g1CollectorPolicy.cpp 107.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32 33 34 35 36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
53
static double young_cards_per_entry_ratio_defaults[] = {
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
// Help class for avoiding interleaved logging
class LineBuffer: public StackObj {

private:
  static const int BUFFER_LEN = 1024;
  static const int INDENT_CHARS = 3;
  char _buffer[BUFFER_LEN];
  int _indent_level;
  int _cur;

  void vappend(const char* format, va_list ap) {
    int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    if (res != -1) {
      _cur += res;
    } else {
      DEBUG_ONLY(warning("buffer too small in LineBuffer");)
      _buffer[BUFFER_LEN -1] = 0;
      _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
    }
  }

public:
  explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
    for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
      _buffer[_cur] = ' ';
    }
  }

#ifndef PRODUCT
  ~LineBuffer() {
    assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
  }
#endif

  void append(const char* format, ...) {
    va_list ap;
    va_start(ap, format);
    vappend(format, ap);
    va_end(ap);
  }

  void append_and_print_cr(const char* format, ...) {
    va_list ap;
    va_start(ap, format);
    vappend(format, ap);
    va_end(ap);
    gclog_or_tty->print_cr("%s", _buffer);
    _cur = _indent_level * INDENT_CHARS;
  }
};

130
G1CollectorPolicy::G1CollectorPolicy() :
131
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
132
                        ? ParallelGCThreads : 1),
133

134 135 136 137 138 139
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _all_pause_times_ms(new NumberSeq()),
  _stop_world_start(0.0),
  _all_stop_world_times_ms(new NumberSeq()),
  _all_yield_times_ms(new NumberSeq()),

140
  _summary(new Summary()),
141 142

  _cur_clear_ct_time_ms(0.0),
143
  _mark_closure_time_ms(0.0),
144
  _root_region_scan_wait_time_ms(0.0),
145 146 147 148 149

  _cur_ref_proc_time_ms(0.0),
  _cur_ref_enq_time_ms(0.0),

#ifndef PRODUCT
150 151 152 153 154 155
  _min_clear_cc_time_ms(-1.0),
  _max_clear_cc_time_ms(-1.0),
  _cur_clear_cc_time_ms(0.0),
  _cum_clear_cc_time_ms(0.0),
  _num_cc_clears(0L),
#endif
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

  _aux_num(10),
  _all_aux_times_ms(new NumberSeq[_aux_num]),
  _cur_aux_start_times_ms(new double[_aux_num]),
  _cur_aux_times_ms(new double[_aux_num]),
  _cur_aux_times_set(new bool[_aux_num]),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
171 172
  _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
173
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
174
  _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
175 176 177 178 179 180 181 182 183 184
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
185
  _pause_time_target_ms((double) MaxGCPauseMillis),
186

187 188 189
  _gcs_are_young(true),
  _young_pause_num(0),
  _mixed_pause_num(0),
190 191 192 193 194 195 196 197 198 199

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

  _known_garbage_ratio(0.0),
  _known_garbage_bytes(0),

  _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),

200 201
  _recent_prev_end_times_for_all_gcs_sec(
                                new TruncatedSeq(NumPrevPausesForHeuristics)),
202 203 204 205 206

  _recent_avg_pause_time_ratio(0.0),

  _all_full_gc_times_ms(new NumberSeq()),

207 208
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
209 210
  _last_young_gc(false),
  _last_gc_was_young(false),
211

212 213 214 215
  _eden_bytes_before_gc(0),
  _survivor_bytes_before_gc(0),
  _capacity_before_gc(0),

216 217 218 219
  _eden_cset_region_length(0),
  _survivor_cset_region_length(0),
  _old_cset_region_length(0),

220
  _collection_set(NULL),
221 222 223 224 225 226 227 228 229
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_rs_lengths(0),
230
  _inc_cset_recorded_rs_lengths_diffs(0),
231
  _inc_cset_predicted_elapsed_time_ms(0.0),
232
  _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
233

234 235 236 237 238 239 240
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
241
                                              G1YoungSurvRateNumRegionsSummary)),
242
  // add here any more surv rate groups
243 244 245
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
246 247
  _survivors_age_table(true),

248
  _gc_overhead_perc(0.0) {
249

250 251 252 253
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
  HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
254
  HeapRegionRemSet::setup_remset_size();
255

256 257 258 259 260 261 262 263 264 265 266 267
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

268
  // Verify PLAB sizes
269
  const size_t region_size = HeapRegion::GrainWords;
270 271
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
272
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
273 274 275 276
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

277 278 279
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

280
  _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
281
  _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
282
  _par_last_satb_filtering_times_ms = new double[_parallel_gc_threads];
283 284 285 286 287 288 289 290 291

  _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
  _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];

  _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];

  _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];

  _par_last_termination_times_ms = new double[_parallel_gc_threads];
292 293
  _par_last_termination_attempts = new double[_parallel_gc_threads];
  _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
294
  _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
J
johnc 已提交
295
  _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
296 297 298 299 300 301 302 303 304 305 306 307

  int index;
  if (ParallelGCThreads == 0)
    index = 0;
  else if (ParallelGCThreads > 8)
    index = 7;
  else
    index = ParallelGCThreads - 1;

  _pending_card_diff_seq->add(0.0);
  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
308 309
  _young_cards_per_entry_ratio_seq->add(
                                  young_cards_per_entry_ratio_defaults[index]);
310 311 312 313 314 315 316 317
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
374
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
375
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
376
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
J
johnc 已提交
377
  _sigma = (double) G1ConfidencePercent / 100.0;
378 379 380 381 382

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
383
  // _max_survivor_regions will be calculated by
384
  // update_young_list_target_length() during initialization.
385
  _max_survivor_regions = 0;
386

T
tonyp 已提交
387 388 389 390 391
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

392 393 394 395 396 397 398 399
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
400
  // This will be set when the heap is expanded
401 402 403
  // for the first time during initialization.
  _reserve_regions = 0;

404
  initialize_all();
405
  _collectionSetChooser = new CollectionSetChooser();
406
  _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
407 408 409 410 411
}

void G1CollectorPolicy::initialize_flags() {
  set_min_alignment(HeapRegion::GrainBytes);
  set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
412 413 414
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
415 416 417
  CollectorPolicy::initialize_flags();
}

418 419 420 421
G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
  assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
  assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
  assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
422

423 424 425 426 427 428 429 430
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
    } else {
      _sizer_kind = SizerNewRatio;
      _adaptive_size = false;
      return;
    }
431
  }
432 433 434 435 436 437 438 439 440 441 442 443 444

  if (FLAG_IS_CMDLINE(NewSize)) {
     _min_desired_young_length = MAX2((size_t) 1, NewSize / HeapRegion::GrainBytes);
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
      _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
      _sizer_kind = SizerMaxAndNewSize;
      _adaptive_size = _min_desired_young_length == _max_desired_young_length;
    } else {
      _sizer_kind = SizerNewSizeOnly;
    }
  } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
    _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
    _sizer_kind = SizerMaxNewSizeOnly;
445
  }
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
}

size_t G1YoungGenSizer::calculate_default_min_length(size_t new_number_of_heap_regions) {
  size_t default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
  return MAX2((size_t)1, default_value);
}

size_t G1YoungGenSizer::calculate_default_max_length(size_t new_number_of_heap_regions) {
  size_t default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
  return MAX2((size_t)1, default_value);
}

void G1YoungGenSizer::heap_size_changed(size_t new_number_of_heap_regions) {
  assert(new_number_of_heap_regions > 0, "Heap must be initialized");

  switch (_sizer_kind) {
    case SizerDefaults:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      break;
    case SizerNewSizeOnly:
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxNewSizeOnly:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxAndNewSize:
      // Do nothing. Values set on the command line, don't update them at runtime.
      break;
    case SizerNewRatio:
      _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
      _max_desired_young_length = _min_desired_young_length;
      break;
    default:
      ShouldNotReachHere();
483 484
  }

485
  assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
486 487
}

488 489 490 491 492 493
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

494 495
  initialize_gc_policy_counters();

