained by the Java compiler by creating
364 365
     * an wrapper method to access a private method of another class
     * in the same top-level declaration.
366
     * For example, a nested class {@code C.D}
367
     * can access private members within other related classes such as
368 369 370 371 372 373 374
     * {@code C}, {@code C.D.E}, or {@code C.B},
     * but the Java compiler may need to generate wrapper methods in
     * those related classes.  In such cases, a {@code Lookup} object on
     * {@code C.E} would be unable to those private members.
     * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
     * which can transform a lookup on {@code C.E} into one on any of those other
     * classes, without special elevation of privilege.
375
     * <p>
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
     * The accesses permitted to a given lookup object may be limited,
     * according to its set of {@link #lookupModes lookupModes},
     * to a subset of members normally accessible to the lookup class.
     * For example, the {@link MethodHandles#publicLookup publicLookup}
     * method produces a lookup object which is only allowed to access
     * public members in public classes.
     * The caller sensitive method {@link MethodHandles#lookup lookup}
     * produces a lookup object with full capabilities relative to
     * its caller class, to emulate all supported bytecode behaviors.
     * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
     * with fewer access modes than the original lookup object.
     *
     * <p style="font-size:smaller;">
     * <a name="privacc"></a>
     * <em>Discussion of private access:</em>
     * We say that a lookup has <em>private access</em>
     * if its {@linkplain #lookupModes lookup modes}
     * include the possibility of accessing {@code private} members.
     * As documented in the relevant methods elsewhere,
     * only lookups with private access possess the following capabilities:
     * <ul style="font-size:smaller;">
     * <li>access private fields, methods, and constructors of the lookup class
     * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
     *     such as {@code Class.forName}
     * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
     * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
     *     for classes accessible to the lookup class
     * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
     *     within the same package member
     * </ul>
     * <p style="font-size:smaller;">
     * Each of these permissions is a consequence of the fact that a lookup object
     * with private access can be securely traced back to an originating class,
     * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
     * can be reliably determined and emulated by method handles.
     *
     * <h1><a name="secmgr"></a>Security manager interactions</h1>
413 414 415 416 417 418 419 420 421 422 423 424 425 426
     * Although bytecode instructions can only refer to classes in
     * a related class loader, this API can search for methods in any
     * class, as long as a reference to its {@code Class} object is
     * available.  Such cross-loader references are also possible with the
     * Core Reflection API, and are impossible to bytecode instructions
     * such as {@code invokestatic} or {@code getfield}.
     * There is a {@linkplain java.lang.SecurityManager security manager API}
     * to allow applications to check such cross-loader references.
     * These checks apply to both the {@code MethodHandles.Lookup} API
     * and the Core Reflection API
     * (as found on {@link java.lang.Class Class}).
     * <p>
     * If a security manager is present, member lookups are subject to
     * additional checks.
427
     * From one to three calls are made to the security manager.
428 429 430
     * Any of these calls can refuse access by throwing a
     * {@link java.lang.SecurityException SecurityException}.
     * Define {@code smgr} as the security manager,
431
     * {@code lookc} as the lookup class of the current lookup object,
432 433 434
     * {@code refc} as the containing class in which the member
     * is being sought, and {@code defc} as the class in which the
     * member is actually defined.
435 436
     * The value {@code lookc} is defined as <em>not present</em>
     * if the current lookup object does not have
437
     * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
438 439
     * The calls are made according to the following rules:
     * <ul>
440 441
     * <li><b>Step 1:</b>
     *     If {@code lookc} is not present, or if its class loader is not
442 443 444 445
     *     the same as or an ancestor of the class loader of {@code refc},
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(refcPkg)} is called,
     *     where {@code refcPkg} is the package of {@code refc}.
446 447
     * <li><b>Step 2:</b>
     *     If the retrieved member is not public and
448 449 450
     *     {@code lookc} is not present, then
     *     {@link SecurityManager#checkPermission smgr.checkPermission}
     *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
451 452
     * <li><b>Step 3:</b>
     *     If the retrieved member is not public,
453
     *     and if {@code lookc} is not present,
454
     *     and if {@code defc} and {@code refc} are different,
455 456 457 458
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(defcPkg)} is called,
     *     where {@code defcPkg} is the package of {@code defc}.
     * </ul>
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
     * Security checks are performed after other access checks have passed.
     * Therefore, the above rules presuppose a member that is public,
     * or else that is being accessed from a lookup class that has
     * rights to access the member.
     *
     * <h1><a name="callsens"></a>Caller sensitive methods</h1>
     * A small number of Java methods have a special property called caller sensitivity.
     * A <em>caller-sensitive</em> method can behave differently depending on the
     * identity of its immediate caller.
     * <p>
     * If a method handle for a caller-sensitive method is requested,
     * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
     * but they take account of the lookup class in a special way.
     * The resulting method handle behaves as if it were called
     * from an instruction contained in the lookup class,
     * so that the caller-sensitive method detects the lookup class.
     * (By contrast, the invoker of the method handle is disregarded.)
     * Thus, in the case of caller-sensitive methods,
     * different lookup classes may give rise to
     * differently behaving method handles.
     * <p>
     * In cases where the lookup object is
     * {@link MethodHandles#publicLookup() publicLookup()},
     * or some other lookup object without
483
     * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
484 485 486 487
     * the lookup class is disregarded.
     * In such cases, no caller-sensitive method handle can be created,
     * access is forbidden, and the lookup fails with an
     * {@code IllegalAccessException}.
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * For example, the caller-sensitive method
     * {@link java.lang.Class#forName(String) Class.forName(x)}
     * can return varying classes or throw varying exceptions,
     * depending on the class loader of the class that calls it.
     * A public lookup of {@code Class.forName} will fail, because
     * there is no reasonable way to determine its bytecode behavior.
     * <p style="font-size:smaller;">
     * If an application caches method handles for broad sharing,
     * it should use {@code publicLookup()} to create them.
     * If there is a lookup of {@code Class.forName}, it will fail,
     * and the application must take appropriate action in that case.
     * It may be that a later lookup, perhaps during the invocation of a
     * bootstrap method, can incorporate the specific identity
     * of the caller, making the method accessible.
     * <p style="font-size:smaller;">
     * The function {@code MethodHandles.lookup} is caller sensitive
     * so that there can be a secure foundation for lookups.
     * Nearly all other methods in the JSR 292 API rely on lookup
     * objects to check access requests.
509 510 511
     */
    public static final
    class Lookup {
512
        /** The class on behalf of whom the lookup is being performed. */
513 514
        private final Class<?> lookupClass;

515
        /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
516 517
        private final int allowedModes;

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
        /** A single-bit mask representing {@code public} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x01}, happens to be the same as the value of the
         *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
         */
        public static final int PUBLIC = Modifier.PUBLIC;

        /** A single-bit mask representing {@code private} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x02}, happens to be the same as the value of the
         *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
         */
        public static final int PRIVATE = Modifier.PRIVATE;

        /** A single-bit mask representing {@code protected} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x04}, happens to be the same as the value of the
         *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
         */
        public static final int PROTECTED = Modifier.PROTECTED;

        /** A single-bit mask representing {@code package} access (default access),
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value is {@code 0x08}, which does not correspond meaningfully to
         *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
         */
        public static final int PACKAGE = Modifier.STATIC;

        private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
        private static final int TRUSTED   = -1;
548 549 550 551 552 553

        private static int fixmods(int mods) {
            mods &= (ALL_MODES - PACKAGE);
            return (mods != 0) ? mods : PACKAGE;
        }

554
        /** Tells which class is performing the lookup.  It is this class against
555 556
         *  which checks are performed for visibility and access permissions.
         *  <p>
557 558
         *  The class implies a maximum level of access permission,
         *  but the permissions may be additionally limited by the bitmask
559
         *  {@link #lookupModes lookupModes}, which controls whether non-public members
560
         *  can be accessed.
561
         *  @return the lookup class, on behalf of which this lookup object finds members
562 563 564 565 566
         */
        public Class<?> lookupClass() {
            return lookupClass;
        }

567 568 569 570 571
        // This is just for calling out to MethodHandleImpl.
        private Class<?> lookupClassOrNull() {
            return (allowedModes == TRUSTED) ? null : lookupClass;
        }

572
        /** Tells which access-protection classes of members this lookup object can produce.
573 574 575 576 577
         *  The result is a bit-mask of the bits
         *  {@linkplain #PUBLIC PUBLIC (0x01)},
         *  {@linkplain #PRIVATE PRIVATE (0x02)},
         *  {@linkplain #PROTECTED PROTECTED (0x04)},
         *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
578 579
         *  <p>
         *  A freshly-created lookup object
580
         *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
581 582
         *  has all possible bits set, since the caller class can access all its own members.
         *  A lookup object on a new lookup class
583
         *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
584 585 586 587
         *  may have some mode bits set to zero.
         *  The purpose of this is to restrict access via the new lookup object,
         *  so that it can access only names which can be reached by the original
         *  lookup object, and also by the new lookup class.
588
         *  @return the lookup modes, which limit the kinds of access performed by this lookup object
589
         */
590
        public int lookupModes() {
591 592 593
            return allowedModes & ALL_MODES;
        }

594 595 596 597 598
        /** Embody the current class (the lookupClass) as a lookup class
         * for method handle creation.
         * Must be called by from a method in this package,
         * which in turn is called by a method not in this package.
         */
599
        Lookup(Class<?> lookupClass) {
600
            this(lookupClass, ALL_MODES);
601
            // make sure we haven't accidentally picked up a privileged class:
602
            checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
603 604 605
        }

        private Lookup(Class<?> lookupClass, int allowedModes) {
606
            this.lookupClass = lookupClass;
607
            this.allowedModes = allowedModes;
608 609 610
        }

        /**
611
         * Creates a lookup on the specified new lookup class.
612
         * The resulting object will report the specified
613
         * class as its own {@link #lookupClass lookupClass}.
614 615 616
         * <p>
         * However, the resulting {@code Lookup} object is guaranteed
         * to have no more access capabilities than the original.
617
         * In particular, access capabilities can be lost as follows:<ul>
618 619
         * <li>If the new lookup class differs from the old one,
         * protected members will not be accessible by virtue of inheritance.
620
         * (Protected members may continue to be accessible because of package sharing.)
621 622 623 624
         * <li>If the new lookup class is in a different package
         * than the old one, protected and default (package) members will not be accessible.
         * <li>If the new lookup class is not within the same package member
         * as the old one, private members will not be accessible.
625 626 627
         * <li>If the new lookup class is not accessible to the old lookup class,
         * then no members, not even public members, will be accessible.
         * (In all other cases, public members will continue to be accessible.)
628
         * </ul>
629 630 631 632
         *
         * @param requestedLookupClass the desired lookup class for the new lookup object
         * @return a lookup object which reports the desired lookup class
         * @throws NullPointerException if the argument is null
633
         */
634 635 636 637 638 639 640 641 642 643
        public Lookup in(Class<?> requestedLookupClass) {
            requestedLookupClass.getClass();  // null check
            if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
                return new Lookup(requestedLookupClass, ALL_MODES);
            if (requestedLookupClass == this.lookupClass)
                return this;  // keep same capabilities
            int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
            if ((newModes & PACKAGE) != 0
                && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
                newModes &= ~(PACKAGE|PRIVATE);
644
            }
645
            // Allow nestmate lookups to be created without special privilege:
646 647 648 649
            if ((newModes & PRIVATE) != 0
                && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
                newModes &= ~PRIVATE;
            }
650 651
            if ((newModes & PUBLIC) != 0
                && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
652 653 654 655
                // The requested class it not accessible from the lookup class.
                // No permissions.
                newModes = 0;
            }
656
            checkUnprivilegedlookupClass(requestedLookupClass, newModes);
657
            return new Lookup(requestedLookupClass, newModes);
658 659
        }

