g1CollectorPolicy.hpp 33.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

#include "gc_implementation/g1/collectionSetChooser.hpp"
#include "gc_implementation/g1/g1MMUTracker.hpp"
#include "memory/collectorPolicy.hpp"

32 33 34 35 36 37 38
// A G1CollectorPolicy makes policy decisions that determine the
// characteristics of the collector.  Examples include:
//   * choice of collection set.
//   * when to collect.

class HeapRegion;
class CollectionSetChooser;
39
class G1GCPhaseTimes;
40

41 42 43
// TraceGen0Time collects data on _both_ young and mixed evacuation pauses
// (the latter may contain non-young regions - i.e. regions that are
// technically in Gen1) while TraceGen1Time collects data about full GCs.
Z
zgu 已提交
44
class TraceGen0TimeData : public CHeapObj<mtGC> {
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 private:
  unsigned  _young_pause_num;
  unsigned  _mixed_pause_num;

  NumberSeq _all_stop_world_times_ms;
  NumberSeq _all_yield_times_ms;

  NumberSeq _total;
  NumberSeq _other;
  NumberSeq _root_region_scan_wait;
  NumberSeq _parallel;
  NumberSeq _ext_root_scan;
  NumberSeq _satb_filtering;
  NumberSeq _update_rs;
  NumberSeq _scan_rs;
  NumberSeq _obj_copy;
  NumberSeq _termination;
  NumberSeq _parallel_other;
  NumberSeq _clear_ct;

65 66
  void print_summary(const char* str, const NumberSeq* seq) const;
  void print_summary_sd(const char* str, const NumberSeq* seq) const;
67 68

public:
69 70 71
   TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  void record_start_collection(double time_to_stop_the_world_ms);
  void record_yield_time(double yield_time_ms);
72
  void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
73 74 75
  void increment_young_collection_count();
  void increment_mixed_collection_count();
  void print() const;
76 77
};

Z
zgu 已提交
78
class TraceGen1TimeData : public CHeapObj<mtGC> {
79 80
 private:
  NumberSeq _all_full_gc_times;
81

82 83 84
 public:
  void record_full_collection(double full_gc_time_ms);
  void print() const;
85 86
};

87 88 89 90 91 92 93 94 95 96
// There are three command line options related to the young gen size:
// NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
// just a short form for NewSize==MaxNewSize). G1 will use its internal
// heuristics to calculate the actual young gen size, so these options
// basically only limit the range within which G1 can pick a young gen
// size. Also, these are general options taking byte sizes. G1 will
// internally work with a number of regions instead. So, some rounding
// will occur.
//
// If nothing related to the the young gen size is set on the command
97 98 99 100
// line we should allow the young gen to be between G1NewSizePercent
// and G1MaxNewSizePercent of the heap size. This means that every time
// the heap size changes, the limits for the young gen size will be
// recalculated.
101 102
//
// If only -XX:NewSize is set we should use the specified value as the
103 104
// minimum size for young gen. Still using G1MaxNewSizePercent of the
// heap as maximum.
105 106
//
// If only -XX:MaxNewSize is set we should use the specified value as the
107 108
// maximum size for young gen. Still using G1NewSizePercent of the heap
// as minimum.
109 110 111 112 113 114 115 116 117 118 119 120 121 122
//
// If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
// No updates when the heap size changes. There is a special case when
// NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
// different heuristic for calculating the collection set when we do mixed
// collection.
//
// If only -XX:NewRatio is set we should use the specified ratio of the heap
// as both min and max. This will be interpreted as "fixed" just like the
// NewSize==MaxNewSize case above. But we will update the min and max
// everytime the heap size changes.
//
// NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
// combined with either NewSize or MaxNewSize. (A warning message is printed.)
Z
zgu 已提交
123
class G1YoungGenSizer : public CHeapObj<mtGC> {
124 125 126 127 128 129 130 131 132
private:
  enum SizerKind {
    SizerDefaults,
    SizerNewSizeOnly,
    SizerMaxNewSizeOnly,
    SizerMaxAndNewSize,
    SizerNewRatio
  };
  SizerKind _sizer_kind;
133 134
  uint _min_desired_young_length;
  uint _max_desired_young_length;
135
  bool _adaptive_size;
136 137
  uint calculate_default_min_length(uint new_number_of_heap_regions);
  uint calculate_default_max_length(uint new_number_of_heap_regions);
138