496
  if (adaptive_young_list_length()) {
497
    _young_list_fixed_length = 0;
498
  } else {
499
    _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
500
  }
501
  _free_regions_at_end_of_collection = _g1->free_regions();
502
  update_young_list_target_length();
503
  _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
504 505 506 507

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
508 509
}

510
// Create the jstat counters for the policy.
511
void G1CollectorPolicy::initialize_gc_policy_counters() {
512
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
513 514
}

515 516 517 518 519 520 521 522
bool G1CollectorPolicy::predict_will_fit(size_t young_length,
                                         double base_time_ms,
                                         size_t base_free_regions,
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
523

524 525 526 527 528 529 530 531 532 533
  double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
534

535 536 537 538 539
  size_t free_bytes =
                  (base_free_regions - young_length) * HeapRegion::GrainBytes;
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
540
  }
541 542 543 544 545

  // success!
  return true;
}

546 547 548
void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
549 550 551
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
  _reserve_regions = (size_t) ceil(reserve_regions_d);
552

553
  _young_gen_sizer->heap_size_changed(new_number_of_regions);
554 555
}

556 557 558
size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                     size_t base_min_length) {
  size_t desired_min_length = 0;
559
  if (adaptive_young_list_length()) {
560 561 562 563 564 565 566
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
      desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
    } else {
      // otherwise we don't have enough info to make the prediction
567 568
    }
  }
569 570
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
571
  return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
572 573
}

574 575 576 577
size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
578
  return _young_gen_sizer->max_desired_young_length();
579
}
580

581 582 583 584 585 586
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
587

588
  // Calculate the absolute and desired min bounds.
589

590 591 592 593 594 595 596 597 598 599
  // This is how many young regions we already have (currently: the survivors).
  size_t base_min_length = recorded_survivor_regions();
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
  size_t absolute_min_length = base_min_length + 1;
  size_t desired_min_length =
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
600

601
  // Calculate the absolute and desired max bounds.
602

603 604 605 606 607 608 609 610 611
  // We will try our best not to "eat" into the reserve.
  size_t absolute_max_length = 0;
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
  size_t desired_max_length = calculate_young_list_desired_max_length();
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
612

613 614
  size_t young_list_target_length = 0;
  if (adaptive_young_list_length()) {
615
    if (gcs_are_young()) {
616 617 618 619 620 621 622 623 624 625 626 627
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
628 629 630
    // The user asked for a fixed young gen so we'll fix the young gen
    // whether the next GC is young or mixed.
    young_list_target_length = _young_list_fixed_length;
631
  }
632

633 634 635 636 637 638 639 640 641
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
642

643 644 645 646
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
647

648 649
  update_max_gc_locker_expansion();
}
650

651 652 653 654 655 656
size_t
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
                                                   size_t base_min_length,
                                                   size_t desired_min_length,
                                                   size_t desired_max_length) {
  assert(adaptive_young_list_length(), "pre-condition");
657
  assert(gcs_are_young(), "only call this for young GCs");
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
  size_t min_young_length = desired_min_length - base_min_length;
  assert(desired_max_length > base_min_length, "invariant");
  size_t max_young_length = desired_max_length - base_min_length;

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
  size_t available_free_regions = _free_regions_at_end_of_collection;
  size_t base_free_regions = 0;
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
      size_t diff = (max_young_length - min_young_length) / 2;
      while (diff > 0) {
        size_t young_length = min_young_length + diff;
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
753 754
}

755 756 757 758 759 760 761 762 763 764
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
  }
  return survivor_regions_evac_time;
}

765
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
766 767
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

768
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
769 770 771
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
772
    update_young_list_target_length(rs_lengths_prediction);
773 774 775
  }
}

776 777


778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
796
  HeapRegion* head = _g1->young_list()->first_region();
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
  _cur_collection_start_sec = os::elapsedTime();
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
  double full_gc_time_sec = end_sec - _cur_collection_start_sec;
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

  _all_full_gc_times_ms->add(full_gc_time_ms);

856
  update_recent_gc_times(end_sec, full_gc_time_ms);
857 858 859

  _g1->clear_full_collection();

860 861 862 863
  // "Nuke" the heuristics that control the young/mixed GC
  // transitions and make sure we start with young GCs after the Full GC.
  set_gcs_are_young(true);
  _last_young_gc = false;
864 865
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
866 867 868 869 870 871 872 873
  _known_garbage_bytes = 0;
  _known_garbage_ratio = 0.0;
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

874 875
  record_survivor_regions(0, NULL, NULL);

876
  _free_regions_at_end_of_collection = _g1->free_regions();
877 878
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
879
  update_young_list_target_length();
880
  _collectionSetChooser->clearMarkedHeapRegions();
881
}
882 883 884 885 886 887 888 889 890 891

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
                                                      size_t start_used) {
  if (PrintGCDetails) {
    gclog_or_tty->stamp(PrintGCTimeStamps);
    gclog_or_tty->print("[GC pause");
892
    gclog_or_tty->print(" (%s)", gcs_are_young() ? "young" : "mixed");
893 894
  }

895 896 897 898
  // We only need to do this here as the policy will only be applied
  // to the GC we're about to start. so, no point is calculating this
  // every time we calculate / recalculate the target young length.
  update_survivors_policy();
899

900 901 902
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
903 904 905 906 907 908 909 910 911 912 913 914

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
  _all_stop_world_times_ms->add(s_w_t_ms);
  _stop_world_start = 0.0;

  _cur_collection_start_sec = start_time_sec;
  _cur_collection_pause_used_at_start_bytes = start_used;
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  _pending_cards = _g1->pending_card_num();
  _max_pending_cards = _g1->max_pending_card_num();

  _bytes_in_collection_set_before_gc = 0;
915
  _bytes_copied_during_gc = 0;
916

917 918 919 920 921
  YoungList* young_list = _g1->young_list();
  _eden_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_bytes_before_gc = young_list->survivor_used_bytes();
  _capacity_before_gc = _g1->capacity();

922 923 924 925 926
#ifdef DEBUG
  // initialise these to something well known so that we can spot
  // if they are not set properly

  for (int i = 0; i < _parallel_gc_threads; ++i) {
927 928
    _par_last_gc_worker_start_times_ms[i] = -1234.0;
    _par_last_ext_root_scan_times_ms[i] = -1234.0;
929
    _par_last_satb_filtering_times_ms[i] = -1234.0;
930 931 932 933 934 935 936
    _par_last_update_rs_times_ms[i] = -1234.0;
    _par_last_update_rs_processed_buffers[i] = -1234.0;
    _par_last_scan_rs_times_ms[i] = -1234.0;
    _par_last_obj_copy_times_ms[i] = -1234.0;
    _par_last_termination_times_ms[i] = -1234.0;
    _par_last_termination_attempts[i] = -1234.0;
    _par_last_gc_worker_end_times_ms[i] = -1234.0;
937
    _par_last_gc_worker_times_ms[i] = -1234.0;
J
johnc 已提交
938
    _par_last_gc_worker_other_times_ms[i] = -1234.0;
939 940 941 942 943 944 945 946
  }
#endif

  for (int i = 0; i < _aux_num; ++i) {
    _cur_aux_times_ms[i] = 0.0;
    _cur_aux_times_set[i] = false;
  }

947
  // This is initialized to zero here and is set during
J
johnc 已提交
948 949
  // the evacuation pause if marking is in progress.
  _cur_satb_drain_time_ms = 0.0;
950 951 952
  // This is initialized to zero here and is set during the evacuation
  // pause if we actually waited for the root region scanning to finish.
  _root_region_scan_wait_time_ms = 0.0;
953

954
  _last_gc_was_young = false;
955 956 957

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
958
  _survivors_age_table.clear();
959

960 961 962
  assert( verify_young_ages(), "region age verification" );
}

963
void G1CollectorPolicy::record_concurrent_mark_init_end(double
964 965
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
966 967
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

990
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
991
  _last_young_gc = true;
992
  _in_marking_window = false;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
    _all_yield_times_ms->add(yield_ms);
  }
}

void G1CollectorPolicy::record_concurrent_pause_end() {
}

template<class T>
T sum_of(T* sum_arr, int start, int n, int N) {
  T sum = (T)0;
  for (int i = 0; i < n; i++) {
    int j = (start + i) % N;
    sum += sum_arr[j];
  }
  return sum;
}