660
        // Make sure outer class is initialized first.
661
        static { IMPL_NAMES.getClass(); }
662

663 664 665 666
        /** Version of lookup which is trusted minimally.
         *  It can only be used to create method handles to
         *  publicly accessible members.
         */
667
        static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
668 669

        /** Package-private version of lookup which is trusted. */
670
        static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
671

672
        private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
673
            String name = lookupClass.getName();
674
            if (name.startsWith("java.lang.invoke."))
675
                throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
676 677 678 679 680 681 682 683 684

            // For caller-sensitive MethodHandles.lookup()
            // disallow lookup more restricted packages
            if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) {
                if (name.startsWith("java.") ||
                        (name.startsWith("sun.") && !name.startsWith("sun.invoke."))) {
                    throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
                }
            }
685 686
        }

687
        /**
688
         * Displays the name of the class from which lookups are to be made.
689 690 691
         * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
         * If there are restrictions on the access permitted to this lookup,
         * this is indicated by adding a suffix to the class name, consisting
692 693
         * of a slash and a keyword.  The keyword represents the strongest
         * allowed access, and is chosen as follows:
694 695 696 697 698 699 700 701 702 703
         * <ul>
         * <li>If no access is allowed, the suffix is "/noaccess".
         * <li>If only public access is allowed, the suffix is "/public".
         * <li>If only public and package access are allowed, the suffix is "/package".
         * <li>If only public, package, and private access are allowed, the suffix is "/private".
         * </ul>
         * If none of the above cases apply, it is the case that full
         * access (public, package, private, and protected) is allowed.
         * In this case, no suffix is added.
         * This is true only of an object obtained originally from
704 705
         * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
         * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
706
         * always have restricted access, and will display a suffix.
707 708 709 710 711 712 713
         * <p>
         * (It may seem strange that protected access should be
         * stronger than private access.  Viewed independently from
         * package access, protected access is the first to be lost,
         * because it requires a direct subclass relationship between
         * caller and callee.)
         * @see #in
714
         */
715 716
        @Override
        public String toString() {
717 718
            String cname = lookupClass.getName();
            switch (allowedModes) {
719 720
            case 0:  // no privileges
                return cname + "/noaccess";
721
            case PUBLIC:
722
                return cname + "/public";
723 724
            case PUBLIC|PACKAGE:
                return cname + "/package";
725 726
            case ALL_MODES & ~PROTECTED:
                return cname + "/private";
727 728
            case ALL_MODES:
                return cname;
729 730 731 732 733 734
            case TRUSTED:
                return "/trusted";  // internal only; not exported
            default:  // Should not happen, but it's a bitfield...
                cname = cname + "/" + Integer.toHexString(allowedModes);
                assert(false) : cname;
                return cname;
735
            }
736 737 738
        }

        /**
739
         * Produces a method handle for a static method.
740
         * The type of the method handle will be that of the method.
741 742
         * (Since static methods do not take receivers, there is no
         * additional receiver argument inserted into the method handle type,
743
         * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
744
         * The method and all its argument types must be accessible to the lookup object.
745 746 747 748
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
749 750 751 752
         * <p>
         * If the returned method handle is invoked, the method's class will
         * be initialized, if it has not already been initialized.
         * <p><b>Example:</b>
753
         * <blockquote><pre>{@code
754 755 756 757 758 759 760
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
  "asList", methodType(List.class, Object[].class));
assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
         * }</pre></blockquote>
761
         * @param refc the class from which the method is accessed
762 763 764
         * @param name the name of the method
         * @param type the type of the method
         * @return the desired method handle
765
         * @throws NoSuchMethodException if the method does not exist
766 767 768 769
         * @throws IllegalAccessException if access checking fails,
         *                                or if the method is not {@code static},
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
770 771
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
772
         * @throws NullPointerException if any argument is null
773 774
         */
        public
775
        MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
776
            MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
777
            return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
778
        }
779 780

        /**
781
         * Produces a method handle for a virtual method.
782
         * The type of the method handle will be that of the method,
783
         * with the receiver type (usually {@code refc}) prepended.
784
         * The method and all its argument types must be accessible to the lookup object.
785 786 787 788 789 790
         * <p>
         * When called, the handle will treat the first argument as a receiver
         * and dispatch on the receiver's type to determine which method
         * implementation to enter.
         * (The dispatching action is identical with that performed by an
         * {@code invokevirtual} or {@code invokeinterface} instruction.)
791
         * <p>
792 793 794 795 796
         * The first argument will be of type {@code refc} if the lookup
         * class has full privileges to access the member.  Otherwise
         * the member must be {@code protected} and the first argument
         * will be restricted in type to the lookup class.
         * <p>
797 798 799
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
800
         * <p>
801
         * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
802 803
         * instructions and method handles produced by {@code findVirtual},
         * if the class is {@code MethodHandle} and the name string is
804
         * {@code invokeExact} or {@code invoke}, the resulting
805
         * method handle is equivalent to one produced by
806
         * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
807
         * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
808 809
         * with the same {@code type} argument.
         *
810
         * <b>Example:</b>
811
         * <blockquote><pre>{@code
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_concat = publicLookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
  "hashCode", methodType(int.class));
MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
  "hashCode", methodType(int.class));
assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
// interface method:
MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
  "subSequence", methodType(CharSequence.class, int.class, int.class));
assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
// constructor "internal method" must be accessed differently:
MethodType MT_newString = methodType(void.class); //()V for new String()
try { assertEquals("impossible", lookup()
        .findVirtual(String.class, "<init>", MT_newString));
 } catch (NoSuchMethodException ex) { } // OK
MethodHandle MH_newString = publicLookup()
  .findConstructor(String.class, MT_newString);
assertEquals("", (String) MH_newString.invokeExact());
         * }</pre></blockquote>
         *
838
         * @param refc the class or interface from which the method is accessed
839 840 841
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
842
         * @throws NoSuchMethodException if the method does not exist
843 844 845 846
         * @throws IllegalAccessException if access checking fails,
         *                                or if the method is {@code static}
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
847 848
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
849
         * @throws NullPointerException if any argument is null
850
         */
851
        public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
852 853 854 855 856 857
            if (refc == MethodHandle.class) {
                MethodHandle mh = findVirtualForMH(name, type);
                if (mh != null)  return mh;
            }
            byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
            MemberName method = resolveOrFail(refKind, refc, name, type);
858
            return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
859
        }
860 861 862 863 864 865
        private MethodHandle findVirtualForMH(String name, MethodType type) {
            // these names require special lookups because of the implicit MethodType argument
            if ("invoke".equals(name))
                return invoker(type);
            if ("invokeExact".equals(name))
                return exactInvoker(type);
R
rfield 已提交
866
            assert(!MemberName.isMethodHandleInvokeName(name));
867
            return null;
868 869 870
        }

        /**
871
         * Produces a method handle which creates an object and initializes it, using
872 873 874
         * the constructor of the specified type.
         * The parameter types of the method handle will be those of the constructor,
         * while the return type will be a reference to the constructor's class.
875
         * The constructor and all its argument types must be accessible to the lookup object.
876
         * <p>
877 878
         * The requested type must have a return type of {@code void}.
         * (This is consistent with the JVM's treatment of constructor type descriptors.)
879 880 881 882
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
883 884 885
         * <p>
         * If the returned method handle is invoked, the constructor's class will
         * be initialized, if it has not already been initialized.
886
         * <p><b>Example:</b>
887
         * <blockquote><pre>{@code
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle MH_newArrayList = publicLookup().findConstructor(
  ArrayList.class, methodType(void.class, Collection.class));
Collection orig = Arrays.asList("x", "y");
Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
assert(orig != copy);
assertEquals(orig, copy);
// a variable-arity constructor:
MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
  ProcessBuilder.class, methodType(void.class, String[].class));
ProcessBuilder pb = (ProcessBuilder)
  MH_newProcessBuilder.invoke("x", "y", "z");
assertEquals("[x, y, z]", pb.command().toString());
         * }</pre></blockquote>
904 905 906
         * @param refc the class or interface from which the method is accessed
         * @param type the type of the method, with the receiver argument omitted, and a void return type
         * @return the desired method handle
907 908
         * @throws NoSuchMethodException if the constructor does not exist
         * @throws IllegalAccessException if access checking fails
909 910
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
911 912
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
913
         * @throws NullPointerException if any argument is null
914
         */
915
        public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
916
            String name = "<init>";
917 918
            MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
            return getDirectConstructor(refc, ctor);
919 920 921
        }

        /**
922 923 924 925
         * Produces an early-bound method handle for a virtual method.
         * It will bypass checks for overriding methods on the receiver,
         * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
         * instruction from within the explicitly specified {@code specialCaller}.
926
         * The type of the method handle will be that of the method,
927 928
         * with a suitably restricted receiver type prepended.
         * (The receiver type will be {@code specialCaller} or a subtype.)
929
         * The method and all its argument types must be accessible
930
         * to the lookup object.
931
         * <p>
932 933 934 935
         * Before method resolution,
         * if the explicitly specified caller class is not identical with the
         * lookup class, or if this lookup object does not have
         * <a href="MethodHandles.Lookup.html#privacc">private access</a>
936
         * privileges, the access fails.
937 938 939 940
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
941
         * <p style="font-size:smaller;">
942 943 944 945 946
         * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
         * even though the {@code invokespecial} instruction can refer to them
         * in special circumstances.  Use {@link #findConstructor findConstructor}
         * to access instance initialization methods in a safe manner.)</em>
         * <p><b>Example:</b>
947
         * <blockquote><pre>{@code
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
static class Listie extends ArrayList {
  public String toString() { return "[wee Listie]"; }
  static Lookup lookup() { return MethodHandles.lookup(); }
}
...
// no access to constructor via invokeSpecial:
MethodHandle MH_newListie = Listie.lookup()
  .findConstructor(Listie.class, methodType(void.class));
Listie l = (Listie) MH_newListie.invokeExact();
try { assertEquals("impossible", Listie.lookup().findSpecial(
        Listie.class, "<init>", methodType(void.class), Listie.class));
 } catch (NoSuchMethodException ex) { } // OK
// access to super and self methods via invokeSpecial:
MethodHandle MH_super = Listie.lookup().findSpecial(
  ArrayList.class, "toString" , methodType(String.class), Listie.class);
MethodHandle MH_this = Listie.lookup().findSpecial(
  Listie.class, "toString" , methodType(String.class), Listie.class);
MethodHandle MH_duper = Listie.lookup().findSpecial(
  Object.class, "toString" , methodType(String.class), Listie.class);
assertEquals("[]", (String) MH_super.invokeExact(l));
assertEquals(""+l, (String) MH_this.invokeExact(l));
assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
try { assertEquals("inaccessible", Listie.lookup().findSpecial(
        String.class, "toString", methodType(String.class), Listie.class));
 } catch (IllegalAccessException ex) { } // OK
Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
         * }</pre></blockquote>
         *
980 981
         * @param refc the class or interface from which the method is accessed
         * @param name the name of the method (which must not be "&lt;init&gt;")
982 983 984
         * @param type the type of the method, with the receiver argument omitted
         * @param specialCaller the proposed calling class to perform the {@code invokespecial}
         * @return the desired method handle
985 986
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
987 988
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
989 990
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
991
         * @throws NullPointerException if any argument is null
992
         */
993
        public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
994
                                        Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
995
            checkSpecialCaller(specialCaller);
996 997
            Lookup specialLookup = this.in(specialCaller);
            MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
998
            return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
999
        }
1000 1001

