g1CollectorPolicy.cpp 114.0 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32 33 34 35 36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

#define PREDICTIONS_VERBOSE 0

// <NEW PREDICTION>

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
static double fully_young_cards_per_entry_ratio_defaults[] = {
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

// </NEW PREDICTION>

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
// Help class for avoiding interleaved logging
class LineBuffer: public StackObj {

private:
  static const int BUFFER_LEN = 1024;
  static const int INDENT_CHARS = 3;
  char _buffer[BUFFER_LEN];
  int _indent_level;
  int _cur;

  void vappend(const char* format, va_list ap) {
    int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    if (res != -1) {
      _cur += res;
    } else {
      DEBUG_ONLY(warning("buffer too small in LineBuffer");)
      _buffer[BUFFER_LEN -1] = 0;
      _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
    }
  }

public:
  explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
    for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
      _buffer[_cur] = ' ';
    }
  }

#ifndef PRODUCT
  ~LineBuffer() {
    assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
  }
#endif

  void append(const char* format, ...) {
    va_list ap;
    va_start(ap, format);
    vappend(format, ap);
    va_end(ap);
  }

  void append_and_print_cr(const char* format, ...) {
    va_list ap;
    va_start(ap, format);
    vappend(format, ap);
    va_end(ap);
    gclog_or_tty->print_cr("%s", _buffer);
    _cur = _indent_level * INDENT_CHARS;
  }
};

136
G1CollectorPolicy::G1CollectorPolicy() :
137
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
138
                        ? ParallelGCThreads : 1),
139

140
  _n_pauses(0),
141
  _recent_rs_scan_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
142 143 144 145 146 147 148
  _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _all_pause_times_ms(new NumberSeq()),
  _stop_world_start(0.0),
  _all_stop_world_times_ms(new NumberSeq()),
  _all_yield_times_ms(new NumberSeq()),
149
  _using_new_ratio_calculations(false),
150 151 152

  _all_mod_union_times_ms(new NumberSeq()),

153
  _summary(new Summary()),
154 155

  _cur_clear_ct_time_ms(0.0),
156 157 158 159 160

  _cur_ref_proc_time_ms(0.0),
  _cur_ref_enq_time_ms(0.0),

#ifndef PRODUCT
161 162 163 164 165 166
  _min_clear_cc_time_ms(-1.0),
  _max_clear_cc_time_ms(-1.0),
  _cur_clear_cc_time_ms(0.0),
  _cum_clear_cc_time_ms(0.0),
  _num_cc_clears(0L),
#endif
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

  _region_num_young(0),
  _region_num_tenured(0),
  _prev_region_num_young(0),
  _prev_region_num_tenured(0),

  _aux_num(10),
  _all_aux_times_ms(new NumberSeq[_aux_num]),
  _cur_aux_start_times_ms(new double[_aux_num]),
  _cur_aux_times_ms(new double[_aux_num]),
  _cur_aux_times_set(new bool[_aux_num]),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  // <NEW PREDICTION>

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _partially_young_cards_per_entry_ratio_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
205
  _pause_time_target_ms((double) MaxGCPauseMillis),
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

  // </NEW PREDICTION>

  _full_young_gcs(true),
  _full_young_pause_num(0),
  _partial_young_pause_num(0),

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

  _known_garbage_ratio(0.0),
  _known_garbage_bytes(0),

  _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),

   _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _recent_avg_pause_time_ratio(0.0),

  _all_full_gc_times_ms(new NumberSeq()),

  // G1PausesBtwnConcMark defaults to -1
  // so the hack is to do the cast  QQQ FIXME
  _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
234 235
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
236 237 238
  _should_revert_to_full_young_gcs(false),
  _last_full_young_gc(false),

239 240 241 242
  _eden_bytes_before_gc(0),
  _survivor_bytes_before_gc(0),
  _capacity_before_gc(0),

243 244 245
  _prev_collection_pause_used_at_end_bytes(0),

  _collection_set(NULL),
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
  _collection_set_size(0),
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_size(0),
  _inc_cset_young_index(0),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_young_bytes(0),
  _inc_cset_recorded_rs_lengths(0),
  _inc_cset_predicted_elapsed_time_ms(0.0),
  _inc_cset_predicted_bytes_to_copy(0),

262 263 264 265 266 267 268
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
269
                                              G1YoungSurvRateNumRegionsSummary)),
270
  // add here any more surv rate groups
271 272 273
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
274 275
  _survivors_age_table(true),

276
  _gc_overhead_perc(0.0) {
277

278 279 280 281
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
  HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
282
  HeapRegionRemSet::setup_remset_size();
283

284 285 286 287 288 289 290 291 292 293 294 295
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

296
  // Verify PLAB sizes
297
  const size_t region_size = HeapRegion::GrainWords;
298 299
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
300
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
301 302 303 304
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

305 306 307
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

308
  _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
309 310 311 312 313 314 315 316 317 318 319
  _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
  _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];

  _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
  _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];

  _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];

  _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];

  _par_last_termination_times_ms = new double[_parallel_gc_threads];
320 321
  _par_last_termination_attempts = new double[_parallel_gc_threads];
  _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
322
  _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
323 324

  // start conservatively
J
johnc 已提交
325
  _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

  // <NEW PREDICTION>

  int index;
  if (ParallelGCThreads == 0)
    index = 0;
  else if (ParallelGCThreads > 8)
    index = 7;
  else
    index = ParallelGCThreads - 1;

  _pending_card_diff_seq->add(0.0);
  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
  _fully_young_cards_per_entry_ratio_seq->add(
                            fully_young_cards_per_entry_ratio_defaults[index]);
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

  // </NEW PREDICTION>

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
408
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
409
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
410
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
J
johnc 已提交
411
  _sigma = (double) G1ConfidencePercent / 100.0;
412 413 414 415 416

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
417
  // _max_survivor_regions will be calculated by
418
  // update_young_list_target_length() during initialization.
419
  _max_survivor_regions = 0;
420

T
tonyp 已提交
421 422 423 424 425
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

426 427 428 429 430 431 432 433
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
434
  // This will be set when the heap is expanded
435 436 437
  // for the first time during initialization.
  _reserve_regions = 0;

438
  initialize_all();
439
  _collectionSetChooser = new CollectionSetChooser();
440 441 442 443 444 445 446 447 448 449
}

// Increment "i", mod "len"
static void inc_mod(int& i, int len) {
  i++; if (i == len) i = 0;
}

void G1CollectorPolicy::initialize_flags() {
  set_min_alignment(HeapRegion::GrainBytes);
  set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
450 451 452
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
453 454 455
  CollectorPolicy::initialize_flags();
}

456 457 458 459 460 461 462
// The easiest way to deal with the parsing of the NewSize /
// MaxNewSize / etc. parameteres is to re-use the code in the
// TwoGenerationCollectorPolicy class. This is similar to what
// ParallelScavenge does with its GenerationSizer class (see
// ParallelScavengeHeap::initialize()). We might change this in the
// future, but it's a good start.
class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
463 464 465 466
private:
  size_t size_to_region_num(size_t byte_size) {
    return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
  }
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

public:
  G1YoungGenSizer() {
    initialize_flags();
    initialize_size_info();
  }
  size_t min_young_region_num() {
    return size_to_region_num(_min_gen0_size);
  }
  size_t initial_young_region_num() {
    return size_to_region_num(_initial_gen0_size);
  }
  size_t max_young_region_num() {
    return size_to_region_num(_max_gen0_size);
  }
};

484 485 486 487 488 489 490
void G1CollectorPolicy::update_young_list_size_using_newratio(size_t number_of_heap_regions) {
  assert(number_of_heap_regions > 0, "Heap must be initialized");
  size_t young_size = number_of_heap_regions / (NewRatio + 1);
  _min_desired_young_length = young_size;
  _max_desired_young_length = young_size;
}

491 492 493 494 495 496
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

497 498
  initialize_gc_policy_counters();

499 500
  G1YoungGenSizer sizer;
  size_t initial_region_num = sizer.initial_young_region_num();
501 502
  _min_desired_young_length = sizer.min_young_region_num();
  _max_desired_young_length = sizer.max_young_region_num();
503

504 505
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
506
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
507 508
    } else {
      // Treat NewRatio as a fixed size that is only recalculated when the heap size changes
509
      update_young_list_size_using_newratio(_g1->n_regions());
510 511 512 513 514 515 516 517 518 519 520 521
      _using_new_ratio_calculations = true;
    }
  }