1015 1016
void G1CollectorPolicy::print_par_stats(int level,
                                        const char* str,
1017
                                        double* data) {
1018 1019
  double min = data[0], max = data[0];
  double total = 0.0;
1020 1021
  LineBuffer buf(level);
  buf.append("[%s (ms):", str);
1022
  for (uint i = 0; i < no_of_gc_threads(); ++i) {
1023 1024 1025 1026 1027 1028
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
1029
    buf.append("  %3.1lf", val);
1030
  }
1031
  buf.append_and_print_cr("");
1032
  double avg = total / (double) no_of_gc_threads();
1033 1034
  buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
    avg, min, max, max - min);
1035 1036
}

1037 1038
void G1CollectorPolicy::print_par_sizes(int level,
                                        const char* str,
1039
                                        double* data) {
1040 1041
  double min = data[0], max = data[0];
  double total = 0.0;
1042 1043
  LineBuffer buf(level);
  buf.append("[%s :", str);
1044
  for (uint i = 0; i < no_of_gc_threads(); ++i) {
1045 1046 1047 1048 1049 1050
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
1051
    buf.append(" %d", (int) val);
1052
  }
1053
  buf.append_and_print_cr("");
1054
  double avg = total / (double) no_of_gc_threads();
1055 1056
  buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
    (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
1057 1058
}

J
johnc 已提交
1059 1060 1061
void G1CollectorPolicy::print_stats(int level,
                                    const char* str,
                                    double value) {
1062
  LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
1063 1064
}

J
johnc 已提交
1065 1066 1067
void G1CollectorPolicy::print_stats(int level,
                                    const char* str,
                                    int value) {
1068
  LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
1069 1070
}

J
johnc 已提交
1071
double G1CollectorPolicy::avg_value(double* data) {
1072
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1073
    double ret = 0.0;
1074
    for (uint i = 0; i < no_of_gc_threads(); ++i) {
1075
      ret += data[i];
J
johnc 已提交
1076
    }
1077
    return ret / (double) no_of_gc_threads();
1078 1079 1080 1081 1082
  } else {
    return data[0];
  }
}

J
johnc 已提交
1083
double G1CollectorPolicy::max_value(double* data) {
1084
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1085
    double ret = data[0];
1086
    for (uint i = 1; i < no_of_gc_threads(); ++i) {
J
johnc 已提交
1087
      if (data[i] > ret) {
1088
        ret = data[i];
J
johnc 已提交
1089 1090
      }
    }
1091 1092 1093 1094 1095 1096
    return ret;
  } else {
    return data[0];
  }
}

J
johnc 已提交
1097
double G1CollectorPolicy::sum_of_values(double* data) {
1098
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1099
    double sum = 0.0;
1100
    for (uint i = 0; i < no_of_gc_threads(); i++) {
1101
      sum += data[i];
J
johnc 已提交
1102
    }
1103 1104 1105 1106 1107 1108
    return sum;
  } else {
    return data[0];
  }
}

J
johnc 已提交
1109
double G1CollectorPolicy::max_sum(double* data1, double* data2) {
1110 1111
  double ret = data1[0] + data2[0];

1112
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1113
    for (uint i = 1; i < no_of_gc_threads(); ++i) {
1114
      double data = data1[i] + data2[i];
J
johnc 已提交
1115
      if (data > ret) {
1116
        ret = data;
J
johnc 已提交
1117
      }
1118 1119 1120 1121 1122
    }
  }
  return ret;
}

1123 1124
bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
1125 1126 1127 1128 1129 1130
    return false;
  }

  size_t marking_initiating_used_threshold =
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  size_t cur_used_bytes = _g1->non_young_capacity_bytes();
1131
  size_t alloc_byte_size = alloc_word_size * HeapWordSize;
1132

1133
  if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
1134
    if (gcs_are_young()) {
1135
      ergo_verbose5(ErgoConcCycles,
1136 1137 1138
        "request concurrent cycle initiation",
        ergo_format_reason("occupancy higher than threshold")
        ergo_format_byte("occupancy")
1139
        ergo_format_byte("allocation request")
1140 1141 1142
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
1143
        alloc_byte_size,
1144 1145 1146 1147 1148
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
      return true;
    } else {
1149
      ergo_verbose5(ErgoConcCycles,
1150 1151 1152
        "do not request concurrent cycle initiation",
        ergo_format_reason("still doing mixed collections")
        ergo_format_byte("occupancy")
1153
        ergo_format_byte("allocation request")
1154 1155 1156
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
1157
        alloc_byte_size,
1158 1159 1160 1161 1162 1163 1164 1165 1166
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
    }
  }

  return false;
}

1167 1168 1169
// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

1170
void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
1171 1172
  double end_time_sec = os::elapsedTime();
  double elapsed_ms = _last_pause_time_ms;
1173
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1174 1175
  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
         "otherwise, the subtraction below does not make sense");
1176
  size_t rs_size =
1177
            _cur_collection_pause_used_regions_at_start - cset_region_length();
1178 1179 1180
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
1181
  bool update_stats = !_g1->evacuation_failed();
1182
  set_no_of_gc_threads(no_of_gc_threads);
1183 1184 1185 1186 1187 1188 1189 1190 1191

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

1192
  last_pause_included_initial_mark = during_initial_mark_pause();
1193
  if (last_pause_included_initial_mark) {
1194
    record_concurrent_mark_init_end(0.0);
1195
  } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
1196 1197 1198 1199 1200
    // Note: this might have already been set, if during the last
    // pause we decided to start a cycle but at the beginning of
    // this pause we decided to postpone it. That's OK.
    set_initiate_conc_mark_if_possible();
  }
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
  _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
                          end_time_sec, false);

  // This assert is exempted when we're doing parallel collection pauses,
  // because the fragmentation caused by the parallel GC allocation buffers
  // can lead to more memory being used during collection than was used
  // before. Best leave this out until the fragmentation problem is fixed.
  // Pauses in which evacuation failed can also lead to negative
  // collections, since no space is reclaimed from a region containing an
  // object whose evacuation failed.
  // Further, we're now always doing parallel collection.  But I'm still
  // leaving this here as a placeholder for a more precise assertion later.
  // (DLD, 10/05.)
  assert((true || parallel) // Always using GC LABs now.
         || _g1->evacuation_failed()
         || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
         "Negative collection");

  size_t freed_bytes =
    _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1223

1224 1225 1226 1227
  double survival_fraction =
    (double)surviving_bytes/
    (double)_collection_set_bytes_used_before;

J
johnc 已提交
1228 1229 1230 1231
  // These values are used to update the summary information that is
  // displayed when TraceGen0Time is enabled, and are output as part
  // of the PrintGCDetails output, in the non-parallel case.

1232
  double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
1233
  double satb_filtering_time = avg_value(_par_last_satb_filtering_times_ms);
1234 1235 1236 1237 1238 1239 1240
  double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  double update_rs_processed_buffers =
    sum_of_values(_par_last_update_rs_processed_buffers);
  double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  double termination_time = avg_value(_par_last_termination_times_ms);

J
johnc 已提交
1241
  double known_time = ext_root_scan_time +
1242
                      satb_filtering_time +
J
johnc 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
                      update_rs_time +
                      scan_rs_time +
                      obj_copy_time;

  double other_time_ms = elapsed_ms;

  // Subtract the SATB drain time. It's initialized to zero at the
  // start of the pause and is updated during the pause if marking
  // is in progress.
  other_time_ms -= _cur_satb_drain_time_ms;

1254 1255 1256 1257
  // Subtract the root region scanning wait time. It's initialized to
  // zero at the start of the pause.
  other_time_ms -= _root_region_scan_wait_time_ms;

J
johnc 已提交
1258 1259 1260 1261 1262
  if (parallel) {
    other_time_ms -= _cur_collection_par_time_ms;
  } else {
    other_time_ms -= known_time;
  }
1263