        /**
1002
         * Produces a method handle giving read access to a non-static field.
1003 1004
         * The type of the method handle will have a return type of the field's
         * value type.
1005
         * The method handle's single argument will be the instance containing
1006 1007
         * the field.
         * Access checking is performed immediately on behalf of the lookup class.
1008
         * @param refc the class or interface from which the method is accessed
1009 1010 1011
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
1012 1013
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1014 1015
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1016
         * @throws NullPointerException if any argument is null
1017
         */
1018
        public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1019 1020
            MemberName field = resolveOrFail(REF_getField, refc, name, type);
            return getDirectField(REF_getField, refc, field);
1021
        }
1022 1023

        /**
1024
         * Produces a method handle giving write access to a non-static field.
1025
         * The type of the method handle will have a void return type.
1026
         * The method handle will take two arguments, the instance containing
1027
         * the field, and the value to be stored.
1028 1029
         * The second argument will be of the field's value type.
         * Access checking is performed immediately on behalf of the lookup class.
1030
         * @param refc the class or interface from which the method is accessed
1031 1032 1033
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can store values into the field
1034 1035
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1036 1037
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1038
         * @throws NullPointerException if any argument is null
1039
         */
1040
        public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1041 1042
            MemberName field = resolveOrFail(REF_putField, refc, name, type);
            return getDirectField(REF_putField, refc, field);
1043
        }
1044 1045

        /**
1046
         * Produces a method handle giving read access to a static field.
1047 1048 1049 1050
         * The type of the method handle will have a return type of the field's
         * value type.
         * The method handle will take no arguments.
         * Access checking is performed immediately on behalf of the lookup class.
1051 1052 1053
         * <p>
         * If the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1054
         * @param refc the class or interface from which the method is accessed
1055 1056 1057
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
1058 1059
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1060 1061
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1062
         * @throws NullPointerException if any argument is null
1063
         */
1064
        public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1065 1066
            MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
            return getDirectField(REF_getStatic, refc, field);
1067
        }
1068 1069

        /**
1070
         * Produces a method handle giving write access to a static field.
1071 1072 1073
         * The type of the method handle will have a void return type.
         * The method handle will take a single
         * argument, of the field's value type, the value to be stored.
1074
         * Access checking is performed immediately on behalf of the lookup class.
1075 1076 1077
         * <p>
         * If the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1078
         * @param refc the class or interface from which the method is accessed
1079 1080
         * @param name the field's name
         * @param type the field's type
1081
         * @return a method handle which can store values into the field
1082 1083
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1084 1085
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1086
         * @throws NullPointerException if any argument is null
1087
         */
1088
        public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1089 1090
            MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
            return getDirectField(REF_putStatic, refc, field);
1091
        }
1092 1093

        /**
1094
         * Produces an early-bound method handle for a non-static method.
1095 1096
         * The receiver must have a supertype {@code defc} in which a method
         * of the given name and type is accessible to the lookup class.
1097
         * The method and all its argument types must be accessible to the lookup object.
1098 1099 1100 1101 1102
         * The type of the method handle will be that of the method,
         * without any insertion of an additional receiver parameter.
         * The given receiver will be bound into the method handle,
         * so that every call to the method handle will invoke the
         * requested method on the given receiver.
1103
         * <p>
1104 1105 1106 1107 1108 1109 1110 1111
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set
         * <em>and</em> the trailing array argument is not the only argument.
         * (If the trailing array argument is the only argument,
         * the given receiver value will be bound to it.)
         * <p>
         * This is equivalent to the following code:
1112
         * <blockquote><pre>{@code
1113 1114 1115
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
1116 1117
MethodHandle mh0 = lookup().findVirtual(defc, name, type);
MethodHandle mh1 = mh0.bindTo(receiver);
1118
MethodType mt1 = mh1.type();
1119
if (mh0.isVarargsCollector())
1120 1121
  mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
return mh1;
1122
         * }</pre></blockquote>
1123 1124 1125
         * where {@code defc} is either {@code receiver.getClass()} or a super
         * type of that class, in which the requested method is accessible
         * to the lookup class.
1126
         * (Note that {@code bindTo} does not preserve variable arity.)
1127 1128 1129 1130
         * @param receiver the object from which the method is accessed
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
1131 1132
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
1133 1134
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1135 1136
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1137
         * @throws NullPointerException if any argument is null
1138 1139
         * @see MethodHandle#bindTo
         * @see #findVirtual
1140
         */
1141
        public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1142
            Class<? extends Object> refc = receiver.getClass(); // may get NPE
1143
            MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1144
            MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1145
            return mh.bindReceiver(receiver).setVarargs(method);
1146 1147 1148
        }

        /**
1149 1150
         * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
         * to <i>m</i>, if the lookup class has permission.
1151 1152 1153 1154 1155 1156 1157 1158
         * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
         * If <i>m</i> is virtual, overriding is respected on every call.
         * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
         * The type of the method handle will be that of the method,
         * with the receiver type prepended (but only if it is non-static).
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class.
         * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1159 1160 1161 1162
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
1163 1164 1165 1166
         * <p>
         * If <i>m</i> is static, and
         * if the returned method handle is invoked, the method's class will
         * be initialized, if it has not already been initialized.
1167 1168
         * @param m the reflected method
         * @return a method handle which can invoke the reflected method
1169
         * @throws IllegalAccessException if access checking fails
1170 1171
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1172
         * @throws NullPointerException if the argument is null
1173
         */
1174
        public MethodHandle unreflect(Method m) throws IllegalAccessException {
R
rfield 已提交
1175 1176 1177 1178
            if (m.getDeclaringClass() == MethodHandle.class) {
                MethodHandle mh = unreflectForMH(m);
                if (mh != null)  return mh;
            }
1179
            MemberName method = new MemberName(m);
1180 1181 1182
            byte refKind = method.getReferenceKind();
            if (refKind == REF_invokeSpecial)
                refKind = REF_invokeVirtual;
1183
            assert(method.isMethod());
1184
            Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1185
            return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1186
        }
R
rfield 已提交
1187 1188 1189 1190 1191 1192
        private MethodHandle unreflectForMH(Method m) {
            // these names require special lookups because they throw UnsupportedOperationException
            if (MemberName.isMethodHandleInvokeName(m.getName()))
                return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
            return null;
        }
1193 1194

        /**
1195
         * Produces a method handle for a reflected method.
1196
         * It will bypass checks for overriding methods on the receiver,
1197 1198
         * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
         * instruction from within the explicitly specified {@code specialCaller}.
1199
         * The type of the method handle will be that of the method,
1200 1201
         * with a suitably restricted receiver type prepended.
         * (The receiver type will be {@code specialCaller} or a subtype.)
1202 1203 1204
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class,
         * as if {@code invokespecial} instruction were being linked.
1205
         * <p>
1206 1207 1208 1209 1210 1211
         * Before method resolution,
         * if the explicitly specified caller class is not identical with the
         * lookup class, or if this lookup object does not have
         * <a href="MethodHandles.Lookup.html#privacc">private access</a>
         * privileges, the access fails.
         * <p>
1212 1213 1214
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
1215
         * @param m the reflected method
1216
         * @param specialCaller the class nominally calling the method
1217
         * @return a method handle which can invoke the reflected method
1218
         * @throws IllegalAccessException if access checking fails
1219 1220
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1221
         * @throws NullPointerException if any argument is null
1222
         */
1223
        public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1224
            checkSpecialCaller(specialCaller);
1225 1226
            Lookup specialLookup = this.in(specialCaller);
            MemberName method = new MemberName(m, true);
1227 1228
            assert(method.isMethod());
            // ignore m.isAccessible:  this is a new kind of access
1229
            return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1230 1231 1232
        }

        /**
1233
         * Produces a method handle for a reflected constructor.
1234 1235
         * The type of the method handle will be that of the constructor,
         * with the return type changed to the declaring class.
1236 1237 1238 1239 1240
         * The method handle will perform a {@code newInstance} operation,
         * creating a new instance of the constructor's class on the
         * arguments passed to the method handle.
         * <p>
         * If the constructor's {@code accessible} flag is not set,
1241
         * access checking is performed immediately on behalf of the lookup class.
1242 1243 1244 1245
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1246 1247 1248
         * <p>
         * If the returned method handle is invoked, the constructor's class will
         * be initialized, if it has not already been initialized.
1249
         * @param c the reflected constructor
1250
         * @return a method handle which can invoke the reflected constructor
1251
         * @throws IllegalAccessException if access checking fails
1252 1253
         *                                or if the method's variable arity modifier bit
         *                                is set and {@code asVarargsCollector} fails
1254
         * @throws NullPointerException if the argument is null
1255
         */
1256
        public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1257 1258
            MemberName ctor = new MemberName(c);
            assert(ctor.isConstructor());
1259
            Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1260
            return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1261 1262 1263
        }

        /**
1264
         * Produces a method handle giving read access to a reflected field.
1265
         * The type of the method handle will have a return type of the field's
1266 1267 1268 1269
         * value type.
         * If the field is static, the method handle will take no arguments.
         * Otherwise, its single argument will be the instance containing
         * the field.
1270
         * If the field's {@code accessible} flag is not set,
1271
         * access checking is performed immediately on behalf of the lookup class.
1272 1273 1274 1275
         * <p>
         * If the field is static, and
         * if the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1276 1277
         * @param f the reflected field
         * @return a method handle which can load values from the reflected field
1278 1279
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
1280
         */
1281
        public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1282 1283 1284 1285 1286 1287 1288 1289
            return unreflectField(f, false);
        }
        private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
            MemberName field = new MemberName(f, isSetter);
            assert(isSetter
                    ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
                    : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
            Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1290
            return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1291 1292 1293
        }

        /**
1294
         * Produces a method handle giving write access to a reflected field.
1295
         * The type of the method handle will have a void return type.
1296 1297 1298 1299
         * If the field is static, the method handle will take a single
         * argument, of the field's value type, the value to be stored.
         * Otherwise, the two arguments will be the instance containing
         * the field, and the value to be stored.
1300
         * If the field's {@code accessible} flag is not set,
1301
         * access checking is performed immediately on behalf of the lookup class.
1302 1303 1304 1305
         * <p>
         * If the field is static, and
         * if the returned method handle is invoked, the field's class will
         * be initialized, if it has not already been initialized.
1306 1307
         * @param f the reflected field
         * @return a method handle which can store values into the reflected field
1308 1309
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
1310
         */
1311
        public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1312
            return unreflectField(f, true);
1313 1314
        }

R
rfield 已提交
1315
        /**
1316 1317
         * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
         * created by this lookup object or a similar one.
R
rfield 已提交
1318 1319 1320 1321
         * Security and access checks are performed to ensure that this lookup object
         * is capable of reproducing the target method handle.
         * This means that the cracking may fail if target is a direct method handle
         * but was created by an unrelated lookup object.
1322 1323
         * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
         * and was created by a lookup object for a different class.
R
rfield 已提交
1324 1325 1326 1327 1328 1329
         * @param target a direct method handle to crack into symbolic reference components
         * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
         * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
         * @exception NullPointerException if the target is {@code null}
1330
         * @see MethodHandleInfo
R
rfield 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
         * @since 1.8
         */
        public MethodHandleInfo revealDirect(MethodHandle target) {
            MemberName member = target.internalMemberName();
            if (member == null || (!member.isResolved() && !member.isMethodHandleInvoke()))
                throw newIllegalArgumentException("not a direct method handle");
            Class<?> defc = member.getDeclaringClass();
            byte refKind = member.getReferenceKind();
            assert(MethodHandleNatives.refKindIsValid(refKind));
            if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
                // Devirtualized method invocation is usually formally virtual.
                // To avoid creating extra MemberName objects for this common case,
                // we encode this extra degree of freedom using MH.isInvokeSpecial.
                refKind = REF_invokeVirtual;
            if (refKind == REF_invokeVirtual && defc.isInterface())
                // Symbolic reference is through interface but resolves to Object method (toString, etc.)
                refKind = REF_invokeInterface;
            // Check SM permissions and member access before cracking.
            try {
                checkAccess(refKind, defc, member);
1351
                checkSecurityManager(defc, member);
R
rfield 已提交
1352 1353 1354
            } catch (IllegalAccessException ex) {
                throw new IllegalArgumentException(ex);
            }
1355 1356 1357 1358 1359
            if (allowedModes != TRUSTED && member.isCallerSensitive()) {
                Class<?> callerClass = target.internalCallerClass();
                if (!hasPrivateAccess() || callerClass != lookupClass())
                    throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
            }
R
rfield 已提交
1360 1361 1362 1363
            // Produce the handle to the results.
            return new InfoFromMemberName(this, member, refKind);
        }