  // GenCollectorPolicy guarantees that min <= initial <= max.
  // Asserting here just to state that we rely on this property.
  assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
  assert(initial_region_num <= _max_desired_young_length, "Initial young gen size too large");
  assert(_min_desired_young_length <= initial_region_num, "Initial young gen size too small");

  set_adaptive_young_list_length(_min_desired_young_length < _max_desired_young_length);
  if (adaptive_young_list_length()) {
522
    _young_list_fixed_length = 0;
523
  } else {
524
    _young_list_fixed_length = initial_region_num;
525
  }
526
  _free_regions_at_end_of_collection = _g1->free_regions();
527
  update_young_list_target_length();
528
  _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
529 530 531 532

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
533 534
}

535
// Create the jstat counters for the policy.
536
void G1CollectorPolicy::initialize_gc_policy_counters() {
537
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
538 539
}

540 541 542 543 544 545 546 547
bool G1CollectorPolicy::predict_will_fit(size_t young_length,
                                         double base_time_ms,
                                         size_t base_free_regions,
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
548

549 550 551 552 553 554 555 556 557 558
  double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
559

560 561 562 563 564
  size_t free_bytes =
                  (base_free_regions - young_length) * HeapRegion::GrainBytes;
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
565
  }
566 567 568 569 570

  // success!
  return true;
}

571 572 573
void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
574 575 576
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
  _reserve_regions = (size_t) ceil(reserve_regions_d);
577 578 579 580 581 582

  if (_using_new_ratio_calculations) {
    // -XX:NewRatio was specified so we need to update the
    // young gen length when the heap size has changed.
    update_young_list_size_using_newratio(new_number_of_regions);
  }
583 584
}

585 586 587
size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                     size_t base_min_length) {
  size_t desired_min_length = 0;
588
  if (adaptive_young_list_length()) {
589 590 591 592 593 594 595
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
      desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
    } else {
      // otherwise we don't have enough info to make the prediction
596 597
    }
  }
598 599 600
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
  return MAX2(_min_desired_young_length, desired_min_length);
601 602
}

603 604 605 606
size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
607
  return _max_desired_young_length;
608
}
609

610 611 612 613 614 615
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
616

617
  // Calculate the absolute and desired min bounds.
618

619 620 621 622 623 624 625 626 627 628
  // This is how many young regions we already have (currently: the survivors).
  size_t base_min_length = recorded_survivor_regions();
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
  size_t absolute_min_length = base_min_length + 1;
  size_t desired_min_length =
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
629

630
  // Calculate the absolute and desired max bounds.
631

632 633 634 635 636 637 638 639 640
  // We will try our best not to "eat" into the reserve.
  size_t absolute_max_length = 0;
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
  size_t desired_max_length = calculate_young_list_desired_max_length();
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
  size_t young_list_target_length = 0;
  if (adaptive_young_list_length()) {
    if (full_young_gcs()) {
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
    if (full_young_gcs()) {
      young_list_target_length = _young_list_fixed_length;
    } else {
      // A bit arbitrary: during partially-young GCs we allocate half
      // the young regions to try to add old regions to the CSet.
      young_list_target_length = _young_list_fixed_length / 2;
      // We choose to accept that we might go under the desired min
      // length given that we intentionally ask for a smaller young gen.
      desired_min_length = absolute_min_length;
    }
  }
668

669 670 671 672 673 674 675 676 677
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
678

679 680 681 682
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
683

684 685
  update_max_gc_locker_expansion();
}
686

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
size_t
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
                                                   size_t base_min_length,
                                                   size_t desired_min_length,
                                                   size_t desired_max_length) {
  assert(adaptive_young_list_length(), "pre-condition");
  assert(full_young_gcs(), "only call this for fully-young GCs");

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
  size_t min_young_length = desired_min_length - base_min_length;
  assert(desired_max_length > base_min_length, "invariant");
  size_t max_young_length = desired_max_length - base_min_length;

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
  size_t available_free_regions = _free_regions_at_end_of_collection;
  size_t base_free_regions = 0;
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
      size_t diff = (max_young_length - min_young_length) / 2;
      while (diff > 0) {
        size_t young_length = min_young_length + diff;
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
789 790
}

791 792 793 794 795 796 797 798 799 800
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
  }
  return survivor_regions_evac_time;
}

801
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
802 803
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

804
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
805 806 807
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
808
    update_young_list_target_length(rs_lengths_prediction);
809 810 811
  }
}

812 813


814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
832
  HeapRegion* head = _g1->young_list()->first_region();
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
  _cur_collection_start_sec = os::elapsedTime();
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
  double full_gc_time_sec = end_sec - _cur_collection_start_sec;
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

  _all_full_gc_times_ms->add(full_gc_time_ms);

892
  update_recent_gc_times(end_sec, full_gc_time_ms);
893 894 895 896 897 898 899 900 901

  _g1->clear_full_collection();

  // "Nuke" the heuristics that control the fully/partially young GC
  // transitions and make sure we start with fully young GCs after the
  // Full GC.
  set_full_young_gcs(true);
  _last_full_young_gc = false;
  _should_revert_to_full_young_gcs = false;
902 903
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
904 905 906 907 908 909 910 911
  _known_garbage_bytes = 0;
  _known_garbage_ratio = 0.0;
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

912 913
  record_survivor_regions(0, NULL, NULL);

914 915 916 917
  _prev_region_num_young   = _region_num_young;
  _prev_region_num_tenured = _region_num_tenured;

  _free_regions_at_end_of_collection = _g1->free_regions();
918 919
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
920
  update_young_list_target_length();
921
  _collectionSetChooser->updateAfterFullCollection();
922
}
923 924 925 926 927 928 929 930 931 932

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
                                                      size_t start_used) {
  if (PrintGCDetails) {
    gclog_or_tty->stamp(PrintGCTimeStamps);
    gclog_or_tty->print("[GC pause");
933
    gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
934 935
  }

936 937 938 939 940
  // We only need to do this here as the policy will only be applied
  // to the GC we're about to start. so, no point is calculating this
  // every time we calculate / recalculate the target young length.
  update_survivors_policy();

941 942 943
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
944 945 946 947 948 949 950 951 952 953 954 955

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
  _all_stop_world_times_ms->add(s_w_t_ms);
  _stop_world_start = 0.0;

  _cur_collection_start_sec = start_time_sec;
  _cur_collection_pause_used_at_start_bytes = start_used;
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  _pending_cards = _g1->pending_card_num();
  _max_pending_cards = _g1->max_pending_card_num();

  _bytes_in_collection_set_before_gc = 0;
956
  _bytes_copied_during_gc = 0;
957

958 959 960 961 962
  YoungList* young_list = _g1->young_list();
  _eden_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_bytes_before_gc = young_list->survivor_used_bytes();
  _capacity_before_gc = _g1->capacity();

963 964 965 966 967
#ifdef DEBUG
  // initialise these to something well known so that we can spot
  // if they are not set properly

  for (int i = 0; i < _parallel_gc_threads; ++i) {
968 969 970 971 972 973 974 975 976 977
    _par_last_gc_worker_start_times_ms[i] = -1234.0;
    _par_last_ext_root_scan_times_ms[i] = -1234.0;
    _par_last_mark_stack_scan_times_ms[i] = -1234.0;
    _par_last_update_rs_times_ms[i] = -1234.0;
    _par_last_update_rs_processed_buffers[i] = -1234.0;
    _par_last_scan_rs_times_ms[i] = -1234.0;
    _par_last_obj_copy_times_ms[i] = -1234.0;
    _par_last_termination_times_ms[i] = -1234.0;
    _par_last_termination_attempts[i] = -1234.0;
    _par_last_gc_worker_end_times_ms[i] = -1234.0;
978
    _par_last_gc_worker_times_ms[i] = -1234.0;
979 980 981 982 983 984 985 986 987 988 989
  }
#endif

  for (int i = 0; i < _aux_num; ++i) {
    _cur_aux_times_ms[i] = 0.0;
    _cur_aux_times_set[i] = false;
  }

  _satb_drain_time_set = false;
  _last_satb_drain_processed_buffers = -1;

990
  _last_young_gc_full = false;
991 992 993

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
994
  _survivors_age_table.clear();
995

996 997 998 999 1000 1001 1002
  assert( verify_young_ages(), "region age verification" );
}

void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
  _mark_closure_time_ms = mark_closure_time_ms;
}

1003
void G1CollectorPolicy::record_concurrent_mark_init_end(double
1004 1005
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
1006 1007
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

1030
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
1031 1032 1033
  _should_revert_to_full_young_gcs = false;
  _last_full_young_gc = true;
  _in_marking_window = false;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
    _all_yield_times_ms->add(yield_ms);
  }
}

void G1CollectorPolicy::record_concurrent_pause_end() {
}

template<class T>
T sum_of(T* sum_arr, int start, int n, int N) {
  T sum = (T)0;
  for (int i = 0; i < n; i++) {
    int j = (start + i) % N;
    sum += sum_arr[j];
  }
  return sum;
}