139 140 141 142
  // Update the given values for minimum and maximum young gen length in regions
  // given the number of heap regions depending on the kind of sizing algorithm.
  void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);

143 144
public:
  G1YoungGenSizer();
145 146 147 148
  // Calculate the maximum length of the young gen given the number of regions
  // depending on the sizing algorithm.
  uint max_young_length(uint number_of_heap_regions);

149 150
  void heap_size_changed(uint new_number_of_heap_regions);
  uint min_desired_young_length() {
151 152
    return _min_desired_young_length;
  }
153
  uint max_desired_young_length() {
154 155 156 157 158 159 160
    return _max_desired_young_length;
  }
  bool adaptive_young_list_length() {
    return _adaptive_size;
  }
};

161
class G1CollectorPolicy: public CollectorPolicy {
162
private:
163 164 165 166
  // either equal to the number of parallel threads, if ParallelGCThreads
  // has been set, or 1 otherwise
  int _parallel_gc_threads;

167 168 169
  // The number of GC threads currently active.
  uintx _no_of_gc_threads;

170
  enum SomePrivateConstants {
171
    NumPrevPausesForHeuristics = 10
172 173 174 175
  };

  G1MMUTracker* _mmu_tracker;

176
  void initialize_alignments();
177 178
  void initialize_flags();

179
  CollectionSetChooser* _collectionSetChooser;
180

181
  double _full_collection_start_sec;
182
  uint   _cur_collection_pause_used_regions_at_start;
183

184 185 186 187 188 189
  // These exclude marking times.
  TruncatedSeq* _recent_gc_times_ms;

  TruncatedSeq* _concurrent_mark_remark_times_ms;
  TruncatedSeq* _concurrent_mark_cleanup_times_ms;

190 191
  TraceGen0TimeData _trace_gen0_time_data;
  TraceGen1TimeData _trace_gen1_time_data;
192 193 194

  double _stop_world_start;

195 196
  // indicates whether we are in young or mixed GC mode
  bool _gcs_are_young;
197

198 199
  uint _young_list_target_length;
  uint _young_list_fixed_length;
200

201 202
  // The max number of regions we can extend the eden by while the GC
  // locker is active. This should be >= _young_list_target_length;
203
  uint _young_list_max_length;
204

205
  bool                  _last_gc_was_young;
206 207 208 209 210 211 212 213 214

  bool                  _during_marking;
  bool                  _in_marking_window;
  bool                  _in_marking_window_im;

  SurvRateGroup*        _short_lived_surv_rate_group;
  SurvRateGroup*        _survivor_surv_rate_group;
  // add here any more surv rate groups

T
tonyp 已提交
215 216
  double                _gc_overhead_perc;

217
  double _reserve_factor;
218
  uint _reserve_regions;
219

220 221 222 223 224 225 226 227 228 229 230 231 232
  bool during_marking() {
    return _during_marking;
  }

  enum PredictionConstants {
    TruncatedSeqLength = 10
  };

  TruncatedSeq* _alloc_rate_ms_seq;
  double        _prev_collection_pause_end_ms;

  TruncatedSeq* _rs_length_diff_seq;
  TruncatedSeq* _cost_per_card_ms_seq;
233 234
  TruncatedSeq* _young_cards_per_entry_ratio_seq;
  TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
235
  TruncatedSeq* _cost_per_entry_ms_seq;
236
  TruncatedSeq* _mixed_cost_per_entry_ms_seq;
237 238 239 240 241 242 243 244 245 246
  TruncatedSeq* _cost_per_byte_ms_seq;
  TruncatedSeq* _constant_other_time_ms_seq;
  TruncatedSeq* _young_other_cost_per_region_ms_seq;
  TruncatedSeq* _non_young_other_cost_per_region_ms_seq;

  TruncatedSeq* _pending_cards_seq;
  TruncatedSeq* _rs_lengths_seq;

  TruncatedSeq* _cost_per_byte_ms_during_cm_seq;