1364
        /// Helper methods, all package-private.
1365

1366
        MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1367
            checkSymbolicClass(refc);  // do this before attempting to resolve
1368 1369
            name.getClass();  // NPE
            type.getClass();  // NPE
1370
            return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1371
                                            NoSuchFieldException.class);
1372
        }
1373

1374
        MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1375
            checkSymbolicClass(refc);  // do this before attempting to resolve
1376 1377
            name.getClass();  // NPE
            type.getClass();  // NPE
1378
            checkMethodName(refKind, name);  // NPE check on name
1379
            return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1380
                                            NoSuchMethodException.class);
1381
        }
1382

1383 1384 1385 1386 1387 1388 1389 1390
        MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
            checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
            member.getName().getClass();  // NPE
            member.getType().getClass();  // NPE
            return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
                                            ReflectiveOperationException.class);
        }

1391
        void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1392
            refc.getClass();  // NPE
1393
            Class<?> caller = lookupClassOrNull();
1394
            if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
1395
                throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this);
1396 1397
        }

1398
        /** Check name for an illegal leading "&lt;" character. */
1399 1400 1401 1402 1403 1404
        void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
            if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
                throw new NoSuchMethodException("illegal method name: "+name);
        }


1405 1406 1407
        /**
         * Find my trustable caller class if m is a caller sensitive method.
         * If this lookup object has private access, then the caller class is the lookupClass.
1408
         * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
1409
         */
1410
        Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
1411 1412
            Class<?> callerClass = null;
            if (MethodHandleNatives.isCallerSensitive(m)) {
1413 1414
                // Only lookups with private access are allowed to resolve caller-sensitive methods
                if (hasPrivateAccess()) {
1415 1416 1417 1418
                    callerClass = lookupClass;
                } else {
                    throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
                }
1419 1420 1421
            }
            return callerClass;
        }
1422

1423
        private boolean hasPrivateAccess() {
1424 1425 1426
            return (allowedModes & PRIVATE) != 0;
        }

1427 1428
        /**
         * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
1429 1430
         * Determines a trustable caller class to compare with refc, the symbolic reference class.
         * If this lookup object has private access, then the caller class is the lookupClass.
1431
         */
1432
        void checkSecurityManager(Class<?> refc, MemberName m) {
1433 1434 1435
            SecurityManager smgr = System.getSecurityManager();
            if (smgr == null)  return;
            if (allowedModes == TRUSTED)  return;
1436

1437
            // Step 1:
1438 1439
            boolean fullPowerLookup = hasPrivateAccess();
            if (!fullPowerLookup ||
1440 1441 1442
                !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
                ReflectUtil.checkPackageAccess(refc);
            }
1443

1444
            // Step 2:
1445
            if (m.isPublic()) return;
1446 1447
            if (!fullPowerLookup) {
                smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
1448 1449
            }

1450
            // Step 3:
1451 1452
            Class<?> defc = m.getDeclaringClass();
            if (!fullPowerLookup && defc != refc) {
1453 1454
                ReflectUtil.checkPackageAccess(defc);
            }
1455 1456
        }

1457 1458
        void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            boolean wantStatic = (refKind == REF_invokeStatic);
1459 1460 1461 1462 1463 1464 1465 1466
            String message;
            if (m.isConstructor())
                message = "expected a method, not a constructor";
            else if (!m.isMethod())
                message = "expected a method";
            else if (wantStatic != m.isStatic())
                message = wantStatic ? "expected a static method" : "expected a non-static method";
            else
1467
                { checkAccess(refKind, refc, m); return; }
1468
            throw m.makeAccessException(message, this);
1469 1470
        }

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
        void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
            String message;
            if (wantStatic != m.isStatic())
                message = wantStatic ? "expected a static field" : "expected a non-static field";
            else
                { checkAccess(refKind, refc, m); return; }
            throw m.makeAccessException(message, this);
        }

1481
        /** Check public/protected/private bits on the symbolic reference class and its member. */
1482 1483 1484 1485
        void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
            assert(m.referenceKindIsConsistentWith(refKind) &&
                   MethodHandleNatives.refKindIsValid(refKind) &&
                   (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
1486 1487 1488
            int allowedModes = this.allowedModes;
            if (allowedModes == TRUSTED)  return;
            int mods = m.getModifiers();
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
            if (Modifier.isProtected(mods) &&
                    refKind == REF_invokeVirtual &&
                    m.getDeclaringClass() == Object.class &&
                    m.getName().equals("clone") &&
                    refc.isArray()) {
                // The JVM does this hack also.
                // (See ClassVerifier::verify_invoke_instructions
                // and LinkResolver::check_method_accessability.)
                // Because the JVM does not allow separate methods on array types,
                // there is no separate method for int[].clone.
                // All arrays simply inherit Object.clone.
                // But for access checking logic, we make Object.clone
                // (normally protected) appear to be public.
                // Later on, when the DirectMethodHandle is created,
                // its leading argument will be restricted to the
                // requested array type.
                // N.B. The return type is not adjusted, because
                // that is *not* the bytecode behavior.
                mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
            }
1509 1510 1511 1512
            if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
                // cannot "new" a protected ctor in a different package
                mods ^= Modifier.PROTECTED;
            }
1513 1514 1515
            if (Modifier.isFinal(mods) &&
                    MethodHandleNatives.refKindIsSetter(refKind))
                throw m.makeAccessException("unexpected set of a final field", this);
1516
            if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
1517 1518
                return;  // common case
            int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
1519 1520 1521 1522 1523
            if ((requestedModes & allowedModes) != 0) {
                if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
                                                    mods, lookupClass(), allowedModes))
                    return;
            } else {
1524
                // Protected members can also be checked as if they were package-private.
1525 1526 1527 1528
                if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
                        && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
                    return;
            }
1529
            throw m.makeAccessException(accessFailedMessage(refc, m), this);
1530 1531 1532 1533 1534
        }

        String accessFailedMessage(Class<?> refc, MemberName m) {
            Class<?> defc = m.getDeclaringClass();
            int mods = m.getModifiers();
1535 1536 1537 1538 1539
            // check the class first:
            boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
                               (defc == refc ||
                                Modifier.isPublic(refc.getModifiers())));
            if (!classOK && (allowedModes & PACKAGE) != 0) {
1540
                classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
1541
                           (defc == refc ||
1542
                            VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
1543 1544
            }
            if (!classOK)
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
                return "class is not public";
            if (Modifier.isPublic(mods))
                return "access to public member failed";  // (how?)
            if (Modifier.isPrivate(mods))
                return "member is private";
            if (Modifier.isProtected(mods))
                return "member is protected";
            return "member is private to package";
        }

1555 1556
        private static final boolean ALLOW_NESTMATE_ACCESS = false;

1557 1558
        private void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
            int allowedModes = this.allowedModes;
1559
            if (allowedModes == TRUSTED)  return;
1560
            if (!hasPrivateAccess()
1561 1562 1563
                || (specialCaller != lookupClass()
                    && !(ALLOW_NESTMATE_ACCESS &&
                         VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
1564 1565
                throw new MemberName(specialCaller).
                    makeAccessException("no private access for invokespecial", this);
1566 1567
        }

1568
        private boolean restrictProtectedReceiver(MemberName method) {
1569 1570 1571 1572
            // The accessing class only has the right to use a protected member
            // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
            if (!method.isProtected() || method.isStatic()
                || allowedModes == TRUSTED
1573
                || method.getDeclaringClass() == lookupClass()
1574
                || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
1575 1576
                || (ALLOW_NESTMATE_ACCESS &&
                    VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
1577 1578
                return false;
            return true;
1579
        }
1580
        private MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException {
1581
            assert(!method.isStatic());
1582 1583
            // receiver type of mh is too wide; narrow to caller
            if (!method.getDeclaringClass().isAssignableFrom(caller)) {
1584
                throw method.makeAccessException("caller class must be a subclass below the method", caller);
1585
            }
1586 1587 1588
            MethodType rawType = mh.type();
            if (rawType.parameterType(0) == caller)  return mh;
            MethodType narrowType = rawType.changeParameterType(0, caller);
1589
            return mh.viewAsType(narrowType);
1590 1591
        }

1592
        /** Check access and get the requested method. */
1593
        private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1594 1595 1596
            final boolean doRestrict    = true;
            final boolean checkSecurity = true;
            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1597
        }
1598
        /** Check access and get the requested method, eliding receiver narrowing rules. */
1599
        private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1600 1601 1602 1603 1604 1605 1606 1607 1608
            final boolean doRestrict    = false;
            final boolean checkSecurity = true;
            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
        }
        /** Check access and get the requested method, eliding security manager checks. */
        private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
            final boolean doRestrict    = true;
            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1609
        }
1610
        /** Common code for all methods; do not call directly except from immediately above. */
1611
        private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
1612
                                                   boolean checkSecurity,
1613
                                                   boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
1614
            checkMethod(refKind, refc, method);
1615 1616 1617
            // Optionally check with the security manager; this isn't needed for unreflect* calls.
            if (checkSecurity)
                checkSecurityManager(refc, method);
R
rfield 已提交
1618
            assert(!method.isMethodHandleInvoke());
1619 1620 1621

            if (refKind == REF_invokeSpecial &&
                refc != lookupClass() &&
R
rfield 已提交
1622
                !refc.isInterface() &&
1623
                refc != lookupClass().getSuperclass() &&
1624 1625 1626 1627 1628
                refc.isAssignableFrom(lookupClass())) {
                assert(!method.getName().equals("<init>"));  // not this code path
                // Per JVMS 6.5, desc. of invokespecial instruction:
                // If the method is in a superclass of the LC,
                // and if our original search was above LC.super,
1629 1630 1631
                // repeat the search (symbolic lookup) from LC.super
                // and continue with the direct superclass of that class,
                // and so forth, until a match is found or no further superclasses exist.
1632
                // FIXME: MemberName.resolve should handle this instead.
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
                Class<?> refcAsSuper = lookupClass();
                MemberName m2;
                do {
                    refcAsSuper = refcAsSuper.getSuperclass();
                    m2 = new MemberName(refcAsSuper,
                                        method.getName(),
                                        method.getMethodType(),
                                        REF_invokeSpecial);
                    m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
                } while (m2 == null &&         // no method is found yet
                         refc != refcAsSuper); // search up to refc
1644 1645 1646 1647 1648 1649 1650
                if (m2 == null)  throw new InternalError(method.toString());
                method = m2;
                refc = refcAsSuper;
                // redo basic checks
                checkMethod(refKind, refc, method);
            }