1056 1057
void G1CollectorPolicy::print_par_stats(int level,
                                        const char* str,
1058
                                        double* data) {
1059 1060
  double min = data[0], max = data[0];
  double total = 0.0;
1061 1062
  LineBuffer buf(level);
  buf.append("[%s (ms):", str);
1063 1064 1065 1066 1067 1068 1069
  for (uint i = 0; i < ParallelGCThreads; ++i) {
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
1070
    buf.append("  %3.1lf", val);
1071
  }
1072 1073 1074 1075
  buf.append_and_print_cr("");
  double avg = total / (double) ParallelGCThreads;
  buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
    avg, min, max, max - min);
1076 1077
}

1078 1079
void G1CollectorPolicy::print_par_sizes(int level,
                                        const char* str,
1080
                                        double* data) {
1081 1082
  double min = data[0], max = data[0];
  double total = 0.0;
1083 1084
  LineBuffer buf(level);
  buf.append("[%s :", str);
1085 1086 1087 1088 1089 1090 1091
  for (uint i = 0; i < ParallelGCThreads; ++i) {
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
1092
    buf.append(" %d", (int) val);
1093
  }
1094 1095 1096 1097
  buf.append_and_print_cr("");
  double avg = total / (double) ParallelGCThreads;
  buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
    (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
1098 1099 1100 1101 1102
}

void G1CollectorPolicy::print_stats (int level,
                                     const char* str,
                                     double value) {
1103
  LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
1104 1105 1106 1107 1108
}

void G1CollectorPolicy::print_stats (int level,
                                     const char* str,
                                     int value) {
1109
  LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
1110 1111 1112
}

double G1CollectorPolicy::avg_value (double* data) {
1113
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
    double ret = 0.0;
    for (uint i = 0; i < ParallelGCThreads; ++i)
      ret += data[i];
    return ret / (double) ParallelGCThreads;
  } else {
    return data[0];
  }
}

double G1CollectorPolicy::max_value (double* data) {
1124
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    double ret = data[0];
    for (uint i = 1; i < ParallelGCThreads; ++i)
      if (data[i] > ret)
        ret = data[i];
    return ret;
  } else {
    return data[0];
  }
}

double G1CollectorPolicy::sum_of_values (double* data) {
1136
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    double sum = 0.0;
    for (uint i = 0; i < ParallelGCThreads; i++)
      sum += data[i];
    return sum;
  } else {
    return data[0];
  }
}

double G1CollectorPolicy::max_sum (double* data1,
                                   double* data2) {
  double ret = data1[0] + data2[0];

1150
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    for (uint i = 1; i < ParallelGCThreads; ++i) {
      double data = data1[i] + data2[i];
      if (data > ret)
        ret = data;
    }
  }
  return ret;
}

// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

1163
void G1CollectorPolicy::record_collection_pause_end() {
1164 1165
  double end_time_sec = os::elapsedTime();
  double elapsed_ms = _last_pause_time_ms;
1166
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1167 1168 1169 1170 1171
  size_t rs_size =
    _cur_collection_pause_used_regions_at_start - collection_set_size();
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
1172
  bool update_stats = !_g1->evacuation_failed();
1173 1174 1175 1176 1177 1178 1179 1180 1181

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

1182 1183 1184
  last_pause_included_initial_mark = during_initial_mark_pause();
  if (last_pause_included_initial_mark)
    record_concurrent_mark_init_end(0.0);
1185

1186
  size_t marking_initiating_used_threshold =
1187
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1188

1189 1190
  if (!_g1->mark_in_progress() && !_last_full_young_gc) {
    assert(!last_pause_included_initial_mark, "invariant");
1191 1192
    if (cur_used_bytes > marking_initiating_used_threshold) {
      if (cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
1193 1194
        assert(!during_initial_mark_pause(), "we should not see this here");

1195 1196 1197 1198 1199 1200 1201 1202 1203
        ergo_verbose3(ErgoConcCycles,
                      "request concurrent cycle initiation",
                      ergo_format_reason("occupancy higher than threshold")
                      ergo_format_byte("occupancy")
                      ergo_format_byte_perc("threshold"),
                      cur_used_bytes,
                      marking_initiating_used_threshold,
                      (double) InitiatingHeapOccupancyPercent);

1204 1205 1206 1207
        // Note: this might have already been set, if during the last
        // pause we decided to start a cycle but at the beginning of
        // this pause we decided to postpone it. That's OK.
        set_initiate_conc_mark_if_possible();
1208 1209 1210 1211 1212 1213 1214 1215 1216
      } else {
        ergo_verbose2(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("occupancy lower than previous occupancy")
                  ergo_format_byte("occupancy")
                  ergo_format_byte("previous occupancy"),
                  cur_used_bytes,
                  _prev_collection_pause_used_at_end_bytes);
      }
1217 1218 1219
    }
  }

1220 1221
  _prev_collection_pause_used_at_end_bytes = cur_used_bytes;

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
  _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
                          end_time_sec, false);

  guarantee(_cur_collection_pause_used_regions_at_start >=
            collection_set_size(),
            "Negative RS size?");

  // This assert is exempted when we're doing parallel collection pauses,
  // because the fragmentation caused by the parallel GC allocation buffers
  // can lead to more memory being used during collection than was used
  // before. Best leave this out until the fragmentation problem is fixed.
  // Pauses in which evacuation failed can also lead to negative
  // collections, since no space is reclaimed from a region containing an
  // object whose evacuation failed.
  // Further, we're now always doing parallel collection.  But I'm still
  // leaving this here as a placeholder for a more precise assertion later.
  // (DLD, 10/05.)
  assert((true || parallel) // Always using GC LABs now.
         || _g1->evacuation_failed()
         || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
         "Negative collection");

  size_t freed_bytes =
    _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1247

1248 1249 1250 1251 1252 1253
  double survival_fraction =
    (double)surviving_bytes/
    (double)_collection_set_bytes_used_before;

  _n_pauses++;

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
  double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
  double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  double update_rs_processed_buffers =
    sum_of_values(_par_last_update_rs_processed_buffers);
  double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  double termination_time = avg_value(_par_last_termination_times_ms);

  double parallel_known_time = update_rs_time +
                               ext_root_scan_time +
                               mark_stack_scan_time +
                               scan_rs_time +
                               obj_copy_time +
                               termination_time;

  double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;

  PauseSummary* summary = _summary;

1274
  if (update_stats) {
1275
    _recent_rs_scan_times_ms->add(scan_rs_time);
1276 1277 1278
    _recent_pause_times_ms->add(elapsed_ms);
    _recent_rs_sizes->add(rs_size);

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    MainBodySummary* body_summary = summary->main_body_summary();
    guarantee(body_summary != NULL, "should not be null!");

    if (_satb_drain_time_set)
      body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
    else
      body_summary->record_satb_drain_time_ms(0.0);

    body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
    body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
    body_summary->record_update_rs_time_ms(update_rs_time);
    body_summary->record_scan_rs_time_ms(scan_rs_time);
    body_summary->record_obj_copy_time_ms(obj_copy_time);
    if (parallel) {
      body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
      body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
      body_summary->record_termination_time_ms(termination_time);
      body_summary->record_parallel_other_time_ms(parallel_other_time);
    }
    body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
    // We exempt parallel collection from this check because Alloc Buffer
    // fragmentation can produce negative collections.  Same with evac
    // failure.
    // Further, we're now always doing parallel collection.  But I'm still
    // leaving this here as a placeholder for a more precise assertion later.
    // (DLD, 10/05.
    assert((true || parallel)
           || _g1->evacuation_failed()
           || surviving_bytes <= _collection_set_bytes_used_before,
           "Or else negative collection!");
    _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
    _recent_CS_bytes_surviving->add(surviving_bytes);

    // this is where we update the allocation rate of the application
    double app_time_ms =
      (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
    size_t regions_allocated =
      (_region_num_young - _prev_region_num_young) +
      (_region_num_tenured - _prev_region_num_tenured);
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);
    _prev_region_num_young   = _region_num_young;
    _prev_region_num_tenured = _region_num_tenured;