247
  G1YoungGenSizer* _young_gen_sizer;
248

249 250 251
  uint _eden_cset_region_length;
  uint _survivor_cset_region_length;
  uint _old_cset_region_length;
252

253 254
  void init_cset_region_lengths(uint eden_cset_region_length,
                                uint survivor_cset_region_length);
255

256 257 258
  uint eden_cset_region_length()     { return _eden_cset_region_length;     }
  uint survivor_cset_region_length() { return _survivor_cset_region_length; }
  uint old_cset_region_length()      { return _old_cset_region_length;      }
259

260
  uint _free_regions_at_end_of_collection;
261 262 263 264 265 266 267

  size_t _recorded_rs_lengths;
  size_t _max_rs_lengths;
  double _sigma;

  size_t _rs_lengths_prediction;

268
  double sigma() { return _sigma; }
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

  // A function that prevents us putting too much stock in small sample
  // sets.  Returns a number between 2.0 and 1.0, depending on the number
  // of samples.  5 or more samples yields one; fewer scales linearly from
  // 2.0 at 1 sample to 1.0 at 5.
  double confidence_factor(int samples) {
    if (samples > 4) return 1.0;
    else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
  }

  double get_new_neg_prediction(TruncatedSeq* seq) {
    return seq->davg() - sigma() * seq->dsd();
  }

#ifndef PRODUCT
  bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
#endif // PRODUCT

287 288 289 290
  void adjust_concurrent_refinement(double update_rs_time,
                                    double update_rs_processed_buffers,
                                    double goal_ms);

291 292 293
  uintx no_of_gc_threads() { return _no_of_gc_threads; }
  void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }

294
  double _pause_time_target_ms;
295

296 297 298
  size_t _pending_cards;

public:
299
  // Accessors
300

301
  void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
302
    hr->set_eden();
303
    hr->install_surv_rate_group(_short_lived_surv_rate_group);
304
    hr->set_young_index_in_cset(young_index_in_cset);
305 306
  }

307
  void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
308
    assert(hr->is_survivor(), "pre-condition");
309
    hr->install_surv_rate_group(_survivor_surv_rate_group);
310
    hr->set_young_index_in_cset(young_index_in_cset);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
  }

#ifndef PRODUCT
  bool verify_young_ages();
#endif // PRODUCT

  double get_new_prediction(TruncatedSeq* seq) {
    return MAX2(seq->davg() + sigma() * seq->dsd(),
                seq->davg() * confidence_factor(seq->num()));
  }

  void record_max_rs_lengths(size_t rs_lengths) {
    _max_rs_lengths = rs_lengths;
  }

  size_t predict_rs_length_diff() {
    return (size_t) get_new_prediction(_rs_length_diff_seq);
  }

  double predict_alloc_rate_ms() {
    return get_new_prediction(_alloc_rate_ms_seq);
  }

  double predict_cost_per_card_ms() {
    return get_new_prediction(_cost_per_card_ms_seq);
  }

  double predict_rs_update_time_ms(size_t pending_cards) {
    return (double) pending_cards * predict_cost_per_card_ms();
  }

342 343
  double predict_young_cards_per_entry_ratio() {
    return get_new_prediction(_young_cards_per_entry_ratio_seq);
344 345
  }

346 347 348 349 350 351
  double predict_mixed_cards_per_entry_ratio() {
    if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
      return predict_young_cards_per_entry_ratio();
    } else {
      return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
    }
352 353 354 355
  }

  size_t predict_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
356
                     predict_young_cards_per_entry_ratio());
357 358 359 360
  }

  size_t predict_non_young_card_num(size_t rs_length) {
    return (size_t) ((double) rs_length *
361
                     predict_mixed_cards_per_entry_ratio());
362 363 364
  }

  double predict_rs_scan_time_ms(size_t card_num) {
365
    if (gcs_are_young()) {
366
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
367 368 369
    } else {
      return predict_mixed_rs_scan_time_ms(card_num);
    }
370 371
  }