1651
            MethodHandle mh = DirectMethodHandle.make(refKind, refc, method);
1652
            mh = maybeBindCaller(method, mh, callerClass);
1653
            mh = mh.setVarargs(method);
1654 1655 1656 1657 1658
            // Optionally narrow the receiver argument to refc using restrictReceiver.
            if (doRestrict &&
                   (refKind == REF_invokeSpecial ||
                       (MethodHandleNatives.refKindHasReceiver(refKind) &&
                           restrictProtectedReceiver(method))))
1659 1660 1661
                mh = restrictReceiver(method, mh, lookupClass());
            return mh;
        }
1662 1663 1664
        private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
                                             Class<?> callerClass)
                                             throws IllegalAccessException {
1665 1666 1667
            if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
                return mh;
            Class<?> hostClass = lookupClass;
1668
            if (!hasPrivateAccess())  // caller must have private access
1669
                hostClass = callerClass;  // callerClass came from a security manager style stack walk
1670 1671 1672 1673
            MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
            // Note: caller will apply varargs after this step happens.
            return cbmh;
        }
1674
        /** Check access and get the requested field. */
1675
        private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
            final boolean checkSecurity = true;
            return getDirectFieldCommon(refKind, refc, field, checkSecurity);
        }
        /** Check access and get the requested field, eliding security manager checks. */
        private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
            return getDirectFieldCommon(refKind, refc, field, checkSecurity);
        }
        /** Common code for all fields; do not call directly except from immediately above. */
        private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
                                                  boolean checkSecurity) throws IllegalAccessException {
1687
            checkField(refKind, refc, field);
1688 1689 1690
            // Optionally check with the security manager; this isn't needed for unreflect* calls.
            if (checkSecurity)
                checkSecurityManager(refc, field);
1691 1692 1693 1694 1695 1696 1697
            MethodHandle mh = DirectMethodHandle.make(refc, field);
            boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
                                    restrictProtectedReceiver(field));
            if (doRestrict)
                mh = restrictReceiver(field, mh, lookupClass());
            return mh;
        }
1698
        /** Check access and get the requested constructor. */
1699
        private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
            final boolean checkSecurity = true;
            return getDirectConstructorCommon(refc, ctor, checkSecurity);
        }
        /** Check access and get the requested constructor, eliding security manager checks. */
        private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
            return getDirectConstructorCommon(refc, ctor, checkSecurity);
        }
        /** Common code for all constructors; do not call directly except from immediately above. */
        private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
                                                  boolean checkSecurity) throws IllegalAccessException {
1711 1712
            assert(ctor.isConstructor());
            checkAccess(REF_newInvokeSpecial, refc, ctor);
1713 1714 1715
            // Optionally check with the security manager; this isn't needed for unreflect* calls.
            if (checkSecurity)
                checkSecurityManager(refc, ctor);
1716
            assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
1717
            return DirectMethodHandle.make(ctor).setVarargs(ctor);
1718
        }
1719 1720 1721 1722

        /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
         */
        /*non-public*/
1723
        MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
1724 1725 1726 1727 1728 1729 1730 1731
            if (!(type instanceof Class || type instanceof MethodType))
                throw new InternalError("unresolved MemberName");
            MemberName member = new MemberName(refKind, defc, name, type);
            MethodHandle mh = LOOKASIDE_TABLE.get(member);
            if (mh != null) {
                checkSymbolicClass(defc);
                return mh;
            }
1732 1733 1734 1735 1736 1737 1738
            // Treat MethodHandle.invoke and invokeExact specially.
            if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
                mh = findVirtualForMH(member.getName(), member.getMethodType());
                if (mh != null) {
                    return mh;
                }
            }
1739
            MemberName resolved = resolveOrFail(refKind, member);
1740
            mh = getDirectMethodForConstant(refKind, defc, resolved);
1741 1742 1743 1744 1745 1746 1747 1748 1749
            if (mh instanceof DirectMethodHandle
                    && canBeCached(refKind, defc, resolved)) {
                MemberName key = mh.internalMemberName();
                if (key != null) {
                    key = key.asNormalOriginal();
                }
                if (member.equals(key)) {  // better safe than sorry
                    LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
                }
1750
            }
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
            return mh;
        }
        private
        boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
            if (refKind == REF_invokeSpecial) {
                return false;
            }
            if (!Modifier.isPublic(defc.getModifiers()) ||
                    !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
                    !member.isPublic() ||
                    member.isCallerSensitive()) {
                return false;
            }
            ClassLoader loader = defc.getClassLoader();
            if (!sun.misc.VM.isSystemDomainLoader(loader)) {
                ClassLoader sysl = ClassLoader.getSystemClassLoader();
                boolean found = false;
                while (sysl != null) {
                    if (loader == sysl) { found = true; break; }
                    sysl = sysl.getParent();
                }
                if (!found) {
                    return false;
                }
            }
            try {
                MemberName resolved2 = publicLookup().resolveOrFail(refKind,
                    new MemberName(refKind, defc, member.getName(), member.getType()));
                checkSecurityManager(defc, resolved2);
            } catch (ReflectiveOperationException | SecurityException ex) {
                return false;
            }
            return true;
        }
        private
1786 1787
        MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
                throws ReflectiveOperationException {
1788
            if (MethodHandleNatives.refKindIsField(refKind)) {
1789
                return getDirectFieldNoSecurityManager(refKind, defc, member);
1790
            } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
1791
                return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
1792
            } else if (refKind == REF_newInvokeSpecial) {
1793
                return getDirectConstructorNoSecurityManager(defc, member);
1794 1795
            }
            // oops
1796
            throw newIllegalArgumentException("bad MethodHandle constant #"+member);
1797
        }
1798 1799

        static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
1800 1801 1802
    }

    /**
1803
     * Produces a method handle giving read access to elements of an array.
1804 1805 1806 1807 1808
     * The type of the method handle will have a return type of the array's
     * element type.  Its first argument will be the array type,
     * and the second will be {@code int}.
     * @param arrayClass an array type
     * @return a method handle which can load values from the given array type
1809
     * @throws NullPointerException if the argument is null
1810 1811 1812 1813
     * @throws  IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
1814
        return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false);
1815 1816 1817
    }

    /**
1818
     * Produces a method handle giving write access to elements of an array.
1819 1820 1821
     * The type of the method handle will have a void return type.
     * Its last argument will be the array's element type.
     * The first and second arguments will be the array type and int.
1822
     * @param arrayClass the class of an array
1823
     * @return a method handle which can store values into the array type
1824
     * @throws NullPointerException if the argument is null
1825 1826 1827 1828
     * @throws IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
1829
        return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true);
1830 1831 1832 1833 1834
    }

    /// method handle invocation (reflective style)

    /**
1835
     * Produces a method handle which will invoke any method handle of the
1836 1837
     * given {@code type}, with a given number of trailing arguments replaced by
     * a single trailing {@code Object[]} array.
1838 1839 1840 1841
     * The resulting invoker will be a method handle with the following
     * arguments:
     * <ul>
     * <li>a single {@code MethodHandle} target
1842 1843
     * <li>zero or more leading values (counted by {@code leadingArgCount})
     * <li>an {@code Object[]} array containing trailing arguments
1844
     * </ul>
1845
     * <p>
1846
     * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
1847 1848
     * the indicated {@code type}.
     * That is, if the target is exactly of the given {@code type}, it will behave
1849
     * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
1850 1851 1852
     * is used to convert the target to the required {@code type}.
     * <p>
     * The type of the returned invoker will not be the given {@code type}, but rather
1853 1854 1855
     * will have all parameters except the first {@code leadingArgCount}
     * replaced by a single array of type {@code Object[]}, which will be
     * the final parameter.
1856
     * <p>
1857
     * Before invoking its target, the invoker will spread the final array, apply
1858
     * reference casts as necessary, and unbox and widen primitive arguments.
1859 1860 1861
     * If, when the invoker is called, the supplied array argument does
     * not have the correct number of elements, the invoker will throw
     * an {@link IllegalArgumentException} instead of invoking the target.
1862 1863
     * <p>
     * This method is equivalent to the following code (though it may be more efficient):
1864
     * <blockquote><pre>{@code
1865
MethodHandle invoker = MethodHandles.invoker(type);
1866
int spreadArgCount = type.parameterCount() - leadingArgCount;
1867 1868
invoker = invoker.asSpreader(Object[].class, spreadArgCount);
return invoker;
1869
     * }</pre></blockquote>
1870
     * This method throws no reflective or security exceptions.
1871
     * @param type the desired target type
1872
     * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
1873
     * @return a method handle suitable for invoking any method handle of the given type
1874 1875
     * @throws NullPointerException if {@code type} is null
     * @throws IllegalArgumentException if {@code leadingArgCount} is not in
1876 1877 1878
     *                  the range from 0 to {@code type.parameterCount()} inclusive,
     *                  or if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1879 1880
     */
    static public
1881 1882 1883 1884
    MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
        if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
            throw new IllegalArgumentException("bad argument count "+leadingArgCount);
        return type.invokers().spreadInvoker(leadingArgCount);
1885 1886 1887
    }

    /**
1888
     * Produces a special <em>invoker method handle</em> which can be used to
1889
     * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
1890
     * The resulting invoker will have a type which is
1891 1892 1893
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
1894
     * This method is equivalent to the following code (though it may be more efficient):
1895
     * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
1896 1897 1898 1899 1900 1901 1902 1903
     *
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * Invoker method handles can be useful when working with variable method handles
     * of unknown types.
     * For example, to emulate an {@code invokeExact} call to a variable method
     * handle {@code M}, extract its type {@code T},
     * look up the invoker method {@code X} for {@code T},
1904
     * and call the invoker method, as {@code X.invoke(T, A...)}.
1905 1906 1907 1908 1909
     * (It would not work to call {@code X.invokeExact}, since the type {@code T}
     * is unknown.)
     * If spreading, collecting, or other argument transformations are required,
     * they can be applied once to the invoker {@code X} and reused on many {@code M}
     * method handle values, as long as they are compatible with the type of {@code X}.
1910
     * <p style="font-size:smaller;">
1911
     * <em>(Note:  The invoker method is not available via the Core Reflection API.
1912
     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1913
     * on the declared {@code invokeExact} or {@code invoke} method will raise an
1914 1915 1916
     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
     * <p>
     * This method throws no reflective or security exceptions.
1917 1918
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle of the given type
1919 1920
     * @throws IllegalArgumentException if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1921 1922 1923
     */
    static public
    MethodHandle exactInvoker(MethodType type) {
1924
        return type.invokers().exactInvoker();
1925 1926
    }

1927 1928
    /**
     * Produces a special <em>invoker method handle</em> which can be used to
1929
     * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
1930 1931 1932 1933
     * The resulting invoker will have a type which is
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
1934 1935
     * Before invoking its target, if the target differs from the expected type,
     * the invoker will apply reference casts as
1936 1937 1938 1939
     * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
     * Similarly, the return value will be converted as necessary.
     * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
     * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
1940
     * <p>
1941 1942 1943 1944 1945
     * This method is equivalent to the following code (though it may be more efficient):
     * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * A {@linkplain MethodType#genericMethodType general method type} is one which
1946 1947 1948
     * mentions only {@code Object} arguments and return values.
     * An invoker for such a type is capable of calling any method handle
     * of the same arity as the general type.
1949 1950 1951 1952 1953
     * <p style="font-size:smaller;">
     * <em>(Note:  The invoker method is not available via the Core Reflection API.
     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
     * on the declared {@code invokeExact} or {@code invoke} method will raise an
     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
1954 1955 1956 1957
     * <p>
     * This method throws no reflective or security exceptions.
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle convertible to the given type
1958 1959
     * @throws IllegalArgumentException if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1960 1961
     */
    static public
1962 1963 1964 1965
    MethodHandle invoker(MethodType type) {
        return type.invokers().generalInvoker();
    }

1966 1967 1968
    static /*non-public*/
    MethodHandle basicInvoker(MethodType type) {
        return type.form().basicInvoker();
1969 1970
    }

1971
     /// method handle modification (creation from other method handles)
1972 1973