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
    update_recent_gc_times(end_time_sec, elapsed_ms);
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1346 1347 1348 1349 1350
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1351 1352 1353 1354 1355 1356 1357
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
  }

  if (G1PolicyVerbose > 1) {
    gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
  }

  if (G1PolicyVerbose > 1) {
    gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
                           "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
                           "      |RS|: " SIZE_FORMAT,
                           elapsed_ms, recent_avg_time_for_pauses_ms(),
1369
                           scan_rs_time, recent_avg_time_for_rs_scan_ms(),
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
                           rs_size);

    gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
                           "       At end " SIZE_FORMAT "K\n"
                           "       garbage      : " SIZE_FORMAT "K"
                           "       of     " SIZE_FORMAT "K\n"
                           "       survival     : %6.2f%%  (%6.2f%% avg)",
                           _cur_collection_pause_used_at_start_bytes/K,
                           _g1->used()/K, freed_bytes/K,
                           _collection_set_bytes_used_before/K,
                           survival_fraction*100.0,
                           recent_avg_survival_fraction()*100.0);
    gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
                           recent_avg_pause_time_ratio() * 100.0);
  }

  double other_time_ms = elapsed_ms;

1388 1389 1390
  if (_satb_drain_time_set) {
    other_time_ms -= _cur_satb_drain_time_ms;
  }
1391

1392 1393 1394 1395 1396 1397 1398
  if (parallel) {
    other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
  } else {
    other_time_ms -=
      update_rs_time +
      ext_root_scan_time + mark_stack_scan_time +
      scan_rs_time + obj_copy_time;
1399 1400 1401
  }

  if (PrintGCDetails) {
1402
    gclog_or_tty->print_cr("%s, %1.8lf secs]",
1403 1404 1405
                           (last_pause_included_initial_mark) ? " (initial-mark)" : "",
                           elapsed_ms / 1000.0);

1406 1407 1408 1409 1410 1411 1412 1413
    if (_satb_drain_time_set) {
      print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
    }
    if (_last_satb_drain_processed_buffers >= 0) {
      print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
    }
    if (parallel) {
      print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
1414
      print_par_stats(2, "GC Worker Start Time", _par_last_gc_worker_start_times_ms);
1415
      print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1416 1417 1418
      print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
      print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
      print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
1419 1420 1421
      print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
      print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
      print_par_stats(2, "Termination", _par_last_termination_times_ms);
1422 1423 1424 1425 1426 1427 1428 1429
      print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
      print_par_stats(2, "GC Worker End Time", _par_last_gc_worker_end_times_ms);

      for (int i = 0; i < _parallel_gc_threads; i++) {
        _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
      }
      print_par_stats(2, "GC Worker Times", _par_last_gc_worker_times_ms);

1430
      print_stats(2, "Parallel Other", parallel_other_time);
1431 1432 1433 1434 1435 1436 1437 1438 1439
      print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
    } else {
      print_stats(1, "Update RS", update_rs_time);
      print_stats(2, "Processed Buffers",
                  (int)update_rs_processed_buffers);
      print_stats(1, "Ext Root Scanning", ext_root_scan_time);
      print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
      print_stats(1, "Scan RS", scan_rs_time);
      print_stats(1, "Object Copying", obj_copy_time);
1440
    }
1441 1442 1443 1444 1445 1446 1447 1448 1449
#ifndef PRODUCT
    print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
    print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
    print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
    print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
    if (_num_cc_clears > 0) {
      print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
    }
#endif
1450
    print_stats(1, "Other", other_time_ms);
1451
    print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
1452 1453
    print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
    print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
    for (int i = 0; i < _aux_num; ++i) {
      if (_cur_aux_times_set[i]) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_stats(1, buffer, _cur_aux_times_ms[i]);
      }
    }
  }

  _all_pause_times_ms->add(elapsed_ms);
1465 1466 1467 1468
  if (update_stats) {
    summary->record_total_time_ms(elapsed_ms);
    summary->record_other_time_ms(other_time_ms);
  }
1469
  for (int i = 0; i < _aux_num; ++i)
1470
    if (_cur_aux_times_set[i]) {
1471
      _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
1472
    }
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

  // Update the efficiency-since-mark vars.
  double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  if (elapsed_ms < MIN_TIMER_GRANULARITY) {
    // This usually happens due to the timer not having the required
    // granularity. Some Linuxes are the usual culprits.
    // We'll just set it to something (arbitrarily) small.
    proc_ms = 1.0;
  }
  double cur_efficiency = (double) freed_bytes / proc_ms;

  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1486
  if (during_initial_mark_pause()) {
1487 1488 1489 1490
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1491
  if (_last_full_young_gc) {
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    if (!last_pause_included_initial_mark) {
      ergo_verbose2(ErgoPartiallyYoungGCs,
                    "start partially-young GCs",
                    ergo_format_byte_perc("known garbage"),
                    _known_garbage_bytes, _known_garbage_ratio * 100.0);
      set_full_young_gcs(false);
    } else {
      ergo_verbose0(ErgoPartiallyYoungGCs,
                    "do not start partially-young GCs",
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1503 1504
    _last_full_young_gc = false;
  }
1505

1506
  if ( !_last_young_gc_full ) {
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    if (_should_revert_to_full_young_gcs) {
      ergo_verbose2(ErgoPartiallyYoungGCs,
                    "end partially-young GCs",
                    ergo_format_reason("partially-young GCs end requested")
                    ergo_format_byte_perc("known garbage"),
                    _known_garbage_bytes, _known_garbage_ratio * 100.0);
      set_full_young_gcs(true);
    } else if (_known_garbage_ratio < 0.05) {
      ergo_verbose3(ErgoPartiallyYoungGCs,
               "end partially-young GCs",
               ergo_format_reason("known garbage percent lower than threshold")
               ergo_format_byte_perc("known garbage")
               ergo_format_perc("threshold"),
               _known_garbage_bytes, _known_garbage_ratio * 100.0,
               0.05 * 100.0);
      set_full_young_gcs(true);
    } else if (adaptive_young_list_length() &&
              (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) {
      ergo_verbose5(ErgoPartiallyYoungGCs,
                    "end partially-young GCs",
                    ergo_format_reason("current GC efficiency lower than "
                                       "predicted fully-young GC efficiency")
                    ergo_format_double("GC efficiency factor")
                    ergo_format_double("current GC efficiency")
                    ergo_format_double("predicted fully-young GC efficiency")
                    ergo_format_byte_perc("known garbage"),
                    get_gc_eff_factor(), cur_efficiency,
                    predict_young_gc_eff(),
                    _known_garbage_bytes, _known_garbage_ratio * 100.0);
      set_full_young_gcs(true);
1537
    }
1538 1539
  }
  _should_revert_to_full_young_gcs = false;
1540

1541 1542
  if (_last_young_gc_full && !_during_marking) {
    _young_gc_eff_seq->add(cur_efficiency);
1543 1544 1545 1546 1547 1548 1549
  }

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

  // <NEW PREDICTION>

1550
  if (update_stats) {
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
    double pause_time_ms = elapsed_ms;

    size_t diff = 0;
    if (_max_pending_cards >= _pending_cards)
      diff = _max_pending_cards - _pending_cards;
    _pending_card_diff_seq->add((double) diff);

    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
      cost_per_card_ms = update_rs_time / (double) _pending_cards;
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
      cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
      if (_last_young_gc_full)
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
      else
        _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
      if (_last_young_gc_full)
        _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      else
        _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
    }

    size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    if (rs_length_diff >= 0)
      _rs_length_diff_seq->add((double) rs_length_diff);

    size_t copied_bytes = surviving_bytes;
    double cost_per_byte_ms = 0.0;
    if (copied_bytes > 0) {
      cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
      if (_in_marking_window)
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
      else
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
    }

    double all_other_time_ms = pause_time_ms -
1599
      (update_rs_time + scan_rs_time + obj_copy_time +
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
       _mark_closure_time_ms + termination_time);

    double young_other_time_ms = 0.0;
    if (_recorded_young_regions > 0) {
      young_other_time_ms =
        _recorded_young_cset_choice_time_ms +
        _recorded_young_free_cset_time_ms;
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
                                             (double) _recorded_young_regions);
    }
    double non_young_other_time_ms = 0.0;
    if (_recorded_non_young_regions > 0) {
      non_young_other_time_ms =
        _recorded_non_young_cset_choice_time_ms +
        _recorded_non_young_free_cset_time_ms;

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
                                         (double) _recorded_non_young_regions);
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
    if (_bytes_in_collection_set_before_gc > 0) {
1626 1627
      survival_ratio = (double) _bytes_copied_during_gc /
                                   (double) _bytes_in_collection_set_before_gc;
1628 1629 1630 1631 1632 1633 1634
    }