372 373
  double predict_mixed_rs_scan_time_ms(size_t card_num) {
    if (_mixed_cost_per_entry_ms_seq->num() < 3) {
374
      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
375 376 377 378
    } else {
      return (double) (card_num *
                       get_new_prediction(_mixed_cost_per_entry_ms_seq));
    }
379 380 381
  }

  double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
382 383 384 385
    if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
      return (1.1 * (double) bytes_to_copy) *
              get_new_prediction(_cost_per_byte_ms_seq);
    } else {
386
      return (double) bytes_to_copy *
387 388
             get_new_prediction(_cost_per_byte_ms_during_cm_seq);
    }
389 390 391
  }

  double predict_object_copy_time_ms(size_t bytes_to_copy) {
392
    if (_in_marking_window && !_in_marking_window_im) {
393
      return predict_object_copy_time_ms_during_cm(bytes_to_copy);
394
    } else {
395
      return (double) bytes_to_copy *
396 397
              get_new_prediction(_cost_per_byte_ms_seq);
    }
398 399 400 401 402 403 404
  }

  double predict_constant_other_time_ms() {
    return get_new_prediction(_constant_other_time_ms_seq);
  }

  double predict_young_other_time_ms(size_t young_num) {
405 406
    return (double) young_num *
           get_new_prediction(_young_other_cost_per_region_ms_seq);
407 408 409
  }

  double predict_non_young_other_time_ms(size_t non_young_num) {
410 411
    return (double) non_young_num *
           get_new_prediction(_non_young_other_cost_per_region_ms_seq);
412 413 414 415 416 417
  }

  double predict_base_elapsed_time_ms(size_t pending_cards);
  double predict_base_elapsed_time_ms(size_t pending_cards,
                                      size_t scanned_cards);
  size_t predict_bytes_to_copy(HeapRegion* hr);
418
  double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
419

420
  void set_recorded_rs_lengths(size_t rs_lengths);
421

422 423 424 425
  uint cset_region_length()       { return young_cset_region_length() +
                                           old_cset_region_length(); }
  uint young_cset_region_length() { return eden_cset_region_length() +
                                           survivor_cset_region_length(); }
426

427 428
  double predict_survivor_regions_evac_time();

429
  void cset_regions_freed() {
430
    bool propagate = _last_gc_was_young && !_in_marking_window;
431 432 433 434 435 436 437 438 439
    _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
    _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
    // also call it on any more surv rate groups
  }

  G1MMUTracker* mmu_tracker() {
    return _mmu_tracker;
  }

440 441 442 443
  double max_pause_time_ms() {
    return _mmu_tracker->max_gc_time() * 1000.0;
  }

444 445 446 447 448 449 450 451 452 453
  double predict_remark_time_ms() {
    return get_new_prediction(_concurrent_mark_remark_times_ms);
  }

  double predict_cleanup_time_ms() {
    return get_new_prediction(_concurrent_mark_cleanup_times_ms);
  }

  // Returns an estimate of the survival rate of the region at yg-age
  // "yg_age".
454 455
  double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
    TruncatedSeq* seq = surv_rate_group->get_seq(age);
456 457 458 459 460 461 462 463 464
    if (seq->num() == 0)
      gclog_or_tty->print("BARF! age is %d", age);
    guarantee( seq->num() > 0, "invariant" );
    double pred = get_new_prediction(seq);
    if (pred > 1.0)
      pred = 1.0;
    return pred;
  }

465 466 467 468
  double predict_yg_surv_rate(int age) {
    return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
  }

469 470 471 472
  double accum_yg_surv_rate_pred(int age) {
    return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
  }

473
private:
474 475 476 477 478 479 480
  // Statistics kept per GC stoppage, pause or full.
  TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;

  // Add a new GC of the given duration and end time to the record.
  void update_recent_gc_times(double end_time_sec, double elapsed_ms);

  // The head of the list (via "next_in_collection_set()") representing the
481 482
  // current collection set. Set from the incrementally built collection
  // set at the start of the pause.
483
  HeapRegion* _collection_set;
484 485 486

  // The number of bytes in the collection set before the pause. Set from
  // the incrementally built collection set at the start of an evacuation
487 488
  // pause, and incremented in finalize_cset() when adding old regions
  // (if any) to the collection set.
489 490
  size_t _collection_set_bytes_used_before;