    /**
1974
     * Produces a method handle which adapts the type of the
1975
     * given method handle to a new type by pairwise argument and return type conversion.
1976 1977 1978 1979 1980 1981
     * The original type and new type must have the same number of arguments.
     * The resulting method handle is guaranteed to report a type
     * which is equal to the desired new type.
     * <p>
     * If the original type and new type are equal, returns target.
     * <p>
1982
     * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
1983
     * and some additional conversions are also applied if those conversions fail.
1984 1985
     * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
     * if possible, before or instead of any conversions done by {@code asType}:
1986
     * <ul>
1987 1988
     * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
     *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
1989
     *     (This treatment of interfaces follows the usage of the bytecode verifier.)
1990 1991
     * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
     *     the boolean is converted to a byte value, 1 for true, 0 for false.
1992
     *     (This treatment follows the usage of the bytecode verifier.)
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
     * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
     *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
     *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
     * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
     *     then a Java casting conversion (JLS 5.5) is applied.
     *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
     *     widening and/or narrowing.)
     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
     *     conversion will be applied at runtime, possibly followed
     *     by a Java casting conversion (JLS 5.5) on the primitive value,
     *     possibly followed by a conversion from byte to boolean by testing
     *     the low-order bit.
     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
     *     and if the reference is null at runtime, a zero value is introduced.
2007 2008 2009
     * </ul>
     * @param target the method handle to invoke after arguments are retyped
     * @param newType the expected type of the new method handle
2010
     * @return a method handle which delegates to the target after performing
2011 2012
     *           any necessary argument conversions, and arranges for any
     *           necessary return value conversions
2013
     * @throws NullPointerException if either argument is null
2014 2015 2016 2017 2018
     * @throws WrongMethodTypeException if the conversion cannot be made
     * @see MethodHandle#asType
     */
    public static
    MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
2019 2020 2021 2022
        if (!target.type().isCastableTo(newType)) {
            throw new WrongMethodTypeException("cannot explicitly cast "+target+" to "+newType);
        }
        return MethodHandleImpl.makePairwiseConvert(target, newType, 2);
2023 2024 2025
    }

    /**
2026
     * Produces a method handle which adapts the calling sequence of the
2027
     * given method handle to a new type, by reordering the arguments.
2028
     * The resulting method handle is guaranteed to report a type
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
     * which is equal to the desired new type.
     * <p>
     * The given array controls the reordering.
     * Call {@code #I} the number of incoming parameters (the value
     * {@code newType.parameterCount()}, and call {@code #O} the number
     * of outgoing parameters (the value {@code target.type().parameterCount()}).
     * Then the length of the reordering array must be {@code #O},
     * and each element must be a non-negative number less than {@code #I}.
     * For every {@code N} less than {@code #O}, the {@code N}-th
     * outgoing argument will be taken from the {@code I}-th incoming
     * argument, where {@code I} is {@code reorder[N]}.
     * <p>
2041 2042
     * No argument or return value conversions are applied.
     * The type of each incoming argument, as determined by {@code newType},
2043 2044
     * must be identical to the type of the corresponding outgoing parameter
     * or parameters in the target method handle.
2045 2046 2047
     * The return type of {@code newType} must be identical to the return
     * type of the original target.
     * <p>
2048 2049 2050 2051
     * The reordering array need not specify an actual permutation.
     * An incoming argument will be duplicated if its index appears
     * more than once in the array, and an incoming argument will be dropped
     * if its index does not appear in the array.
2052 2053 2054
     * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
     * incoming arguments which are not mentioned in the reordering array
     * are may be any type, as determined only by {@code newType}.
A
alanb 已提交
2055
     * <blockquote><pre>{@code
2056 2057 2058 2059 2060
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodType intfn1 = methodType(int.class, int.class);
MethodType intfn2 = methodType(int.class, int.class, int.class);
2061
MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2062
assert(sub.type().equals(intfn2));
2063 2064
MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2065
assert((int)rsub.invokeExact(1, 100) == 99);
2066
MethodHandle add = ... (int x, int y) -> (x+y) ...;
2067
assert(add.type().equals(intfn2));
2068
MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2069 2070
assert(twice.type().equals(intfn1));
assert((int)twice.invokeExact(21) == 42);
A
alanb 已提交
2071
     * }</pre></blockquote>
2072 2073
     * @param target the method handle to invoke after arguments are reordered
     * @param newType the expected type of the new method handle
2074 2075
     * @param reorder an index array which controls the reordering
     * @return a method handle which delegates to the target after it
2076
     *           drops unused arguments and moves and/or duplicates the other arguments
2077
     * @throws NullPointerException if any argument is null
2078 2079 2080 2081 2082
     * @throws IllegalArgumentException if the index array length is not equal to
     *                  the arity of the target, or if any index array element
     *                  not a valid index for a parameter of {@code newType},
     *                  or if two corresponding parameter types in
     *                  {@code target.type()} and {@code newType} are not identical,
2083 2084
     */
    public static
2085
    MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
J
jrose 已提交
2086
        reorder = reorder.clone();
2087 2088
        checkReorder(reorder, newType, target.type());
        return target.permuteArguments(newType, reorder);
2089 2090 2091
    }

    private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) {
2092 2093 2094
        if (newType.returnType() != oldType.returnType())
            throw newIllegalArgumentException("return types do not match",
                    oldType, newType);
2095 2096 2097
        if (reorder.length == oldType.parameterCount()) {
            int limit = newType.parameterCount();
            boolean bad = false;
2098 2099
            for (int j = 0; j < reorder.length; j++) {
                int i = reorder[j];
2100 2101 2102
                if (i < 0 || i >= limit) {
                    bad = true; break;
                }
2103 2104 2105 2106 2107
                Class<?> src = newType.parameterType(i);
                Class<?> dst = oldType.parameterType(j);
                if (src != dst)
                    throw newIllegalArgumentException("parameter types do not match after reorder",
                            oldType, newType);
2108 2109 2110
            }
            if (!bad)  return;
        }
2111
        throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
2112 2113 2114
    }

    /**
2115
     * Produces a method handle of the requested return type which returns the given
2116 2117 2118 2119 2120
     * constant value every time it is invoked.
     * <p>
     * Before the method handle is returned, the passed-in value is converted to the requested type.
     * If the requested type is primitive, widening primitive conversions are attempted,
     * else reference conversions are attempted.
2121
     * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
2122 2123 2124
     * @param type the return type of the desired method handle
     * @param value the value to return
     * @return a method handle of the given return type and no arguments, which always returns the given value
2125 2126 2127
     * @throws NullPointerException if the {@code type} argument is null
     * @throws ClassCastException if the value cannot be converted to the required return type
     * @throws IllegalArgumentException if the given type is {@code void.class}
2128 2129 2130 2131
     */
    public static
    MethodHandle constant(Class<?> type, Object value) {
        if (type.isPrimitive()) {
2132 2133
            if (type == void.class)
                throw newIllegalArgumentException("void type");
2134
            Wrapper w = Wrapper.forPrimitiveType(type);
2135
            return insertArguments(identity(type), 0, w.convert(value, type));
2136 2137 2138 2139 2140 2141
        } else {
            return identity(type).bindTo(type.cast(value));
        }
    }

    /**
2142 2143 2144 2145 2146
     * Produces a method handle which returns its sole argument when invoked.
     * @param type the type of the sole parameter and return value of the desired method handle
     * @return a unary method handle which accepts and returns the given type
     * @throws NullPointerException if the argument is null
     * @throws IllegalArgumentException if the given type is {@code void.class}
2147 2148 2149
     */
    public static
    MethodHandle identity(Class<?> type) {
2150 2151
        if (type == void.class)
            throw newIllegalArgumentException("void type");
2152 2153 2154 2155 2156
        else if (type == Object.class)
            return ValueConversions.identity();
        else if (type.isPrimitive())
            return ValueConversions.identity(Wrapper.forPrimitiveType(type));
        else
2157
            return MethodHandleImpl.makeReferenceIdentity(type);
2158 2159 2160
    }

    /**
2161 2162 2163 2164 2165 2166 2167 2168 2169
     * Provides a target method handle with one or more <em>bound arguments</em>
     * in advance of the method handle's invocation.
     * The formal parameters to the target corresponding to the bound
     * arguments are called <em>bound parameters</em>.
     * Returns a new method handle which saves away the bound arguments.
     * When it is invoked, it receives arguments for any non-bound parameters,
     * binds the saved arguments to their corresponding parameters,
     * and calls the original target.
     * <p>
2170 2171 2172
     * The type of the new method handle will drop the types for the bound
     * parameters from the original target type, since the new method handle
     * will no longer require those arguments to be supplied by its callers.
2173
     * <p>
2174 2175 2176
     * Each given argument object must match the corresponding bound parameter type.
     * If a bound parameter type is a primitive, the argument object
     * must be a wrapper, and will be unboxed to produce the primitive value.
2177
     * <p>
2178 2179 2180 2181
     * The {@code pos} argument selects which parameters are to be bound.
     * It may range between zero and <i>N-L</i> (inclusively),
     * where <i>N</i> is the arity of the target method handle
     * and <i>L</i> is the length of the values array.
2182 2183
     * @param target the method handle to invoke after the argument is inserted
     * @param pos where to insert the argument (zero for the first)
2184
     * @param values the series of arguments to insert
2185
     * @return a method handle which inserts an additional argument,
2186
     *         before calling the original method handle
2187
     * @throws NullPointerException if the target or the {@code values} array is null
2188
     * @see MethodHandle#bindTo
2189 2190
     */
    public static
2191 2192
    MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
        int insCount = values.length;
2193 2194
        MethodType oldType = target.type();
        int outargs = oldType.parameterCount();
2195 2196 2197 2198
        int inargs  = outargs - insCount;
        if (inargs < 0)
            throw newIllegalArgumentException("too many values to insert");
        if (pos < 0 || pos > inargs)
2199
            throw newIllegalArgumentException("no argument type to append");
2200 2201 2202
        MethodHandle result = target;
        for (int i = 0; i < insCount; i++) {
            Object value = values[i];
2203 2204 2205 2206 2207 2208 2209 2210
            Class<?> ptype = oldType.parameterType(pos+i);
            if (ptype.isPrimitive()) {
                char btype = 'I';
                Wrapper w = Wrapper.forPrimitiveType(ptype);
                switch (w) {
                case LONG:    btype = 'J'; break;
                case FLOAT:   btype = 'F'; break;
                case DOUBLE:  btype = 'D'; break;
2211
                }
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
                // perform unboxing and/or primitive conversion
                value = w.convert(value, ptype);
                result = result.bindArgument(pos, btype, value);
                continue;
            }
            value = ptype.cast(value);  // throw CCE if needed
            if (pos == 0) {
                result = result.bindReceiver(value);
            } else {
                result = result.bindArgument(pos, 'L', value);
2222
            }
2223
        }
2224 2225 2226
        return result;
    }