    _pending_cards_seq->add((double) _pending_cards);
    _scanned_cards_seq->add((double) cards_scanned);
    _rs_lengths_seq->add((double) _max_rs_lengths);

    double expensive_region_limit_ms =
J
johnc 已提交
1635
      (double) MaxGCPauseMillis - predict_constant_other_time_ms();
1636 1637 1638
    if (expensive_region_limit_ms < 0.0) {
      // this means that the other time was predicted to be longer than
      // than the max pause time
J
johnc 已提交
1639
      expensive_region_limit_ms = (double) MaxGCPauseMillis;
1640 1641 1642 1643 1644 1645
    }
    _expensive_region_limit_ms = expensive_region_limit_ms;

    if (PREDICTIONS_VERBOSE) {
      gclog_or_tty->print_cr("");
      gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
1646
                    "REGIONS %d %d %d "
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
                    "PENDING_CARDS %d %d "
                    "CARDS_SCANNED %d %d "
                    "RS_LENGTHS %d %d "
                    "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
                    "SURVIVAL_RATIO %1.6lf %1.6lf "
                    "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
                    "OTHER_YOUNG %1.6lf %1.6lf "
                    "OTHER_NON_YOUNG %1.6lf %1.6lf "
                    "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
                    "ELAPSED %1.6lf %1.6lf ",
                    _cur_collection_start_sec,
                    (!_last_young_gc_full) ? 2 :
                    (last_pause_included_initial_mark) ? 1 : 0,
                    _recorded_region_num,
                    _recorded_young_regions,
                    _recorded_non_young_regions,
                    _predicted_pending_cards, _pending_cards,
                    _predicted_cards_scanned, cards_scanned,
                    _predicted_rs_lengths, _max_rs_lengths,
                    _predicted_rs_update_time_ms, update_rs_time,
                    _predicted_rs_scan_time_ms, scan_rs_time,
                    _predicted_survival_ratio, survival_ratio,
                    _predicted_object_copy_time_ms, obj_copy_time,
                    _predicted_constant_other_time_ms, constant_other_time_ms,
                    _predicted_young_other_time_ms, young_other_time_ms,
                    _predicted_non_young_other_time_ms,
                    non_young_other_time_ms,
                    _vtime_diff_ms, termination_time,
                    _predicted_pause_time_ms, elapsed_ms);
    }

    if (G1PolicyVerbose > 0) {
      gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
                    _predicted_pause_time_ms,
                    (_within_target) ? "within" : "outside",
                    elapsed_ms);
    }

  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
1690
  update_young_list_target_length();
1691

1692
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1693
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1694
  adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1695
  // </NEW PREDICTION>
1696 1697

  assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
1698 1699
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
#define EXT_SIZE_FORMAT "%d%s"
#define EXT_SIZE_PARAMS(bytes)                                  \
  byte_size_in_proper_unit((bytes)),                            \
  proper_unit_for_byte_size((bytes))

void G1CollectorPolicy::print_heap_transition() {
  if (PrintGCDetails) {
    YoungList* young_list = _g1->young_list();
    size_t eden_bytes = young_list->eden_used_bytes();
    size_t survivor_bytes = young_list->survivor_used_bytes();
    size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
    size_t used = _g1->used();
    size_t capacity = _g1->capacity();
1713 1714
    size_t eden_capacity =
      (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1715 1716

    gclog_or_tty->print_cr(
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
      "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
      "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
      "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
      EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
      EXT_SIZE_PARAMS(_eden_bytes_before_gc),
      EXT_SIZE_PARAMS(_prev_eden_capacity),
      EXT_SIZE_PARAMS(eden_bytes),
      EXT_SIZE_PARAMS(eden_capacity),
      EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
      EXT_SIZE_PARAMS(survivor_bytes),
      EXT_SIZE_PARAMS(used_before_gc),
      EXT_SIZE_PARAMS(_capacity_before_gc),
      EXT_SIZE_PARAMS(used),
      EXT_SIZE_PARAMS(capacity));

    _prev_eden_capacity = eden_capacity;
1733 1734 1735 1736 1737 1738 1739
  } else if (PrintGC) {
    _g1->print_size_transition(gclog_or_tty,
                               _cur_collection_pause_used_at_start_bytes,
                               _g1->used(), _g1->capacity());
  }
}

1740 1741
// <NEW PREDICTION>

1742 1743 1744 1745 1746 1747
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1748
  if (G1UseAdaptiveConcRefinement) {
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1783 1784 1785 1786 1787 1788
double
G1CollectorPolicy::
predict_young_collection_elapsed_time_ms(size_t adjustment) {
  guarantee( adjustment == 0 || adjustment == 1, "invariant" );

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
1789
  size_t young_num = g1h->young_list()->length();
1790 1791 1792 1793 1794
  if (young_num == 0)
    return 0.0;

  young_num += adjustment;
  size_t pending_cards = predict_pending_cards();
1795
  size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
                      predict_rs_length_diff();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_lengths);
  else
    card_num = predict_non_young_card_num(rs_lengths);
  size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  double accum_yg_surv_rate =
    _short_lived_surv_rate_group->accum_surv_rate(adjustment);

  size_t bytes_to_copy =
    (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);

  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy) +
    predict_young_other_time_ms(young_num) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_length);
  else
    card_num = predict_non_young_card_num(rs_length);
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
                                                  bool young) {
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_length);
  else
    card_num = predict_non_young_card_num(rs_length);
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

  if (young)
    region_elapsed_time_ms += predict_young_other_time_ms(1);
  else
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);

  return region_elapsed_time_ms;
}

size_t
G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
               "invariant" );
    int age = hr->age_in_surv_rate_group();
1869
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }

  return bytes_to_copy;
}

void
G1CollectorPolicy::start_recording_regions() {
  _recorded_rs_lengths            = 0;
  _recorded_young_regions         = 0;
  _recorded_non_young_regions     = 0;

#if PREDICTIONS_VERBOSE
  _recorded_marked_bytes          = 0;
  _recorded_young_bytes           = 0;
  _predicted_bytes_to_copy        = 0;
1886 1887
  _predicted_rs_lengths           = 0;
  _predicted_cards_scanned        = 0;
1888 1889 1890 1891
#endif // PREDICTIONS_VERBOSE
}

void
1892
G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
1893
#if PREDICTIONS_VERBOSE
1894
  if (!young) {
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
    _recorded_marked_bytes += hr->max_live_bytes();
  }
  _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
#endif // PREDICTIONS_VERBOSE

  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
}

void
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
  assert(!hr->is_young(), "should not call this");
  ++_recorded_non_young_regions;
  record_cset_region_info(hr, false);
}

void
G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
  _recorded_young_regions = n_regions;
}

void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
#if PREDICTIONS_VERBOSE
  _recorded_young_bytes = bytes;
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
  _predicted_bytes_to_copy = bytes;
1928 1929 1930 1931
}

void
G1CollectorPolicy::end_recording_regions() {
1932 1933 1934 1935
  // The _predicted_pause_time_ms field is referenced in code
  // not under PREDICTIONS_VERBOSE. Let's initialize it.
  _predicted_pause_time_ms = -1.0;

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
#if PREDICTIONS_VERBOSE
  _predicted_pending_cards = predict_pending_cards();
  _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
  if (full_young_gcs())
    _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
  else
    _predicted_cards_scanned +=
      predict_non_young_card_num(_predicted_rs_lengths);
  _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;

  _predicted_rs_update_time_ms =
    predict_rs_update_time_ms(_g1->pending_card_num());
  _predicted_rs_scan_time_ms =
    predict_rs_scan_time_ms(_predicted_cards_scanned);
  _predicted_object_copy_time_ms =
    predict_object_copy_time_ms(_predicted_bytes_to_copy);
  _predicted_constant_other_time_ms =
    predict_constant_other_time_ms();
  _predicted_young_other_time_ms =
    predict_young_other_time_ms(_recorded_young_regions);
  _predicted_non_young_other_time_ms =
    predict_non_young_other_time_ms(_recorded_non_young_regions);

  _predicted_pause_time_ms =
    _predicted_rs_update_time_ms +
    _predicted_rs_scan_time_ms +
    _predicted_object_copy_time_ms +
    _predicted_constant_other_time_ms +
    _predicted_young_other_time_ms +
    _predicted_non_young_other_time_ms;
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  // I don't think we need to do this when in young GC mode since
  // marking will be initiated next time we hit the soft limit anyway...
  if (predicted_time_ms > _expensive_region_limit_ms) {
1974 1975 1976 1977 1978 1979
    ergo_verbose2(ErgoPartiallyYoungGCs,
              "request partially-young GCs end",
              ergo_format_reason("predicted region time higher than threshold")
              ergo_format_ms("predicted region time")
              ergo_format_ms("threshold"),
              predicted_time_ms, _expensive_region_limit_ms);
1980 1981
    // no point in doing another partial one
    _should_revert_to_full_young_gcs = true;
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
  }
}