491 492 493
  // The number of bytes copied during the GC.
  size_t _bytes_copied_during_gc;

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  // The associated information that is maintained while the incremental
  // collection set is being built with young regions. Used to populate
  // the recorded info for the evacuation pause.

  enum CSetBuildType {
    Active,             // We are actively building the collection set
    Inactive            // We are not actively building the collection set
  };

  CSetBuildType _inc_cset_build_state;

  // The head of the incrementally built collection set.
  HeapRegion* _inc_cset_head;

  // The tail of the incrementally built collection set.
  HeapRegion* _inc_cset_tail;

  // The number of bytes in the incrementally built collection set.
  // Used to set _collection_set_bytes_used_before at the start of
  // an evacuation pause.
  size_t _inc_cset_bytes_used_before;

  // Used to record the highest end of heap region in collection set
  HeapWord* _inc_cset_max_finger;

519 520 521 522 523
  // The RSet lengths recorded for regions in the CSet. It is updated
  // by the thread that adds a new region to the CSet. We assume that
  // only one thread can be allocating a new CSet region (currently,
  // it does so after taking the Heap_lock) hence no need to
  // synchronize updates to this field.
524 525
  size_t _inc_cset_recorded_rs_lengths;

526 527 528 529 530 531 532 533 534 535 536
  // A concurrent refinement thread periodcially samples the young
  // region RSets and needs to update _inc_cset_recorded_rs_lengths as
  // the RSets grow. Instead of having to syncronize updates to that
  // field we accumulate them in this field and add it to
  // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
  ssize_t _inc_cset_recorded_rs_lengths_diffs;

  // The predicted elapsed time it will take to collect the regions in
  // the CSet. This is updated by the thread that adds a new region to
  // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
  // MT-safety assumptions.
537 538
  double _inc_cset_predicted_elapsed_time_ms;

539 540 541
  // See the comment for _inc_cset_recorded_rs_lengths_diffs.
  double _inc_cset_predicted_elapsed_time_ms_diffs;

542 543 544
  // Stash a pointer to the g1 heap.
  G1CollectedHeap* _g1;

545 546
  G1GCPhaseTimes* _phase_times;

547 548 549 550 551 552 553
  // The ratio of gc time to elapsed time, computed over recent pauses.
  double _recent_avg_pause_time_ratio;

  double recent_avg_pause_time_ratio() {
    return _recent_avg_pause_time_ratio;
  }

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
  // At the end of a pause we check the heap occupancy and we decide
  // whether we will start a marking cycle during the next pause. If
  // we decide that we want to do that, we will set this parameter to
  // true. So, this parameter will stay true between the end of a
  // pause and the beginning of a subsequent pause (not necessarily
  // the next one, see the comments on the next field) when we decide
  // that we will indeed start a marking cycle and do the initial-mark
  // work.
  volatile bool _initiate_conc_mark_if_possible;

  // If initiate_conc_mark_if_possible() is set at the beginning of a
  // pause, it is a suggestion that the pause should start a marking
  // cycle by doing the initial-mark work. However, it is possible
  // that the concurrent marking thread is still finishing up the
  // previous marking cycle (e.g., clearing the next marking
  // bitmap). If that is the case we cannot start a new cycle and
  // we'll have to wait for the concurrent marking thread to finish
  // what it is doing. In this case we will postpone the marking cycle
  // initiation decision for the next pause. When we eventually decide
  // to start a cycle, we will set _during_initial_mark_pause which
  // will stay true until the end of the initial-mark pause and it's
  // the condition that indicates that a pause is doing the
  // initial-mark work.
  volatile bool _during_initial_mark_pause;
578

579
  bool _last_young_gc;
580 581 582 583 584 585 586

  // This set of variables tracks the collector efficiency, in order to
  // determine whether we should initiate a new marking.
  double _cur_mark_stop_world_time_ms;
  double _mark_remark_start_sec;
  double _mark_cleanup_start_sec;

587 588 589 590 591 592 593 594 595 596
  // Update the young list target length either by setting it to the
  // desired fixed value or by calculating it using G1's pause
  // prediction model. If no rs_lengths parameter is passed, predict
  // the RS lengths using the prediction model, otherwise use the
  // given rs_lengths as the prediction.
  void update_young_list_target_length(size_t rs_lengths = (size_t) -1);