2227
    /**
2228 2229 2230 2231 2232
     * Produces a method handle which will discard some dummy arguments
     * before calling some other specified <i>target</i> method handle.
     * The type of the new method handle will be the same as the target's type,
     * except it will also include the dummy argument types,
     * at some given position.
2233
     * <p>
2234 2235 2236 2237 2238
     * The {@code pos} argument may range between zero and <i>N</i>,
     * where <i>N</i> is the arity of the target.
     * If {@code pos} is zero, the dummy arguments will precede
     * the target's real arguments; if {@code pos} is <i>N</i>
     * they will come after.
2239 2240
     * <p>
     * <b>Example:</b>
2241
     * <blockquote><pre>{@code
2242 2243
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
2244 2245 2246 2247
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
2248 2249 2250 2251
MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
assertEquals(bigType, d0.type());
assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
2252
     * }</pre></blockquote>
2253 2254
     * <p>
     * This method is also equivalent to the following code:
2255
     * <blockquote><pre>
2256
     * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
2257
     * </pre></blockquote>
2258 2259 2260 2261
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
2262
     *         before calling the original method handle
2263
     * @throws NullPointerException if the target is null,
2264
     *                              or if the {@code valueTypes} list or any of its elements is null
2265 2266 2267
     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
     *                  or if {@code pos} is negative or greater than the arity of the target,
     *                  or if the new method handle's type would have too many parameters
2268 2269
     */
    public static
2270
    MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
2271
        MethodType oldType = target.type();  // get NPE
2272 2273 2274
        int dropped = valueTypes.size();
        MethodType.checkSlotCount(dropped);
        if (dropped == 0)  return target;
2275
        int outargs = oldType.parameterCount();
2276
        int inargs  = outargs + dropped;
2277 2278
        if (pos < 0 || pos >= inargs)
            throw newIllegalArgumentException("no argument type to remove");
2279
        ArrayList<Class<?>> ptypes = new ArrayList<>(oldType.parameterList());
2280
        ptypes.addAll(pos, valueTypes);
J
jrose 已提交
2281
        if (ptypes.size() != inargs)  throw newIllegalArgumentException("valueTypes");
2282
        MethodType newType = MethodType.methodType(oldType.returnType(), ptypes);
2283
        return target.dropArguments(newType, pos, dropped);
2284 2285
    }

2286
    /**
2287 2288 2289 2290 2291
     * Produces a method handle which will discard some dummy arguments
     * before calling some other specified <i>target</i> method handle.
     * The type of the new method handle will be the same as the target's type,
     * except it will also include the dummy argument types,
     * at some given position.
2292
     * <p>
2293 2294 2295 2296 2297
     * The {@code pos} argument may range between zero and <i>N</i>,
     * where <i>N</i> is the arity of the target.
     * If {@code pos} is zero, the dummy arguments will precede
     * the target's real arguments; if {@code pos} is <i>N</i>
     * they will come after.
2298 2299
     * <p>
     * <b>Example:</b>
2300
     * <blockquote><pre>{@code
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
MethodHandle d0 = dropArguments(cat, 0, String.class);
assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
MethodHandle d1 = dropArguments(cat, 1, String.class);
assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
MethodHandle d2 = dropArguments(cat, 2, String.class);
assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
2315
     * }</pre></blockquote>
2316 2317
     * <p>
     * This method is also equivalent to the following code:
2318
     * <blockquote><pre>
2319
     * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
2320
     * </pre></blockquote>
2321 2322 2323 2324 2325
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
     *         before calling the original method handle
2326
     * @throws NullPointerException if the target is null,
2327
     *                              or if the {@code valueTypes} array or any of its elements is null
2328 2329
     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
     *                  or if {@code pos} is negative or greater than the arity of the target,
2330 2331
     *                  or if the new method handle's type would have
     *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
2332
     */
2333 2334 2335 2336 2337 2338
    public static
    MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
        return dropArguments(target, pos, Arrays.asList(valueTypes));
    }

    /**
2339
     * Adapts a target method handle by pre-processing
2340 2341 2342 2343 2344
     * one or more of its arguments, each with its own unary filter function,
     * and then calling the target with each pre-processed argument
     * replaced by the result of its corresponding filter function.
     * <p>
     * The pre-processing is performed by one or more method handles,
2345
     * specified in the elements of the {@code filters} array.
2346 2347 2348 2349 2350
     * The first element of the filter array corresponds to the {@code pos}
     * argument of the target, and so on in sequence.
     * <p>
     * Null arguments in the array are treated as identity functions,
     * and the corresponding arguments left unchanged.
2351
     * (If there are no non-null elements in the array, the original target is returned.)
2352
     * Each filter is applied to the corresponding argument of the adapter.
2353 2354
     * <p>
     * If a filter {@code F} applies to the {@code N}th argument of
2355
     * the target, then {@code F} must be a method handle which
2356 2357 2358 2359 2360 2361
     * takes exactly one argument.  The type of {@code F}'s sole argument
     * replaces the corresponding argument type of the target
     * in the resulting adapted method handle.
     * The return type of {@code F} must be identical to the corresponding
     * parameter type of the target.
     * <p>
2362
     * It is an error if there are elements of {@code filters}
2363
     * (null or not)
2364
     * which do not correspond to argument positions in the target.
2365
     * <p><b>Example:</b>
2366
     * <blockquote><pre>{@code
2367 2368
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
2369 2370 2371 2372 2373
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle upcase = lookup().findVirtual(String.class,
  "toUpperCase", methodType(String.class));
2374
assertEquals("xy", (String) cat.invokeExact("x", "y"));
2375
MethodHandle f0 = filterArguments(cat, 0, upcase);
2376
assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
2377
MethodHandle f1 = filterArguments(cat, 1, upcase);
2378
assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
2379
MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
2380
assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
2381
     * }</pre></blockquote>
2382
     * <p> Here is pseudocode for the resulting adapter:
2383
     * <blockquote><pre>{@code
2384 2385 2386 2387 2388
     * V target(P... p, A[i]... a[i], B... b);
     * A[i] filter[i](V[i]);
     * T adapter(P... p, V[i]... v[i], B... b) {
     *   return target(p..., f[i](v[i])..., b...);
     * }
2389
     * }</pre></blockquote>
2390
     *
2391
     * @param target the method handle to invoke after arguments are filtered
2392
     * @param pos the position of the first argument to filter
2393 2394
     * @param filters method handles to call initially on filtered arguments
     * @return method handle which incorporates the specified argument filtering logic
2395
     * @throws NullPointerException if the target is null
2396 2397
     *                              or if the {@code filters} array is null
     * @throws IllegalArgumentException if a non-null element of {@code filters}
2398
     *          does not match a corresponding argument type of target as described above,
2399 2400 2401
     *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
     *          or if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2402 2403
     */
    public static
2404
    MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
2405 2406
        MethodType targetType = target.type();
        MethodHandle adapter = target;
2407 2408
        MethodType adapterType = null;
        assert((adapterType = targetType) != null);
2409
        int maxPos = targetType.parameterCount();
2410 2411 2412
        if (pos + filters.length > maxPos)
            throw newIllegalArgumentException("too many filters");
        int curPos = pos-1;  // pre-incremented
2413
        for (MethodHandle filter : filters) {
2414 2415
            curPos += 1;
            if (filter == null)  continue;  // ignore null elements of filters
2416 2417
            adapter = filterArgument(adapter, curPos, filter);
            assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null);
2418
        }
2419
        assert(adapterType.equals(adapter.type()));
2420 2421 2422
        return adapter;
    }

2423 2424 2425 2426 2427 2428 2429
    /*non-public*/ static
    MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
        MethodType targetType = target.type();
        MethodType filterType = filter.type();
        if (filterType.parameterCount() != 1
            || filterType.returnType() != targetType.parameterType(pos))
            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2430
        return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2431 2432
    }

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
    /**
     * Adapts a target method handle by pre-processing
     * a sub-sequence of its arguments with a filter (another method handle).
     * The pre-processed arguments are replaced by the result (if any) of the
     * filter function.
     * The target is then called on the modified (usually shortened) argument list.
     * <p>
     * If the filter returns a value, the target must accept that value as
     * its argument in position {@code pos}, preceded and/or followed by
     * any arguments not passed to the filter.
     * If the filter returns void, the target must accept all arguments
     * not passed to the filter.
     * No arguments are reordered, and a result returned from the filter
     * replaces (in order) the whole subsequence of arguments originally
     * passed to the adapter.
     * <p>
     * The argument types (if any) of the filter
     * replace zero or one argument types of the target, at position {@code pos},
     * in the resulting adapted method handle.
     * The return type of the filter (if any) must be identical to the
     * argument type of the target at position {@code pos}, and that target argument
     * is supplied by the return value of the filter.
     * <p>
     * In all cases, {@code pos} must be greater than or equal to zero, and
     * {@code pos} must also be less than or equal to the target's arity.
     * <p><b>Example:</b>
2459
     * <blockquote><pre>{@code
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle deepToString = publicLookup()
  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));

MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
assertEquals("[strange]", (String) ts1.invokeExact("strange"));

MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));

MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
assertEquals("[top, [up, down], strange]",
             (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));

MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
assertEquals("[top, [up, down], [strange]]",
             (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));

MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
assertEquals("[top, [[up, down, strange], charm], bottom]",
             (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
2484
     * }</pre></blockquote>
2485
     * <p> Here is pseudocode for the resulting adapter:
2486
     * <blockquote><pre>{@code
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
     * T target(A...,V,C...);
     * V filter(B...);
     * T adapter(A... a,B... b,C... c) {
     *   V v = filter(b...);
     *   return target(a...,v,c...);
     * }
     * // and if the filter has no arguments:
     * T target2(A...,V,C...);
     * V filter2();
     * T adapter2(A... a,C... c) {
     *   V v = filter2();
     *   return target2(a...,v,c...);
     * }
     * // and if the filter has a void return:
     * T target3(A...,C...);
     * void filter3(B...);
     * void adapter3(A... a,B... b,C... c) {
     *   filter3(b...);
     *   return target3(a...,c...);
     * }
2507
     * }</pre></blockquote>
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
     * <p>
     * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
     * one which first "folds" the affected arguments, and then drops them, in separate
     * steps as follows:
     * <blockquote><pre>{@code
     * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
     * mh = MethodHandles.foldArguments(mh, coll); //step 1
     * }</pre></blockquote>
     * If the target method handle consumes no arguments besides than the result
     * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
     * is equivalent to {@code filterReturnValue(coll, mh)}.
     * If the filter method handle {@code coll} consumes one argument and produces
     * a non-void result, then {@code collectArguments(mh, N, coll)}
     * is equivalent to {@code filterArguments(mh, N, coll)}.
     * Other equivalences are possible but would require argument permutation.
     *
     * @param target the method handle to invoke after filtering the subsequence of arguments
     * @param pos the position of the first adapter argument to pass to the filter,
     *            and/or the target argument which receives the result of the filter
     * @param filter method handle to call on the subsequence of arguments
     * @return method handle which incorporates the specified argument subsequence filtering logic
     * @throws NullPointerException if either argument is null
     * @throws IllegalArgumentException if the return type of {@code filter}
     *          is non-void and is not the same as the {@code pos} argument of the target,
     *          or if {@code pos} is not between 0 and the target's arity, inclusive,
     *          or if the resulting method handle's type would have
     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
     * @see MethodHandles#foldArguments
     * @see MethodHandles#filterArguments
     * @see MethodHandles#filterReturnValue
     */
    public static
    MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
2541
        MethodType targetType = target.type();
2542
        MethodType filterType = filter.type();
2543 2544 2545
        if (filterType.returnType() != void.class &&
            filterType.returnType() != targetType.parameterType(pos))
            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2546
        return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2547 2548
    }