// </NEW PREDICTION>


void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
1996 1997 1998 1999
  if (_recent_pause_times_ms->num() == 0) {
    return (double) MaxGCPauseMillis;
  }
  return _recent_pause_times_ms->avg();
2000 2001
}

2002 2003
double G1CollectorPolicy::recent_avg_time_for_rs_scan_ms() {
  if (_recent_rs_scan_times_ms->num() == 0) {
J
johnc 已提交
2004
    return (double)MaxGCPauseMillis/3.0;
2005 2006
  }
  return _recent_rs_scan_times_ms->avg();
2007 2008 2009
}

int G1CollectorPolicy::number_of_recent_gcs() {
2010
  assert(_recent_rs_scan_times_ms->num() ==
2011 2012 2013 2014 2015
         _recent_pause_times_ms->num(), "Sequence out of sync");
  assert(_recent_pause_times_ms->num() ==
         _recent_CS_bytes_used_before->num(), "Sequence out of sync");
  assert(_recent_CS_bytes_used_before->num() ==
         _recent_CS_bytes_surviving->num(), "Sequence out of sync");
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
  return _recent_pause_times_ms->num();
}

double G1CollectorPolicy::recent_avg_survival_fraction() {
  return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
                                           _recent_CS_bytes_used_before);
}

double G1CollectorPolicy::last_survival_fraction() {
  return last_survival_fraction_work(_recent_CS_bytes_surviving,
                                     _recent_CS_bytes_used_before);
}

double
G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
                                                     TruncatedSeq* before) {
  assert(surviving->num() == before->num(), "Sequence out of sync");
  if (before->sum() > 0.0) {
      double recent_survival_rate = surviving->sum() / before->sum();
      // We exempt parallel collection from this check because Alloc Buffer
      // fragmentation can produce negative collections.
      // Further, we're now always doing parallel collection.  But I'm still
      // leaving this here as a placeholder for a more precise assertion later.
      // (DLD, 10/05.)
2041
      assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
             _g1->evacuation_failed() ||
             recent_survival_rate <= 1.0, "Or bad frac");
      return recent_survival_rate;
  } else {
    return 1.0; // Be conservative.
  }
}

double
G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
                                               TruncatedSeq* before) {
  assert(surviving->num() == before->num(), "Sequence out of sync");
  if (surviving->num() > 0 && before->last() > 0.0) {
    double last_survival_rate = surviving->last() / before->last();
    // We exempt parallel collection from this check because Alloc Buffer
    // fragmentation can produce negative collections.
    // Further, we're now always doing parallel collection.  But I'm still
    // leaving this here as a placeholder for a more precise assertion later.
    // (DLD, 10/05.)
2061
    assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
           last_survival_rate <= 1.0, "Or bad frac");
    return last_survival_rate;
  } else {
    return 1.0;
  }
}

static const int survival_min_obs = 5;
static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
static const double min_survival_rate = 0.1;

double
G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
                                                           double latest) {
  double res = avg;
  if (number_of_recent_gcs() < survival_min_obs) {
    res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
  }
  res = MAX2(res, latest);
  res = MAX2(res, min_survival_rate);
  // In the parallel case, LAB fragmentation can produce "negative
  // collections"; so can evac failure.  Cap at 1.0
  res = MIN2(res, 1.0);
  return res;
}

size_t G1CollectorPolicy::expansion_amount() {
2089 2090 2091
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
2092 2093 2094 2095
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
2096
    const size_t min_expand_bytes = 1*M;
2097
    size_t reserved_bytes = _g1->max_capacity();
2098 2099 2100 2101
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
2102
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
2103 2104 2105
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
    return expand_bytes;
  } else {
    return 0;
  }
}

class CountCSClosure: public HeapRegionClosure {
  G1CollectorPolicy* _g1_policy;
public:
  CountCSClosure(G1CollectorPolicy* g1_policy) :
    _g1_policy(g1_policy) {}
  bool doHeapRegion(HeapRegion* r) {
    _g1_policy->_bytes_in_collection_set_before_gc += r->used();
    return false;
  }
};

void G1CollectorPolicy::count_CS_bytes_used() {
  CountCSClosure cs_closure(this);
  _g1->collection_set_iterate(&cs_closure);
}

void G1CollectorPolicy::print_summary (int level,
                                       const char* str,
                                       NumberSeq* seq) const {
  double sum = seq->sum();
2145
  LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
2146 2147 2148 2149 2150 2151 2152
                str, sum / 1000.0, seq->avg());
}

void G1CollectorPolicy::print_summary_sd (int level,
                                          const char* str,
                                          NumberSeq* seq) const {
  print_summary(level, str, seq);
2153
  LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2154 2155 2156 2157 2158 2159 2160
                seq->num(), seq->sd(), seq->maximum());
}

void G1CollectorPolicy::check_other_times(int level,
                                        NumberSeq* other_times_ms,
                                        NumberSeq* calc_other_times_ms) const {
  bool should_print = false;
2161
  LineBuffer buf(level + 2);
2162 2163 2164 2165 2166 2167 2168 2169

  double max_sum = MAX2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double min_sum = MIN2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double sum_ratio = max_sum / min_sum;
  if (sum_ratio > 1.1) {
    should_print = true;
2170
    buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
2171 2172 2173 2174 2175 2176 2177 2178 2179
  }

  double max_avg = MAX2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double min_avg = MIN2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double avg_ratio = max_avg / min_avg;
  if (avg_ratio > 1.1) {
    should_print = true;
2180
    buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
2181 2182 2183
  }

  if (other_times_ms->sum() < -0.01) {
2184
    buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
2185 2186 2187
  }

  if (other_times_ms->avg() < -0.01) {
2188
    buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
2189 2190 2191 2192
  }

  if (calc_other_times_ms->sum() < -0.01) {
    should_print = true;
2193
    buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
2194 2195 2196 2197
  }

  if (calc_other_times_ms->avg() < -0.01) {
    should_print = true;
2198
    buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
2199 2200 2201 2202 2203 2204 2205
  }

  if (should_print)
    print_summary(level, "Other(Calc)", calc_other_times_ms);
}

void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
2206
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
2207 2208
  MainBodySummary*    body_summary = summary->main_body_summary();
  if (summary->get_total_seq()->num() > 0) {
2209
    print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
    if (body_summary != NULL) {
      print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
      if (parallel) {
        print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
        print_summary(2, "Update RS", body_summary->get_update_rs_seq());
        print_summary(2, "Ext Root Scanning",
                      body_summary->get_ext_root_scan_seq());
        print_summary(2, "Mark Stack Scanning",
                      body_summary->get_mark_stack_scan_seq());
        print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
        print_summary(2, "Termination", body_summary->get_termination_seq());
        print_summary(2, "Other", body_summary->get_parallel_other_seq());
        {
          NumberSeq* other_parts[] = {
            body_summary->get_update_rs_seq(),
            body_summary->get_ext_root_scan_seq(),
            body_summary->get_mark_stack_scan_seq(),
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq(),
            body_summary->get_termination_seq()
          };
          NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
2233
                                        6, other_parts);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
          check_other_times(2, body_summary->get_parallel_other_seq(),
                            &calc_other_times_ms);
        }
        print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
        print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
      } else {
        print_summary(1, "Update RS", body_summary->get_update_rs_seq());
        print_summary(1, "Ext Root Scanning",
                      body_summary->get_ext_root_scan_seq());
        print_summary(1, "Mark Stack Scanning",
                      body_summary->get_mark_stack_scan_seq());
        print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
      }
    }
    print_summary(1, "Other", summary->get_other_seq());
    {
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
      if (body_summary != NULL) {
        NumberSeq calc_other_times_ms;
        if (parallel) {
          // parallel
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
            body_summary->get_parallel_seq(),
            body_summary->get_clear_ct_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
                                                3, other_parts);
        } else {
          // serial
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
            body_summary->get_update_rs_seq(),
            body_summary->get_ext_root_scan_seq(),
            body_summary->get_mark_stack_scan_seq(),
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
                                                6, other_parts);
        }
        check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
2276 2277 2278
      }
    }
  } else {
2279
    LineBuffer(1).append_and_print_cr("none");
2280
  }
2281
  LineBuffer(0).append_and_print_cr("");
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
}

void G1CollectorPolicy::print_tracing_info() const {
  if (TraceGen0Time) {
    gclog_or_tty->print_cr("ALL PAUSES");
    print_summary_sd(0, "Total", _all_pause_times_ms);
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
    gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
    gclog_or_tty->print_cr("");

2294 2295
    gclog_or_tty->print_cr("EVACUATION PAUSES");
    print_summary(_summary);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

    gclog_or_tty->print_cr("MISC");
    print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
    print_summary_sd(0, "Yields", _all_yield_times_ms);
    for (int i = 0; i < _aux_num; ++i) {
      if (_all_aux_times_ms[i].num() > 0) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
      }
    }

    size_t all_region_num = _region_num_young + _region_num_tenured;
    gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
               "Tenured %8d (%6.2lf%%)",
               all_region_num,
               _region_num_young,
               (double) _region_num_young / (double) all_region_num * 100.0,
               _region_num_tenured,
               (double) _region_num_tenured / (double) all_region_num * 100.0);
  }
  if (TraceGen1Time) {
    if (_all_full_gc_times_ms->num() > 0) {
      gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
                 _all_full_gc_times_ms->num(),
                 _all_full_gc_times_ms->sum() / 1000.0);
      gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
      gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
                    _all_full_gc_times_ms->sd(),
                    _all_full_gc_times_ms->maximum());
    }
  }
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

2337
void G1CollectorPolicy::update_region_num(bool young) {
2338
  if (young) {
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
    ++_region_num_young;
  } else {
    ++_region_num_tenured;
  }
}

#ifndef PRODUCT
// for debugging, bit of a hack...
static char*
region_num_to_mbs(int length) {
  static char buffer[64];
  double bytes = (double) (length * HeapRegion::GrainBytes);
  double mbs = bytes / (double) (1024 * 1024);
  sprintf(buffer, "%7.2lfMB", mbs);
  return buffer;
}
#endif // PRODUCT

2357
size_t G1CollectorPolicy::max_regions(int purpose) {
2358 2359
  switch (purpose) {
    case GCAllocForSurvived:
2360
      return _max_survivor_regions;
2361
    case GCAllocForTenured:
2362
      return REGIONS_UNLIMITED;
2363
    default:
2364 2365
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
2366 2367 2368
  };
}

2369
void G1CollectorPolicy::update_max_gc_locker_expansion() {
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
  size_t expansion_region_num = 0;
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
    expansion_region_num = (size_t) ceil(expansion_region_num_d);
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

2384
// Calculates survivor space parameters.
2385 2386 2387 2388 2389 2390 2391
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
  _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);

2392
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2393 2394 2395
        HeapRegion::GrainWords * _max_survivor_regions);
}

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
#ifndef PRODUCT
class HRSortIndexIsOKClosure: public HeapRegionClosure {
  CollectionSetChooser* _chooser;
public:
  HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
    _chooser(chooser) {}

  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
    }
    return false;
  }
};

2411
bool G1CollectorPolicy::assertMarkedBytesDataOK() {
2412 2413 2414 2415 2416 2417
  HRSortIndexIsOKClosure cl(_collectionSetChooser);
  _g1->heap_region_iterate(&cl);
  return true;
}
#endif

2418 2419
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
2420 2421
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
2422 2423 2424 2425 2426
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
2427 2428 2429
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
2430 2431 2432 2433 2434
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
2435 2436 2437 2438
    return false;
  }
}

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
2462 2463 2464 2465 2466 2467 2468
      // We do not allow non-full young GCs during marking.
      if (!full_young_gcs()) {
        set_full_young_gcs(true);
        ergo_verbose0(ErgoPartiallyYoungGCs,
                      "end partially-young GCs",
                      ergo_format_reason("concurrent cycle is about to start"));
      }
2469 2470 2471 2472

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
2473 2474 2475 2476

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
2490 2491 2492
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
2493 2494 2495 2496
    }
  }
}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
class KnownGarbageClosure: public HeapRegionClosure {
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
    _hrSorted(hrSorted)
  {}

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
      // We don't include humongous regions in collection
      // sets because we collect them immediately at the end of a marking
      // cycle.  We also don't include young regions because we *must*
      // include them in the next collection pause.
      if (!r->isHumongous() && !r->is_young()) {
        _hrSorted->addMarkedHeapRegion(r);
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
  CollectionSetChooser* _hrSorted;
  jint _marked_regions_added;
  jint _chunk_size;
  jint _cur_chunk_idx;
  jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  int _worker;
  int _invokes;

  void get_new_chunk() {
    _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
    _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  }
  void add_region(HeapRegion* r) {
    if (_cur_chunk_idx == _cur_chunk_end) {
      get_new_chunk();
    }
    assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
    _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
    _marked_regions_added++;
    _cur_chunk_idx++;
  }

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
                           jint chunk_size,
                           int worker) :
    _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
    _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
    _invokes(0)
  {}

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.
    _invokes++;

    // Do we have any marking information for this region?
    if (r->is_marked()) {
      // We don't include humongous regions in collection
      // sets because we collect them immediately at the end of a marking
      // cycle.
      // We also do not include young regions in collection sets
      if (!r->isHumongous() && !r->is_young()) {
        add_region(r);
      }
    }
    return false;
  }
  jint marked_regions_added() { return _marked_regions_added; }
  int invokes() { return _invokes; }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
  jint _chunk_size;
  G1CollectedHeap* _g1;
public:
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
    _g1(G1CollectedHeap::heap())
  {}

  void work(int i) {
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
    // Back to zero for the claim value.
2592 2593
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
                                         HeapRegion::InitialClaimValue);
2594 2595 2596
    jint regions_added = parKnownGarbageCl.marked_regions_added();
    _hrSorted->incNumMarkedHeapRegions(regions_added);
    if (G1PrintParCleanupStats) {
2597
      gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
2598 2599 2600 2601 2602 2603
                 i, parKnownGarbageCl.invokes(), regions_added);
    }
  }
};

void
2604 2605 2606 2607 2608
G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
  double start_sec;
  if (G1PrintParCleanupStats) {
    start_sec = os::elapsedTime();
  }
2609 2610

  _collectionSetChooser->clearMarkedHeapRegions();
2611
  double clear_marked_end_sec;
2612
  if (G1PrintParCleanupStats) {
2613 2614 2615
    clear_marked_end_sec = os::elapsedTime();
    gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
                           (clear_marked_end_sec - start_sec) * 1000.0);
2616
  }
2617

2618
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2619
    const size_t OverpartitionFactor = 4;
2620 2621
    const size_t MinWorkUnit = 8;
    const size_t WorkUnit =
2622
      MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
2623
           MinWorkUnit);
2624
    _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
2625
                                                             WorkUnit);
2626
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2627
                                            (int) WorkUnit);
2628
    _g1->workers()->run_task(&parKnownGarbageTask);
2629 2630 2631

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
2632 2633 2634 2635
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
2636
  double known_garbage_end_sec;
2637
  if (G1PrintParCleanupStats) {
2638
    known_garbage_end_sec = os::elapsedTime();
2639
    gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
2640
                      (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
2641
  }
2642

2643
  _collectionSetChooser->sortMarkedHeapRegions();
2644
  double end_sec = os::elapsedTime();
2645 2646
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("  sorting: %8.3f ms.",
2647
                           (end_sec - known_garbage_end_sec) * 1000.0);
2648 2649
  }

2650 2651 2652 2653 2654
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
2655 2656
}

2657
// Add the heap region at the head of the non-incremental collection set
2658 2659
void G1CollectorPolicy::
add_to_collection_set(HeapRegion* hr) {
2660 2661 2662
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

2663 2664 2665
  if (_g1->mark_in_progress())
    _g1->concurrent_mark()->registerCSetRegion(hr);

2666
  assert(!hr->in_collection_set(), "should not already be in the CSet");
2667 2668 2669 2670 2671
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_size++;
  _collection_set_bytes_used_before += hr->used();
2672
  _g1->register_region_with_in_cset_fast_test(hr);
2673 2674
}

2675 2676 2677 2678 2679 2680 2681 2682 2683
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_size = 0;
  _inc_cset_bytes_used_before = 0;

2684
  _inc_cset_young_index = 0;
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_young_bytes = 0;
  _inc_cset_recorded_rs_lengths = 0;
  _inc_cset_predicted_elapsed_time_ms = 0;
  _inc_cset_predicted_bytes_to_copy = 0;
  _inc_cset_build_state = Active;
}

void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  size_t used_bytes = hr->used();

  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;

  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);

#if PREDICTIONS_VERBOSE
  size_t bytes_to_copy = predict_bytes_to_copy(hr);
  _inc_cset_predicted_bytes_to_copy += bytes_to_copy;