1264 1265 1266
  // Now subtract the time taken to fix up roots in generated code
  other_time_ms -= _cur_collection_code_root_fixup_time_ms;

J
johnc 已提交
1267 1268 1269
  // Subtract the time taken to clean the card table from the
  // current value of "other time"
  other_time_ms -= _cur_clear_ct_time_ms;
1270

1271 1272 1273 1274 1275
  // Subtract the time spent completing marking in the collection
  // set. Note if marking is not in progress during the pause
  // the value of _mark_closure_time_ms will be zero.
  other_time_ms -= _mark_closure_time_ms;

J
johnc 已提交
1276 1277
  // TraceGen0Time and TraceGen1Time summary info updating.
  _all_pause_times_ms->add(elapsed_ms);
1278

1279
  if (update_stats) {
J
johnc 已提交
1280 1281 1282 1283 1284
    _summary->record_total_time_ms(elapsed_ms);
    _summary->record_other_time_ms(other_time_ms);

    MainBodySummary* body_summary = _summary->main_body_summary();
    assert(body_summary != NULL, "should not be null!");
1285

J
johnc 已提交
1286 1287 1288 1289 1290 1291 1292
    // This will be non-zero iff marking is currently in progress (i.e.
    // _g1->mark_in_progress() == true) and the currrent pause was not
    // an initial mark pause. Since the body_summary items are NumberSeqs,
    // however, they have to be consistent and updated in lock-step with
    // each other. Therefore we unconditionally record the SATB drain
    // time - even if it's zero.
    body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
1293 1294
    body_summary->record_root_region_scan_wait_time_ms(
                                               _root_region_scan_wait_time_ms);
1295 1296

    body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
1297
    body_summary->record_satb_filtering_time_ms(satb_filtering_time);
1298 1299 1300
    body_summary->record_update_rs_time_ms(update_rs_time);
    body_summary->record_scan_rs_time_ms(scan_rs_time);
    body_summary->record_obj_copy_time_ms(obj_copy_time);
J
johnc 已提交
1301

1302 1303 1304
    if (parallel) {
      body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
      body_summary->record_termination_time_ms(termination_time);
J
johnc 已提交
1305 1306 1307

      double parallel_known_time = known_time + termination_time;
      double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
1308 1309
      body_summary->record_parallel_other_time_ms(parallel_other_time);
    }
J
johnc 已提交
1310

1311
    body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
J
johnc 已提交
1312
    body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    // We exempt parallel collection from this check because Alloc Buffer
    // fragmentation can produce negative collections.  Same with evac
    // failure.
    // Further, we're now always doing parallel collection.  But I'm still
    // leaving this here as a placeholder for a more precise assertion later.
    // (DLD, 10/05.
    assert((true || parallel)
           || _g1->evacuation_failed()
           || surviving_bytes <= _collection_set_bytes_used_before,
           "Or else negative collection!");
J
johnc 已提交
1324

1325 1326 1327 1328 1329 1330 1331 1332 1333
    // this is where we update the allocation rate of the application
    double app_time_ms =
      (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
1334 1335 1336 1337 1338 1339 1340 1341 1342
    // We maintain the invariant that all objects allocated by mutator
    // threads will be allocated out of eden regions. So, we can use
    // the eden region number allocated since the previous GC to
    // calculate the application's allocate rate. The only exception
    // to that is humongous objects that are allocated separately. But
    // given that humongous object allocations do not really affect
    // either the pause's duration nor when the next pause will take
    // place we can safely ignore them here.
    size_t regions_allocated = eden_cset_region_length();
1343 1344 1345 1346 1347 1348 1349
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
    update_recent_gc_times(end_time_sec, elapsed_ms);
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1362 1363 1364 1365 1366
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1367 1368 1369 1370 1371 1372 1373
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
1374 1375
  }

J
johnc 已提交
1376 1377 1378 1379 1380 1381 1382
  for (int i = 0; i < _aux_num; ++i) {
    if (_cur_aux_times_set[i]) {
      _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
    }
  }

  // PrintGCDetails output
1383
  if (PrintGCDetails) {
J
johnc 已提交
1384 1385 1386
    bool print_marking_info =
      _g1->mark_in_progress() && !last_pause_included_initial_mark;

1387
    gclog_or_tty->print_cr("%s, %1.8lf secs]",
1388 1389 1390
                           (last_pause_included_initial_mark) ? " (initial-mark)" : "",
                           elapsed_ms / 1000.0);

1391 1392 1393
    if (_root_region_scan_wait_time_ms > 0.0) {
      print_stats(1, "Root Region Scan Waiting", _root_region_scan_wait_time_ms);
    }
1394 1395
    if (parallel) {
      print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
J
johnc 已提交
1396 1397 1398
      print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
      print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
      if (print_marking_info) {
1399
        print_par_stats(2, "SATB Filtering", _par_last_satb_filtering_times_ms);
J
johnc 已提交
1400
      }
1401
      print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1402
      print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
1403 1404 1405
      print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
      print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
      print_par_stats(2, "Termination", _par_last_termination_times_ms);
1406 1407 1408
      print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);

      for (int i = 0; i < _parallel_gc_threads; i++) {
1409 1410
        _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] -
                                          _par_last_gc_worker_start_times_ms[i];
1411

J
johnc 已提交
1412
        double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
1413
                                   _par_last_satb_filtering_times_ms[i] +
J
johnc 已提交
1414 1415 1416 1417 1418
                                   _par_last_update_rs_times_ms[i] +
                                   _par_last_scan_rs_times_ms[i] +
                                   _par_last_obj_copy_times_ms[i] +
                                   _par_last_termination_times_ms[i];

1419 1420
        _par_last_gc_worker_other_times_ms[i] = _par_last_gc_worker_times_ms[i] -
                                                worker_known_time;
J
johnc 已提交
1421
      }
1422

J
johnc 已提交
1423
      print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
1424 1425
      print_par_stats(2, "GC Worker Total", _par_last_gc_worker_times_ms);
      print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
1426 1427
    } else {
      print_stats(1, "Ext Root Scanning", ext_root_scan_time);
J
johnc 已提交
1428
      if (print_marking_info) {
1429
        print_stats(1, "SATB Filtering", satb_filtering_time);
J
johnc 已提交
1430 1431 1432
      }
      print_stats(1, "Update RS", update_rs_time);
      print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
1433 1434
      print_stats(1, "Scan RS", scan_rs_time);
      print_stats(1, "Object Copying", obj_copy_time);
1435
    }
1436
    print_stats(1, "Code Root Fixup", _cur_collection_code_root_fixup_time_ms);
1437 1438 1439
    if (print_marking_info) {
      print_stats(1, "Complete CSet Marking", _mark_closure_time_ms);
    }
J
johnc 已提交
1440
    print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
1441 1442 1443 1444 1445 1446 1447 1448 1449
#ifndef PRODUCT
    print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
    print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
    print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
    print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
    if (_num_cc_clears > 0) {
      print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
    }
#endif
1450
    print_stats(1, "Other", other_time_ms);
1451 1452 1453
    print_stats(2, "Choose CSet",
                   (_recorded_young_cset_choice_time_ms +
                    _recorded_non_young_cset_choice_time_ms));
1454 1455
    print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
    print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
1456 1457 1458
    print_stats(2, "Free CSet",
                   (_recorded_young_free_cset_time_ms +
                    _recorded_non_young_free_cset_time_ms));
1459

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
    for (int i = 0; i < _aux_num; ++i) {
      if (_cur_aux_times_set[i]) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_stats(1, buffer, _cur_aux_times_ms[i]);
      }
    }
  }

  // Update the efficiency-since-mark vars.
  double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  if (elapsed_ms < MIN_TIMER_GRANULARITY) {
    // This usually happens due to the timer not having the required
    // granularity. Some Linuxes are the usual culprits.
    // We'll just set it to something (arbitrarily) small.
    proc_ms = 1.0;
  }
  double cur_efficiency = (double) freed_bytes / proc_ms;

  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1481
  if (during_initial_mark_pause()) {
1482 1483 1484 1485
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1486
  if (_last_young_gc) {
1487 1488 1489
    // This is supposed to to be the "last young GC" before we start
    // doing mixed GCs. Here we decide whether to start mixed GCs or not.