  // Calculate and return the minimum desired young list target
  // length. This is the minimum desired young list length according
  // to the user's inputs.
597
  uint calculate_young_list_desired_min_length(uint base_min_length);
598 599 600 601

  // Calculate and return the maximum desired young list target
  // length. This is the maximum desired young list length according
  // to the user's inputs.
602
  uint calculate_young_list_desired_max_length();
603 604 605 606 607 608 609

  // Calculate and return the maximum young list target length that
  // can fit into the pause time goal. The parameters are: rs_lengths
  // represent the prediction of how large the young RSet lengths will
  // be, base_min_length is the alreay existing number of regions in
  // the young list, min_length and max_length are the desired min and
  // max young list length according to the user's inputs.
610 611 612 613
  uint calculate_young_list_target_length(size_t rs_lengths,
                                          uint base_min_length,
                                          uint desired_min_length,
                                          uint desired_max_length);
614 615 616 617 618 619

  // Check whether a given young length (young_length) fits into the
  // given target pause time and whether the prediction for the amount
  // of objects to be copied for the given length will fit into the
  // given free space (expressed by base_free_regions).  It is used by
  // calculate_young_list_target_length().
620 621
  bool predict_will_fit(uint young_length, double base_time_ms,
                        uint base_free_regions, double target_pause_time_ms);
622

623 624 625 626 627 628 629 630 631 632 633 634
  // Calculate the minimum number of old regions we'll add to the CSet
  // during a mixed GC.
  uint calc_min_old_cset_length();

  // Calculate the maximum number of old regions we'll add to the CSet
  // during a mixed GC.
  uint calc_max_old_cset_length();

  // Returns the given amount of uncollected reclaimable space
  // as a percentage of the current heap capacity.
  double reclaimable_bytes_perc(size_t reclaimable_bytes);

635 636 637 638 639 640 641 642 643 644
public:

  G1CollectorPolicy();

  virtual G1CollectorPolicy* as_g1_policy() { return this; }

  virtual CollectorPolicy::Name kind() {
    return CollectorPolicy::G1CollectorPolicyKind;
  }

645 646
  G1GCPhaseTimes* phase_times() const { return _phase_times; }

647 648 649 650
  // Check the current value of the young list RSet lengths and
  // compare it against the last prediction. If the current value is
  // higher, recalculate the young list target length prediction.
  void revise_young_list_target_length_if_necessary();
651

652
  // This should be called after the heap is resized.
653
  void record_new_heap_size(uint new_number_of_regions);
654

655
  void init();
656

657 658 659
  // Create jstat counters for the policy.
  virtual void initialize_gc_policy_counters();

660 661 662 663 664 665 666 667 668 669 670
  virtual HeapWord* mem_allocate_work(size_t size,
                                      bool is_tlab,
                                      bool* gc_overhead_limit_was_exceeded);

  // This method controls how a collector handles one or more
  // of its generations being fully allocated.
  virtual HeapWord* satisfy_failed_allocation(size_t size,
                                              bool is_tlab);

  BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }

671
  bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
672

673 674
  // Record the start and end of an evacuation pause.
  void record_collection_pause_start(double start_time_sec);
S
sla 已提交
675
  void record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info);
676

677 678 679
  // Record the start and end of a full collection.
  void record_full_collection_start();
  void record_full_collection_end();
680 681

  // Must currently be called while the world is stopped.
682
  void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
683

684
  // Record start and end of remark.
685 686
  void record_concurrent_mark_remark_start();
  void record_concurrent_mark_remark_end();
687

688
  // Record start, end, and completion of cleanup.
689
  void record_concurrent_mark_cleanup_start();
690
  void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
691
  void record_concurrent_mark_cleanup_completed();
692

693 694
  // Records the information about the heap size for reporting in
  // print_detailed_heap_transition
695
  void record_heap_size_info_at_start(bool full);
696

697
  // Print heap sizing transition (with less and more detail).
698
  void print_heap_transition();
699
  void print_detailed_heap_transition(bool full = false);
700