2549
    /**
2550 2551 2552
     * Adapts a target method handle by post-processing
     * its return value (if any) with a filter (another method handle).
     * The result of the filter is returned from the adapter.
2553
     * <p>
2554 2555 2556 2557 2558
     * If the target returns a value, the filter must accept that value as
     * its only argument.
     * If the target returns void, the filter must accept no arguments.
     * <p>
     * The return type of the filter
2559 2560
     * replaces the return type of the target
     * in the resulting adapted method handle.
2561
     * The argument type of the filter (if any) must be identical to the
2562
     * return type of the target.
2563
     * <p><b>Example:</b>
2564
     * <blockquote><pre>{@code
2565 2566
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
2567 2568 2569 2570 2571 2572 2573 2574
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle length = lookup().findVirtual(String.class,
  "length", methodType(int.class));
System.out.println((String) cat.invokeExact("x", "y")); // xy
MethodHandle f0 = filterReturnValue(cat, length);
System.out.println((int) f0.invokeExact("x", "y")); // 2
2575
     * }</pre></blockquote>
2576
     * <p> Here is pseudocode for the resulting adapter:
2577
     * <blockquote><pre>{@code
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
     * V target(A...);
     * T filter(V);
     * T adapter(A... a) {
     *   V v = target(a...);
     *   return filter(v);
     * }
     * // and if the target has a void return:
     * void target2(A...);
     * T filter2();
     * T adapter2(A... a) {
     *   target2(a...);
     *   return filter2();
     * }
     * // and if the filter has a void return:
     * V target3(A...);
     * void filter3(V);
     * void adapter3(A... a) {
     *   V v = target3(a...);
     *   filter3(v);
     * }
2598
     * }</pre></blockquote>
2599 2600 2601
     * @param target the method handle to invoke before filtering the return value
     * @param filter method handle to call on the return value
     * @return method handle which incorporates the specified return value filtering logic
2602
     * @throws NullPointerException if either argument is null
2603 2604
     * @throws IllegalArgumentException if the argument list of {@code filter}
     *          does not match the return type of target as described above
2605
     */
2606
    public static
2607 2608 2609
    MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
        MethodType targetType = target.type();
        MethodType filterType = filter.type();
2610 2611 2612 2613 2614 2615
        Class<?> rtype = targetType.returnType();
        int filterValues = filterType.parameterCount();
        if (filterValues == 0
                ? (rtype != void.class)
                : (rtype != filterType.parameterType(0)))
            throw newIllegalArgumentException("target and filter types do not match", target, filter);
2616 2617
        // result = fold( lambda(retval, arg...) { filter(retval) },
        //                lambda(        arg...) { target(arg...) } )
2618
        return MethodHandleImpl.makeCollectArguments(filter, target, 0, false);
2619 2620
    }

2621
    /**
2622
     * Adapts a target method handle by pre-processing
2623
     * some of its arguments, and then calling the target with
2624 2625
     * the result of the pre-processing, inserted into the original
     * sequence of arguments.
2626
     * <p>
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
     * The pre-processing is performed by {@code combiner}, a second method handle.
     * Of the arguments passed to the adapter, the first {@code N} arguments
     * are copied to the combiner, which is then called.
     * (Here, {@code N} is defined as the parameter count of the combiner.)
     * After this, control passes to the target, with any result
     * from the combiner inserted before the original {@code N} incoming
     * arguments.
     * <p>
     * If the combiner returns a value, the first parameter type of the target
     * must be identical with the return type of the combiner, and the next
     * {@code N} parameter types of the target must exactly match the parameters
     * of the combiner.
     * <p>
     * If the combiner has a void return, no result will be inserted,
     * and the first {@code N} parameter types of the target
     * must exactly match the parameters of the combiner.
2643 2644
     * <p>
     * The resulting adapter is the same type as the target, except that the
2645 2646
     * first parameter type is dropped,
     * if it corresponds to the result of the combiner.
2647
     * <p>
2648
     * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
2649
     * that either the combiner or the target does not wish to receive.
2650
     * If some of the incoming arguments are destined only for the combiner,
2651
     * consider using {@link MethodHandle#asCollector asCollector} instead, since those
2652 2653
     * arguments will not need to be live on the stack on entry to the
     * target.)
2654
     * <p><b>Example:</b>
2655
     * <blockquote><pre>{@code
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
import static java.lang.invoke.MethodHandles.*;
import static java.lang.invoke.MethodType.*;
...
MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
  "println", methodType(void.class, String.class))
    .bindTo(System.out);
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
MethodHandle catTrace = foldArguments(cat, trace);
// also prints "boo":
assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
2668
     * }</pre></blockquote>
2669
     * <p> Here is pseudocode for the resulting adapter:
2670
     * <blockquote><pre>{@code
2671
     * // there are N arguments in A...
2672 2673 2674 2675 2676 2677
     * T target(V, A[N]..., B...);
     * V combiner(A...);
     * T adapter(A... a, B... b) {
     *   V v = combiner(a...);
     *   return target(v, a..., b...);
     * }
2678 2679 2680 2681 2682 2683 2684
     * // and if the combiner has a void return:
     * T target2(A[N]..., B...);
     * void combiner2(A...);
     * T adapter2(A... a, B... b) {
     *   combiner2(a...);
     *   return target2(a..., b...);
     * }
2685
     * }</pre></blockquote>
2686 2687 2688
     * @param target the method handle to invoke after arguments are combined
     * @param combiner method handle to call initially on the incoming arguments
     * @return method handle which incorporates the specified argument folding logic
2689
     * @throws NullPointerException if either argument is null
2690 2691 2692 2693 2694
     * @throws IllegalArgumentException if {@code combiner}'s return type
     *          is non-void and not the same as the first argument type of
     *          the target, or if the initial {@code N} argument types
     *          of the target
     *          (skipping one matching the {@code combiner}'s return type)
2695 2696 2697 2698
     *          are not identical with the argument types of {@code combiner}
     */
    public static
    MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
2699
        int pos = 0;
2700 2701
        MethodType targetType = target.type();
        MethodType combinerType = combiner.type();
2702
        int foldPos = pos;
2703
        int foldArgs = combinerType.parameterCount();
2704 2705 2706 2707 2708 2709
        int foldVals = combinerType.returnType() == void.class ? 0 : 1;
        int afterInsertPos = foldPos + foldVals;
        boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
        if (ok && !(combinerType.parameterList()
                    .equals(targetType.parameterList().subList(afterInsertPos,
                                                               afterInsertPos + foldArgs))))
2710
            ok = false;
2711
        if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0)))
2712
            ok = false;
2713 2714
        if (!ok)
            throw misMatchedTypes("target and combiner types", targetType, combinerType);
2715
        MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos);
2716
        return MethodHandleImpl.makeCollectArguments(target, combiner, foldPos, true);
2717 2718
    }

2719
    /**
2720
     * Makes a method handle which adapts a target method handle,
2721 2722 2723 2724
     * by guarding it with a test, a boolean-valued method handle.
     * If the guard fails, a fallback handle is called instead.
     * All three method handles must have the same corresponding
     * argument and return types, except that the return type
2725 2726
     * of the test must be boolean, and the test is allowed
     * to have fewer arguments than the other two method handles.
2727
     * <p> Here is pseudocode for the resulting adapter:
2728
     * <blockquote><pre>{@code
2729
     * boolean test(A...);
2730 2731 2732
     * T target(A...,B...);
     * T fallback(A...,B...);
     * T adapter(A... a,B... b) {
2733
     *   if (test(a...))
2734
     *     return target(a..., b...);
2735
     *   else
2736
     *     return fallback(a..., b...);
2737
     * }
2738
     * }</pre></blockquote>
2739 2740 2741
     * Note that the test arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the test, and so are passed unchanged
     * from the caller to the target or fallback as appropriate.
2742 2743 2744 2745
     * @param test method handle used for test, must return boolean
     * @param target method handle to call if test passes
     * @param fallback method handle to call if test fails
     * @return method handle which incorporates the specified if/then/else logic
2746
     * @throws NullPointerException if any argument is null
2747 2748
     * @throws IllegalArgumentException if {@code test} does not return boolean,
     *          or if all three method types do not match (with the return
2749
     *          type of {@code test} changed to match that of the target).
2750 2751 2752 2753 2754
     */
    public static
    MethodHandle guardWithTest(MethodHandle test,
                               MethodHandle target,
                               MethodHandle fallback) {
2755 2756 2757
        MethodType gtype = test.type();
        MethodType ttype = target.type();
        MethodType ftype = fallback.type();
2758
        if (!ttype.equals(ftype))
2759
            throw misMatchedTypes("target and fallback types", ttype, ftype);
2760 2761 2762 2763 2764 2765 2766
        if (gtype.returnType() != boolean.class)
            throw newIllegalArgumentException("guard type is not a predicate "+gtype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> gargs = gtype.parameterList();
        if (!targs.equals(gargs)) {
            int gpc = gargs.size(), tpc = targs.size();
            if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
2767
                throw misMatchedTypes("target and test types", ttype, gtype);
2768 2769
            test = dropArguments(test, gpc, targs.subList(gpc, tpc));
            gtype = test.type();
2770
        }
2771
        return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
2772 2773
    }

2774 2775 2776 2777
    static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
        return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
    }

2778
    /**
2779
     * Makes a method handle which adapts a target method handle,
2780 2781 2782 2783
     * by running it inside an exception handler.
     * If the target returns normally, the adapter returns that value.
     * If an exception matching the specified type is thrown, the fallback
     * handle is called instead on the exception, plus the original arguments.
2784
     * <p>
2785 2786 2787 2788
     * The target and handler must have the same corresponding
     * argument and return types, except that handler may omit trailing arguments
     * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
     * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
2789
     * <p> Here is pseudocode for the resulting adapter:
2790
     * <blockquote><pre>{@code
2791
     * T target(A..., B...);
2792
     * T handler(ExType, A...);
2793
     * T adapter(A... a, B... b) {
2794
     *   try {
2795
     *     return target(a..., b...);
2796 2797 2798
     *   } catch (ExType ex) {
     *     return handler(ex, a...);
     *   }
2799
     * }
2800
     * }</pre></blockquote>
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
     * Note that the saved arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the target, and so are passed unchanged
     * from the caller to the handler, if the handler is invoked.
     * <p>
     * The target and handler must return the same type, even if the handler
     * always throws.  (This might happen, for instance, because the handler
     * is simulating a {@code finally} clause).
     * To create such a throwing handler, compose the handler creation logic
     * with {@link #throwException throwException},
     * in order to create a method handle of the correct return type.
2811 2812 2813 2814
     * @param target method handle to call
     * @param exType the type of exception which the handler will catch
     * @param handler method handle to call if a matching exception is thrown
     * @return method handle which incorporates the specified try/catch logic
2815
     * @throws NullPointerException if any argument is null
2816 2817 2818 2819
     * @throws IllegalArgumentException if {@code handler} does not accept
     *          the given exception type, or if the method handle types do
     *          not match in their return types and their
     *          corresponding parameters
2820 2821
     */
    public static
2822 2823 2824
    MethodHandle catchException(MethodHandle target,
                                Class<? extends Throwable> exType,
                                MethodHandle handler) {
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
        MethodType ttype = target.type();
        MethodType htype = handler.type();
        if (htype.parameterCount() < 1 ||
            !htype.parameterType(0).isAssignableFrom(exType))
            throw newIllegalArgumentException("handler does not accept exception type "+exType);
        if (htype.returnType() != ttype.returnType())
            throw misMatchedTypes("target and handler return types", ttype, htype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> hargs = htype.parameterList();
        hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
        if (!targs.equals(hargs)) {
            int hpc = hargs.size(), tpc = targs.size();
            if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
                throw misMatchedTypes("target and handler types", ttype, htype);
2839
            handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc));
2840 2841
            htype = handler.type();
        }
2842
        return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
2843 2844
    }

2845
    /**
2846
     * Produces a method handle which will throw exceptions of the given {@code exType}.
2847 2848 2849 2850 2851
     * The method handle will accept a single argument of {@code exType},
     * and immediately throw it as an exception.
     * The method type will nominally specify a return of {@code returnType}.
     * The return type may be anything convenient:  It doesn't matter to the
     * method handle's behavior, since it will never return normally.
2852 2853
     * @param returnType the return type of the desired method handle
     * @param exType the parameter type of the desired method handle
2854 2855
     * @return method handle which can throw the given exceptions
     * @throws NullPointerException if either argument is null
2856 2857 2858
     */
    public static
    MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
2859 2860
        if (!Throwable.class.isAssignableFrom(exType))
            throw new ClassCastException(exType.getName());
2861
        return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
2862
    }
2863
}