1490
    if (!last_pause_included_initial_mark) {
1491 1492 1493 1494
      if (next_gc_should_be_mixed("start mixed GCs",
                                  "do not start mixed GCs")) {
        set_gcs_are_young(false);
      }
1495
    } else {
1496 1497
      ergo_verbose0(ErgoMixedGCs,
                    "do not start mixed GCs",
1498 1499
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1500
    _last_young_gc = false;
1501
  }
1502

1503
  if (!_last_gc_was_young) {
1504 1505 1506 1507 1508
    // This is a mixed GC. Here we decide whether to continue doing
    // mixed GCs or not.

    if (!next_gc_should_be_mixed("continue mixed GCs",
                                 "do not continue mixed GCs")) {
1509
      set_gcs_are_young(true);
1510
    }
1511
  }
1512

1513
  if (_last_gc_was_young && !_during_marking) {
1514
    _young_gc_eff_seq->add(cur_efficiency);
1515 1516 1517 1518 1519
  }

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

1520
  if (update_stats) {
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    double pause_time_ms = elapsed_ms;

    size_t diff = 0;
    if (_max_pending_cards >= _pending_cards)
      diff = _max_pending_cards - _pending_cards;
    _pending_card_diff_seq->add((double) diff);

    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
      cost_per_card_ms = update_rs_time / (double) _pending_cards;
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
      cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
1539
      if (_last_gc_was_young) {
1540
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1541 1542 1543
      } else {
        _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
      }
1544 1545 1546 1547 1548
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
1549 1550 1551 1552 1553
      if (_last_gc_was_young) {
        _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      } else {
        _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      }
1554 1555
    }

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
    // This is defensive. For a while _max_rs_lengths could get
    // smaller than _recorded_rs_lengths which was causing
    // rs_length_diff to get very large and mess up the RSet length
    // predictions. The reason was unsafe concurrent updates to the
    // _inc_cset_recorded_rs_lengths field which the code below guards
    // against (see CR 7118202). This bug has now been fixed (see CR
    // 7119027). However, I'm still worried that
    // _inc_cset_recorded_rs_lengths might still end up somewhat
    // inaccurate. The concurrent refinement thread calculates an
    // RSet's length concurrently with other CR threads updating it
    // which might cause it to calculate the length incorrectly (if,
    // say, it's in mid-coarsening). So I'll leave in the defensive
    // conditional below just in case.
1569 1570 1571 1572 1573
    size_t rs_length_diff = 0;
    if (_max_rs_lengths > _recorded_rs_lengths) {
      rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    }
    _rs_length_diff_seq->add((double) rs_length_diff);
1574 1575 1576 1577 1578

    size_t copied_bytes = surviving_bytes;
    double cost_per_byte_ms = 0.0;
    if (copied_bytes > 0) {
      cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
1579
      if (_in_marking_window) {
1580
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1581
      } else {
1582
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1583
      }
1584 1585 1586
    }

    double all_other_time_ms = pause_time_ms -
1587
      (update_rs_time + scan_rs_time + obj_copy_time +
1588 1589 1590
       _mark_closure_time_ms + termination_time);

    double young_other_time_ms = 0.0;
1591
    if (young_cset_region_length() > 0) {
1592 1593 1594 1595
      young_other_time_ms =
        _recorded_young_cset_choice_time_ms +
        _recorded_young_free_cset_time_ms;
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1596
                                          (double) young_cset_region_length());
1597 1598
    }
    double non_young_other_time_ms = 0.0;
1599
    if (old_cset_region_length() > 0) {
1600 1601 1602 1603 1604
      non_young_other_time_ms =
        _recorded_non_young_cset_choice_time_ms +
        _recorded_non_young_free_cset_time_ms;

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1605
                                            (double) old_cset_region_length());
1606 1607 1608 1609 1610 1611 1612 1613
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
    if (_bytes_in_collection_set_before_gc > 0) {
1614 1615
      survival_ratio = (double) _bytes_copied_during_gc /
                                   (double) _bytes_in_collection_set_before_gc;
1616 1617 1618 1619 1620 1621 1622 1623 1624
    }

    _pending_cards_seq->add((double) _pending_cards);
    _rs_lengths_seq->add((double) _max_rs_lengths);
  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
1625
  update_young_list_target_length();
1626

1627
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1628
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1629
  adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1630 1631

  assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
1632 1633
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
#define EXT_SIZE_FORMAT "%d%s"
#define EXT_SIZE_PARAMS(bytes)                                  \
  byte_size_in_proper_unit((bytes)),                            \
  proper_unit_for_byte_size((bytes))

void G1CollectorPolicy::print_heap_transition() {
  if (PrintGCDetails) {
    YoungList* young_list = _g1->young_list();
    size_t eden_bytes = young_list->eden_used_bytes();
    size_t survivor_bytes = young_list->survivor_used_bytes();
    size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
    size_t used = _g1->used();
    size_t capacity = _g1->capacity();
1647 1648
    size_t eden_capacity =
      (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1649 1650

    gclog_or_tty->print_cr(
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
      "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
      "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
      "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
      EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
      EXT_SIZE_PARAMS(_eden_bytes_before_gc),
      EXT_SIZE_PARAMS(_prev_eden_capacity),
      EXT_SIZE_PARAMS(eden_bytes),
      EXT_SIZE_PARAMS(eden_capacity),
      EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
      EXT_SIZE_PARAMS(survivor_bytes),
      EXT_SIZE_PARAMS(used_before_gc),
      EXT_SIZE_PARAMS(_capacity_before_gc),
      EXT_SIZE_PARAMS(used),
      EXT_SIZE_PARAMS(capacity));

    _prev_eden_capacity = eden_capacity;
1667 1668 1669 1670 1671 1672 1673
  } else if (PrintGC) {
    _g1->print_size_transition(gclog_or_tty,
                               _cur_collection_pause_used_at_start_bytes,
                               _g1->used(), _g1->capacity());
  }
}

1674 1675 1676 1677 1678 1679
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1680
  if (G1UseAdaptiveConcRefinement) {
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1715 1716 1717 1718 1719 1720
double
G1CollectorPolicy::
predict_young_collection_elapsed_time_ms(size_t adjustment) {
  guarantee( adjustment == 0 || adjustment == 1, "invariant" );

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
1721
  size_t young_num = g1h->young_list()->length();
1722 1723 1724 1725 1726
  if (young_num == 0)
    return 0.0;

  young_num += adjustment;
  size_t pending_cards = predict_pending_cards();
1727
  size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
1728 1729
                      predict_rs_length_diff();
  size_t card_num;
1730
  if (gcs_are_young()) {
1731
    card_num = predict_young_card_num(rs_lengths);
1732
  } else {
1733
    card_num = predict_non_young_card_num(rs_lengths);
1734
  }
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
  size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  double accum_yg_surv_rate =
    _short_lived_surv_rate_group->accum_surv_rate(adjustment);

  size_t bytes_to_copy =
    (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);

  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy) +
    predict_young_other_time_ms(young_num) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
1754
  if (gcs_are_young()) {
1755
    card_num = predict_young_card_num(rs_length);
1756
  } else {
1757
    card_num = predict_non_young_card_num(rs_length);
1758
  }
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
                                                  bool young) {
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
1776
  if (gcs_are_young()) {
1777
    card_num = predict_young_card_num(rs_length);
1778
  } else {
1779
    card_num = predict_non_young_card_num(rs_length);
1780
  }
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

  if (young)
    region_elapsed_time_ms += predict_young_other_time_ms(1);
  else
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);

  return region_elapsed_time_ms;
}

size_t
G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
1801
    assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1802
    int age = hr->age_in_surv_rate_group();
1803
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1804 1805 1806 1807 1808 1809
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }
  return bytes_to_copy;
}

void
1810 1811 1812 1813 1814
G1CollectorPolicy::init_cset_region_lengths(size_t eden_cset_region_length,
                                          size_t survivor_cset_region_length) {
  _eden_cset_region_length     = eden_cset_region_length;
  _survivor_cset_region_length = survivor_cset_region_length;
  _old_cset_region_length      = 0;
1815 1816 1817 1818 1819 1820
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