  // Record the number of bytes used in this region
  _inc_cset_recorded_young_bytes += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_predicted_bytes_to_copy(bytes_to_copy);
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
  // This routine is currently only called as part of the updating of
  // existing policy information for regions in the incremental cset that
  // is performed by the concurrent refine thread(s) as part of young list
  // RSet sampling. Therefore we should not be at a safepoint.

  assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
  assert(hr->is_young(), "it should be");

  size_t used_bytes = hr->used();
  size_t old_rs_length = hr->recorded_rs_length();
  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();

  // Subtract the old recorded/predicted policy information for
  // the given heap region from the collection set info.
  _inc_cset_recorded_rs_lengths -= old_rs_length;
  _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;

  _inc_cset_bytes_used_before -= used_bytes;

  // Clear the values cached in the heap region
  hr->set_recorded_rs_length(0);
  hr->set_predicted_elapsed_time_ms(0);

#if PREDICTIONS_VERBOSE
  size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
  _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;

  // Subtract the number of bytes used in this region
  _inc_cset_recorded_young_bytes -= used_bytes;

  // Clear the values cached in the heap region
  hr->set_predicted_bytes_to_copy(0);
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
  // Update the collection set information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");

  remove_from_incremental_cset_info(hr);
  add_to_incremental_cset_info(hr, new_rs_length);
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  assert( hr->is_young(), "invariant");
  assert( hr->young_index_in_cset() == -1, "invariant" );
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _inc_cset_size++;
  _g1->register_region_with_in_cset_fast_test(hr);

  hr->set_young_index_in_cset((int) _inc_cset_young_index);
  ++_inc_cset_young_index;
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
    st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
                 "age: %4d, y: %d, surv: %d",
                        csr->bottom(), csr->end(),
                        csr->top(),
                        csr->prev_top_at_mark_start(),
                        csr->next_top_at_mark_start(),
                        csr->top_at_conc_mark_count(),
                        csr->age_in_surv_rate_group_cond(),
                        csr->is_young(),
                        csr->is_survivor());
    csr = next;
  }
}
#endif // !PRODUCT

2869
void G1CollectorPolicy::choose_collection_set(double target_pause_time_ms) {
2870 2871 2872
  // Set this here - in case we're not doing young collections.
  double non_young_start_time_sec = os::elapsedTime();

2873 2874
  YoungList* young_list = _g1->young_list();

2875 2876
  start_recording_regions();

2877 2878 2879 2880
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
2881 2882 2883 2884

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;

2885
  double time_remaining_ms = target_pause_time_ms - base_time_ms;
2886

2887 2888 2889 2890 2891 2892 2893
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "start choosing CSet",
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
                base_time_ms, time_remaining_ms, target_pause_time_ms);

2894
  // the 10% and 50% values are arbitrary...
2895 2896 2897
  double threshold = 0.10 * target_pause_time_ms;
  if (time_remaining_ms < threshold) {
    double prev_time_remaining_ms = time_remaining_ms;
2898
    time_remaining_ms = 0.50 * target_pause_time_ms;
2899
    _within_target = false;
2900 2901 2902 2903 2904 2905 2906
    ergo_verbose3(ErgoCSetConstruction,
                  "adjust remaining time",
                  ergo_format_reason("remaining time lower than threshold")
                  ergo_format_ms("remaining time")
                  ergo_format_ms("threshold")
                  ergo_format_ms("adjusted remaining time"),
                  prev_time_remaining_ms, threshold, time_remaining_ms);
2907 2908 2909 2910
  } else {
    _within_target = true;
  }

2911
  size_t expansion_bytes = _g1->expansion_regions() * HeapRegion::GrainBytes;
2912 2913

  HeapRegion* hr;
2914
  double young_start_time_sec = os::elapsedTime();
2915

2916 2917
  _collection_set_bytes_used_before = 0;
  _collection_set_size = 0;
2918 2919
  _young_cset_length  = 0;
  _last_young_gc_full = full_young_gcs() ? true : false;
2920

2921
  if (_last_young_gc_full) {
2922
    ++_full_young_pause_num;
2923
  } else {
2924
    ++_partial_young_pause_num;
2925
  }
2926

2927 2928 2929
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
2930

2931 2932 2933 2934
  size_t survivor_region_num = young_list->survivor_length();
  size_t eden_region_num = young_list->length() - survivor_region_num;
  size_t old_region_num = 0;
  hr = young_list->first_survivor_region();
2935 2936 2937 2938 2939
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
    hr->set_young();
    hr = hr->get_next_young_region();
  }
2940

2941 2942
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
2943

2944 2945
  if (_g1->mark_in_progress())
    _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
2946

2947 2948 2949 2950 2951 2952
  _young_cset_length = _inc_cset_young_index;
  _collection_set = _inc_cset_head;
  _collection_set_size = _inc_cset_size;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2953

2954 2955 2956 2957 2958 2959 2960 2961
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
                eden_region_num, survivor_region_num,
                _inc_cset_predicted_elapsed_time_ms);

2962 2963 2964 2965 2966
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_young_regions(_inc_cset_size);
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
2967
#if PREDICTIONS_VERBOSE
2968
  set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
2969 2970
#endif // PREDICTIONS_VERBOSE

2971
  assert(_inc_cset_size == young_list->length(), "Invariant");
2972

2973 2974 2975
  double young_end_time_sec = os::elapsedTime();
  _recorded_young_cset_choice_time_ms =
    (young_end_time_sec - young_start_time_sec) * 1000.0;
2976

2977 2978
  // We are doing young collections so reset this.
  non_young_start_time_sec = young_end_time_sec;
2979

2980
  if (!full_young_gcs()) {
2981 2982 2983
    bool should_continue = true;
    NumberSeq seq;
    double avg_prediction = 100000000000000000.0; // something very large
2984

2985 2986
    size_t prev_collection_set_size = _collection_set_size;
    double prev_predicted_pause_time_ms = predicted_pause_time_ms;
2987 2988 2989
    do {
      hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
                                                      avg_prediction);
2990
      if (hr != NULL) {
2991 2992 2993 2994
        double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
        time_remaining_ms -= predicted_time_ms;
        predicted_pause_time_ms += predicted_time_ms;
        add_to_collection_set(hr);
2995
        record_non_young_cset_region(hr);
2996 2997 2998
        seq.add(predicted_time_ms);
        avg_prediction = seq.avg() + seq.sd();
      }
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015

      should_continue = true;
      if (hr == NULL) {
        // No need for an ergo verbose message here,
        // getNextMarkRegion() does this when it returns NULL.
        should_continue = false;
      } else {
        if (adaptive_young_list_length()) {
          if (time_remaining_ms < 0.0) {
            ergo_verbose1(ErgoCSetConstruction,
                          "stop adding old regions to CSet",
                          ergo_format_reason("remaining time is lower than 0")
                          ergo_format_ms("remaining time"),
                          time_remaining_ms);
            should_continue = false;
          }
        } else {
3016
          if (_collection_set_size >= _young_list_fixed_length) {
3017 3018
            ergo_verbose2(ErgoCSetConstruction,
                          "stop adding old regions to CSet",
3019
                          ergo_format_reason("CSet length reached target")
3020 3021 3022 3023 3024 3025 3026
                          ergo_format_region("CSet")
                          ergo_format_region("young target"),
                          _collection_set_size, _young_list_fixed_length);
            should_continue = false;
          }
        }
      }
3027 3028 3029
    } while (should_continue);

    if (!adaptive_young_list_length() &&
3030 3031 3032 3033 3034 3035 3036
        _collection_set_size < _young_list_fixed_length) {
      ergo_verbose2(ErgoCSetConstruction,
                    "request partially-young GCs end",
                    ergo_format_reason("CSet length lower than target")
                    ergo_format_region("CSet")
                    ergo_format_region("young target"),
                    _collection_set_size, _young_list_fixed_length);
3037
      _should_revert_to_full_young_gcs  = true;
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
    }

    old_region_num = _collection_set_size - prev_collection_set_size;

    ergo_verbose2(ErgoCSetConstruction | ErgoHigh,
                  "add old regions to CSet",
                  ergo_format_region("old")
                  ergo_format_ms("predicted old region time"),
                  old_region_num,
                  predicted_pause_time_ms - prev_predicted_pause_time_ms);
3048 3049
  }

3050 3051
  stop_incremental_cset_building();

3052 3053 3054 3055
  count_CS_bytes_used();

  end_recording_regions();

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
                eden_region_num, survivor_region_num, old_region_num,
                predicted_pause_time_ms, target_pause_time_ms);

3066 3067 3068 3069
  double non_young_end_time_sec = os::elapsedTime();
  _recorded_non_young_cset_choice_time_ms =
    (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
}