701 702
  void record_stop_world_start();
  void record_concurrent_pause();
703

704 705 706 707 708 709 710 711 712 713
  // Record how much space we copied during a GC. This is typically
  // called when a GC alloc region is being retired.
  void record_bytes_copied_during_gc(size_t bytes) {
    _bytes_copied_during_gc += bytes;
  }

  // The amount of space we copied during a GC.
  size_t bytes_copied_during_gc() {
    return _bytes_copied_during_gc;
  }
714

715 716 717
  // Determine whether there are candidate regions so that the
  // next GC should be mixed. The two action strings are used
  // in the ergo output when the method returns true or false.
718 719 720
  bool next_gc_should_be_mixed(const char* true_action_str,
                               const char* false_action_str);

721 722 723
  // Choose a new collection set.  Marks the chosen regions as being
  // "in_collection_set", and links them together.  The head and number of
  // the collection set are available via access methods.
S
sla 已提交
724
  void finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info);
725 726 727 728 729

  // The head of the list (via "next_in_collection_set()") representing the
  // current collection set.
  HeapRegion* collection_set() { return _collection_set; }

730 731
  void clear_collection_set() { _collection_set = NULL; }

732 733
  // Add old region "hr" to the CSet.
  void add_old_region_to_cset(HeapRegion* hr);
734

735 736 737 738 739 740 741 742 743 744 745
  // Incremental CSet Support

  // The head of the incrementally built collection set.
  HeapRegion* inc_cset_head() { return _inc_cset_head; }

  // The tail of the incrementally built collection set.
  HeapRegion* inc_set_tail() { return _inc_cset_tail; }

  // Initialize incremental collection set info.
  void start_incremental_cset_building();

746 747 748 749
  // Perform any final calculations on the incremental CSet fields
  // before we can use them.
  void finalize_incremental_cset_building();

750 751 752 753 754 755 756 757
  void clear_incremental_cset() {
    _inc_cset_head = NULL;
    _inc_cset_tail = NULL;
  }

  // Stop adding regions to the incremental collection set
  void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }

758 759
  // Add information about hr to the aggregated information for the
  // incrementally built collection set.
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
  void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);

  // Update information about hr in the aggregated information for
  // the incrementally built collection set.
  void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);

private:
  // Update the incremental cset information when adding a region
  // (should not be called directly).
  void add_region_to_incremental_cset_common(HeapRegion* hr);

public:
  // Add hr to the LHS of the incremental collection set.
  void add_region_to_incremental_cset_lhs(HeapRegion* hr);

  // Add hr to the RHS of the incremental collection set.
  void add_region_to_incremental_cset_rhs(HeapRegion* hr);

#ifndef PRODUCT
  void print_collection_set(HeapRegion* list_head, outputStream* st);
#endif // !PRODUCT

782 783 784 785 786 787 788 789
  bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }

  bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }

790 791 792 793
  // This sets the initiate_conc_mark_if_possible() flag to start a
  // new cycle, as long as we are not already in one. It's best if it
  // is called during a safepoint when the test whether a cycle is in
  // progress or not is stable.
794
  bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
795

796 797 798 799 800 801 802
  // This is called at the very beginning of an evacuation pause (it
  // has to be the first thing that the pause does). If
  // initiate_conc_mark_if_possible() is true, and the concurrent
  // marking thread has completed its work during the previous cycle,
  // it will set during_initial_mark_pause() to so that the pause does
  // the initial-mark work and start a marking cycle.
  void decide_on_conc_mark_initiation();
803 804 805

  // If an expansion would be appropriate, because recent GC overhead had
  // exceeded the desired limit, return an amount to expand by.
806
  size_t expansion_amount();
807 808 809 810 811 812 813

  // Print tracing information.
  void print_tracing_info() const;

  // Print stats on young survival ratio
  void print_yg_surv_rate_info() const;

814 815 816 817 818 819
  void finished_recalculating_age_indexes(bool is_survivors) {
    if (is_survivors) {
      _survivor_surv_rate_group->finished_recalculating_age_indexes();
    } else {
      _short_lived_surv_rate_group->finished_recalculating_age_indexes();
    }
820 821 822
    // do that for any other surv rate groups
  }