1821 1822 1823 1824 1825 1826 1827 1828
void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

size_t G1CollectorPolicy::expansion_amount() {
1829 1830 1831
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
1832 1833 1834 1835
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
1836
    const size_t min_expand_bytes = 1*M;
1837
    size_t reserved_bytes = _g1->max_capacity();
1838 1839 1840 1841
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
1842
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1843 1844 1845
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
    return expand_bytes;
  } else {
    return 0;
  }
}

class CountCSClosure: public HeapRegionClosure {
  G1CollectorPolicy* _g1_policy;
public:
  CountCSClosure(G1CollectorPolicy* g1_policy) :
    _g1_policy(g1_policy) {}
  bool doHeapRegion(HeapRegion* r) {
    _g1_policy->_bytes_in_collection_set_before_gc += r->used();
    return false;
  }
};

void G1CollectorPolicy::count_CS_bytes_used() {
  CountCSClosure cs_closure(this);
  _g1->collection_set_iterate(&cs_closure);
}

J
johnc 已提交
1881 1882 1883
void G1CollectorPolicy::print_summary(int level,
                                      const char* str,
                                      NumberSeq* seq) const {
1884
  double sum = seq->sum();
1885
  LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
1886 1887 1888
                str, sum / 1000.0, seq->avg());
}

J
johnc 已提交
1889 1890 1891
void G1CollectorPolicy::print_summary_sd(int level,
                                         const char* str,
                                         NumberSeq* seq) const {
1892
  print_summary(level, str, seq);
1893
  LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
1894 1895 1896 1897 1898 1899 1900
                seq->num(), seq->sd(), seq->maximum());
}

void G1CollectorPolicy::check_other_times(int level,
                                        NumberSeq* other_times_ms,
                                        NumberSeq* calc_other_times_ms) const {
  bool should_print = false;
1901
  LineBuffer buf(level + 2);
1902 1903 1904 1905 1906 1907 1908 1909

  double max_sum = MAX2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double min_sum = MIN2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double sum_ratio = max_sum / min_sum;
  if (sum_ratio > 1.1) {
    should_print = true;
1910
    buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
1911 1912 1913 1914 1915 1916 1917 1918 1919
  }

  double max_avg = MAX2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double min_avg = MIN2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double avg_ratio = max_avg / min_avg;
  if (avg_ratio > 1.1) {
    should_print = true;
1920
    buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
1921 1922 1923
  }

  if (other_times_ms->sum() < -0.01) {
1924
    buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
1925 1926 1927
  }

  if (other_times_ms->avg() < -0.01) {
1928
    buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
1929 1930 1931 1932
  }

  if (calc_other_times_ms->sum() < -0.01) {
    should_print = true;
1933
    buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
1934 1935 1936 1937
  }

  if (calc_other_times_ms->avg() < -0.01) {
    should_print = true;
1938
    buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
1939 1940 1941 1942 1943 1944 1945
  }

  if (should_print)
    print_summary(level, "Other(Calc)", calc_other_times_ms);
}

void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
1946
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1947 1948
  MainBodySummary*    body_summary = summary->main_body_summary();
  if (summary->get_total_seq()->num() > 0) {
1949
    print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
1950
    if (body_summary != NULL) {
1951
      print_summary(1, "Root Region Scan Wait", body_summary->get_root_region_scan_wait_seq());
1952 1953
      if (parallel) {
        print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
J
johnc 已提交
1954
        print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
1955
        print_summary(2, "SATB Filtering", body_summary->get_satb_filtering_seq());
1956 1957 1958 1959
        print_summary(2, "Update RS", body_summary->get_update_rs_seq());
        print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
        print_summary(2, "Termination", body_summary->get_termination_seq());
J
johnc 已提交
1960
        print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
1961 1962 1963
        {
          NumberSeq* other_parts[] = {
            body_summary->get_ext_root_scan_seq(),
1964
            body_summary->get_satb_filtering_seq(),
J
johnc 已提交
1965
            body_summary->get_update_rs_seq(),
1966 1967 1968 1969 1970
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq(),
            body_summary->get_termination_seq()
          };
          NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
1971
                                        6, other_parts);
1972 1973 1974 1975
          check_other_times(2, body_summary->get_parallel_other_seq(),
                            &calc_other_times_ms);
        }
      } else {
J
johnc 已提交
1976
        print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
1977
        print_summary(1, "SATB Filtering", body_summary->get_satb_filtering_seq());
1978 1979 1980 1981 1982
        print_summary(1, "Update RS", body_summary->get_update_rs_seq());
        print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
      }
    }
J
johnc 已提交
1983 1984
    print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
    print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
1985 1986
    print_summary(1, "Other", summary->get_other_seq());
    {
1987 1988 1989 1990 1991 1992
      if (body_summary != NULL) {
        NumberSeq calc_other_times_ms;
        if (parallel) {
          // parallel
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
1993
            body_summary->get_root_region_scan_wait_seq(),
1994 1995 1996 1997
            body_summary->get_parallel_seq(),
            body_summary->get_clear_ct_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
1998
                                          4, other_parts);
1999 2000 2001 2002
        } else {
          // serial
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
2003
            body_summary->get_root_region_scan_wait_seq(),
2004 2005
            body_summary->get_update_rs_seq(),
            body_summary->get_ext_root_scan_seq(),
2006
            body_summary->get_satb_filtering_seq(),
2007 2008 2009 2010
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2011
                                          7, other_parts);
2012 2013
        }
        check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
2014 2015 2016
      }
    }
  } else {
2017
    LineBuffer(1).append_and_print_cr("none");
2018
  }
2019
  LineBuffer(0).append_and_print_cr("");
2020 2021 2022 2023 2024 2025 2026 2027
}

void G1CollectorPolicy::print_tracing_info() const {
  if (TraceGen0Time) {
    gclog_or_tty->print_cr("ALL PAUSES");
    print_summary_sd(0, "Total", _all_pause_times_ms);
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("");
2028 2029
    gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
    gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2030 2031
    gclog_or_tty->print_cr("");

2032 2033
    gclog_or_tty->print_cr("EVACUATION PAUSES");
    print_summary(_summary);
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

    gclog_or_tty->print_cr("MISC");
    print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
    print_summary_sd(0, "Yields", _all_yield_times_ms);
    for (int i = 0; i < _aux_num; ++i) {
      if (_all_aux_times_ms[i].num() > 0) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
      }
    }
  }
  if (TraceGen1Time) {
    if (_all_full_gc_times_ms->num() > 0) {
      gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
                 _all_full_gc_times_ms->num(),
                 _all_full_gc_times_ms->sum() / 1000.0);
      gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
      gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
                    _all_full_gc_times_ms->sd(),
                    _all_full_gc_times_ms->maximum());
    }
  }
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

#ifndef PRODUCT
// for debugging, bit of a hack...
static char*
region_num_to_mbs(int length) {
  static char buffer[64];
  double bytes = (double) (length * HeapRegion::GrainBytes);
  double mbs = bytes / (double) (1024 * 1024);
  sprintf(buffer, "%7.2lfMB", mbs);
  return buffer;
}
#endif // PRODUCT

2078
size_t G1CollectorPolicy::max_regions(int purpose) {
2079 2080
  switch (purpose) {
    case GCAllocForSurvived:
2081
      return _max_survivor_regions;
2082
    case GCAllocForTenured:
2083
      return REGIONS_UNLIMITED;
2084
    default:
2085 2086
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
2087 2088 2089
  };
}

2090
void G1CollectorPolicy::update_max_gc_locker_expansion() {
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
  size_t expansion_region_num = 0;
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
    expansion_region_num = (size_t) ceil(expansion_region_num_d);
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

2105
// Calculates survivor space parameters.
2106 2107 2108 2109 2110 2111 2112
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
  _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);

2113
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2114 2115 2116
        HeapRegion::GrainWords * _max_survivor_regions);
}

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
#ifndef PRODUCT
class HRSortIndexIsOKClosure: public HeapRegionClosure {
  CollectionSetChooser* _chooser;
public:
  HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
    _chooser(chooser) {}

  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
    }
    return false;
  }
};

2132
bool G1CollectorPolicy::assertMarkedBytesDataOK() {
2133 2134 2135 2136 2137 2138
  HRSortIndexIsOKClosure cl(_collectionSetChooser);
  _g1->heap_region_iterate(&cl);
  return true;
}
#endif

2139 2140
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
2141 2142
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
2143 2144 2145 2146 2147
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
2148 2149 2150
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
2151 2152 2153 2154 2155
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
2156 2157 2158 2159
    return false;
  }
}

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
2183 2184 2185 2186 2187
      // We do not allow mixed GCs during marking.
      if (!gcs_are_young()) {
        set_gcs_are_young(true);
        ergo_verbose0(ErgoMixedGCs,
                      "end mixed GCs",
2188 2189
                      ergo_format_reason("concurrent cycle is about to start"));
      }
2190 2191 2192 2193

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
2194 2195 2196 2197

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
2211 2212 2213
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
2214 2215 2216 2217
    }
  }
}

2218
class KnownGarbageClosure: public HeapRegionClosure {
2219
  G1CollectedHeap* _g1h;
2220 2221 2222 2223
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
2224
    _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
2225 2226 2227 2228 2229 2230 2231 2232

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
2233 2234 2235 2236
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
      if (_hrSorted->shouldAdd(r) && !_g1h->is_old_gc_alloc_region(r)) {
2237 2238 2239 2240 2241 2242 2243 2244
        _hrSorted->addMarkedHeapRegion(r);
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
2245
  G1CollectedHeap* _g1h;
2246 2247
  CollectionSetChooser* _hrSorted;
  jint _marked_regions_added;
2248
  size_t _reclaimable_bytes_added;
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
  jint _chunk_size;
  jint _cur_chunk_idx;
  jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  int _worker;
  int _invokes;

  void get_new_chunk() {
    _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
    _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  }
  void add_region(HeapRegion* r) {
    if (_cur_chunk_idx == _cur_chunk_end) {
      get_new_chunk();
    }
    assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
    _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
    _marked_regions_added++;
2266
    _reclaimable_bytes_added += r->reclaimable_bytes();
2267 2268 2269 2270 2271 2272 2273
    _cur_chunk_idx++;
  }

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
                           jint chunk_size,
                           int worker) :
2274 2275 2276 2277
      _g1h(G1CollectedHeap::heap()),
      _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
      _marked_regions_added(0), _reclaimable_bytes_added(0),
      _cur_chunk_idx(0), _cur_chunk_end(0), _invokes(0) { }
2278 2279 2280 2281 2282 2283 2284 2285 2286

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.
    _invokes++;

    // Do we have any marking information for this region?
    if (r->is_marked()) {
2287 2288 2289 2290
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
      if (_hrSorted->shouldAdd(r) && !_g1h->is_old_gc_alloc_region(r)) {
2291 2292 2293 2294 2295 2296
        add_region(r);
      }
    }
    return false;
  }
  jint marked_regions_added() { return _marked_regions_added; }
2297
  size_t reclaimable_bytes_added() { return _reclaimable_bytes_added; }
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
  int invokes() { return _invokes; }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
  jint _chunk_size;
  G1CollectedHeap* _g1;
public:
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
2309
    _g1(G1CollectedHeap::heap()) { }
2310

2311 2312 2313 2314
  void work(uint worker_id) {
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted,
                                               _chunk_size,
                                               worker_id);
2315
    // Back to zero for the claim value.
2316
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
2317
                                         _g1->workers()->active_workers(),
2318
                                         HeapRegion::InitialClaimValue);
2319
    jint regions_added = parKnownGarbageCl.marked_regions_added();
2320 2321 2322
    size_t reclaimable_bytes_added =
                                   parKnownGarbageCl.reclaimable_bytes_added();
    _hrSorted->updateTotals(regions_added, reclaimable_bytes_added);
2323
    if (G1PrintParCleanupStats) {
2324
      gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
2325
                 worker_id, parKnownGarbageCl.invokes(), regions_added);
2326 2327 2328 2329 2330
    }
  }
};

void
2331
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
2332 2333 2334 2335
  double start_sec;
  if (G1PrintParCleanupStats) {
    start_sec = os::elapsedTime();
  }
2336 2337

  _collectionSetChooser->clearMarkedHeapRegions();
2338
  double clear_marked_end_sec;
2339
  if (G1PrintParCleanupStats) {
2340 2341 2342
    clear_marked_end_sec = os::elapsedTime();
    gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
                           (clear_marked_end_sec - start_sec) * 1000.0);
2343
  }
2344

2345
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2346
    const size_t OverpartitionFactor = 4;
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
    size_t WorkUnit;
    // The use of MinChunkSize = 8 in the original code
    // causes some assertion failures when the total number of
    // region is less than 8.  The code here tries to fix that.
    // Should the original code also be fixed?
    if (no_of_gc_threads > 0) {
      const size_t MinWorkUnit =
        MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U);
      WorkUnit =
        MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor),
             MinWorkUnit);
    } else {
      assert(no_of_gc_threads > 0,
        "The active gc workers should be greater than 0");
      // In a product build do something reasonable to avoid a crash.
      const size_t MinWorkUnit =
        MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U);
      WorkUnit =
        MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
             MinWorkUnit);
    }
2368
    _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
2369
                                                             WorkUnit);
2370
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2371
                                            (int) WorkUnit);
2372
    _g1->workers()->run_task(&parKnownGarbageTask);
2373 2374 2375

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
2376 2377 2378 2379
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
2380
  double known_garbage_end_sec;
2381
  if (G1PrintParCleanupStats) {
2382
    known_garbage_end_sec = os::elapsedTime();
2383
    gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
2384
                      (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
2385
  }
2386

2387
  _collectionSetChooser->sortMarkedHeapRegions();
2388
  double end_sec = os::elapsedTime();
2389 2390
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("  sorting: %8.3f ms.",
2391
                           (end_sec - known_garbage_end_sec) * 1000.0);
2392 2393
  }

2394 2395 2396 2397 2398
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
2399 2400
}

2401
// Add the heap region at the head of the non-incremental collection set
2402
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
2403 2404 2405 2406
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

  assert(!hr->in_collection_set(), "should not already be in the CSet");
2407 2408 2409 2410
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_bytes_used_before += hr->used();
2411
  _g1->register_region_with_in_cset_fast_test(hr);
2412 2413 2414
  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
  _old_cset_region_length += 1;
2415 2416
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_bytes_used_before = 0;

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_rs_lengths = 0;
2427 2428 2429
  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms = 0.0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
2430 2431 2432
  _inc_cset_build_state = Active;
}

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
void G1CollectorPolicy::finalize_incremental_cset_building() {
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");

  // The two "main" fields, _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  // that adds a new region to the CSet. Further updates by the
  // concurrent refinement thread that samples the young RSet lengths
  // are accumulated in the *_diffs fields. Here we add the diffs to
  // the "main" fields.

  if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
    _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  } else {
    // This is defensive. The diff should in theory be always positive
    // as RSets can only grow between GCs. However, given that we
    // sample their size concurrently with other threads updating them
    // it's possible that we might get the wrong size back, which
    // could make the calculations somewhat inaccurate.
    size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
    if (_inc_cset_recorded_rs_lengths >= diffs) {
      _inc_cset_recorded_rs_lengths -= diffs;
    } else {
      _inc_cset_recorded_rs_lengths = 0;
    }
  }
  _inc_cset_predicted_elapsed_time_ms +=
                                     _inc_cset_predicted_elapsed_time_ms_diffs;

  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
}

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  size_t used_bytes = hr->used();
  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
                                                     size_t new_rs_length) {
  // Update the CSet information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");
  assert(!SafepointSynchronize::is_at_safepoint(),
                                               "should not be at a safepoint");

  // We could have updated _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  // that atomically, as this code is executed by a concurrent
  // refinement thread, potentially concurrently with a mutator thread
  // allocating a new region and also updating the same fields. To
  // avoid the atomic operations we accumulate these updates on two
  // separate fields (*_diffs) and we'll just add them to the "main"
  // fields at the start of a GC.

  ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
2512 2513

  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
2514 2515 2516
  double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
2517

2518 2519
  hr->set_recorded_rs_length(new_rs_length);
  hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
2520 2521 2522
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
2523 2524
  assert(hr->is_young(), "invariant");
  assert(hr->young_index_in_cset() > -1, "should have already been set");
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _g1->register_region_with_in_cset_fast_test(hr);
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
    st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
                 "age: %4d, y: %d, surv: %d",
                        csr->bottom(), csr->end(),
                        csr->top(),
                        csr->prev_top_at_mark_start(),
                        csr->next_top_at_mark_start(),
                        csr->top_at_conc_mark_count(),
                        csr->age_in_surv_rate_group_cond(),
                        csr->is_young(),
                        csr->is_survivor());
    csr = next;
  }
}
#endif // !PRODUCT

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
                                                const char* false_action_str) {
  CollectionSetChooser* cset_chooser = _collectionSetChooser;
  if (cset_chooser->isEmpty()) {
    ergo_verbose0(ErgoMixedGCs,
                  false_action_str,
                  ergo_format_reason("candidate old regions not available"));
    return false;
  }
  size_t reclaimable_bytes = cset_chooser->remainingReclaimableBytes();
  size_t capacity_bytes = _g1->capacity();
  double perc = (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
2618
  double threshold = (double) G1HeapWastePercent;
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
  if (perc < threshold) {
    ergo_verbose4(ErgoMixedGCs,
              false_action_str,
              ergo_format_reason("reclaimable percentage lower than threshold")
              ergo_format_region("candidate old regions")
              ergo_format_byte_perc("reclaimable")
              ergo_format_perc("threshold"),
              cset_chooser->remainingRegions(),
              reclaimable_bytes, perc, threshold);
    return false;
  }

  ergo_verbose4(ErgoMixedGCs,
                true_action_str,
                ergo_format_reason("candidate old regions available")
                ergo_format_region("candidate old regions")
                ergo_format_byte_perc("reclaimable")
                ergo_format_perc("threshold"),
                cset_chooser->remainingRegions(),
                reclaimable_bytes, perc, threshold);
  return true;
}

void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
2643 2644 2645
  // Set this here - in case we're not doing young collections.
  double non_young_start_time_sec = os::elapsedTime();

2646
  YoungList* young_list = _g1->young_list();
2647
  finalize_incremental_cset_building();
2648

2649 2650 2651 2652
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
2653 2654 2655

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;
2656
  double time_remaining_ms = target_pause_time_ms - base_time_ms;
2657

2658 2659 2660 2661 2662 2663 2664
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "start choosing CSet",
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
                base_time_ms, time_remaining_ms, target_pause_time_ms);

2665
  HeapRegion* hr;
2666
  double young_start_time_sec = os::elapsedTime();
2667

2668
  _collection_set_bytes_used_before = 0;
2669
  _last_gc_was_young = gcs_are_young() ? true : false;
2670

2671 2672
  if (_last_gc_was_young) {
    ++_young_pause_num;
2673
  } else {
2674
    ++_mixed_pause_num;
2675
  }
2676

2677 2678 2679
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
2680

2681 2682 2683
  size_t survivor_region_length = young_list->survivor_length();
  size_t eden_region_length = young_list->length() - survivor_region_length;
  init_cset_region_lengths(eden_region_length, survivor_region_length);
2684
  hr = young_list->first_survivor_region();
2685 2686 2687 2688 2689
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
    hr->set_young();
    hr = hr->get_next_young_region();
  }
2690

2691 2692
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
2693

2694 2695 2696 2697
  _collection_set = _inc_cset_head;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2698

2699 2700 2701 2702 2703
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
2704
                eden_region_length, survivor_region_length,
2705 2706
                _inc_cset_predicted_elapsed_time_ms);

2707 2708 2709
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2710

2711 2712 2713
  double young_end_time_sec = os::elapsedTime();
  _recorded_young_cset_choice_time_ms =
    (young_end_time_sec - young_start_time_sec) * 1000.0;
2714

2715 2716
  // We are doing young collections so reset this.
  non_young_start_time_sec = young_end_time_sec;
2717

2718
  if (!gcs_are_young()) {
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
    CollectionSetChooser* cset_chooser = _collectionSetChooser;
    assert(cset_chooser->verify(), "CSet Chooser verification - pre");
    const size_t min_old_cset_length = cset_chooser->calcMinOldCSetLength();
    const size_t max_old_cset_length = cset_chooser->calcMaxOldCSetLength();

    size_t expensive_region_num = 0;
    bool check_time_remaining = adaptive_young_list_length();
    HeapRegion* hr = cset_chooser->peek();
    while (hr != NULL) {
      if (old_cset_region_length() >= max_old_cset_length) {
        // Added maximum number of old regions to the CSet.
        ergo_verbose2(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("old CSet region num reached max")
                      ergo_format_region("old")
                      ergo_format_region("max"),
                      old_cset_region_length(), max_old_cset_length);
        break;
2737
      }
2738

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
      double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
      if (check_time_remaining) {
        if (predicted_time_ms > time_remaining_ms) {
          // Too expensive for the current CSet.

          if (old_cset_region_length() >= min_old_cset_length) {
            // We have added the minimum number of old regions to the CSet,
            // we are done with this CSet.
            ergo_verbose4(ErgoCSetConstruction,
                          "finish adding old regions to CSet",
                          ergo_format_reason("predicted time is too high")
                          ergo_format_ms("predicted time")
                          ergo_format_ms("remaining time")
                          ergo_format_region("old")
                          ergo_format_region("min"),
                          predicted_time_ms, time_remaining_ms,
                          old_cset_region_length(), min_old_cset_length);
            break;
2757
          }
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773

          // We'll add it anyway given that we haven't reached the
          // minimum number of old regions.
          expensive_region_num += 1;
        }
      } else {
        if (old_cset_region_length() >= min_old_cset_length) {
          // In the non-auto-tuning case, we'll finish adding regions
          // to the CSet if we reach the minimum.
          ergo_verbose2(ErgoCSetConstruction,
                        "finish adding old regions to CSet",
                        ergo_format_reason("old CSet region num reached min")
                        ergo_format_region("old")
                        ergo_format_region("min"),
                        old_cset_region_length(), min_old_cset_length);
          break;
2774 2775
        }
      }
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

      // We will add this region to the CSet.
      time_remaining_ms -= predicted_time_ms;
      predicted_pause_time_ms += predicted_time_ms;
      cset_chooser->remove_and_move_to_next(hr);
      _g1->old_set_remove(hr);
      add_old_region_to_cset(hr);

      hr = cset_chooser->peek();
    }
    if (hr == NULL) {
      ergo_verbose0(ErgoCSetConstruction,
                    "finish adding old regions to CSet",
                    ergo_format_reason("candidate old regions not available"));
    }

    if (expensive_region_num > 0) {
      // We print the information once here at the end, predicated on
      // whether we added any apparently expensive regions or not, to
      // avoid generating output per region.
      ergo_verbose4(ErgoCSetConstruction,
                    "added expensive regions to CSet",
                    ergo_format_reason("old CSet region num not reached min")
                    ergo_format_region("old")
                    ergo_format_region("expensive")
                    ergo_format_region("min")
                    ergo_format_ms("remaining time"),
                    old_cset_region_length(),
                    expensive_region_num,
                    min_old_cset_length,
                    time_remaining_ms);
2807 2808
    }

2809
    assert(cset_chooser->verify(), "CSet Chooser verification - post");
2810 2811
  }

2812 2813
  stop_incremental_cset_building();

2814 2815
  count_CS_bytes_used();

2816 2817 2818 2819 2820 2821 2822
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
2823 2824
                eden_region_length, survivor_region_length,
                old_cset_region_length(),
2825 2826
                predicted_pause_time_ms, target_pause_time_ms);

2827 2828 2829 2830
  double non_young_end_time_sec = os::elapsedTime();
  _recorded_non_young_cset_choice_time_ms =
    (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
}