B
brutisso 已提交
823 824
  size_t young_list_target_length() const { return _young_list_target_length; }

825
  bool is_young_list_full() {
826 827
    uint young_list_length = _g1->young_list()->length();
    uint young_list_target_length = _young_list_target_length;
828 829
    return young_list_length >= young_list_target_length;
  }
830

831
  bool can_expand_young_list() {
832 833
    uint young_list_length = _g1->young_list()->length();
    uint young_list_max_length = _young_list_max_length;
834
    return young_list_length < young_list_max_length;
835
  }
836

837
  uint young_list_max_length() {
838 839 840
    return _young_list_max_length;
  }

841 842
  bool gcs_are_young() {
    return _gcs_are_young;
843
  }
844 845
  void set_gcs_are_young(bool gcs_are_young) {
    _gcs_are_young = gcs_are_young;
846 847 848
  }

  bool adaptive_young_list_length() {
849
    return _young_gen_sizer->adaptive_young_list_length();
850 851
  }

852
private:
853 854 855 856 857
  //
  // Survivor regions policy.
  //

  // Current tenuring threshold, set to 0 if the collector reaches the
858 859
  // maximum amount of survivors regions.
  uint _tenuring_threshold;
860

861
  // The limit on the number of regions allocated for survivors.
862
  uint _max_survivor_regions;
863

864
  // For reporting purposes.
865 866 867 868 869 870 871 872 873 874
  // The value of _heap_bytes_before_gc is also used to calculate
  // the cost of copying.

  size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
  size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
  size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
  size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC

  size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
  size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
875

876
  // The amount of survivor regions after a collection.
877
  uint _recorded_survivor_regions;
878 879 880 881 882 883
  // List of survivor regions.
  HeapRegion* _recorded_survivor_head;
  HeapRegion* _recorded_survivor_tail;

  ageTable _survivors_age_table;

884
public:
S
sla 已提交
885
  uint tenuring_threshold() const { return _tenuring_threshold; }
886 887

  inline GCAllocPurpose
888
    evacuation_destination(HeapRegion* src_region, uint age, size_t word_sz) {
889 890 891 892 893 894 895 896 897 898 899
      if (age < _tenuring_threshold && src_region->is_young()) {
        return GCAllocForSurvived;
      } else {
        return GCAllocForTenured;
      }
  }

  inline bool track_object_age(GCAllocPurpose purpose) {
    return purpose == GCAllocForSurvived;
  }

900
  static const uint REGIONS_UNLIMITED = (uint) -1;
901

902
  uint max_regions(int purpose);
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

  // The limit on regions for a particular purpose is reached.
  void note_alloc_region_limit_reached(int purpose) {
    if (purpose == GCAllocForSurvived) {
      _tenuring_threshold = 0;
    }
  }

  void note_start_adding_survivor_regions() {
    _survivor_surv_rate_group->start_adding_regions();
  }

  void note_stop_adding_survivor_regions() {
    _survivor_surv_rate_group->stop_adding_regions();
  }
918

919
  void record_survivor_regions(uint regions,
920 921 922 923 924 925 926
                               HeapRegion* head,
                               HeapRegion* tail) {
    _recorded_survivor_regions = regions;
    _recorded_survivor_head    = head;
    _recorded_survivor_tail    = tail;
  }

927
  uint recorded_survivor_regions() {
928 929 930
    return _recorded_survivor_regions;
  }

931
  void record_thread_age_table(ageTable* age_table) {
932 933 934
    _survivors_age_table.merge_par(age_table);
  }

935
  void update_max_gc_locker_expansion();
936

937
  // Calculates survivor space parameters.
938
  void update_survivors_policy();
939

940
  virtual void post_heap_initialize();
941 942 943 944 945 946 947 948 949 950 951 952 953
};

// This should move to some place more general...

// If we have "n" measurements, and we've kept track of their "sum" and the
// "sum_of_squares" of the measurements, this returns the variance of the
// sequence.
inline double variance(int n, double sum_of_squares, double sum) {
  double n_d = (double)n;
  double avg = sum/n_d;
  return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
}

954
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP